河北中考数学试题及答案_0
2020年河北省中考数学试卷及其答案
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.66.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长7.(3分)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=8.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR9.(3分)若=8×10×12,则k=()A.12B.10C.8D.610.(3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC11.(2分)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a ×10n千米,则n可能为()A.5B.6C.5或6D.5或6或714.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说得对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:﹣=a﹣=b,则ab=.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点Tm,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.例如:第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP 并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠1,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数W衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q 在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3<x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M 到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.2020年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【解答】解:在同一平面内,与已知直线垂直的直线有无数条,所以作已知直线m的垂线,可作无数条.故选:D.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解答】解:解法一:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.解法二:第一个几何体的三视图如图所示第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选:D.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴当a=9时,中位数是8.5,众数是9,故选项A不合题意;当a=8时,中位数是8,众数是8,故选项B符合题意;当a=7时,中位数是7.5,没有众数,故选项C不符合题意;当a=6时,中位数是7,众数是6,故选项D不符合题意;故选:B.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长【解答】解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b 必须大于DE,否则没有交点,故选:B.7.(3分)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.8.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.9.(3分)若=8×10×12,则k=()A.12B.10C.8D.6【解答】解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.10.(3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故应补充“AB=CD”,故选:B.11.(2分)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k【解答】解:=(k•k)k=(k2)k=k2k,故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【解答】解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△PAB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a ×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n 可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说得对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:﹣=a﹣=b,则ab=6.【解答】解:原式=3﹣=a﹣=b,故a=3,b=2,则ab=6.故答案为:6.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=12.【解答】解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记(m为1~8的整数).函数y=(x<0)的图象为曲线L.作Tm(1)若L过点T,则k=﹣16;1(2)若L 过点T 4,则它必定还过另一点T m ,则m =5;(3)若曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点,则k 的整数值有7个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T 1(﹣16,1),T 2(﹣14,2),T 3(﹣12,3),T 4(﹣10,4),T 5(﹣8,5),T 6(﹣6,6),T 7(﹣4,7),T 8(﹣2,8),∵L 过点T 1,∴k =﹣16×1=﹣16,故答案为:﹣16;(2)∵L 过点T 4,∴k =﹣10×4=﹣40,∴反比例函数解析式为:y =﹣,当x =﹣8时,y =5,∴T 5在反比例函数图象上,∴m =5,故答案为:5;(3)若曲线L 过点T 1(﹣16,1),T 8(﹣2,8)时,k =﹣16,若曲线L 过点T 2(﹣14,2),T 7(﹣4,7)时,k =﹣14×2=﹣28,若曲线L 过点T 3(﹣12,3),T 6(﹣6,6)时,k =﹣12×3=﹣36,若曲线L 过点T 4(﹣10,4),T 5(﹣8,5)时,k =﹣40,∵曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点,∴﹣36<k <﹣28,∴整数k =﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,故答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.【解答】解:(1)==﹣2;(2)根据题意得,<m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.例如:第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP 并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠1,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S(答案保扇形EOD 留π).【解答】解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∠1+∠C=∠2,理由是:∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.23.(9分)用承重指数W衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W =3.(1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q =W 厚﹣W 薄.①求Q 与x 的函数关系式;②x 为何值时,Q 是W 薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围]【解答】解:(1)设W =kx 2(k ≠0).∵当x =3时,W =3,∴3=9k ,解得k =,∴W 与x 的函数关系式为W =x 2;(2)①设薄板的厚度为x 厘米,则厚板的厚度为(6﹣x )厘米,∴Q =W 厚﹣W 薄=(6﹣x )2﹣x 2=﹣4x +12,即Q 与x 的函数关系式为Q =﹣4x +12;②∵Q 是W 薄的3倍,∴﹣4x +12=3×x 2,整理得,x 2+4x ﹣12=0,解得,x 1=2,x 2=﹣6(不合题意舍去),故x 为2时,Q 是W 薄的3倍.24.(10分)表格中的两组对应值满足一次函数y =kx +b ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.x ﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直线l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P=.甲对乙错(2)根据题意可得,n次答对,向西移动4n,(10﹣n)次答错,向东移了2(10﹣n),∴m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对答错时,二者之间的距离缩小2,∴当进行了k次移动游戏后,甲与乙的位置相距2个单位时,共缩小了6个单位或10个单位,∴6÷2=3或10÷2=5,∴k=3或k=5.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q 在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3<x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M 到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C==,∴AH=3,AB=AC===5.∴当点P在BC上时,PA⊥BC时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴=()2=,∴=,∴AP=,∴PM=AP﹣AM=﹣2=.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴=,∠AQP=∠C,∴=,∴PQ=(x+2),∵sin∠AQP=sin∠C=,∴PJ=PQ•sin∠AQP=(x+2).当3<x≤9时,如图2中,过点P作PJ⊥AC于J.此时PC=8+5﹣2﹣x=11﹣x,同法可得PJ=PC•sin∠C=(11﹣x).综上,PJ=;(4)由题意点P的运动速度==单位长度/秒.当3<x≤9时,设点P移动的路程为x,CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴=,∴=,∴y=﹣(x﹣7)2+,∵﹣<0,∴x=7时,y有最大值,最大值=,∵AK=,∴CK=5﹣=<,当y=时,=﹣(x﹣7)2+,解得x=7±,∴点K被扫描到的总时长=(+6﹣3)÷=23(秒).。
河北省中考数学试卷及答案(原版真题)
篇一: 20XX年河北省中考数学试卷及答案20XX年河北省初中毕业生升学文化课考试数学试卷本试卷分Ⅰ卷和卷Ⅱ两部分:卷Ⅰ为选择题,卷Ⅱ为非选择题。[)本试卷总分120分,考试时间120分钟。卷Ⅰ注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回。2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。答在试卷上无效一、选择题1.-2是2的A.倒数B.相反数C.绝对值D.平方根2.如图1,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC= A.2 B.3 C.4 D.5 3.计算:852-152= A.70 B.700 C.4900 D.7000 4.如图2,平面上直线a,b分别过线段OK两端点图1 a图2 5.a,b是两个连续整数,若a A.2, 3 B.3, 2 C.3, 4 D.6, 8 6.如图3,直线L经过第二、三、四象限,L的解析式是y=x+n ,m的取值范围在数轴上表示为L图3 A B C D x2x7.化简:?? x?1x?1 A.0 B.1 x C.x D. x?1 8.如图4,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠ 2 A.2 B.3 C.4 D.5图4 9.某种正方形合金板材的成本y与它的面积成正比,设边长为x厘米,当x=3时, y=18,那么当成本ห้องสมุดไป่ตู้72元时,边长为A.6厘米B.12厘米C.24厘米D.36厘米数学试卷第2页10.图5-1是边长为1的六个小正方形组成的图形,它可以围成图5-2的正方形,则图5-1中小正方形顶点A,B在围成的正方体上的距离是...A.0 B.1 C.2 D.3图5-2图5-1 11.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图6的折线统计图,则符合这一结果的实验最有可能的是A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”图6 B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是12.如图7,已知△ABC,用尺规在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是C图7 CBC A BCC C数学试卷第3页D 13.在研究相似问题时,甲、乙同学的观点如下:对于两人的观点为,下列说法正确的是A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对a b 44a14.定义新运算:例如:=,,则函数? 55 b C B A 15.如图9,边长为a的正六边形内有两个三角形,,则D S阴影=S空白图9 A.3 B.4 C.5 D.6 16.五名学生投蓝球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总各可能是A.20 B.28 C.30 D.31数学试卷第4页2014总分核分人年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚. 2.答卷Ⅱ时,将答案用黑色字迹的钢笔,签字笔或圆珠笔直接写在试卷上.题号得分二2122三23242526得分评卷人二.填空题17.计算:8?1?2 2-1018.若实数m,n满足∣m-2∣+=0,则m+n= . 19.如图10.将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形,则S扇形=cm2. 20.如图11,点O,A在数轴上表示的数分别是0,0.1 A8BA图11将线段OA分成100等份,其分点由左向右依次为M1,M2??M99;将线段O M1分成100等份,其分点由左向右依次为N1,N2??N99将线段O N1分成100等份,其分点由左向右依次为P1,P2??P99则点P1所表示的数用科学计数法表示为。[]数学试卷第5页三.解答题得分评卷人嘉淇同学用配方法推导一元二次方程ax2+bx+c=0的求根公式时,对于b2-4ac>0的情况,她是这样做的:嘉淇的解法从第步开始出现错误;事实上,当b2-4ac>0时,方程ax2+bx+c=0的求根公式是.用配方法解方程:x2-2x-24=0数学试卷第6页得分如图12-1,A, B, C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米,四人分别测得∠C的度数如下表:北评卷人B A他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图12-2,12-3:各点垃圾量条形统计图各点垃圾量扇形统计图图12-1 C图12-2图12-3数学试卷第7页得分评卷人如图13,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°得到△ADE,连接BD,CE交于点F。[]求证:△ABD≌△ACE;求∠ACE的度数;求证:四边形ABFE是菱形。数学试卷第8页图13得分评卷人24.如图14,2×2网格中有A,B,C,D,E,F,G,H,O九个格点,抛物线l的解析式为y=nx2+bx+c。[] n为奇数且l经过点H和C,求b,c的值,并直接写出哪个格点是该抛物线的顶点。n为偶数,且l经过点A和B,通过计算说明点F和H是、是否在该抛物线上。若l经过九个格点中的三个,直接写出所有满足这样条件的抛物线条数。..图14数学试卷第9页数学试卷第10页[温馨提示:下页还有题!]数学试卷第11页决策已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P时,刚好与2号车相遇。[]他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;设PA=s米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?A图16-2数学试卷第12页数学试卷第13页数学试卷第14页数学试卷第15页数学试卷第16页篇二: 20XX年南宁三中外地学生入学测试数学与答案20XX年南宁三中外地学生入学测试数学一、选择题每小题都给出代号为、、、四个结论,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑.1.在半径等于4的圆中,垂直平分半径的弦长为A...2.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是A.12πcm B.15πcm C.18πcm D.24πcm 3 ?2222)a?b a?b a?b?0 b?a?0 24.已知一个直角三角形的两条直角边长恰好是方程2x-8x+7=0的两根,则这个直角三角形的斜边长等于3 6 9 5.对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,?1} = ?1.若关于x的函数y = min{2x2,a2}的图象关于直线x?3对称,则a、t的值可能是A.3,6 B.2,?6 C.2,6 D.?2,6 6.如图,已知M为□ABCD的边AB的中点,CM交BD于点E,则图中阴影部分的面积与□ABCD面积的比是A.1115 B.C.D.34612二、填空题第6题图7.等腰三角形ABC中,BC?8,AB、AC的长是关于x的方程x2?10x?m?0的两根,则m的值是___________.8.若?ABC的面积为S,且三边长分别为a、b、c,则?ABC的内切圆的半径是。[] 1x2119如果f=,那么f + f + f + f +f + f + f =.1?x2234 10.不等式:x??x?3>4的解集是11.如图,梯形ABCD中上底AD=a,下底BC=b,若E1、F1分别为AB、CD的中点,则E1F1=a?b);若E2、F2分别为AE1、DF1的中点,则E2F2=121?1?1??a?a?b??3a?b?;??2?2?4若E3、F3分别为AE2、DF2的中点,则E3F3=1?1?1??a?3a?b??7a?b? ……;??2?4?8若En、Fn分别为AEn-1、DFn-1的中点,则EnFn=12.函数y?x2?2x?5?x2?4x?5的最小值为三、解答题13.如图,已知⊙O的半径长为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧AB上的一个动点.连结AC、BC,分别与⊙M相交于点D、点E,连结DE.若AB?求?C的度数;求DE的长;14.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.直接写出点E、F的坐标;设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物...线的解析式;在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.15.关于x的方程x?mx?2m?2?0在区间?0,?内有解,求实数m的范围。[] 2 16.设二次函数y?ax2?bx?c对一切实数x恒有x?y?2x?
2023年河北省中考数学考试卷及答案解析
2023年河北省中考数学考试卷及答案解析一、选择题-的意义可以是()1.代数式7xA.7-与x的和B.7-与x的差C.7-与x的积D.7-与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.-的意义可以是7-与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D .【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xy B.5xy C.25x y D.26x y 【答案】A【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭,故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A.2B.3C.4D.5【答案】B【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解.【详解】解:在ACD 中,2AD CD ==,∴2222AC -<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去;若3AC AB ==时,ABC 为等腰三角形,【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.6.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【答案】B【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7.若a b ===()A.2B.4C.D.【答案】A【解析】【分析】把a b ==【详解】解:∵a b ==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8.综合实践课上,嘉嘉画出ABD△,利用尺规作图找一点C,使得四边形ABCD为平行四边形.图1~图3是其作图过程.(1)作BD的垂直平分线交BD于点O;(2)连接AO,在AO的延长线上截取OC AO=;(3)连接DC,BC,则四边形ABCD即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等【答案】C【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断.【详解】解:根据图1,得出BD的中点O,图2,得出OC AO=,可知使得对角线互相平分,从而得出四边形ABCD为平行四边形,判定四边形ABCD为平行四边形的条件是:对角线互相平分,故选:C.【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理.9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b< B.a b = C.a b > D.a ,b 大小无法比较【答案】A【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +-=-,根据123PP P 的三边关系即可得解.【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即 1223345566778148PP P P P P P P P P P P P P P P =======∴12233467PP P P P P P P ===, 464556781178P P P P P P P P P P PP =+=+=∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,∴()()34466737131737b a P P P P P P P P PP PP P P ++-++=+-()()12172337131737PP PP P P P P PP PP P P =+++-++122313PP P P PP =-+在123PP P 中有122313PPP P PP >+∴1223130b a PP P P PP -=+>-故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数【答案】D【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答.【详解】解:A.12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意;B.12129.46100.46910⨯-≠⨯,故该选项错误,不符合题意;C.129.4610⨯是一个13位数,故该选项错误,不符合题意;D.129.4610⨯是一个13位数,正确,符合题意.故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A. B. C.12 D.16【答案】B【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解.【详解】解:∵16AMEF S =正方形,∴4AM ==,∵Rt ABC △中,点M 是斜边BC 的中点,∴28BC AM ==,∴AC ===,∴11422ABC S AB AC =⨯⨯=⨯⨯= ,故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒【答案】C【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒【答案】C【解析】【分析】如图,由平角的定义求得18034ADB ADE Ð=°-Ð=°,由外角定理求得,16AHD ADB αÐ=Ð-Ð=°,根据平行性质,得16GIF AHD Ð=Ð=°,进而求得44EGF GIF βÐ=Ð-Ð=°.【详解】如图,∵146ADE ∠=︒∴18034ADB ADE Ð=°-Ð=°∵ADB AHDαÐ=Ð+Ð∴503416AHD ADB αÐ=Ð-Ð=°-°=°∵12l l ∥∴16GIF AHD Ð=Ð=°∵EGF GIFβÐ=Ð+Ð∴601644EGF GIF βÐ=Ð-Ð=°-°=°故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2mC.4D.22m 【答案】A【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可.【详解】解:令0y =,则220x m x -+=和220x m -=,解得0x =或2x m =或x m =-或x m =,不妨设0m >,∵()0m ,和()0m -,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =-的对称轴为0x =,抛物线22y x m x =-+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2,故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k ≤≤均可)【解析】【分析】先分别求得反比例函数(0)k y k x =≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)k y k x=≠图像过(3,3)A 时,339k =⨯=;当反比例函数(0)k y k x =≠图像过(3,1)B 时,313k =⨯=;∴k 的取值范围为39k ≤≤∴k 可以取4.故答案为4(答案不唯一,满足39k ≤≤均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b 21x x +a 1【答案】①.52②.2-【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==,当x n =时,211x x +=,即211n n +=,解得1n =-,经检验,1n =-是分式方程的解,∴()3112b =⨯-+=-,故答案为:52;2-【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】①.30②.【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒-︒=︒,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒ ,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,DE PE ==,由图1知2AG BF PE ===,由正六边形的结构特征知:12OM =⨯=()112BC BF CH =-=,3tan 33BC AB BAC ∴==-∠,21BD AB ∴=-=,又1212DE =⨯=,BE BD DE ∴=+=,ON OM BE ∴=+=故答案为:【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)312-在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分;(2)6k =.【解析】【分析】(1)根据题意列式计算即可求解;(2)根据题意列一元一次方程即可求解.【小问1详解】解:由题意得()4321426⨯+⨯+⨯-=(分),答:珍珍第一局的得分为6分;【小问2详解】解:由题意得()()3311032613k k +⨯+--⨯-=+,解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.【小问1详解】解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=;【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可;(2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解.【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:34 3.52+=(分)由统计图可知,客户所评分数的平均数为:1123364555 3.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x ⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171 ,,,求得n 的取值范围,即可求解.【小问1详解】解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171 ,,,当经过()51,时,211551188n =-⨯+⨯++,解得175n =;当经过()71,时,211771188n =-⨯+⨯++,解得417n =;∴174157n ≤≤∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【解析】【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE GH ⊥进而得到OE MN ⊥,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到90QOB ∠=︒,得到30QOE ∠=︒分别求出线段EF 与 EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC MN ⊥于点C ,48cm MN =,∴124cm 2MC MN ==,∵50cm AB =,∴125cm 2OM AB ==,∴在Rt OMC 中,7cm OC ===.(2)∵GH 与半圆的切点为E ,∴OE GH⊥∵MN GH∥∴OE MN ⊥于点D ,∵30ANM ∠=︒,25cm ON =,∴125cm 22OD ON ==,∴操作后水面高度下降高度为:25117cm 22-=.(3)∵OE MN ⊥于点D ,30ANM ∠=︒∴60DOB ∠=︒,∵半圆的中点为Q ,∴ AQ QB=,∴90QOB ∠=︒,∴30QOE ∠=︒,∴tan cm 3EF QOE OE =∠⋅=, 30π2525π==cm 1806EQ ⨯⨯,∵()25π25325π50325π03666-==>,∴ EF EQ>.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【解析】【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【小问1详解】设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;【小问2详解】①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:【小问3详解】∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线123,,l l l 上,∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a an b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为9916a y x b a b a⎛⎫=-++- ⎪--⎝⎭,∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.26.如图1和图2,平面上,四边形ABCD 中,8,11,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).【答案】(1)见解析(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +【解析】【分析】(1)根据旋转的性质和角平分线的概念得到A M AM '=,A MP AMP '∠=∠,然后证明出()SAS A MP AMP 'V V ≌,即可得到A P AP '=;(2)①首先根据勾股定理得到10BD ==,然后利用勾股定理的逆定理即可求出90CBD ∠=︒;首先画出图形,然后证明出DNM DBA V V ∽,利用相似三角形的性质求出103DN =,83MN =,然后证明出PBN DMN V V ∽,利用相似三角形的性质得到5PB =,进而求解即可;②当P 点在AB 上时,2PQ =,A MP AMP '∠=∠,分别求得,BP AP ,根据正切的定义即可求解;②当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H ,证明PQB BAD ∽,得出4855PQ PB ==,3655BQ PB ==,进而求得AQ ,证明HPQ HMA ∽,即可求解;(3)如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,证明A PE MA F '' ∽,根据相似三角形的性质即可求解.【小问1详解】∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;【小问2详解】①∵8AB =,6DA =,90A ∠=︒∴10BD ==∵=BC ,12CD =∴(222210144BC BD +=+=,2212144CD ==∴222BC BD CD +=∴90CBD ∠=︒;如图所示,当180n =时,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBAV V ∽∴DN DM MN DB DA BA ==∵2DM =,6DA =∴21068DN MN ==∴103DN =,83MN =∴203BN BD DN =-=∵90PBN NMD ∠=∠=︒,PNB DNM∠=∠∴PBN DMNV V ∽∴PB BN DM MN =,即203823PB =∴解得5PB =∴8513x AB PB =+=+=.②如图所示,当P 点在AB 上时,2PQ =,A MP AMP'∠=∠∵8,6,90AB DA A ==∠=︒,∴22226810BD AB AD =+=+=,63sin 105ADDBA BD ∠===,∴2103sin 35BQBP DBA ===∠,∴1014833AP AB BP =-=-=∴1473tan tan 46AP A MP AMP AM '∠=∠===;如图所示,当P 在BC 上时,则2PB =,过点P 作PQ AB ⊥交AB 的延长线于点Q ,延长MP 交AB 的延长线于点H,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∴PQB BAD∽∴PQ QB PB BA AD BD==即8610PQ QB PB==∴4855PQ PB ==,3655BQ PB ==,∴465AQ AB BQ =+=∵,PQ AB DA AB⊥⊥∴PQ AD ∥,∴HPQ HMA ∽,∴HQ PQHA AM=∴854645HQ HQ =+解得:9215HQ =∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===,综上所述,tan A MP '∠的值为76或236;【小问3详解】解:∵当08x <≤时,∴P 在AB 上,如图所示,过点A '作A E AB '⊥交AB 于点E ,过点M 作MF A E '⊥于点F ,则四边形AMFE 是矩形,∴AE FM =,4EF AM ==,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,∴90PA E FA M ''∠+∠=︒,又90A MF FA M ''∠+∠=︒,∴PA E A MF ''∠=∠,又∵90A EP MFA ''∠=∠=︒,∴A PE MA F '' ∽,∴A P PE A E MA A F FM''==''∵A P AP x '==,4MA MA '==,设FM AE y ==,A E h'=即44x x y h h y-==-∴4h y x=,()()44x y x h -=-∴()444h x x h x ⎛⎫-=- ⎪⎝⎭整理得22816x h x =+即点A '到直线AB 的距离为22816x x +.【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,折叠的性质,求正切值,熟练掌握以上知识且分类讨论是解题的关键.。
河北省2020年中考数学试题(解析版)
2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条 【答案】D【解析】【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D .【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.2.墨迹覆盖了等式“3x 2x x =(0x ≠)”中的运算符号,则覆盖的是( ) A. +B. -C. ×D. ÷【答案】D【解析】【分析】直接利用同底数幂的除法运算法则计算得出答案.【详解】∵3x 2x x =(0x ≠), 32x x x ÷=,∴覆盖的是:÷.故选:D .【点睛】本题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解【答案】C【解析】【分析】根据因式分解的定义进行判断即可;【详解】①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C.【点睛】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键.4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同【答案】D【解析】【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.【详解】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D.【点睛】本题考查了几何体的三视图,正确得出各几何体的三视图是解题的关键.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A. 9B. 8C. 7D. 6【答案】B【解析】【分析】根据统计图中的数据结合中位数和众数的定义,确定a的值即可.【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.【点睛】本题考查条形统计图、中位数和众数的定义,掌握中位数和众数的定义是解答本题的关键.∠,用尺规作它的角平分线.6.如图1,已知ABC如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长 【答案】B【解析】【分析】根据作角平分线的方法进行判断,即可得出结论. 【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ;∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求. 综上,答案为:0a >;12b DE >的长, 故选:B .【点睛】本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法.7.若a b ,则下列分式化简正确的是( ) A. 22a a b b +=+ B. 22a a b b -=- C. 22a a b b = D. 1212a a bb = 【答案】D【解析】【分析】根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a≠b,∴22a ab b +≠+,选项A错误;22a ab b-≠-,选项B错误;22a ab b≠,选项C错误;1212a abb=,选项D正确;故选:D.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR【答案】A【解析】【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.【详解】解:如图所示,四边形ABCD的位似图形是四边形NPMQ.故选:A【点睛】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.9.若()()229111181012k --=⨯⨯,则k =( ) A. 12 B. 10 C. 8 D. 6【答案】B【解析】【分析】利用平方差公式变形即可求解.【详解】原等式()()229111181012k --=⨯⨯变形得: ()()229111181012k --=⨯⨯()()()()919111111181012-+-+=⨯⨯ 810101281012⨯⨯⨯=⨯⨯ 10=.故选:B .【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.10.如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下: 点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是( )A. 嘉淇推理严谨,不必补充B. 应补充:且AB CD =, C . 应补充:且//AB CDD. 应补充:且OA OC =,【答案】B【解析】【分析】 根据平行四边形的判定方法“两组对边分别相等的四边形是平行四边形”即可作答.【详解】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD ”,故选:B .【点睛】本题主要考查了平行四边形的判定和旋转的性质,牢记旋转前、后的图形全等,熟练掌握平行四边形的判定方法是解题的关键.11.若k 为正整数,则()k k k k k k ++⋅⋅⋅+=个( ) A. 2k k B. 21k k + C. 2k k D. 2k k +【答案】A【解析】【分析】根据乘方的定义及幂的运算法则即可求解.【详解】()k k kk k k ++⋅⋅⋅+=个()()2k k k k k ⋅==2k k , 故选A .【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.12.如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错.误.的是( )A. 从点P 向北偏西45°走3km 到达lB. 公路l的走向是南偏西45° C. 公路l 走向是北偏东45°D. 从点P 向北走3km 后,再向西走3km 到达l【答案】A【解析】【分析】根据方位角的定义及勾股定理逐个分析即可.【详解】解:如图所示,过P 点作AB 的垂线PH ,选项A :∵BP=AP=6km ,且∠BPA=90°,∴△PAB 为等腰直角三角形,∠PAB=∠PBA=45°,又PH ⊥AB ,∴△PAH 为等腰直角三角形,∴PH=2=PA ,故选项A 错误; 选项B :站在公路上向西南方向看,公路l 的走向是南偏西45°,故选项B 正确;选项C :站在公路上向东北方向看,公路l 的走向是北偏东45°,故选项C 正确;选项D :从点P 向北走3km 后到达BP 中点E ,此时EH 为△PEH 的中位线,故EH=12AP=3,故再向西走3km 到达l ,故选项D 正确.故选:A .【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.13.已知光速为300000千米秒,光经过t 秒(110t ≤≤)传播的距离用科学记数法表示为10n a ⨯千米,则n 可能为( )A. 5B. 6C. 5或6D. 5或6或7【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:当t=1时,传播的距离为300000千米,写成科学记数法为:5310⨯千米,当t=10时,传播的距离为3000000千米,写成科学记数法为:6310⨯千米,∴n 的值为5或6,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A. 淇淇说的对,且A ∠的另一个值是115°B. 淇淇说的不对,A ∠就得65°C. 嘉嘉求的结果不对,A ∠应得50°D. 两人都不对,A ∠应有3个不同值【答案】A【解析】【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【详解】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A 还应有另一个不同的值∠A′与∠A 互补.故∠A′=180°−65°=115°.故选:A .【点睛】此题主要考查了三角形的外接圆,正确分类讨论是解题关键. 15.如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0;乙:若4b =,则点P 的个数为1;丙:若3b =,则点P 的个数为1.下列判断正确的是( )A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对【答案】C【解析】【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.【详解】当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法正确;当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法正确;当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不正确;故选:C.【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4【答案】B【解析】【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,由勾股定理,得222+=a b c ,A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.==,则ab =_________.【答案】6【解析】【分析】根据二次根式的运算法则即可求解.-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.【答案】12【解析】【分析】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n 边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n 边形一个外角的4倍,∴正n 边形的外角为30°,∴正n 边形的边数为:360°÷30°=12.故答案为:12.【点睛】本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数k y x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________;(3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.【答案】 (1). -16 (2). 5 (3). 7【解析】【分析】(1)先确定T 1的坐标,然后根据反比例函数k y x=(0x <)即可确定k 的值; (2)观察发现,在反比例函数图像上的点,横纵坐标只积相等,即可确定另一点;(3)先分别求出T 1~T 8的横纵坐标积,再从小到大排列,然后让k 位于第4个和第5个点的横纵坐标积之间,即可确定k 的取值范围和k 的整数值的个数.【详解】解:(1)由图像可知T 1(-16,1)又∵.函数k y x =(0x <)的图象经过T 1 ∴116k =-,即k=-16; (2)由图像可知T 1(-16,1)、T 2(-14,2)、T 3(-12,3)、T 4(-10,4)、T 5(-8,5)、T 6(-6,6)、T 7(-4,7)、T 8(-2,8)∵L 过点4T∴k=-10×4=40 观察T 1~T 8,发现T 5符合题意,即m=5;(3)∵T 1~T 8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于L 的两侧,k 必须满足-36<k <-28∴k 可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.【点睛】本题考查了反比例函数图像的特点,掌握反比例函数图像上的点的横纵坐标积等于k 是解答本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.已知两个有理数:-9和5.(1)计算:(9)52-+; (2)若再添一个负整数m ,且-9,5与m 这三个数的平均数仍小于m ,求m 的值. 【答案】(1)-2;(2)1m =-.【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m 的取值,故可求解.【详解】(1)(9)52-+=422-=-; (2)依题意得(9)53m -++<m 解得m >-2∴负整数m =-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则. 21.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【答案】(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【解析】【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∴A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∵2(2a 3)0≥-恒成立,∴和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.22.如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC OD =.以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:AOE POC ∆∆≌;②写出∠1,∠2和C ∠三者间的数量关系,并说明理由.(2)若22OC OA ==,当C ∠最大时,直接..指出CP 与小半圆的位置关系,并求此时EOD S 扇形(答案保留π).【答案】(1)①见详解;②∠2=∠C+∠1;(2)CP 与小半圆相切,43π. 【解析】【分析】(1)①直接由已知即可得出AO=PO ,∠AOE=∠POC ,OE=OC ,即可证明;②由(1)得△AOE ≌△POC ,可得∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,即可得出答案;(2)当C ∠最大时,可知此时CP 与小半圆相切,可得CP⊥OP,然后根据222OC OA OP ===,可得在Rt △POC 中,∠C=30°,∠POC=60°,可得出∠EOD ,即可求出S 扇EOD .【详解】(1)①在△AOE 和△POC 中=AO PO AOE POC OE OC =⎧⎪⎨⎪=⎩∠∠,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下:由(1)得△AOE ≌△POC ,∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,∴∠2=∠C+∠1;(2)在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值,∴当C ∠最大时,可知此时CP 与小半圆相切,由此可得CP ⊥OP ,又∵222OC OA OP ===,∴可得在Rt △POC 中,∠C=30°,∠POC=60°,∴∠EOD=180°-∠POC=120°,∴S 扇EOD =2120360R π⨯⨯=43π. 【点睛】本题考查了全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算,掌握知识点灵活运用是解题关键.23.用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =.(1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式;②x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】【答案】(1)213W x =;(2)①124Q x =-;②2cm x =. 【解析】【分析】(1)设W=kx 2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx 2,∵3x =时,3W =∴3=9k∴k=13∴W 与x 的函数关系式为213W x =; (2)①∵薄板的厚度为xcm ,木板的厚度为6cm∴厚板的厚度为(6-x )cm ,∴Q=2211(6)41233x x x ⨯=-+-- ∴Q 与x 的函数关系式为124Q x =-;②∵Q 是W 薄的3倍∴-4x+12=3×213x解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,Q 是W 薄的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.24.表格中的两组对应值满足一次函数y kx b =+,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式;(2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y a =与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值. 【答案】(1)l :31y x ;(22;(3)a 的值为52或175或7 【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意得到直线l ',联立两直线求出交点坐标,再根据两点间的距离公式即可求解;(3)分对称点在直线l ,直线l '和y 轴分别列式求解即可.【详解】(1)依题意把(-1,-2)和(0,1)代入y kx b =+, 得21k b b -=-+⎧⎨=⎩, 解得31k b =⎧⎨=⎩, ∴直线l 的解析式为31y x , (2)依题意可得直线l '的解析式为3y x ,作函数图像如下:令x=0,得y=3,故B (0,3), 令313y x y x =+⎧⎨=+⎩,解得14x y =⎧⎨=⎩, ∴A (1,4),∴直线l '被直线l 和y 轴所截线段的长AB=22(10)(43)2-+-=;(3)①当对称点在直线l 上时,令31a x ,解得x=13a -, 令3a x =+,解得x=3a -,∴2×13a -=a-3, 解得a=7;②当对称点在直线l '上时,则2×(a-3)=13a -, 解得a=175; ③当对称点在y 轴上时,则13a -+(3a -)=0, 解得a=52; 综上:a 的值为52或175或7. 【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法、一次函数的图像与性质及坐标的对称性.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终..停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接..写出k的值.【答案】(1)14P=;(2)256m n=-;当4n=时,距离原点最近;(3)3k=或5【解析】【分析】(1)对题干中三种情况计算对应概率,分析出正确的概率即可;硬币朝上为正面、反面的概率均为12,甲和乙猜正反的情况也分为三种情况:①甲和乙都猜正面或反面,概率为12,②甲猜正,乙猜反,概率为14,③甲猜反,乙猜正,概率为14,(2)根据题意可知乙答了10次,答对了n次,则打错了(10-n)次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果;【详解】(1)题干中对应的三种情况的概率为:①11111+= 22222⨯⨯;②11111+= 24244⨯⨯;③11111+= 24244⨯⨯;甲的位置停留在正半轴上的位置对应情况②,故P =14. (2)根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次,根据题意可得,n 次答对,向西移动4n ,10-n 次答错,向东移了2(10-n ),∴m=5-4n+2(10-n )=25-6n ,∴当n=4时,距离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位,∴62=3÷或102=5÷,∴3k =或5k =.【点睛】本题主要考查了概率的求解,通过数轴的理解进行准确分析是解题的关键. 26.如图1和图2,ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 【答案】(1)3;(2)43MP =;(3)当03x ≤≤时,24482525d x =+;当39x ≤≤时,33355d x =-+;(4)23t s =【解析】【分析】(1)根据当点P 在BC 上时,PA ⊥BC 时PA 最小,即可求出答案;(2)过A 点向BC 边作垂线,交BC 于点E ,证明△APQ ∽△ABC ,可得2APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,根据S S 上下=45可得 24=9APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,可得23AP AB =,求出AB=5,即可解出MP ; (3)先讨论当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ ·sinC ,求解即可,再讨论当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,根据d=CP·sinC 即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==, ∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, ∴23AP AB =, AE=2BC ·tan 3C =, 根据勾股定理可得AB=5, ∴2253AP MP AB +==, 解得MP=43; (3)当0≤x≤3时,P BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35, ∴d=35PQ , ∵AP=x+2, ∴25AP x PQ AB BC+==, ∴PQ=285x +⨯, ∴d=23855x +⨯⨯=24482525x +, 当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩; (4)AM=2<AQ=94, 移动的速度=936=14, ①从Q 平移到K ,耗时:92414-=1秒, ②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114, ∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-, 整理得y 2-8y=554-, (y-4)2=94, 解得y 1=52,y 2=112, 52÷14=10秒, 112÷14=22秒, ∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键。
2020-2021年河北省中考数学试题及答案(Word版)
2021年河北省中考数学试卷及答案2021年河北省中考数学试卷及答案(1——34页)2020年河北省中考数学试卷及答案(35——45页)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边形ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( )A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作: ①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O 上只有唯一的点P ,使得S 扇形FOM =S 扇形AOB .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块.18.(4分)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小,使∠EFD =110°,则图中∠D 应 (填“增加”或“减少”) 度.19.(4分)用绘图软件绘制双曲线m :y =60x 与动直线l :y =a ,且交于一点,图1为a =8时的视窗情形.(1)当a =15时,l 与m 的交点坐标为 ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心. 例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k=.三、解答题(本大题有7个小题,共66分。
2023年河北省中考数学试卷(含答案)155635
2023年河北省中考数学试卷试卷考试总分:111 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 2 分 ,共计32分 )1. 某商品进价为每件a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以8折的价格开展促销活动,这时该商品每件的售价为( )A.a 元B.0.8a 元C.1.04a 元D.0.92a 元2. 如图,在A ,B 两地之间要修一条笔直的公路,从A 地测得公路走向是北偏东48∘,A ,B 两地同时开工,若干天后公路准确接通,若公路AB 长8千米,另一条公路BC 长是6千米,且BC 的走向是北偏西42∘,则A 地到公路BC 的距离是( )A.6千米B.8千米C.10千米D.14千米3. 化简m 2+mnm−n ÷mnm−n 的结果是( )A.m+nn B.m 2m−n C.m−nn D.m 24. 四张形状大小完全一致的卡片,放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:第一张第二张第三张第四张正面(2,3)(1,3)(−1,2)(2,4)反面(−2,1)(−1,−3)(1,2)(−3,4)若从中随机抽取一张,其正反面上两点正好关于原点中心对称的概率是( )A.14a 30%8a0.8a1.04a0.92a A B A 48∘A B AB8BC 6BC 42∘A BC ()681014÷+mn m 2m−n mn m−n m+nn m 2m−n m−nn m 2(2,3)(1,3)(−1,2)(2,4)(−2,1)(−1,−3)(1,2)(−3,4)14B.12C.34D.15. 一个等腰三角形的两边长分别为3和7,则它的周长是( )A.17B.15C.13D.13或176. 计算(−2)11+(−2)10的值是( )A. −2 B. (−2)21 C.0D. −2107. 已知a =2+√3,b =2−√3,则代数式a 2b −ab 2的值为( )A.6B.4C.4√3D.2√38. 已知(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形是平行四边形的依据( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形9. 已知正六边形的边长为6,则它的边心距( )A.3√3B.6C.3D.√31234137()1715131317(−2+(−2)11)10−2(−2)21−210a =2+3–√b =2−3–√b −a a 2b 26443–√23–√12633–√633–√10. 某大学为提倡“厉行节约,反对浪费”的社会风尚,制止餐饮浪费行为,深入推进“光盘行动”,对校园浪费现象进行调查.调查后发现,有48.29%的学生表示每天大概会吃剩50g −100g 的饭菜,33.86%的学生每天大概会吃剩100g −150g 的饭菜,只有4.86%的学生大概吃剩0g −50g 的饭菜.若该校有一万人,平均每天每个人浪费50g 粮食,则该校学生一学期(按120天)浪费的粮食用科学记数法可表示为( )A.6.0×103kgB.6.0×107kgC.6.0×104kgD.6.0×105kg11. 如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A.√5B.√10C.3√22D.2 12. 如图是由若干个相同的小正方体搭成一个几何体的主视图和俯视图,则所需的小正方体的个数最多是( )A.6B.5C.4D.313. 如图,△AOB ≅ΔADC ,点B 和点C 是对应顶点,∠O =∠D =90∘,记∠OAD =α,∠ABO =β,当BC//OA 时,α与β之间的数量关系为( )48.29%50g−100g 33.86%100g−150g 4.86%0g−50g 50g 1206.0×kg1036.0×kg1076.0×kg1046.0×kg 105ABCD CEFG D CG BC =1CE =3H AF CH5–√10−−√32–√226543△AOB ≅ΔADC B C ∠O =∠D =90∘∠OAD =α∠ABO =βBC//OA αβA. α=βB. α=2βC. α+β=90∘D. α+β=180∘14. 边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将△EFG 沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和△EFG 重叠部分的面积S 与运动时间t 的函数图象大致是( ) A.B.C.D.15. 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120∘,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )α=βα=2βα+β=90∘α+β=180∘4ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S tABCD AB =4cm ∠ADC =120∘E F A C AB CB B B E 1cm/s F 2cm/s t △DEF tA.1sB.34sC.43sD.2s16. 如图,二次函数y =ax 2+bx +c(a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =−1.则下列选项中正确的是( )A.abc <0B.4ac −b 2>0C.c −a >0D.当x =−n 2−2(n 为实数)时,y ≥c 二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 若A (x 1,y 1),B (x 2,y 2)是双曲线y =−5x 上的两点,且x 1>x 2>0,则y 1________y 2.18. 已知a =b −2,则b −(3+a)=________.19. 如图,AC 是⊙O 的内接正六边形的一边,点B 在^AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n =________.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。
河北中考数学试题及答案
河北中考数学试题及答案一、选择题1. 已知a+b+c=9,a²+b²+c²=29,求abc的值。
A) -6 B) 8 C) 6 D) -82. 若a+1/b=3, b+1/c=2, c+1/a=-2, 求a²+b²+c²的值。
A) 7 B) -7 C) 54 D) -543. 某数被6除余1,被7除余2,被8除余3,求此数。
A) 83 B) 163 C) 243 D) 3234. 已知抛物线y=ax²+bx+c的顶点坐标为(1,-2),且过点(2,0),求a、b、c的值。
A) a=-2,b=2,c=-2 B) a=2,b=-2,c=2 C) a=2,b=-2,c=-6 D) a=-2,b=2,c=65. 九年后爸爸两倍比儿子大两岁,九年前爸爸两倍比儿子大八岁,求现在爸爸和儿子的年龄。
A) 爸爸36岁,儿子20岁 B) 爸爸42岁,儿子18岁 C) 爸爸34岁,儿子16岁 D) 爸爸40岁,儿子22岁二、填空题6. 如图,AB是⻆A的对边, BC是⻆B的对边,∠A=38°,∠B=53°,AB=8 cm,BC=6 cm,求AC的长。
答:107. 已知等边三⻆形的周长是24 cm,求边长。
答:88. 某工程部分,男工人数占总数的25%,女工人数占总数的30%,男工人比女工人多30人,求男女各有多少人。
答:男45人,女15人9. 两个⻆是补充⻆,其中⻆的度数是60°,求两个⻆各是几度。
答:120°和60°10. 如图,证明:∠BEC=∠BDE。
答:∠ABD=∠BCD(对顶⻆相等)∠ABC=∠ACB(等⻆的邻⻆相等)∠BEC=∠BDE(公理)三、解答题11. 某小组学生平均身高是1.6米,男生人数是女生人数的4倍,女生平均身高是1.5米,求男生人数和女生人数各是多少。
解:设女生人数为x,则男生人数为4x。
2020河北省中考数学试题(解析版)
【点睛】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.
13.已知光速为300000千米秒,光经过 秒( )传播的距离用科学记数法表示为 千米,则 可能为()
A.5B.6C.5或6D.5或6或7
【答案】C
8.在如图所示的网格中,以点 为位似中心,四边形 的位似图形是()
A.四边形 B.四边形
C.四边形 D.四边形
【答案】A
【解析】
【分析】
以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.
【详解】解:如图所示,四边形 的位似图形是四边形 .
故选:A
【点睛】此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.
2020年河北省初中毕业生升学文化课考试
数学试卷
一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如图,在平面内作已知直线 的垂线,可作垂线的条数有()
A.0条B.1条C.2条D.无数条
【答案】D
【解析】
【分析】
∴正n边形的外角为30°,
∴正n边形的边数为:360°÷30°=12.
故答案为:12.
【点睛】本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.
(2020年河北)19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作 ( 为1~8的整数).函数 ( )的图象为曲线 .
2022年河北省中考数学试卷和答案
2022年河北省中考数学试卷和答案一、选择题(本大题共16个小题。
1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算a3÷a得a,则“?”是()A.0B.1C.2D.32.(3分)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的()A.中线B.中位线C.高线D.角平分线3.(3分)与﹣3相等的是()A.﹣3﹣B.3﹣C.﹣3+D.3+4.(3分)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7 5.(3分)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是()A.α﹣β=0B.α﹣β<0C.α﹣β>0D.无法比较α与β的大小6.(3分)某正方形广场的边长为4×102m,其面积用科学记数法表示为()A.4×104m2B.16×104m2C.1.6×105m2D.1.6×104m2 7.(3分)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④8.(3分)依据所标数据,下列一定为平行四边形的是()A.B.C.D.9.(3分)若x和y互为倒数,则(x+)(2y﹣)的值是()A.1B.2C.3D.410.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是()A.11πcm B.πcm C.7πcm D.πcm 11.(2分)要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行12.(2分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.13.(2分)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A.1B.2C.7D.814.(2分)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数15.(2分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤16.(2分)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分,19小题每空1分)17.(3分)如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是.18.(3分)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则(1)AB与CD是否垂直?(填“是”或“否”);(2)AE=.19.(3分)如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个.乙盒中都是白子,共8个.嘉嘉从甲盒拿出a个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a=;(2)设甲盒中都是黑子,共m(m>2)个,乙盒中都是白子,共2m个.嘉嘉从甲盒拿出a(1<a<m)个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多个;接下来,嘉嘉又从乙盒拿回a个棋子放到甲盒,其中含有x(0<x<a)个白子,此时乙盒中有y个黑子,则的值为.三、答案题(本大题共7个小题,共69分.答案应写出文字说明、证明过程或演算步骤)20.(9分)整式3(﹣m)的值为P.(1)当m=2时,求P的值;(2)若P的取值范围如图所示,求m的负整数值.21.(9分)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.22.(9分)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.23.(10分)如图,点P(a,3)在抛物线C:y=4﹣(6﹣x)2上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=﹣x2+6x﹣9.求点P′移动的最短路程.24.(10分)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN∥AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.(1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan76°取4,取4.1)25.(10分)如图,平面直角坐标系中,线段AB的端点为A(﹣8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.26.(12分)如图1,四边形ABCD中,AD∥BC,∠ABC=90°,∠C=30°,AD=3,AB=2,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,PM=4.(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且BK=9﹣4.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3,在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).答案一、选择题(本大题共16个小题。
2022年河北省中考数学试卷试题真题精校版(含答案详解)
2022年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算3a a ÷得?a ,则“?”是()A .0B .1C .2D .32.如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的()A .中线B .中位线C .高线D .角平分线3.与132-相等的是()A .132--B .132-C .132-+D .132+4.下列正确的是()A23=+B 23=⨯CD 0.7=5.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是()A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小6.某正方形广场的边长为2410m ⨯,其面积用科学记数法表示为()A .42410m ⨯B .421610m ⨯C .521.610m ⨯D .421.610m ⨯7.①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A .①③B .②③C .③④D .①④8.依据所标数据,下列一定为平行四边形的是()A .B .C .D .9.若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值是()A .1B .2C .3D .410.某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与 AMB所在圆相切于点A ,B .若该圆半径是9cm ,∠P =40°,则 AMB 的长是()A.11πcm B.112πcm C.7πcm D.72πcm11.要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行12.某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(),m n,在坐标系中进行描点,则正确的是()A.B.C .D .13.平面内,将长分别为1,5,1,1,d 的线段,顺次首尾相接组成凸五边形(如图),则d 可能是()A .1B .2C .7D .814.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A .只有平均数B .只有中位数C .只有众数D .中位数和众数15.“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x 斤,则正确的是()A .依题意3120120x ⨯=-B .依题意()203120201120x x +⨯=++C .该象的重量是5040斤D .每块条形石的重量是260斤16.题目:“如图,∠B =45°,BC =2,在射线BM 上取一点A ,设AC =d ,若对于d 的一个数值,只能作出唯一一个△ABC ,求d 的取值范围.”对于其答案,甲答:2d ≥,乙答:d =1.6,丙答:d =)A .只有甲答的对B .甲、丙答案合在一起才完整C .甲、乙答案合在一起才完整D .三人答案合在一起才完整二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是______.18.如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?______(填“是”或“否”);(2)AE =______.19.如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个,乙盒中都是白子,共8个,嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a =______;(2)设甲盒中都是黑子,共()2m m >个,乙盒中都是白子,共2m 个,嘉嘉从甲盒拿出()1a a m <<个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多______个;接下来,嘉嘉又从乙盒拿回a 个棋子放到甲盒,其中含有()0x x a <<个白子,此时乙盒中有y 个黑子,则y x的值为______.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.整式133m ⎛⎫- ⎪⎝⎭的值为P .(1)当m =2时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.21.某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图.(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.22.发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.23.如图,点(),3P a 在抛物线C :()246y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路程.24.如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4取4.1)25.如图,平面直角坐标系中,线段AB 的端点为()8,19A -,()6,5B .(1)求AB 所在直线的解析式;(2)某同学设计了一个动画:在函数()0,0y mx n m y =+≠≥中,分别输入m 和n 的值,使得到射线CD ,其中(),0C c .当c =2时,会从C 处弹出一个光点P ,并沿CD 飞行;当2c ≠时,只发出射线而无光点弹出.①若有光点P 弹出,试推算m ,n 应满足的数量关系;②当有光点P 弹出,并击中线段AB 上的整点(横、纵坐标都是整数)时,线段AB 就会发光,求此时整数m 的个数.26.如图,四边形ABCD 中,AD BC ∥,∠ABC =90°,∠C =30°,AD =3,AB =DH ⊥BC于点H .将△PQM 与该四边形按如图方式放在同一平面内,使点P 与A 重合,点B 在PM上,其中∠Q =90°,∠QPM =30°,PM =.(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且9BK=-PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).1.C【分析】运用同底数幂相除,底数不变,指数相减,计算即可.【详解】3312a a a a -÷==,则“?”是2,故选:C .【点睛】本题考查同底数幂的除法;注意m n m n a a a -÷=.2.D【分析】根据折叠的性质可得CAD BAD ∠=∠,作出选择即可.【详解】解:如图,∵由折叠的性质可知CAD BAD ∠=∠,∴AD 是BAC ∠的角平分线,故选:D .【点睛】本题考查折叠的性质和角平分线的定义,理解角平分线的定义是解答本题的关键.3.A【分析】根据17322-=-,分别求出各选项的值,作出选择即可.【详解】A 、17322--=-,故此选项符合题意;B 、15322-=,故此选项不符合题意;C 、15322-+=-,故此选项不符合题意;D 、17322+=,故此选项不符合题意;故选:A .【点睛】本题考查有理数的加减混合运算,熟练掌握有理数的加减混合运算法则是解答本题的关键.4.B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;23=⨯,故正确;=≠0.7≠,故错误;故选:B .【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.A【分析】多边形的外角和为360︒,△ABC 与四边形BCDE 的外角和均为360︒,作出选择即可.【详解】解:∵多边形的外角和为360︒,∴△ABC 与四边形BCDE 的外角和α与β均为360︒,∴0αβ-=,故选:A .【点睛】本题考查多边形的外角和定理,注意多边形的外角和为360︒是解答本题的关键.6.C【分析】先算出面积,然后利用科学记数法表示出来即可.【详解】解:面积为:22452410410=1610=1.610⨯⨯⨯⨯⨯(m ),故选:C .【点睛】本题主要考查了科学记数法,熟练掌握科学记数法的表示形式是解题的关键.7.D【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.8.D【分析】根据平行四边形的判定及性质定理判断即可;【详解】解:平行四边形对角相等,故A 错误;一组对边平行不能判断四边形是平行四边形,故B 错误;三边相等不能判断四边形是平行四边形,故C 错误;一组对边平行且相等的四边形是平行四边形,故D 正确;故选:D .【点睛】本题主要考查平行四边形的判定及性质,掌握平行四边形的判定及性质是解题的关键.9.B【分析】先将112x y y x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111*********x y y x xy x y x y xyxy xyxy xy ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∵x 和y 互为倒数∴1xy =1212112xy xy-+=-+=故选:B【点睛】本题考查代数式的化简,注意互为倒数即相乘为110.A【分析】如图,根据切线的性质可得90∠=∠=︒PAO PBO ,根据四边形内角和可得AOB ∠的角度,进而可得 AMB所对的圆心角,根据弧长公式进行计算即可求解.【详解】解:如图,PA ,PB 分别与 AMB所在圆相切于点A ,B .90PAO PBO ∴∠=∠=︒,∠P =40°,360909040140AOB ∴∠=︒-︒-︒-︒=︒,该圆半径是9cm , 360140911180AMB ππ-∴=⨯=cm ,故选:A .【点睛】本题考查了切线的性质,求弧长,牢记弧长公式是解题的关键.11.C【分析】用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误【详解】方案Ⅰ:如下图,BPD ∠即为所要测量的角∵HEN CFG∠=∠∴MN PD∥∴AEM BPD∠=∠故方案Ⅰ可行方案Ⅱ:如下图,BPD ∠即为所要测量的角在EPF 中:180BPD PEF PFE ∠+∠+∠=︒则:180BPD AEH CFG∠=︒-∠-∠故方案Ⅱ可行故选:C【点睛】本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明12.C【分析】根据题意建立函数模型可得12mn =,即12n m=,符合反比例函数,根据反比例函数的图象进行判断即可求解.【详解】解:依题意,1··112m n =12mn ∴=,12n m∴=,,0m n >且为整数.故选C .【点睛】本题考查了反比例数的应用,根据题意建立函数模型是解题的关键.13.C【分析】如图(见解析),设这个凸五边形为ABCDE ,连接,AC CE ,并设,AC a CE b ==,先在ABC 和CDE △中,根据三角形的三边关系定理可得46a <<,02b <<,从而可得48a b <+<,26a b <-<,再在ACE 中,根据三角形的三边关系定理可得a b d a b -<<+,从而可得28d <<,由此即可得出答案.【详解】解:如图,设这个凸五边形为ABCDE ,连接,AC CE ,并设,AC a CE b ==,在ABC 中,5115a -<<+,即46a <<,在CDE △中,1111b -<<+,即02b <<,所以48a b <+<,26a b <-<,在ACE 中,a b d a b -<<+,所以28d <<,观察四个选项可知,只有选项C 符合,故选:C .【点睛】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键.14.D【分析】分别计算前后数据的平均数、中位数、众数,比较即可得出答案.【详解】解:追加前的平均数为:15(5+3+6+5+10)=5.8;从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:15(5+3+6+5+20)=7.8;从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D .【点睛】本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.15.B【分析】利用题意找出等量关系,将等量关系中的量用已知数和未知数的代数式替换即可得出结论.【详解】解:根据题意可得方程;()203120201120x x +⨯=++则A 错误,B 正确;解上面的方程得:x =240,故D 错误;∴大象的重量是20×240+3×120=5160(斤)故C 错误,故选:B .【点睛】本题主要考查一元一次方程的应用,根据题意真确列出方程是解题的关键.16.B【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=∵∠B =45°,BC =2,CA BM'⊥∴BA C 'V 是等腰直角三角形∴A C BA ''=∵A A BA ''''=∴2A C ''==若对于d 的一个数值,只能作出唯一一个△ABC通过观察得知:点A 在A '点时,只能作出唯一一个△ABC (点A 在对称轴上),此时d =点A 在A M ''射线上时,只能作出唯一一个△ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案,点A 在BA ''线段(不包括A '点和A ''点)上时,有两个△ABC (二者的AC 边关于A C '对称);故选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC 边关于A C '对称17.18##0.125【分析】直接根据概率公式计算,即可求解.【详解】解:根据题意得:抽到6号赛道的概率是18.故答案为:1 8【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.18.是5【分析】(1)证明△ACG≌△CFD,推出∠CAG=∠FCD,证明∠CEA=90°,即可得到结论;(2)利用勾股定理求得AB的长,证明△AEC∽△BED,利用相似三角形的性质列式计算即可求解.【详解】解:(1)如图:AC=CF=2,CG=DF=1,∠ACG=∠CFD=90°,∴△ACG≌△CFD,∴∠CAG=∠FCD,∵∠ACE+∠FCD=90°,∴∠ACE+∠CAG=90°,∴∠CEA=90°,∴AB与CD是垂直的,故答案为:是;(2)AB=∵AC∥BD,∴△AEC∽△BED,∴AC AEBD BE=,即23AEBE=,∴25 AEBE=,∴AE=25 AB故答案为:5.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.19.42m a +1【分析】①用列表的方式,分别写出甲乙变化前后的数量,最后按两倍关系列方程,求解,即可②用列表的方式,分别写出甲乙每次变化后的数量,按要求计算写出代数式,化简,即可③用列表的方式,分别写出甲乙每次变化后的数量,算出移动的a 个棋子中有x 个白子,()a x -个黑子,再根据要求算出y ,即可【详解】答题空1:原甲:10原乙:8现甲:10-a 现乙:8+a依题意:82(10)a a +=⨯-解得:4a =故答案为:4答题空2:原甲:m原乙:2m 现甲1:m -a 现乙1:2m +a第一次变化后,乙比甲多:2()22m a m a m a m a m a+--=+-+=+故答案为:2m a+原甲:m 黑原乙:2m 白现甲1:m 黑-a 黑现乙1:2m 白+a 黑现甲2:m 黑-a 黑+a 混合现乙2:2m 白+a 黑-a 混合第二次变化,变化的a 个棋子中有x 个白子,()a x -个黑子则:()y a a x a a x x=--=-+=1y x x x==故答案为:1【点睛】本题考查代数式的应用;注意用表格梳理每次变化情况是简单有效的方法20.(1)5-(2)2,1--【分析】(1)将m =2代入代数式求解即可,(2)根据题意7P ≤,根据不等式,然后求不等式的负整数解.(1)解:∵133m P ⎛⎫- ⎪⎝⎭=当2m =时,1323P ⎛⎫=⨯- ⎪⎝⎭533⎛⎫=⨯- ⎪⎝⎭5=-;(2)133m P ⎛⎫- ⎪⎝⎭=,由数轴可知7P ≤,即1373m ⎛⎫-≤ ⎪⎝⎭,1733m ∴-≤,∴m的负整数值为2,1--.【点睛】本题考查了代数式求值,解不等式,求不等式的整数解,正确的计算是解题的关键.21.(1)甲(2)乙【分析】(1)根据条形统计图数据求解即可;(2)根据“能力”、“学历”、“经验”所占比进行加权再求总分即可.(1)解:甲三项成绩之和为:9+5+9=23;乙三项成绩之和为:8+9+5=22;∴23>22录取规则是分高者录取,所以会录用甲.(2)“能力”所占比例为:1801 3602︒=︒;“学历”所占比例为:1201 3603︒=︒;“经验”所占比例为:601 3606︒=︒;∴“能力”、“学历”、“经验”的比为3:2:1;甲三项成绩加权平均为:29351976⨯+⨯+⨯=;乙三项成绩加权平均为:28391586⨯+⨯+⨯=;∴8>7所以会录用乙.∴会改变录用结果【点睛】本题主要考查条形统计图和扇形统计图,根据图表信息进行求解是解题的关键.22.验证:22215+=;论证见解析【分析】通过观察分析验证10的一半为5,22215+=;将m 和n 代入发现中验证即可证明.【详解】证明:验证:10的一半为5,22215+=;设“发现”中的两个已知正整数为m ,n ,∴()()()22222m n m n m n ++-=+,其中()222m n +为偶数,且其一半22m n +正好是两个正整数m 和n 的平方和,∴“发现”中的结论正确.【点睛】本题考查列代数式,根据题目要求列出代数式是解答本题的关键.23.(1)对称轴为直线6x =,y 的最大值为4,7a =(2)5【分析】(1)由2()y a x h k =-+的性质得开口方向,对称轴和最值,把(),3P a 代入()246y x =--中即可得出a 的值;(2)由2269(3)y x x x =-+-=--,得出抛物线269y x x =-+-是由抛物线C :()246y x =-+-向左平移3个单位,再向下平移4个单位得到,即可求出点P '移动的最短路程.(1)()2244)6(6y x x -=--=-+,∴对称轴为直线6x =,∵10-<,∴抛物线开口向下,有最大值,即y 的最大值为4,把(),3P a 代入()246y x =--中得:24(6)3a --=,解得:5a =或7a =,∵点(),3P a 在C 的对称轴右侧,∴7a =;(2)∵2269(3)y x x x =-+-=--,∴2(3)y x =--是由()246y x =-+-向左平移3个单位,再向下平移4个单位得到,5=,∴P '移动的最短路程为5.【点睛】本题考查二次函数2()y a x h k =-+的图像与性质,掌握二次函数2()y a x h k =-+的性质以及平移的方法是解题的关键.24.(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约2.6米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作OH MN ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作OH MN ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 3.40.8 2.6DH OH OD ∴-=-≈,∴最大水深约为2.6米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.25.(1)11y x =-+(2)①2n m =-,理由见解析②5【分析】(1)设直线AB 的解析式为()0y kx b k =+≠,把点()8,19A -,()6,5B 代入,即可求解;(2)①根据题意得,点C (2,0),把点C (2,0)代入y mx n =+,即可求解;②由①得:2n m =-,可得()2y x m =-,再根据题意找到线段AB 上的整点,再逐一代入,即可求解.(1)解:设直线AB 的解析式为()0y kx b k =+≠,把点()8,19A -,()6,5B 代入得:81965k b k b -+=⎧⎨+=⎩,解得:111k b =-⎧⎨=⎩,∴AB 所在直线的解析式为11y x =-+;(2)解:2n m =-,理由如下:若有光点P 弹出,则c =2,∴点C (2,0),把点C (2,0)代入()0,0y mx n m y =+≠≥得:20m n +=;∴若有光点P 弹出,m ,n 满足的数量关系为2n m =-;②由①得:2n m =-,∴()22y mx n mx m x m =+=-=-,∵点()8,19A -,()6,5B ,AB 所在直线的解析式为11y x =-+,∴线段AB 上的其它整点为()()()()()()()()()()()()()7,18,6,17,5,16,4,15,3,14,2,13,1,12,0,11,1,10,2,9,3,8,4,7,5,6-------,∵有光点P 弹出,并击中线段AB 上的整点,∴直线CD 过整数点,∴当击中线段AB 上的整点(-8,19)时,()1982m =--,即1910m =-(不合题意,舍去),当击中线段AB 上的整点(-7,18)时,()1872m =--,即2m =-,当击中线段AB 上的整点(-6,17)时,17=(-6-2)m ,即178m =-(不合题意,舍去),当击中线段AB 上的整点(-5,16)时,16=(-5-2)m ,即167m =-(不合题意,舍去),当击中线段AB 上的整点(-4,15)时,15=(-4-2)m ,即52m =-(不合题意,舍去),当击中线段AB 上的整点(-3,14)时,14=(-3-2)m ,即145m =-(不合题意,舍去),当击中线段AB 上的整点(-2,13)时,13=(-2-2)m ,即134m =-(不合题意,舍去),当击中线段AB 上的整点(-1,12)时,12=(-1-2)m ,即m =-4,当击中线段AB 上的整点(0,11)时,11=(0-2)m ,即112m =-(不合题意,舍去),当击中线段AB 上的整点(1,10)时,10=(1-2)m ,即m =-10,当击中线段AB 上的整点(2,9)时,9=(2-2)m ,不存在,当击中线段AB 上的整点(3,8)时,8=(3-2)m ,即m =8,当击中线段AB 上的整点(4,7)时,7=(4-2)m ,即72m =(不合题意,舍去),当击中线段AB 上的整点(5,6)时,6=(5-2)m ,即m =2,当击中线段AB 上的整点(6,5)时,5=(6-2)m ,即54m =(不合题意,舍去),综上所述,此时整数m 的个数为5个.【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质,理解有光点P 弹出,并击中线段AB 上的整点,即直线CD 过整数点是解题的关键.26.(1)见详解(2)①5π;②3)s ;③60129dCF d-=-【分析】(1)先证明四边形ABHD 是矩形,再根据Rt DHC △算出CD 长度,即可证明;(2)①平移扫过部分是平行四边形,旋转扫过部分是扇形,分别算出两块面积相加即可;②运动分两个阶段:平移阶段:KH t v=;旋转阶段:取刚开始旋转状态,以PM 为直径作圆,H 为圆心,延长DK 与圆相交于点G ,连接GH ,GM ,过点G 作GT DM ⊥于T ;设KDH θ∠=,利用Rt DKH △算出tan θ,sin θ,cos θ,利用Rt DGM △算出DG ,利用Rt DGT △算出GT ,最后利用Rt HGT △算出sin GHT ∠,发现1sin 2GHT ∠=,从而得到2θ,θ度数,求出旋转角,最后用旋转角角度计算所用时间即可;③分两种情况:当旋转角<30°时,DE 在DH 的左侧,当旋转角≥30°时,DE 在DH 上或右侧,证明DEF CED,结合勾股定理,可得(()()()2222399DE d d m d =+-=---,即可得CF 与d 的关系.(1)∵AD BC ∥,DH BC⊥∴DH AD⊥则在四边形ABHD 中90ABH BHD HDA ∠=∠=∠=︒故四边形ABHD为矩形DH AB ==,3BH AD ==在Rt DHC △中,30C ∠=︒∴2CD DH ==6CH ==∵9030DHC Q C QPM CD PM ⎧∠=∠=︒⎪∠=∠=︒⎨⎪==⎩∴()CHD PQM AAS ≌△△;(2)①过点Q 作QS AM ⊥于S由(1)得:6AQ CH ==在Rt AQS △中,30QAS ∠=︒∴2AS AQ ==平移扫过面积:13S AD AS =⋅=⨯=旋转扫过面积:222505065360360S PQ πππ︒︒=⋅⋅=⋅⋅=︒︒故边PQ 扫过的面积:125S S S π=+=②运动分两个阶段:平移和旋转平移阶段:3(96KH BH BK =-=-=--16)s KH t v==旋转阶段:由线段长度得:2PM DM=取刚开始旋转状态,以PM 为直径作圆,则H 为圆心,延长DK 与圆相交于点G ,连接GH ,GM ,过点G 作GT DM ⊥于T设KDH θ∠=,则2GHM θ∠=在Rt DKH △中:3(962(2KH BH BK =-=--==-DK ===设t 2KH =,DK =,DH =2tan KH t DH θ==,sin 2KH t DK θ==,1cos 2DH DK tθ==∵DM 为直径∴90DGM ∠=︒在Rt DGM △中:cos 12D t G D t M θ=⋅==在Rt DGT △中:sin 2GT t t DG θ⋅===在Rt HGT △中:122in s GT GH θ===∴230θ=︒,15θ=︒PQ 转过的角度:301515︒-︒=︒21535t ︒==︒s总时间:12633)st t t +==+=③设CF =m ,则EF =BC -BE -CF =9-d -m ,CE =9-d ,当旋转角<30°时,DE 在DH 的左侧,如图:∵∠EDF =30°,∠C =30°,∴∠EDF =∠C ,又∵∠DEF =∠CED ,∴DEF CED ,∴DE EF CE DE =,即99DE d m d DE--=-,∴()()2299DE d m d =---,∵在DHE 中,()()22222233DE DH EH d=+=+-,∴()()()()22299233d m d d ---=+-,∴60129dCF m d-==-当旋转角≥30°时,DE 在DH 上或右侧,如图:CF =m ,则EF =BC -BE -CF =9-d -m ,CE =9-d ,同理:可得60129dCF m d -==-综上所述:60129d CF d-=-.【点睛】本题考查动点问题,涉及到平移,旋转,矩形,解直角三角形,圆的性质,相似三角形的判定和性质;注意第(2)问第②小题以PM 为直径作圆算出sin 2θ是难点,第(2)问第③小题用到相似三角形的判定和性质.。
2024年河北省中考真题数学试卷含答案解析
2024年河北省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .【答案】A 【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是( )A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC⊥B .AC PQ ⊥C .ABO CDO △≌△D .AC BD∥【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为( )A .1B .2C .3D .45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的( )A .角平分线B .高线C .中位线D .中线【答案】B 【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A .B .C .D .【答案】D【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是( )A .38a b+=B .38a b =C .83a b +=D .38a b=+【答案】A 【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①______.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为( )A .13∠=∠,AASB .13∠=∠,ASAC .23∠∠=,AASD .23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=( )A .115︒B .120︒C .135︒D .144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( )A .x B .y C .x y +D .x y -14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法⨯,运算结果为3036.图运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132232表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7-或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.【答案】89【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a,b,n均为正整数.(1)若1<<+,则n=;n n(2)若1,1-<<<<+,则满足条件的a的个数总比b的个数少个.n n n n2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为4-,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b+2a2a b+a b-2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;∠的值.(2)求CP的长及sin APC∵1tan tan 4CH PAE AH α=∠==,设∴()22249x x AC +==,解得:31717x =,∴317CH =m,23.情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,此时2BP '=,222P Q ''=+=,符合要求,或以C 圆心,CO 为半径画弧,交BC 此时2CP CQ ==,222PQ =+=∴22BP =-,综上:BP 的长为2或22-.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80x y p=;当150p x ≤≤时,()2080150x p y p -=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)9510010511115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =ABC 中,90,3,ABC AB BC ∠=︒==先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B与点N重合时,求劣弧 AN的长;∥时,如图2,求点B到OA的距离,并求此时x的值;(2)当OA MN(3)设点O到BC的距离为d.①当点A在劣弧 MN上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;∵25MN =,O H M N ⊥,∴5MH NH ==,而OM =∴222OH OM MH =-==∴点B 到OA 的距离为2;⊥于J,过O作过O作OJ BC∴四边形KOJB为矩形,=,∴OJ KB∵3AB=,32BC=,∴2233=+=,AC AB BC⊥于Q 如图,过A作AQ OB⊥∵B为MN中点,则OB MN∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO ∠+∠=︒=∠∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴122OJ BQ BJ AQ ==,26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .∴交点()426,6J --,交点()426,6K +,由直线l PQ ∥,设直线l 为4y x b =+,∴()44266b -+=-,解得:8622b =-,∴直线l 为:48622y x =+-,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()21,2N n n t ⎡--+⎢⎣∴L 的横坐标为2m n +,。
2020年河北省中考数学试卷及答案解析
2020年河北省中考数学试卷及答案解析2020年河北省中考数学试卷⼀、选择题(本⼤题有16个⼩题,共42分.1~10⼩题各3分,11~16⼩题各2分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.如图,在平⾯内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.⽆数条2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个⼏何体分别由7个和6个相同的⼩正⽅体搭成,⽐较两个⼏何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是⼩颖前三次购买苹果单价的统计图,第四次⼜买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.如图1,已知∠ABC ,⽤尺规作它的⾓平分线.如图2,步骤如下,第⼀步:以B 为圆⼼,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第⼆步:分别以D ,E 为圆⼼,以b 为半径画弧,两弧在∠ABC 内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是()A .a ,b 均⽆限制B .a >0,b >12DE 的长 C .a 有最⼩限制,b ⽆限制D .a ≥0,b <12DE 的长7.若a ≠b ,则下列分式化简正确的是() A .a+2b+2=abB .a?2b?2=abC .a 2b =abD .12a 12b =ab8.在如图所⽰的⽹格中,以点O 为位似中⼼,四边形ABCD 的位似图形是()A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.若(92?1)(112?1)k=8×10×12,则k =() A .12B .10C .8D .610.如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平⾏四边形,并推理如下:⼩明为保证嘉洪的推理更严谨,想在⽅框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是()A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC11.若k 为正整数,则(k +k +?+k)k ︸k 个k=()A .k 2kB .k 2k +1C .2k kD .k 2+k12.如图,从笔直的公路l 旁⼀点P 出发,向西⾛6km 到达l ;从P 出发向北⾛6km 也到达l .下列说法错误的是()A .从点P 向北偏西45°⾛3km 到达lB .公路l 的⾛向是南偏西45°C .公路l 的⾛向是北偏东45°D.从点P向北⾛3km后,再向西⾛3km到达l13.已知光速为300000千⽶/秒,光经过t秒(1≤t≤10)传播的距离⽤科学记数法表⽰为a×10n千⽶,则n可能为()A.5B.6C.5或6D.5或6或7 14.有⼀题⽬:“已知:点O为△ABC的外⼼,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.⽽淇淇说:“嘉嘉考虑的不周全,∠A 还应有另⼀个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另⼀个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两⼈都不对,∠A应有3个不同值15.如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三⼈的说法如下,甲:若b=5,则点P的个数为0;⼄:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.⼄错,丙对B.甲和⼄都错C.⼄对,丙错D.甲错,丙对16.如图是⽤三块正⽅形纸⽚以顶点相连的⽅式设计的“毕达哥拉斯”图案.现有五种正⽅形纸⽚,⾯积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的⽅式组成图案,使所围成的三⾓形是⾯积最⼤的直⾓三⾓形,则选取的三块纸⽚的⾯积分别是()A .1,4,5B .2,3,5C .3,4,5D .2,2,4⼆、填空题(本⼤题有3个⼩题,共12分.17~18⼩题各3分;19⼩题有3个空,每空2分)17.已知:√18?√2=a √2?√2=b √2,则ab =.18.正六边形的⼀个内⾓是正n 边形⼀个外⾓的4倍,则n =.19.如图是8个台阶的⽰意图,每个台阶的⾼和宽分别是1和2,每个台阶凸出的⾓的顶点记作T m (m 为1~8的整数).函数y =kx (x <0)的图象为曲线L .(1)若L 过点T 1,则k =;(2)若L 过点T 4,则它必定还过另⼀点T m ,则m =;(3)若曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点,则k 的整数值有个.三、解答题(本⼤题有7个⼩题,共66分.解答应写出⽂字说明、证明过程或演算步骤) 20.已知两个有理数:﹣9和5.(1)计算:(?9)+52;(2)若再添⼀个负整数m,且﹣9,5与m这三个数的平均数仍⼩于m,求m的值.21.有⼀电脑程序:每按⼀次按键,屏幕的A区就会⾃动加上a2,同时B区就会⾃动减去3a,且均显⽰化简后的结果.已知A,B两区初始显⽰的分别是25和﹣16,如图.如,第⼀次按键后,A,B两区分别显⽰:(1)从初始状态按2次后,分别求A,B两区显⽰的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆⼼,分别以OA,OC为半径在CD上⽅作两个半圆.点P为⼩半圆上任⼀点(不与点A,B重合),连接OP并延长交⼤半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最⼤时,直接指出CP与⼩半圆的位置关系,并求此时S(答案保留π).扇形EOD23.⽤承重指数w衡量⽔平放置的长⽅体⽊板的最⼤承重量.实验室有⼀些同材质同长同宽⽽厚度不⼀的⽊板,实验发现:⽊板承重指数W与⽊板厚度x(厘⽶)的平⽅成正⽐,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选⼀块厚度为6厘⽶的⽊板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘⽶),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.表格中的两组对应值满⾜⼀次函数y=kx+b,现画出了它的图象为直线l,如图.⽽某同学为观察k,b对图象的影响,将上⾯函数中的k与b交换位置后得另⼀个⼀次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.如图,甲、⼄两⼈(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住⼀枚硬币,再让两⼈猜向上⼀⾯是正是反,⽽后根据所猜结果进⾏移动.①若都对或都错,则甲向东移动1个单位,同时⼄向西移动1个单位;②若甲对⼄错,则甲向东移动4个单位,同时⼄向东移动2个单位;③若甲错⼄对,则甲向西移动2个单位,同时⼄向西移动4个单位.(1)经过第⼀次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、⼄每次所猜结果均为⼀对⼀错.设⼄猜对n次,且他最终停留的位置对应的数为m,试⽤含n的代数式表⽰m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进⾏了k次移动游戏后,甲与⼄的位置相距2个单位,直接写出k的值.26.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停⽌;⽽点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的⾯积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(⽤含x的式⼦表⽰);(4)在点P处设计并安装⼀扫描器,按定⾓∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共⽤时36秒.若AK=94,请直接写出点K被扫描到的总时长.2020年河北省中考数学试卷参考答案⼀、选择题(本⼤题有16个⼩题,共42分.1~10⼩题各3分,11~16⼩题各2分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.D;2.D;3.C;4.D;5.B;6.B;7.D;8.A;9.B;10.B;11.A;12.A;13.C;14.A;15.C;16.B;⼆、填空题(本⼤题有3个⼩题,共12分.17~18⼩题各3分;19⼩题有3个空,每空2分)17.6;18.12;19.﹣16;5;7;。
20XX年河北省中考数学试题(含答案解析)
20XX年河北省中考数学试题(含答案解析)20XX年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.× D.÷ 3.对于①x ﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,bDE的长C.a有最小限制,b无限制D.a≥0,bDE的长7.若a≠b,则下列分式化简正确的是()A.B.C.D.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 9.若8×10×12,则k=()A.12 B.10 C.8 D.6 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 11.(2分)若k为正整数,则()A.k2k B.k2k+1 C.2kkD.k2+k 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km 到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 13.(2分)已知光速为*****千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5 B.6 C.5或6 D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=.18.正六边形的一个内角是正n边形一个外角的4倍,则n =.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点Tm,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围] 24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l 和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC 中,AB=AC,BC=8,tanC.点K在AC边上,点M,N分别在AB,BC 上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.20XX年河北省中考数学试卷答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.× D.÷ 解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,bDE的长C.a有最小限制,b无限制D.a≥0,bDE的长解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.7.若a≠b,则下列分式化简正确的是()A.B.C.D.解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC,OM2,OD,OB,OA,OR,OQ=2,OP2,OH3,ON2,∵2,∴点D对应点Q,点B 对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.9.若8×10×12,则k=()A.12 B.10 C.8 D.6 解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.11.(2分)若k为正整数,则()A.k2k B.k2k+1 C.2kk D.k2+k 解:((k-k)k=(k2)k=k2k,故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为*****千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5 B.6 C.5或6 D.5或6或7 解:当t=1时,光传播的距离为1×*****=*****=3×105(千米),则n=5;当t=10时,光传播的距离为10×*****=***-*****=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A 还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=6.解:原式=3ab,故a=3,b=2,则ab=6.故答案为:6.18.正六边形的一个内角是正n边形一个外角的4倍,则n=12.解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm (m为1~8的整数).函数y(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点Tm,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.解:(1)2;(2)根据题意得,m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.解:(1)A区显示的结果为:25+2a2,B 区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.22.(9分)如图,点O 为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W 薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x 的取值范围] 解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k,∴W与x的函数关系式为Wx2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄(6﹣x)2x2=﹣4x+12,即Q与x的函数关系式为Q =﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3x2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l 和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;∴直线l′的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=x+3与y轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:;(3)把y=a代入y=3x+1得,a=3x+1,解得x;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣30时,a,当(a﹣3+0)时,a=7,当(0)=a﹣3时,a,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k ﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k 的值为3或5.26.(12分)如图1和图2,在△ABC中,AB=AC,BC =8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN =2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.解:(1)如图1中,过点A作AH⊥BC 于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C,∴AH=3,AB=AC5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴()2,∴,∴AP,∴PM=AP=AM2.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴,∠AQP=∠C,∴,∴PQ(x+2),∵sin∠AQP=sin∠C,∴PJ=PQ-sin∠AQP(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC-sin∠C(11﹣x).(4)由题意点P的运动速度单位长度/秒.当3<x≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴,∴,∴y(x﹣7)2,∵0,∴x=7时,y有最大值,最大值,∵AK,∴CK=5 当y时,(x﹣7)2,解得x=7±,∴点K被扫描到的总时长=(6﹣3)23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当x在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)]23(秒).。
2020年河北省中考数学试卷及答案
2020 年河北省中考数学试卷一、选择题(本大题共16 小题,共42 分。
1 ~10 小题各 3 分,11 ~16 小题各 2 分,小题给出的四个选项中,只有一项是符合题目要求的)1 .( 3 分)下列运算结果为正数的是()A .(﹣ 3 ) 2B .﹣ 3 ÷ 2C .0 × (﹣2020 )D . 2 ﹣ 32 .(3 分)把0.0813 写成 a × 10 n ( 1 ≤ a <10 ,n 为整数)的形式,则 a 为()A . 1B .﹣ 2C .0.813D .8.133 .( 3 分)用量角器测得∠ MON 的度数,下列操作正确的是()A .B .C .D .4 .( 3 分)= ()A .B .C .D .5 .( 3 分)图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图 2 中①②③④ 的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是()A .①B .②C .③D .④6 .( 3 分)如图为张小亮的答卷,他的得分应是()A .100 分B .80 分C .60 分D .40 分7 .( 3 分)若△ ABC 的每条边长增加各自的10% 得△ A′B′C′ ,则∠ B′ 的度数与其对应角∠ B 的度数相比()A .增加了10%B .减少了10%C .增加了( 1 + 10% )D .没有改变8 .( 3 分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A .B .C .D .9 .( 3 分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC ⊥ BD .以下是排乱的证明过程:① 又BO=DO ;②∴ AO ⊥ BD ,即AC ⊥ BD ;③∵四边形ABCD 是菱形;④∴ AB=AD .证明步骤正确的顺序是()A .③ → ② → ① → ④B .③ → ④ → ① → ②C .① → ② → ④ →③ D .① → ④ → ③ → ②10 .( 3 分)如图,码头 A 在码头 B 的正西方向,甲、乙两船分别从A ,B 同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A .北偏东55°B .北偏西55°C .北偏东35°D .北偏西35°11 .( 2 分)如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的是()A .B .C .D .12 .( 2 分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A . 4 + 4 ﹣=6B . 4 + 4 0 + 4 0 =6C . 4 + =6D . 4 ﹣ 1 ÷ + 4=613 .( 2 分)若= + ,则中的数是()A .﹣ 1B .﹣ 2C .﹣ 3D .任意实数14 .( 2 分)甲、乙两组各有12 名学生,组长绘制了本组 5 月份家庭用水量的统计图表,如图,甲组12 户家庭用水量统计表4 5 6 9用水量(吨)户数 4 5 2 1比较 5 月份两组家庭用水量的中位数,下列说法正确的是()A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15 .( 2 分)如图,若抛物线y= ﹣x 2 + 3 与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y= (x >0 )的图象是()A .B .C .D .16 .( 2 分)已知正方形MNOK 和正六边形ABCDEF 边长均为 1 ,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点 B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点 C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;… 在这样连续 6 次旋转的过程中,点 B ,M 间的距离可能是()A . 1.4B . 1.1C .0.8D .0.5二、填空题(本大题共 3 小题,共10 分。
河北省中考数学试题
2024年河北省中考数学试题2024年河北省中考数学试题及解析一、选择题1、在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosB的值是() A. 3/5 B. 4/5 C. 5/4 D. 3/42、抛物线y=x²-2x+3的对称轴为() A. 直线x=1 B. 直线x=-1 C. 直线x=2 D. 直线x=-23、在下列四个图案中,是轴对称图形的是() A. 正方形 B. 平行四边形 C. 圆形 D. 菱形二、填空题4、若方程x²-3x+k=0的一个根是-1,则k的值为_____。
41、在△ABC中,AB=AC,∠BAC=120°,则BC边上的高所在的直线的方程为______。
三、解答题6、已知一次函数y=kx+b的图像经过点A(1,2),B(0,-1),求这个一次函数的解析式。
61、在△ABC中,若∠C=90°,AC=6,BC=8,求△ABC的面积。
611、某种商品原来的价格为每件a元,每星期销售b件。
现将原价打八折销售,每星期销售量增加20%。
(1)写出销售这种商品的收入与每星期销售量的函数关系式;(2)当a=250,b=30时,求这种商品的收入。
四、附加题9、在平面直角坐标系中,有点A(1,3),B(4,-1),请在y轴上找一点C,使得CA+CB最小,并求出点C的坐标。
2024年河北省中考数学试卷2024年河北省中考数学试卷一、选择题1、在下列实数中,无理数是()。
A. 0 B. π/4 C. √2 D. 3.142、已知点A(−2,y)和点B(2,y)都在直线y=−1上,则y的值()。
A. 大于0 B. 小于0 C. 等于0 D. 不确定3、等腰三角形的一个内角为40°,则它的顶角的度数为()。
A. 40°B. 80°C. 40°或100°D. 80°或100°二、填空题4、若x+3=5,则x的值为。
2022年河北省中考数学试卷(解析版)
2022年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题。
1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算3a a ÷得?a ,则“?”是()A .0B .1C .2D .3【分析】根据同底数幂的除法法则列方程解答即可.同底数幂的除法法则:底数不变,指数相减.【解答】解:根据同底数幂的除法可得:32a a a ÷=,∴?2=,故选:C .2.(3分)如图,将ABC ∆折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是ABC ∆的()A .中线B .中位线C .高线D .角平分线【分析】根据翻折的性质和图形,可以判断直线l 与ABC ∆的关系.【解答】解:由已知可得,12∠=∠,则l 为ABC ∆的角平分线,故选:D .3.(3分)与132-相等的是()A .132--B .132-C .132-+D .132+【分析】利用有理数的加减法法则,逐个计算得结论.【解答】解:A .113322--=-,选项A 的计算结果是132-;B .113222-=,选项B 的计算结果不是132-;C .113222-+=-,选项C 的计算结果不是132-;D .113322+=,选项D 的计算结果不是132-.故选:A .4.(3分)下列正确的是()A 23=+B 23=⨯C 23=D 0.7=【分析】根据=A 选项;根据0,0)a b =判断B 选项;根据||a =判断C 选项;根据算术平方根的定义判断D 选项.【解答】解:A 、原式=,故该选项不符合题意;B 、原式23==⨯,故该选项符合题意;C 、原式29==,故该选项不符合题意;D 、20.70.49=,故该选项不符合题意;故选:B .5.(3分)如图,将三角形纸片剪掉一角得四边形,设ABC ∆与四边形BCDE 的外角和的度数分别为α,β,则正确的是()A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小【分析】利用多边形的外角和都等于360︒,即可得出结论.【解答】解: 任意多边形的外角和为360︒,360αβ∴==︒.0αβ∴-=.故选:A .6.(3分)某正方形广场的边长为2410m ⨯,其面积用科学记数法表示为()A .42410m ⨯B .421610m ⨯C .521.610m ⨯D .421.610m ⨯【分析】根据正方形的面积=边长⨯边长列出代数式,根据积的乘方化简,结果写成科学记数法的形式即可.【解答】解:22(410)⨯2224(10)=⨯41610=⨯521.610()m =⨯,故选:C .7.(3分)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A .①③B .②③C .③④D .①④【分析】根据组合后的几何体是长方体且由6个小正方体构成直接判断即可.【解答】解:由题意知,组合后的几何体是长方体且由6个小正方体构成,∴①④符合要求,故选:D .8.(3分)依据所标数据,下列一定为平行四边形的是()A .B .C .D .【分析】根据平行四边形的判定定理做出判断即可.【解答】解:A 、80110180︒+︒≠︒,故A 选项不符合条件;B 、只有一组对边平行不能确定是平行四边形,故B 选项不符合题意;C 、不能判断出任何一组对边是平行的,故C 选项不符合题意;D 、有一组对边平行且相等是平行四边形,故D 选项符合题意;故选:D .9.(3分)若x 和y 互为倒数,则11(x y y x+-的值是()A .1B .2C .3D .4【分析】根据x 和y 互为倒数可得1xy =,再将11(x y y x+-进行化简,将1xy =代入即可求值.【解答】解:x 和y 互为倒数,1xy ∴=,11()(2)x y y x +- 1212xy xy=-+-21121=⨯-+-2121=-+-2=.故选:B .10.(3分)某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与 AMB 所在圆相切于点A ,B .若该圆半径是9cm ,40P ∠=︒,则 AMB 的长是()A .11cm πB .112cm πC .7cmπD .72cmπ【分析】根据题意,先找到圆心O ,然后根据PA ,PB 分别与 AMB 所在圆相切于点A ,B .40P ∠=︒可以得到AOB ∠的度数,然后即可得到优弧AMB 对应的圆心角,再根据弧长公式计算即可.【解答】解:作AO PA ⊥,BO PB ⊥,AO 和BO 相交于点O ,如图,PA ,PB 分别与 AMB 所在圆相切于点A ,B .90OAP OBP ∴∠=∠=︒,40P ∠=︒ ,140AOB ∴∠=︒,∴优弧AMB 对应的圆心角为360140220︒-︒=︒,∴优弧AMB 的长是:220911()180cm ππ⨯=,故选:A .11.(2分)要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行【分析】根据平行线的性质、三角形内角和定理解答即可.【解答】解:方案Ⅰ,HEN CFG∠=∠,∴,//MN CD根据两直线平行,内错角相等可知,直线AB,CD所夹锐角与AEM∠相等,故方案Ⅰ可行,方案Ⅱ,根据三角形内角和定理可知,直线AB,CD所夹锐角与180AEH CFG︒-∠-∠相等,故方案Ⅱ可行,故选:C.12.(2分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(,)m n,在坐标系中进行描点,则正确的是()B.A.C.D.【分析】利用已知条件得出n与m的函数关系式,利用函数关系式即可得出结论.【解答】解: 一个人完成需12天,∴一人一天的工作量为1 12,m个人共同完成需n天,∴一人一天的工作量为1 mn,每人每天完成的工作量相同,12mn∴=.12nm∴=,n∴是m的反比例函数,∴选取6组数对(,)m n,在坐标系中进行描点,则正确的是:C.故选:C.13.(2分)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A.1B.2C.7D.8【分析】利用凸五边形的特征,根据两点之间线段最短求得d的取值范围,利用此范围即可得出结论.【解答】解: 平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形,1115d∴+++>且1511d+++>,d∴的取值范围为:28d<<,∴则d可能是7.故选:C.14.(2分)五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数【分析】根据中位数和众数的概念做出判断即可.【解答】解:根据题意知,追加前5个数据的中位数是5,众数是5,追加后5个数据的中位数是5,众数为5,数据追加后平均数会变大,∴集中趋势相同的只有中位数和众数,故选:D.15.(2分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3120120⨯=-xB.依题意203120(201)120+⨯=++x xC.该象的重量是5040斤D.每块条形石的重量是260斤【分析】利用题意找出等量关系,将等量关系中的量用已知数和未知数的代数式替换即可得出结论.【解答】解:由题意得出等量关系为:20块等重的条形石的重量3+个搬运工的体重和21=块等重的条形石的重量1+个搬运工的体重,已知搬运工体重均为120斤,设每块条形石的重量是x 斤,203120(201)120x x ∴+⨯=++,A ∴选项不正确,B 选项正确;由题意:大象的体重为202403605160⨯+=斤,C ∴选项不正确;由题意可知:一块条形石的重量2=个搬运工的体重,∴每块条形石的重量是240斤,D ∴选项不正确;综上,正确的选项为:B .故选:B .16.(2分)题目:“如图,45B ∠=︒,2BC =,在射线BM 上取一点A ,设AC d =,若对于d 的一个数值,只能作出唯一一个ABC ∆,求d 的取值范围.”对于其答案,甲答:2d ,乙答: 1.6d =,丙答:d =,则正确的是()A .只有甲答的对B .甲、丙答案合在一起才完整C .甲、乙答案合在一起才完整D .三人答案合在一起才完整【分析】由题意知,当CA BA ⊥或CA BC >时,能作出唯一一个ABC ∆,分这两种情况求解即可.【解答】解:由题意知,当CA BA ⊥或CA BC >时,能作出唯一一个ABC ∆,①当CA BA ⊥时,45B ∠=︒ ,2BC =,2sin 4522AC BC ∴=⋅︒=⨯=即此时d =②当CA BC =时,45B ∠=︒ ,2BC =,∴此时2AC =,即2d ,综上,当d =或2d 时能作出唯一一个ABC ∆,故选:B .二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分,19小题每空1分)17.(3分)如图,某校运会百米预赛用抽签方式确定赛道.若琪琪第一个抽签,她从1~8号中随机抽取一签,则抽到6号赛道的概率是18.【分析】根据抽到6号赛道的结果数÷所有可能出现的结果数即可得出答案.【解答】解:所有可能出现的结果数为8,抽到6号赛道的结果数为1,每种结果出现的可能性相同,P (抽到6号赛道)18=,故答案为:18.18.(3分)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?是(填“是”或“否”);(2)AE =.【分析】(1)证明ACM CFD ∆≅∆,得出CAM FCD ∠=∠,由90CAM CMA ∠+∠=︒,得出90FCD CMA ∠+∠=︒,进而得出90CEM ∠=︒,即可得出AB CD ⊥;(2)先利用勾股定理求出AB =,再证明ACE BDE ∆∆∽,利用相似三角形的性质即可求出AE 的长度.【解答】解:如图1,在ACM ∆和CFD ∆中,2901AC CF ACM CFD CM FD ==⎧⎪∠=∠=︒⎨⎪==⎩,()ACM CFD SAS ∴∆≅∆,CAM FCD ∴∠=∠,90CAM CMA ∠+∠=︒ ,90FCD CMA ∴∠+∠=︒,90CEM ∴∠=︒,AB CD ∴⊥,故答案为:是;(2)如图2,在Rt ABH ∆中,AB ===//AC BD ,CAE DBE ∴∠=∠,ACE BDE ∠=∠,ACE BDE ∴∆∆∽,∴23AE AC BE BD ==,∴23=,5AE ∴=,.19.(3分)如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个.乙盒中都是白子,共8个.嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,则a =4;(2)设甲盒中都是黑子,共(2)m m >个,乙盒中都是白子,共2m 个.嘉嘉从甲盒拿出(1)a a m <<个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多个;接下来,嘉嘉又从乙盒拿回a 个棋子放到甲盒,其中含有(0)x x a <<个白子,此时乙盒中有y 个黑子,则y x 的值为.【分析】(1)根据嘉嘉从甲盒拿出a 个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋子数的2倍,列出方程计算即可求解;(2)根据题意可得乙盒棋子总数比甲盒所剩棋子数多的个数,根据题意可以求出y x =,进一步求出y x的值.【解答】解:(1)依题意有:82(10)a a +=-,解得4a =.故答案为:4;(2)依题意有:2()(2)m a m a m a +--=+个,()y a a x a a x x =--=-+=,1y x x x==.故答案为:(2)m a +,1.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.(9分)整式13()3m -的值为P .(1)当2m =时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.【分析】(1)把2m =代入代数式中进行计算便可;(2)根据数轴列出m 的不等式进行解答便可.【解答】解:(1)根据题意得,153(2)3()533P =-=⨯-=-;(2)由数轴知,7P ,即13()73m -,解得2m -,m 为负整数,1m ∴=-.2-.21.(9分)某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.【分析】(1)分别把甲、乙二人的三项成绩相加并比较即可;(2)分别计算出甲、乙二人的三项成绩的加权平均数并比较即可.【解答】解:由题意得,甲三项成绩之和为:95923++=(分),乙三项成绩之和为:89522++=(分),2322> ,∴会录用甲;(2)由题意得,甲三项成绩之加权平均数为:1203601206060959360360360--⨯+⨯+⨯3 2.5 1.5=++7=(分),三项成绩之加权平均数为:1203601206060895360360360--⨯+⨯+⨯854.536=++8=(分),78< ,∴会改变(1)的录用结果.22.(9分)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,22(21)(21)10++-=为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.【分析】写出两个已知正整数之和与这两个正整数之差的平方和,根据完全平方公式,合并同类项法则计算即可求解.【解答】解:两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.理由如下:22()()m n m n ++-222222m mn n m mn n =+++-+2222m n =+222()m n =+,故两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.23.(10分)如图,点(,3)P a 在抛物线2:4(6)C y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路程.【分析】(1)根据抛物线的顶点式,判断出顶点坐标,令3y =,转化为方程求出a 即可;(2)求出平移前后的抛物线的顶点的坐标,可得结论.【解答】解:(1) 抛物线22:4(6)(6)4C y x x =--=--+,∴抛物线的顶点为(6,4)Q ,∴抛物线的对称轴为直线6x =,y 的最大值为4,当3y =时,23(6)4x =--+,5x ∴=或7,点P 在对称轴的右侧,(7,3)P ∴,7a ∴=;(2) 平移后的抛物线的解析式为2(3)y x =--,∴平移后的顶点(3,0)Q ',平移前抛物线的顶点(6,4)Q ,∴点P '移动的最短路程5QQ ='==.24.(10分)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线//MN AB .嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14︒,点M 的俯角为7︒.已知爸爸的身高为1.7m .(1)求C ∠的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【分析】(1)由14CAB ∠=︒,90CBA ∠=︒,得76C ∠=︒,根据tan AB C BC=, 1.7BC m =,可得 1.7tan 76 6.8()AB m =⨯︒=,(2)过O 作AB 的垂线交MN 于D ,交圆于H ,即可画出线段DH ,表示最大水深,根据OA OM =,7BAM ∠=︒,//AB MN ,可得76MOD ∠=︒,在Rt MOD ∆中,即知4MD OD =,设OD x =m ,则4MD x =m ,有222(4) 3.4x x +=,解得0.82OD m =,从而2.58 2.6()DH OH OD OA OD m =-=-=≈.【解答】解:(1) 嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14︒,14CAB ∴∠=︒,90CBA ∠=︒,18076C CAB CBA ∴∠=︒-∠-∠=︒,tan AB C BC= , 1.7BC m =,tan 76 1.7AB ∴︒=,1.7tan 76 6.8()AB m ∴=⨯︒=,答:76C ∠=︒,AB 的长为6.8m ;(2)图中画出线段DH 如图:OA OM=,7BAM∠=︒,7OMA OAM∴∠=∠=︒,//AB MN,7AMD BAM∴∠=∠=︒,14OMD∴∠=︒,76MOD∴∠=︒,在Rt MOD∆中,tan MDMODOD∠=,tan76MDOD∴︒=,4MD OD∴=,设OD x=m,则4MD x=m,在Rt MOD∆中,1 3.42OM OA AB m===,222(4) 3.4x x∴+=,x>,0.82x∴=≈,0.82OD m∴=,3.40.82 2.58 2.6()DH OH OD OA OD m∴=-=-=-=≈,答:最大水深约为2.6米.25.(10分)如图,平面直角坐标系中,线段AB的端点为(8,19)A-,(6,5)B.(1)求AB 所在直线的解析式;(2)某同学设计了一个动画:在函数(0,0)y mx n m y =+≠中,分别输入m 和n 的值,使得到射线CD ,其中(,0)C c .当2c =时,会从C 处弹出一个光点P ,并沿CD 飞行;当2c ≠时,只发出射线而无光点弹出.①若有光点P 弹出,试推算m ,n 应满足的数量关系;②当有光点P 弹出,并击中线段AB 上的整点(横、纵坐标都是整数)时,线段AB 就会发光.求此时整数m 的个数.【分析】(1)设直线AB 的解析式为y kx b =+,转化为方程组求解;(2)①把(2,0)代入函数解析式,可得结论;②寻找特殊点,利用待定系数法求解即可.【解答】解:(1)设直线AB 的解析式为y kx b =+,把(8,19)A -,(6,5)B 代入,得81965k b k b -+=⎧⎨+=⎩,解得111k b =-⎧⎨=⎩,∴直线AB 的解析式为11y x =-+;(2)①由题意直线y mx n =+经过点(2,0),20m n ∴+=;② 线段AB 上的整数点有15个:(8,19)-,(7,18)-,(6,17)-,(5,16)-,(4,15)-,(3,14)-,(2,13)-,(1,12)-,(0,11),(1,10),(2,9),(3,8),(4,7),(5,6),(6,5).当射线CD 经过(2,0),(7,18)-时,24y x =-+,此时2m =-,符合题意,当射线CD 经过(2,0),(1,12)-时,48y x =-+,此时4m =-,符合题意,当射线CD 经过(2,0),(1,10)时,1020y x =-+,此时10m =-,符合题意,当射线CD 经过(2,0),(3,8)时,816y x =-,此时8m =,符合题意,当射线CD 经过(2,0),(5,6)时,24y x =-,此时2m =,符合题意,其它点,都不符合题意.解法二:设线段AB 上的整数点为(,11)t t -+,则11tm n t +=-+,20m n += ,(2)11t m t ∴-=-+,119122t m t t -+∴==-+--,86t - ,且t 为整数,m 也是整数,21t ∴-=±,3±,9±,1t ∴=,10m =-,3t =,8m =,5t =,2m =,1t =-,4m =-,7t =-,2m =-,11t =,0m =(不符合题意,综上所述,符合题意的m 的值有5个26.(12分)如图1,四边形ABCD 中,//AD BC ,90ABC ∠=︒,30C ∠=︒,3AD =,AB =,DH BC ⊥于点H .将PQM ∆与该四边形按如图方式放在同一平面内,使点P 与A 重合,点B 在PM 上,其中90Q ∠=︒,30QPM ∠=︒,PM =.(1)求证:PQM CHD ∆≅∆;(2)PQM ∆从图1的位置出发,先沿着BC 方向向右平移(图2),当点P 到达点D 后立刻绕点D 逆时针旋转(图3),当边PM 旋转50︒时停止.①边PQ 从平移开始,到绕点D 旋转结束,求边PQ 扫过的面积;②如图2,点K 在BH上,且9BK =-.若PQM ∆右移的速度为每秒1个单位长,绕点D 旋转的速度为每秒5︒,求点K 在PQM ∆区域(含边界)内的时长;③如图3,在PQM ∆旋转过程中,设PQ ,PM 分别交BC 于点E ,F ,若BE d =,直接写出CF 的长(用含d 的式子表示).【分析】(1)解直角三角形求出QM ,再根据AAS 证明三角形全等即可;(2)①如图1中,PQ 扫过的面积=平行四边形AQQ D '的面积+扇形DQ Q '''的面积;②如图21-中,连接DK .当DM 运动到与DH 重合时,求出15KDH ∠=︒,可得结论;③利用勾股定理求出2DE ,再利用相似三角形的性质求出EF ,可得结论.【解答】(1)证明: 四边形ABCD是矩形,AB DH ∴==90DHB DHC ∠=∠=︒,在Rt AQM ∆中,90Q ∠=︒,30QAM ∠=︒,AM =,12QM AM ∴==QM DH ∴=,90Q DHC ∠=∠=︒ ,30QAM C ∠=∠=︒,在PQM ∆和CHD ∆中,QPM C PQM CHD QM DH ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PQM CHD AAS ∴∆≅∆;(2)解:①如图1中,PQ 扫过的面积=平行四边形AQQ D '的面积+扇形DQ Q '''的面积.设QQ '交AM 于点T .6AQ == ,QT AM ⊥,cos30AT AQ ∴=⋅︒=,PQ ∴扫过的面积250635360ππ⋅⋅=⨯+=;②如图21-中,连接DK .当DM 运动到与DH 重合时,3BH AD == ,9BK =-3(96KH ∴=--=,66CK ∴=-+=2CD DH ==CD CK ∴=,1(18030)752CKD ∴∠=︒-︒=︒,15KDH ∴∠=︒,301515QDK ∠=︒-︒=︒ ,∴点K 在PQM ∆区域(含边界)内的时长436153)15s -+=;③如图3中,在Rt CDH ∆中,DH =30C ∠=︒,6CH ∴==,3BH = ,BE d =,|3|EH d ∴=-,DH = ,90DHE ∠=︒,22222(3)DE EH DH d ∴=+=-+,DEF CED ∠=∠ ,30EDF C ∠=∠=︒,DEF CED ∴∆∆∽,2DE EF EC ∴=⋅,2(3)12(9)d EF d ∴-+=⋅-,26219d d EF d-+∴=-,26216012999d d d CF BC BE EF d d d-+-∴=--=--=--.。
2020年河北省中考数学试卷含答案解析
2020年河北省中考数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A .9B .8C .7D .66.(3分)如图1,已知∠ABC ,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .610.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CD D .应补充:且OA =OC11.(2分)若k 为正整数,则(k +k +⋯+k)k ︸k 个k=( )A .k 2kB .k 2k +1C .2k kD .k 2+k12.(2分)如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是( )A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a√2−√2=b√2,则ab=.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n=.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点T m,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).23.(9分)用承重指数w 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当x =3时,W =3. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.2020年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷【解答】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A .a ,b 均无限制B .a >0,b >12DE 的长 C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于12DE ,否则没有交点,故选:B .7.(3分)若a ≠b ,则下列分式化简正确的是( ) A .a+2b+2=abB .a−2b−2=abC .a 2b =abD .12a 12b =ab【解答】解:∵a ≠b , ∴a+2b+2≠ab ,故选项A 错误;a−2b−2≠a b,故选项B 错误;a 2b 2≠a b,故选项C 错误; 12a 12b =ab ,故选项D 正确;故选:D .8.(3分)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR【解答】解:∵以点O 为位似中心,∴点C 对应点M ,设网格中每个小方格的边长为1,则OC =√22+12=√5,OM =√42+22=2√5,OD =√2,OB =√32+12=√10,OA =√32+22=√13,OR =√22+12=√5,OQ =2√2,OP =√62+22=2√10,OH =√62+32=3√5,ON =√62+42=2√13, ∵OM OC=√5√5=2, ∴点D 对应点Q ,点B 对应点P ,点A 对应点N ,∴以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ , 故选:A . 9.(3分)若(92−1)(112−1)k=8×10×12,则k =( )A .12B .10C .8D .6【解答】解:方程两边都乘以k ,得 (92﹣1)(112﹣1)=8×10×12k ,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k , ∴80×120=8×10×12k , ∴k =10.经检验k =10是原方程的解. 故选:B .10.(3分)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是 ( )A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.=()11.(2分)若k为正整数,则(k+k+⋯+k)k︸k个kA.k2k B.k2k+1C.2k k D.k2+k=((k•k)k=(k2)k=k2k,【解答】解:(k+k+⋯+k)k︸k个k故选:A.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km 也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6√2km,则PC=3√2km,则从点P向北偏西45°走3√2km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对【解答】解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A .1,4,5B .2,3,5C .3,4,5D .2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42, 当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:√18−√2=a √2−√2=b √2,则ab = 6 . 【解答】解:原式=3√2−√2=a √2−√2=b √2, 故a =3,b =2, 则ab =6. 故答案为:6.18.(3分)正六边形的一个内角是正n 边形一个外角的4倍,则n = 12 . 【解答】解:正六边形的一个内角为:(6−2)×180°6=120°,∵正六边形的一个内角是正n 边形一个外角的4倍, ∴正n 边形一个外角为:120°÷4=30°, ∴n =360°÷30°=12. 故答案为:12.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=kx(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=−40 x,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L 过点T 4(﹣10,4),T 5(﹣8,5)时,k =﹣40, ∵曲线L 使得T 1~T 8这些点分布在它的两侧,每侧各4个点, ∴﹣36<k <﹣28,∴整数k =﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个, ∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5. (1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值. 【解答】解:(1)(−9)+52=−42=−2;(2)根据题意得,−9+5+m3<m ,∴﹣4+m <3m , ∴m ﹣3m <4, ∴﹣2m <4, ∴m >﹣2, ∵m 是负整数, ∴m =﹣1.21.(8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和﹣16,如图. 如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A 区显示的结果为:25+2a 2,B 区显示的结果为:﹣16﹣6a ; (2)这个和不能为负数,理由:根据题意得,25+4a 2+(﹣16﹣12a )=25+4a 2﹣16﹣12a =4a 2﹣12a +9; ∵(2a ﹣3)2≥0, ∴这个和不能为负数.22.(9分)如图,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP . (1)①求证:△AOE ≌△POC ;②写出∠l ,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接指出CP 与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE 和△POC 中, {OA =OP∠AOE =∠POC OE =OC, ∴△AOE ≌△POC (SAS ); ②∵△AOE ≌△POC , ∴∠E =∠C , ∵∠1+∠E =∠2, ∴∠1+∠C =∠2;(2)当∠C 最大时,CP 与小半圆相切, 如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴S扇形ODE =120π×22360=43π.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]【解答】解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=1 3,∴W与x的函数关系式为W=13x 2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=13(6﹣x)2−13x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×13x 2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l :y =kx +b 中,当x =﹣1时,y =﹣2;当x =0时,y =1,∴{−k +b =−2b =1,解得{k =3b =1, ∴直线l 的解析式为y =3x +1;∴直线l ′的解析式为y =x +3;(2)如图,解{y =x +3y =3x +1得{x =1y =4, ∴两直线的交点为(1,4),∵直线l ′:y =x +3与y 轴的交点为(0,3),∴直线l '被直线l 和y 轴所截线段的长为:√12+(4−3)2=√2;(3)把y =a 代入y =3x +1得,a =3x +1,解得x =a−13; 把y =a 代入y =x +3得,a =x +3,解得x =a ﹣3;当a ﹣3+a−13=0时,a =52,当12(a ﹣3+0)=a−13时,a =7, 当12(a−13+0)=a ﹣3时,a =175, ∴直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为52或7或175.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错=1 4.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tan C=34.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P 移动的路程为x ,当0≤x ≤3及3≤x ≤9时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接写出点K 被扫描到的总时长.【解答】解:(1)如图1中,过点A 作AH ⊥BC 于H .∵AB =AC ,AH ⊥BC ,∴BH =CH =4,∠B =∠C ,∴tan ∠B =tan ∠C =AH BH =34,∴AH =3,AB =AC =√AH 2+BH 2=√32+42=5.∴当点P 在BC 上时,点P 到A 的最短距离为3.(2)如图1中,∵∠APQ =∠B ,∴PQ ∥BC ,∴△APQ ∽△ABC ,∵PQ 将△ABC 的面积分成上下4:5,∴S △APQ S △ABC =(AP AB )2=49, ∴AP AB =23, ∴AP =103,∴PM =AP =AM =103−2=43. (3)当0≤x ≤3时,如图1﹣1中,过点P 作PJ ⊥CA 交CA 的延长线于J .∵PQ ∥BC ,∴AP AB =PQ BC ,∠AQP =∠C , ∴x+25=PQ 8, ∴PQ =85(x +2),∵sin ∠AQP =sin ∠C =35,∴PJ =PQ •sin ∠AQP =2425(x +2). 当3≤x ≤9时,如图2中,过点P 作PJ ⊥AC 于J .同法可得PJ =PC •sin ∠C =35(11﹣x ).(4)由题意点P 的运动速度=936=14单位长度/秒.当3<x ≤9时,设CQ =y .∵∠APC =∠B +∠BAP =∠APQ +∠CPQ ,∠APQ =∠B ,∴∠BAP =∠CPQ ,∵∠B =∠C ,∴△ABP ∽△PCQ ,∴AB CP =BP CQ , ∴511−x =x−3y ,∴y =−15(x ﹣7)2+165,∵−15<0,∴x =7时,y 有最大值,最大值=165,∵AK =94,∴CK =5−94=114<165 当y =114时,114=−15(x ﹣7)2+165, 解得x =7±32, ∴点K 被扫描到的总时长=(114+6﹣3)÷14=23秒. 方法二:①点P 在AB 上的时候,有11/4个单位长度都能扫描到点K ;②在BN 阶段,当x 在3~5.5(即7﹣1.5)的过程,是能扫到K 点的,在5.5~8.5(即7+1.5)的过程是扫不到点K 的,但在8.5~9(即点M 到N 全部的路程)能扫到点K .所以扫到的时间是[(9﹣8.5)+(5.5﹣3)+114]÷14=23(秒).。
2024年河北省中考数学试卷及答案解析
2024年河北省中考数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A.B.C.D.2.(3分)下列运算正确的是()A.a7﹣a3=a4B.3a2•2a2=6a2C.(﹣2a)3=﹣8a3D.a4÷a4=a3.(3分)如图,AD与BC交于点O,△ABO和△CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A.AD⊥BC B.AC⊥PQ C.△ABO≌△CDO D.AC∥BD4.(3分)下列数中,能使不等式5x﹣1<6成立的x的值为()A.1B.2C.3D.45.(3分)观察图中尺规作图的痕迹,可得线段BD一定是△ABC的()A.角平分线B.高线C.中位线D.中线6.(3分)如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A.B.C.D.7.(2分)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍8.(2分)若a,b是正整数,且满足=,则a与b的关系正确的是()A.a+3=8b B.3a=8b C.a+3=b8D.3a=8+b9.(2分)淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则a=()A.1B.﹣1C.+1D.1或+110.(2分)下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,△ABC中,AB=AC,AE平分△ABC的外角∠CAN,点M是AC的中点,连接BM并延长交AE于点D,连接CD.求证:四边形ABCD是平行四边形.证明:∵AB=AC,∴∠ABC=∠3.∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴①______.又∵∠4=∠5,MA=MC,∴△MAD≌△MCB(②______).∴MD=MB.∴四边形ABCD是平行四边形.若以上解答过程正确,①,②应分别为()A.∠1=∠3,AAS B.∠1=∠3,ASA C.∠2=∠3,AAS D.∠2=∠3,ASA11.(2分)直线l与正六边形ABCDEF的边AB,EF分别相交于点M,N,如图所示,则α+β=()A.115°B.120°C.135°D.144°12.(2分)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D13.(2分)已知A为整式,若计算﹣的结果为,则A=()A.x B.y C.x+y D.x﹣y14.(2分)扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120°时,扇面面积为S,该折扇张开的角度为n°时,扇面面积为S n,若m=,则m与n关系的图象大致是()A.B.C.D.15.(2分)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“■”表示5C.运算结果小于6000D.运算结果可以表示为4100a+102516.(2分)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P(2,1)按上述规则连续平移3次后,到达点P3(2,2),其平移过程如下:.若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1,9),则点Q的坐标为()A.(6,1)或(7,1)B.(15,﹣7)或(8,0)C.(6,0)或(8,0)D.(5,1)或(7,1)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.(2分)某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.18.(4分)已知a,b,n均为正整数.(1)若n<<n+1,则n=;(2)若n﹣1<<n,n<<n+1,则满足条件的a的个数总比b的个数少个.19.(4分)如图,△ABC的面积为2,AD为BC边上的中线,点A,C1,C2,C3是线段CC4的五等分点,点A,D1,D2是线段DD3的四等分点,点A是线段BB1的中点.(1)△AC1D1的面积为;(2)△B1C4D3的面积为.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(9分)如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为﹣4,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21.(9分)甲、乙、丙三张卡片正面分别写有a+b,2a+b,a﹣b,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=﹣2时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.第一次a+b2a+b a﹣b和第二次a+b2a+2b2a2a+ba﹣b2a22.(9分)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m,仰角为α;淇淇向前走了3m后到达点D,透过点P恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ的距离AB=CD=1.6m,点P 到BQ的距离PQ=2.6m,AC的延长线交PQ于点E.(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;(2)求CP的长及sin∠APC的值.23.(10分)情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.(10分)某公司为提高员工的专业能力,定期对员工进行技能测试.考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0≤x<p时,y=;当p≤x≤150时,y=+80.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若p=100,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值;(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.(12分)已知⊙O的半径为3,弦MN=2.△ABC中,∠ABC=90°,AB=3,BC=3.在平面上,先将△ABC和⊙O按图1位置摆放(点B与点N重合,点A在⊙O上,点C在⊙O内),随后移动△ABC,使点B在弦MN上移动,点A始终在⊙O上随之移动.设BN=x.(1)当点B与点N重合时,求劣弧的长;(2)当OA∥MN时,如图2,求点B到OA的距离,并求此时x的值;(3)设点O到BC的距离为d.①当点A在劣弧上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.26.(13分)如图,抛物线C1:y=ax2﹣2x过点(4,0),顶点为Q.抛物线C2:y=﹣(x﹣t)2+t2﹣2(其中t为常数,且t>2),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将C1的顶点Q向左平移2个单位长度后一定落在C2上.淇淇说:无论t为何值,C2总经过一个定点.请选择其中一人的说法进行说理.(3)当t=4时,①求直线PQ的解析式;②作直线l∥PQ,当l与C2的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设C1与C2的交点A,B的横坐标分别为x A,x B,且x A<x B,点M在C1上,横坐标为m(2≤m ≤x B).点N在C2上,横坐标为n(x A≤n≤t),若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.2024年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据﹣4<﹣2<﹣1<0<1可得答案.【解答】解:∵﹣4<﹣2<﹣1<0<1,∴选项A的折线统计图符合题意.故选:A.【点评】本题考查了折线统计图,掌握有理数大小比较方法是解答本题的关键.2.【分析】利用合并同类项的法则,单项式乘单项式的法则,积的乘方的法则,同底数幂的除法的法则对各项进行运算即可.【解答】解:A、a7与﹣a3不属于同类项,不能合并,故A不符合题意;B、3a2•2a2=6a4,故B不符合题意;C、(﹣2a)3=﹣8a3,故C符合题意;D、a4÷a4=1,故D不符合题意;故选:C.【点评】本题主要考查合并同类项,积的乘方,同底数幂的除法,单项式乘多项式,解答的关键是对相应的运算法则的掌握.3.【分析】根据△ABO和△CDO关于直线PQ对称得出△ABO≌△CDO,PQ⊥AC,PQ⊥BD,然后逐项判断即可.【解答】解:如图,连接AC、BD,∵△ABO和△CDO关于直线PQ对称,∴△ABO≌△CDO,PQ⊥AC,PQ⊥BD,∴AC∥BD,故B、C、D选项正确,AD不一定垂直BC,故A选项不一定正确,故选:A.【点评】本题考查轴对称的性质,关于某条直线对称的两个三角形全等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.4.【分析】先求解不等式,再确定满足不等式的选项.【解答】解:解不等式5x﹣1<6,得x<.故选:A.【点评】本题考查了一元一次不等式的解法.会求解一元一次不等式是解决本题的关键.5.【分析】根据作图痕迹判断出线段BD是三角形ABC的高即可.【解答】解:由作图可知BD⊥AC,故线段BD是△ABC的高.故选:B.【点评】本题考查作图﹣基本作图,三角形的角平分线,直线和高,三角形的中位线等知识,解题的关键是读懂图象信息.6.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,一共有三列,从左到右小正方形的个数分别是3、1、1.故选:D.【点评】本题主要考查了简单组合体的三视图,掌握组合体的三视图是解题的关键.7.【分析】根据题意列出反比例函数,然后逐项计算判断即可.【解答】解:由题意得,;A、若x=5,则y==100,正确,故此选项不符合题意;B、若y=125,则,解得x=4,正确,故此选项不符合题意;C、若x减小,则y增大,原说法错误,故此选项符合题意;D、若x减小一半,即y'=,所以y增大一倍,正确,故此选项不符合题意;故选:C.【点评】本题考查了反比例函数的应用,根据题意列出反比例函数解析式是解题的关键.8.【分析】根据合并同类项法则和同底数幂的乘法法则得8×2a=28b,即2a+3=28b,即可得出答案.【解答】解:根据已知得,8×2a=28b,即2a+3=28b,∴a+3=8b.故选:A.【点评】本题考查了合并同类项法则和同底数幂的乘法,熟练掌握运算法则及公式是解本题的关键.9.【分析】根据题意得关于a的一元二次方程a2﹣2a=1,解方程即可得出答案.【解答】解:根据题意得,a2﹣2a=1,解得a=1±,∵a>0,∴a=+1.故选:C.【点评】本题考查了一元二次方程的应用,熟练掌握一元二次方程的解法是关键.10.【分析】由AB=AC,得∠ABC=∠3,因为∠CAN=∠ABC+∠3=∠1+∠2,且∠1=∠2,所以∠2=∠3,而MA=MC,∠4=∠5,即可根据“ASA”证明△MAD≌△MCB,得MD=MB,则四边形ABCD 是平行四边形,于是得到问题的答案.【解答】证明:∵AB=AC,∴∠ABC=∠3,∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴∠2=∠3,∵点M是AC的中点,∴MA=MC,在△MAD和△MCB中,,∴△MAD≌△MCB(ASA),∴MD=MB,∴四边形ABCD是平行四边形.∴①,②分别为∠2=∠3,ASA,故选:D.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质、平行四边形的判定等知识,适当选择全等三角形的判定定理证明△MAD≌△MCB是解题的关键.11.【分析】先求出正六边形的每个内角为120°,再根据六边形MBCDEN的内角和为720°即可求解∠ENM+∠NMB的度数,最后根据邻补角的意义即可求解.【解答】解:正六边形每个内角为:,而六边形MBCDEN的内角和也为(6﹣2)×180°=720°,∴∠B+∠C+∠D+∠E+∠ENM+∠NMB=720°,∴∠ENM+∠NMB=720°﹣4×120°=240°,∵β+∠ENM+α+∠NMB=180°×2=360°,∴α+β=360°﹣240°=120°,故选:B.【点评】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.12.【分析】设A(a,b),AB=m,AD=n,可得D(a,b+n),B(a+m,b),C(a+m,b+n),再结合新定义与分式的值的大小比较即可得到答案.【解答】解:设A(a,b),AB=m,AD=n,∵四边形ABCD是矩形,∴AD=BC=n,AB=CD=m,∴D(a,b+n),B(a+m,b),C(a+m,b+n),∵,而,∴该矩形四个顶点中“特征值”最小的是点B;故选:B.【点评】本题考查的是矩形的性质,坐标与图形的性质,解答本题的关键是理解题意,直观观察和数形结合分析图象.13.【分析】由﹣=可得Ax=(x﹣y)(x+y)+y2,故Ax=x2,从而A=x.【解答】解:∵﹣=,∴=+,∴=+,∴Ax=(x﹣y)(x+y)+y2,∴Ax=x2,∴A=x;故选:A.【点评】本题考查分式混合运算,解题的关键是掌握分式的基本性质和等式的性质.14.【分析】设该扇子所在圆的半径为R,根据扇形的面积公式表示出πR2﹣πr2=3S,进一步得出S n=﹣=,再代入m=即可得出结论,【解答】解:设该扇子所在圆的半径为R,S=﹣=﹣,∴πR2﹣πr2=3S,∵该折扇张开的角度为n°时,扇面面积为S n,∴S n=﹣=,∴m====,∴m是n的正比例函数,∵n≥0,∴它的图象是过原点的一条射线,故选:C.【点评】本题考查了正比例函数的应用,扇形的面积,掌握扇形的面积公式是解题的关键,15.【分析】设一个三位数与一个两位数分别为100x+10y+z和10m+n,则mz=20,nz=5,ny=2,nx=a,即m=4n,可确定n=1,y=2时,则m=4,z=5,x=a,由题意可判断A、B选项,根据题意可得运算结果可以表示为:1000(4a+1)+100a+25=4100a+1025,故可判断C、D选项.【解答】解:设一个三位数与一个两位数分别为100x+10y+z和10m+n,如图2:则由题意得:mz=20,nz=5,ny=2,nx=a,∴,即m=4n,∴当n=2,y=1时,z=2.5不是正整数,不符合题意,故舍去;当n=1,y=2时,则m=4,z=5,x=a,如图3:∴A、“20”左边的数是2×4=8,故本选项不符合题意;B、“20”右边的“□”表示4,故本选项不符合题意;∴a上面的数应为4a,如图4:∴运算结果可以表示为:1000(4a+1)+100a+25=4100a+1025,∴D选项符合题意,当a=2时,计算的结果大于6000,故C选项不符合题意,故选:D.【点评】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.16.【分析】先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照Q16的反向运动理解去分类讨论:①Q16先向右1个单位,不符合题意;②Q16先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为(6,1),那么最后一次若向右平移则为(7,1),向左平移则为(5,1).【解答】解:根据已知:点P3(2,2)横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到P4(2,3),此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到P5(1,3),此时横、纵坐标之和除以3所得的余数为1,又向上平移1个单位………,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,再按照向上、向左,向上、向左不断重复的规律平移;若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1.9),则按照“和点”Q16反向运动16次即可,可以分为两种情况:①Q16先向右1个单位得到Q15(0,9),此时横、纵坐标之和除以3所得的余数为0,应该是Q15向右平移1个单位得到Q16,故矛盾,不成立;②Q16先向下1个单位得到Q15(﹣1,8),此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到Q16,故符合题意,∴点Q16先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为(﹣1+7,9﹣8),即(6,1),∴最后一次若向右平移则为(7,1),若向左平移则为(5,1),故选:D.【点评】本题考查了坐标系内点的平移运动,读懂题意,熟练掌握平移与坐标关系,利用反向运动理解是解决本题的关键.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.【分析】找出出现次数最多的数是众数.【解答】解:出现次数最多的是89,因此众数为89.故答案为:89.【点评】本题考查众数,理解众数的意义是正确解答的前提.18.【分析】(1)利用夹逼法估算的取值范围,即可求出n的值;(2)先将不等式两边平方,分别得到a、b的取值范围,即可得出答案.【解答】解:(1)∵,∴,∵n<<n+1,n为正整数,∴n=3;故答案为:3;(2)∵n﹣1<<n,∴(n﹣1)2<a<n2,∴a的个数为n2﹣(n﹣1)2﹣1=n2﹣n2+2n﹣1﹣1=2n﹣2,∵n<<n+1,∴n2<b<(n+1)2,∴b的个数为(n+1)2﹣n2﹣1=n2+2n+1﹣n2﹣1=2n,∵2n﹣(2n﹣2)=2,∴满足条件的a的个数总比b的个数少2个,故答案为:2.【点评】本题考查了估算无理数的大小,熟练掌握夹逼法估算无理数的大小是解题的关键.19.【分析】(1)证明△AC1D1≌△ACD(SAS),即可得出结果;(2),分别求出它们的面积即可.【解答】解:(1)连接B1D1、B1D2、B1C2、B1C3、C3D3,∵△ABC的面积为2,AD为BC边上的中线,∴,∵点A,C1,C2,C3是线段CC4的五等分点,∴,∵点A,D1,D2是线段DD3的四等分点,∴,∵点A是线段BB1的中点,∴,在△AC1D1和△ACD中,,∴△AC1D1≌△ACD(SAS),∴,∠C 1D1A=∠CDA,∴△AC1D1的面积为1,故答案为:1;(2)在△AB1D1和△ABD中,,∴△AB1D1≌△ABD(SAS),∴,∠B 1D1A=∠BDA,∵∠BDA+∠CDA=180°,∴∠B1D1A+∠C1D1A=180°,∴C1、D1、B1三点共线,∴,∵AC1=C1C2=C2C3=C3C4,∴,∵AD 1=D1D2=D2D3,,∴,在△AC3D3和△ACD中,,∠C3AD3=∠CAD,∴△C3AD3∽△CAD,∴,∴,∵AC1=C1C2=C2C3=C3C4,∴,∴,∴△B1C4D3的面积为7,故答案为:7.【点评】本题考查了三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积,掌握三角形中线的性质是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.【分析】(1)计算﹣4+2+32即可,根据数轴上两点之间的距离公式先求出AB、AC的长,再计算比值即可;(2)先求出DE、DF的长,根据题意列出,然后计算即可.【解答】解:(1)∵点A,B,C所对应的数依次为﹣4,2,32,∴A,B,C三点所对应的数的和为﹣4+2+32=30,∵AB=2﹣(﹣4)=6,AC=32﹣(﹣4)=36,∴;(2)由数轴得,DE=x﹣0=x,DF=12﹣0=12,由题意得,,∴,∴x=2.【点评】本题考查了数轴,熟练掌握数轴上两点之间的距离公式是解题的关键.21.【分析】(1)当a=1,b=﹣2时,a+b=﹣1,2a+b=0,a﹣b=3.从三张卡片中随机抽取一张,共有3种等可能的结果,其中取出的卡片上代数式的值为负数的结果有1种,利用概率公式可得答案.(2)根据题意把表格补充完整,由表格可得出所有等可能的结果数以及和为单项式的结果数,再利用概率公式可得出答案.【解答】解:(1)当a=1,b=﹣2时,a+b=﹣1,2a+b=0,a﹣b=3.从三张卡片中随机抽取一张,共有3种等可能的结果,其中取出的卡片上代数式的值为负数的结果有1种,∴取出的卡片上代数式的值为负数的概率为.(2)补全表格如下:第一次a+b2a+b a﹣b和第二次a+b2a+2b3a+2b2a2a+b3a+2b4a+2b3aa﹣b2a3a2a﹣2b共有9种等可能的结果,其中和为单项式的结果有:2a,3a,2a,3a,共4种,∴和为单项式的概率为.【点评】本题考查列表法与树状图法、概率公式、整式的加减、多项式与单项式,熟练掌握列表法与树状图法、概率公式、整式的加减、多项式与单项式的概念是解答本题的关键.22.【分析】(1)根据题意先求解CE=PE=1m,再结合等腰三角形的性质与正切的定义可得答案;(2)利用勾股定理先求解,过C作CH⊥AP于H,结合,设CH=x m,则AH=4x m,再建立方程求解x,即可得到答案.【解答】解:(1)由题意可得:PQ⊥AE,PQ=2.6m,AB=CD=EQ=1.6m,AE=BQ=4(m),AC=BD=3(m),∴CE=4﹣3=1(m),PE=2.6﹣1.6=1(m),∠CEP=90°.∴CE=PE.∴β=∠PCE=45°;.(2)∵CE=PE=1m,∠CEP=90°,∴.如图,过C作CH⊥AP于H,∵,设CH=x m,则AH=4x m,∴x2+(4x)2=AC2=9.∴,.∴.∴.【点评】本题主要考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键.23.【分析】(1)如图,过G'作G′K⊥FH′于K,结合题意可得:四边形FOG′K为矩形,可得FO=KG',由拼接可得:HF=FO=KG',可得△AHG,△H′G′D,△AFE为等腰直角三角形,△G′KH′为等腰直角三角形,设H′K=KG'=x,则H′G′=H′D=x,再进一步解答即可;(2)由△AFE为等腰直角三角形可得,EF=AF=1;求解,再分别求解GE,AH,GH,可得答案;如图,以B为圆心,BO为半径画弧交BC于P′,交AB于Q′,则直线P'Q'为分割线,或以C圆心,CO为半径画弧,交BC于P,交CD于Q,则直线PQ为分割线,再进一步求解BP的长即可.【解答】解:(1)如图,过G′作G′K⊥FH′于K,结合题意可得:四边形FOG′K为矩形,∴FO=KG',由拼接可得:HF=FO=KG',由正方形的性质可得:∠A=45°,∴△AHG,ΔH′G'D,△AFE为等腰直角三角形,∴△GKH'为等腰直角三角形,设H′K=KG'=x,∴H′G′=H′D=x,∴,HF=FO=x,∵正方形的边长为2,∴对角线的长,∴,∴,解得:,∴;(2)∵△AFE为等腰直角三角形,EF=AF=1;∴,∴,∵,,∴BE=GE=AH=GH;如图,以B为圆心,BO为半径画弧交BC于P',交AB于Q',则直线P'Q'为分割线,此时,,符合要求,或以C圆心,CO为半径画弧,交BC于P,交CD于Q,则直线PQ为分割线,此时,,∴,【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.24.【分析】(1)利用换算规则的公式解答即可;(2)设丙的原始成绩为x1分,则丁的原始成绩为(x1﹣40)分,利用分类讨论的方法依据换算规则的公式解答即可;(3)①利用中位数的定义解答即可;②当p>130时,利用换算规则的公式解答即可;当p≤130时,则,由表格得到原始成绩为110及110以上的人数为100﹣5=95,利用合格率的公式解答即可.【解答】解:(1)当p=100时,甲的报告成绩为:(分),(2)设丙的原始成绩为x1分,则丁的原始成绩为(x1﹣40)分,①0≤x<p时,y丙=92=…①,由①﹣②得:,∴,∴,故不成立,舍;②p≤x1﹣40≤150时,y丙=92=+80…③,……④,由③﹣④得:,∴p=.∴92=+80,∴,∴,故不成立,舍;③0≤x1﹣40<p,p≤x1≤150时,y丙=92=+80…⑤,……⑥,联立⑤⑥解得:p=125,x1=140,且符合题意,综上所述p=125;(3)①共计100名员工,且成绩已经排列好,∴中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,∴中位数为130;②当p>130时,则,解得,故不成立,舍;当p≤130时,则,解得p=110,符合题意,∴.由表格得到原始成绩为110及110以上的人数为100﹣(1+2+2)=95,∴合格率为:.【点评】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点正确理解题意是解决本题的关键.25.【分析】(1)如图,连接OA,OB,先证明△AOB为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;(2)过B作BI⊥OA于I,过O作OH⊥MN于H,连接MO,证明四边形BIOH是矩形,可得BH=OI,BI=OH,再结合勾股定理可得答案;(3)①如图,由过点A的切线与AC垂直,可得AC过圆心,过O作OJ⊥BC于J,过O作OK⊥AB 于K,而∠ABC=90°,可得四边形KO.JB为矩形,可得OJ=KB,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当B为MN中点时,过O作OL⊥B′C′于L,过O作OJ⊥BC于J,OL>OJ,此时OI最短,如图,过A作AQ⊥OB于Q,而AB=AO=3,证明BQ=OQ=1,求解,再结合等角的三角函数可得答案.【解答】解:如图,连接OA,OB,∵⊙O的半径为3,AB=3,∴OA=OB=AB=3,∴△AOB为等边三角形,∴∠AOB=60°,∴的长为=π,∴劣弧的长为π;(2)过B作BI⊥OA于I,过O作OH⊥MN于H,连接MO,如图:∵OA∥MN,∴∠IBH=∠BHO=∠HOI=∠BIO=90°,∴四边形BIOH是矩形,∴BH=OI,BI=OH,∵,OH⊥MN,∴,而OM=3,∴,∴点B到OA的距离为2;∵AB=3,BI⊥OA,∴,∴,∴;(3)①过O作OJ⊥BC于J,过O作OK⊥AB于K,如图:∵∠ABC=90°,过点A的切线与AC垂直,∴AC过圆心,∴四边形KOJB为矩形,∴OJ=KB,∵AB=3,,∴,∴,∴,∴,即;②如图,当B为MN中点时,过O作OL⊥B′C′于L,过O作OJ⊥BC于J,∵∠OJL>90°,∴OL>OJ,故当B为MN中点时,d最短小,过A作AQ⊥OB于Q,∵B为MN中点,∴OB⊥MN,同(2)可得OB=2,∴BQ=OQ=1,∴,∵∠ABC=90°=∠AQB,∴∠OBJ+∠ABO=90°=∠ABO+∠BAQ,∴∠OBJ=∠BAQ,∴tan∠OBJ=tan∠BAQ,∴,设OJ=m,则,∵OJ2+BJ2=OB2,∴,解得:(m的负值已舍去),∴OJ的最小值为,即d的最小值为.【点评】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用:锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.26.【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;(2)把Q(2,﹣2)向左平移2个单位长度得到对应点的坐标为(0,﹣2),再检验即可,再根据函数化为,可得函数过定点;(3)①先求解P的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当(等于6两直线重合不符合题意),可得,设l与x轴交点横坐标为x,再进一步求解即可;(4)如图,由题意可得C2是由C1通过旋转180°,再平移得到的,两个函数图象的形状相同,如图,连接AB交PQ于L,连接AQ,BQ,AP,BP,可得四边形APBQ是平行四边形,当点M是到直线PQ 的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,此时M与B重合,N与A重合,再进一步利用中点坐标公式解答即可.【解答】解:(1)∵抛物线过点(4,0),顶点为Q,∴16a﹣8=0,解得,∴抛物线为,∴Q(2,﹣2);(2)把Q(2,﹣2)向左平移2个单位长度得到对应点的坐标为(0,﹣2),当x=0时,,∴(0,﹣2)在C2上,∴嘉嘉说法正确;=,当x=0时,y=﹣2,∴,过定点(0,﹣2),∴淇淇说法正确;(3)①当t=4时,,∴顶点P(4,6),而Q(2,﹣2),设PQ为y=cx+f,∴,解得,∴PQ为y=4x﹣10;②∵P(4,6),∴P到x轴的距离为6,∴l与C2交点的纵坐标为﹣6,当时(等于6两直线重合不符合题意),(x﹣4)2=24,∴,∵直线PQ的解析式为y=4x﹣10,当y=﹣6时,﹣6=4x﹣10,解得x=1,y=4x﹣10=0时,x=,设l与x轴交点横坐标为x,则1﹣(4﹣2)=,解得,此时直线l与x轴交点的横坐标为;(4+2)﹣1=x﹣,解得,此时直线l与x轴交点的横坐标为.综上,直线l与x轴交点的横坐标为或;(4)∵,,∴C2是由C1通过旋转180°,再平移得到的,两个函数图象的形状相同,如图,连接AB交PQ于L,连接AQ,BQ,AP,BP,∴四边形APBQ是平行四边形,当点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,此时M与B 重合,N与A重合,∵Q(2,﹣2),P(t,),∴L的横坐标为,,,∴L的横坐标为,∴,解得n=2+t﹣m.【点评】本题考查的是二次函数的综合应用,主要考查利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键。
河北省2021年中考数学试题真题(Word版+答案+解析)(1)
河北省2021年中考数学试卷一、单选题1.(2021·河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A. aB. bC. cD. d2.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A. A代表B. B代表C. C代表D. B代表3.(2021·河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()图2A. 甲、乙、丙都是B. 只有甲、乙才是C. 只有甲、丙才是D. 只有乙、丙才是4.(2021·河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面 AB = ( )A. 1cmB. 2cmC. 3cmD. 4cm5.(2021·河北)如图,点 O 为正六边形 ABCDEF 对角线 FD 上一点, S △AFO =8 , S △CDO =2 ,则 S 正六边形ABCDEF 的值是( )A. 20B. 30C. 40D. 随点 O 位置而变化6.(2021·河北)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为 a 1 , a 2 , a 3 , a 4 , a 5 ,则下列正确的是( )A. a 3>0B. |a 1|=|a 4|C. a 1+a 2+a 3+a 4+a 5=0D. a 2+a 5<07.(2021·河北)如图,直线 l , m 相交于点 O . P 为这两直线外一点,且 OP =2.8 .若点 P 关于直线 l , m 的对称点分别是点 P 1 , P 2 ,则 P 1 , P 2 之间的距离可能..是( )A. 0B. 5C. 6D. 78.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A. 证法1还需证明其他形状的三角形,该定理的证明才完整B. 证法1用严谨的推理证明了该定理C. 证法2用特殊到一般法证明了该定理D. 证法2只要测量够一百个三角形进行验证,就能证明该定理9.(2021·河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A. 蓝B. 粉C. 黄D. 红10.(2021·河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形OFM=S扇形OAB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A. Ⅰ和Ⅱ都对B. Ⅰ和Ⅱ都不对C. Ⅰ不对Ⅱ对D. Ⅰ对Ⅱ不对二、填空题11.(2021·河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为________;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片________块.12.(2021·河北)下图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应________(填“增加”或“减少”)________度.三、解答题13.(2021·河北)用绘图软件绘制双曲线 m : y =60x与动直线 l : y =a ,且交于一点,图1为 a =8时的视窗情形.(1)当 a =15 时, l 与 m 的交点坐标为________;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点 O 始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的 12 ,其可视范围就由 −15≤x ≤15 及 −10≤y ≤10 变成了 −30≤x ≤30 及 −20≤y ≤20 (如图2).当 a =−1.2 和 a =−1.5 时, l 与 m 的交点分别是点A 和 B ,为能看到 m 在A 和 B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的 1k ,则整数 k = ________.14.(2021·河北)某博物馆展厅的俯视示意图如图1所示,嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.(1)求嘉淇走到十字道口 A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.15.(2021·河北)下图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点 P )始终以 3km/min的速度在离地面 5km 高的上空匀速向右飞行,2号试飞机(看成点 Q )一直..保持在1号机 P 的正下..方., 2号机从原点 O 处沿 45° 仰角爬升,到 4km 高的 A 处便立刻转为水平飞行,再过 1min 到达 B 处开始沿直线 BC 降落,要求 1min 后到达 C(10,3) 处.(1)求 OA 的 ℎ 关于 s 的函数解析式,并直接..写出2号机的爬升速度; (2)求 BC 的 ℎ 关于 s 的函数解析式,并预计2号机着陆点的坐标; (3)通过计算说明两机距离 PQ 不超过 3km 的时长是多少. (注:(1)及(2)中不必写 s 的取值范围)16.(2021·河北)如图, ⊙O 的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为 A n ( n 为1~12的整数),过点 A 7 作 ⊙O 的切线交 A 1A 11 延长线于点 P .(1)通过计算比较直径和劣弧 A 7A 11⌢ 长度哪个更长; (2)连接 A 7A 11 ,则 A 7A 11 和 PA 1 有什么特殊位置关系?请简要说明理由; (3)求切线长 PA 7 的值.17.(2021·河北)下图是某同学正在设计的一动画示意图, x 轴上依次有 A , O , N 三个点,且 AO =2 ,在 ON 上方有五个台阶 T 1~T 5 (各拐角均为 90° ),每个台阶的高、宽分别是1和1.5,台阶 T 1 到 x 轴距离 OK =10 .从点 A 处向右上方沿抛物线 L : y =−x 2+4x +12 发出一个带光的点 P .(1)求点 A 的横坐标,且在图中补画出 y 轴,并直接..指出点 P 会落在哪个台阶上;(2)当点 P 落到台阶上后立即弹起,又形成了另一条与 L 形状相同的抛物线 C ,且最大高度为11,求 C 的解析式,并说明其对称轴是否与台阶 T 5 有交点;(3)在 x 轴上从左到右有两点 D , E ,且 DE =1 ,从点 E 向上作 EB ⊥x 轴,且 BE =2 .在 △BDE 沿 x 轴左右平移时,必须保证(2)中沿抛物线 C 下落的点 P 能落在边 BD (包括端点)上,则点 B 横坐标的最大值比最小值大多少? (注:(2)中不必写 x 的取值范围)18.(2021·河北)在一平面内,线段 AB =20 ,线段 BC =CD =DA =10 ,将这四条线段顺次首尾相接.把 AB 固定,让 AD 绕点 A 从 AB 开始逆时针旋转角 α(α>0°) 到某一位置时, BC , CD 将会跟随出现到相应的位置.(1)论证 如图1,当 AD//BC 时,设 AB 与 CD 交于点 O ,求证: AO =10 ;(2)发现当旋转角 α=60° 时, ∠ADC 的度数可能是多少?(3)尝试 取线段 CD 的中点 M ,当点 M 与点 B 距离最大时,求点 M 到 AB 的距离; (4)拓展 ①如图2,设点 D 与 B 的距离为 d ,若 ∠BCD 的平分线所在直线交 AB 于点 P ,直接..写出 BP 的长(用含 d 的式子表示);②当点 C 在 AB 下方,且 AD 与 CD 垂直时,直接..写出 α 的余弦值.答案解析部分一、单选题1.【答案】A【考点】直线的性质:两点确定一条直线【解析】【解答】解:设线段m与挡板的交点为A,a、b、c、d与挡板的交点分别为B,C,D,E,连结AB、AC、AD、AE,根据直线的特征经过两点有且只有一条直线,利用直尺可确定线段a与m在同一直线上,故答案为:A.【分析】将A点,与B,C,D,E点分别作直线。
2021年河北省中考数学试题(word版,含答案解析)
2021年河北省中考数学试题(word版,含答案解析)2021年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.aB.bC.cD.d2.(3分)不一定相等的一组是()A.a+b与b+aB.3a与a+a+aC.a3与a•a•aD.3(a+b)与3a+b3.(3分)已知a>b,则一定有﹣4a□﹣4b,“□”中应填的符号是()A.>B.<C.≥D.=4.(3分)与结果相同的是()A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣15.(3分)能与﹣()相加得0的是()A.B.C.D.6.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A 代表B.B代表C.C代表D.B代表7.(3分)如图1,▱ABCD中,AD >AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A.1cmB.2cmC.3cmD.4cm9.(3分)若取1.442,计算398的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.0144210.(3分)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是()A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.a1=a4C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m 相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB =∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD=∠A+∠B(等量代换).下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红15.(2分)由()值的正负可以比较A与的大小,下列正确的是()A.当c=﹣2时,AB.当c=0时,AC.当c<﹣2时,AD.当c<0时,A16.(2分)如图,等腰△AOB 中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O 交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D 应(填“增加”或“减少”)度.19.(4分)用绘图软件绘制双曲线m:y与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k=.三、解答题(本大题有7个小题,共66分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2013年河北中考数学试题及答案
2013 年河北省初中毕业生升学文化课考试精心整理数学试卷一、选择题(~6 小题,每小题 2 分;7~16 小题,每小题 3 分,共 42 分.)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃2.截至2013年3月底,某市人口总数已达到4230000人.将4230000用科学记数法表示为A.0.423×107B.4.23×106 C.42.3×105D.423×1043.下列图形中,既是轴对称图形又是中心对称图形的是4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ayB.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)5.若 x =1,则=A.3B.-3 C.5D.-56.下列运算中,正确的是A.=±3B.=2C.(-2)0=0D.2-1=7.甲队修路 120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修 10 m,设甲队每天修路 xm.依题意,下面所列方程正确的是 A.=B.=C.=D.=8.如图 1,一艘海轮位于灯塔 P 的南偏东70°方向的 M 处,它以每小时 40 海里的速度向正北方向航行,2 小时后到达位于灯塔 P 的北偏东40°的 N 处,则 N 处与灯塔 P 的距离为A.40 海里B.60 海里C.70 海里D.80 海里9.如图 2,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为 x,淇淇猜中的结果应为 y,则 y=
1/ 7
精心整理 A.2B.3 C.6D.x+310.反比例函数y=的图象如图3所示,以下结论:①常数 m<-1;②在每个象限内,y 随 x 的增大而增大;③若 A(-1,h),B(2,k)在图象上,则 h<k;④若 P (x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①②B.②③C.③④D.①④ 11.如图4,菱形ABCD中,点M,N 在AC上,ME⊥AD,NF⊥AB.若 NF=NM=2,ME=3,则 AN=A.3B.4 C.5D.6 12.如已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对13.一个正方形和两个等边三角形的位置如图6所示,若∠3=50°,则∠1+∠2=A.90°B.100°C.130°D.180° 14.如图7,AB是⊙O 的直径,弦CD⊥AB,∠C=30°,CD=23.则 S 阴影=A.πB.2πC.D.π 15.如图8-1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图 8-2.则下列说法正确的是A.点 M 在AB 上B.点 M 在 BC 的中点处C.点 M 在 BC 上,且距点 B 较近,距点 C 较远D.点 M 在 BC 上,且距点 C 较近,距点 B 较远 16.如图9,梯形ABCD中,A B∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点 P 从点 A 出发,沿折线 AD-DC-CB 以每秒 1 个单位长的速度运动到点 B 停止.设运动时间为 t 秒,y=SEPF,
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 精心整理则 y 与 t 的函数图象大致是二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分.把答案写在题中横线上)17.如图 10,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则 A 与桌面接触的概率是________. 18.若 x+y=1,且,则x≠0,则(x+)÷的值为_____________.19.如图 11,四边形 ABCD 中,点 M,N 分别在 AB,BC 上,将△BMN 沿 MN 翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.20.如图 12,一段抛物线:y=-x(x-3)(0≤x≤3),记为 C1,它与 x 轴交于点 O,A1;将 C1 绕点 A1 旋转180°得 C2,交 x 轴于点 A2;将 C2 绕点 A2 旋转180°得 C3,交 x 轴于点 A3;……如此进行下去,直至得 C13.若P(37,m)在第 13 段抛物线 C13 上,则 m=_________.三、解答题(本大题共 6 个小题,共 66 分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分 9 分)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2?(2-5)+1=2?(-3)+1=-6+1=-5????(1)求(-2)⊕3 的值(2)若3⊕x 的值小于 13,求 x 的取值范围,并在图 13 所示的数轴上表示出来. 22.(本小题满分 10 分)某校260 名学生参加植树活动,要求每人植 4~7 棵,活动结束后随机抽查了 20 名学生每人的植树量,并分为四种类型,A:4 棵;B:5 棵;C:6 棵;D:7 棵.将各类的人数绘制成扇形图(如图 14-1)和条形图(如图 14-2),经确认扇形图是正确的,而条形图尚有一处错
3/ 7
误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这 260 名学生共植树多少棵. 23.(本小题满分 10 分)如图 15,A(0,1),M(3,2),N(4,4).动点 P 从点 A 出发,沿轴以每秒 1 个单位长的速度向上移动,且过点 P 的直线 l:y=-x+b 也随之移动,设移动时间为 t 秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 精心整理(3)直接写出 t 为何值时,点 M 关于 l 的对称点落在坐标轴上.24.(本小题满分 11 分)如图 16,△OAB 中,OA=OB=10,∠AOB=80°,以点 O 为圆心,6 为半径的优弧分别交 OA,OB 于点 M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点 Q 在优弧上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.25.(本小题满分 12 分)某公司在固定线路上运输,拟用运营指数 Q 量化考核司机的工作业绩.Q=W+100,而 W 的大小与运输次数 n 及平均速度 x(km/h)有关(不考虑其他因素),W 由两部分的和组成:一部分与 x 的平方成正比,另一部分与 x 的n 倍成正比.试行中得到了表中的数据.(1)用含 x 和 n 的式子表示 Q;(2)当 x=70,Q=450 时,求 n 的值;次数 n21(3)若 n=3,要使 Q 最大,确定 x 的值;速度 x40 60(4)设 n=2,x=40,能否在 n 增加 m%(m>0)同时 x 减少 m%的情况下,而 Q 的值仍为420,若能,指数 Q421000求出 m 的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-,)26.(本小题满分 14 分)一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图17-1所示).探究如图17-1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图 17-2 所示.解决问题:(1)CQ与BE的位置关系是___________,BQ的长是
5/ 7
____________dm;(2)求液体的体积;(参考算法:直棱柱体积V=底面积SB CQ×高AB)(3)求α 的度数.(注:sin49°=cos41°=,tan37°=) 拓展在图 17-1 的基础上,以棱 AB 为轴将容器向左或向右旋转,但不能使液体溢出,图 17-3 或图 17-4 是其正面示意图.若液面与棱C′C 或 CB 交于点 P,设 PC=x,BQ=y.分别就图17-3 和图 17-4 求 y 与 x 的函数关系式,并写出相应的α 的范围.[温馨提示:下页还有题!] 延伸在图 17-4 的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图 17-5,隔板高 NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 精心整理液体能否达到 4dm3.
7/ 7。