2020年福建省德化县中考数学试题(word版)(含答案)

合集下载

2020年福建省中考数学试卷附详细答案解析

2020年福建省中考数学试卷附详细答案解析

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30= .12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P 在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M (1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2020•长春)3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2020•福建)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2020•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2020•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2020•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2020•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,故选A.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2020•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2020•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2020•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2020•福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)计算|﹣2|﹣30= 1 .【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2020•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于 6 .【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2020•福建)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2020•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7 .【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2020•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108 度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2020•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2020•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2020•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠B AC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2020•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2020•福建)如图,四边形ABCD内接于⊙O,AB是⊙O 的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2020•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2020•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15 (Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的 100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的 100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的 100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2020•福建)如图,矩形ABCD中,AB=6,AD=8,P,E 分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.25.(14分)(2020•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN=S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN+S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

德化县中考数学试卷及答案

德化县中考数学试卷及答案

一、选择题(本大题共12小题,每小题4分,共48分)1. 已知函数f(x) = x^2 - 3x + 2,则f(-1)的值为()A. -4B. 0C. 1D. 2答案:A解析:将x = -1代入函数f(x) = x^2 - 3x + 2中,得f(-1) = (-1)^2 - 3(-1) + 2 = 1 + 3 + 2 = 6。

故选A。

2. 若等差数列{an}的首项为a1,公差为d,则第10项an的值为()A. a1 + 9dB. a1 + 10dC. a1 + 11dD. a1 + 12d答案:A解析:等差数列的通项公式为an = a1 + (n - 1)d,将n = 10代入得an = a1 + 9d。

故选A。

3. 若等比数列{bn}的首项为b1,公比为q,则第5项bn的值为()A. b1 q^4B. b1 q^5C. b1 q^6D. b1 q^7答案:B解析:等比数列的通项公式为bn = b1 q^(n - 1),将n = 5代入得bn = b1q^4。

故选B。

4. 若直角三角形ABC中,∠C = 90°,AC = 3,BC = 4,则AB的长度为()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,AB^2 = AC^2 + BC^2,代入AC = 3,BC = 4,得AB^2 =3^2 + 4^2 = 9 + 16 = 25,故AB = √25 = 5。

故选A。

5. 若函数f(x) = x^2 + 2x - 3,则f(-1)的值为()A. -1B. 0C. 1D. 2答案:B解析:将x = -1代入函数f(x) = x^2 + 2x - 3中,得f(-1) = (-1)^2 + 2(-1) - 3 = 1 - 2 - 3 = -4。

故选B。

6. 若等差数列{an}的首项为a1,公差为d,则第20项an的值为()A. a1 + 19dB. a1 + 20dC. a1 + 21dD. a1 + 22d答案:A解析:等差数列的通项公式为an = a1 + (n - 1)d,将n = 20代入得an = a1 + 19d。

德化中考数学试卷真题

德化中考数学试卷真题

一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x - 3,若f(2) = 1,则x的值为()A. 1B. 2C. 3D. 42. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°3. 已知等腰三角形ABC中,AB = AC,AD是底边BC上的高,若AD = 6cm,BC = 8cm,则三角形ABC的周长为()A. 14cmB. 16cmC. 18cmD. 20cm4. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x = 2,x = 3B. x = 1,x = 6C. x = 2,x = 4D. x = 1,x = 55. 已知平行四边形ABCD中,∠A = 60°,∠B = 120°,则∠C的度数是()A. 60°B. 120°C. 150°D. 180°6. 已知a、b、c是等差数列的前三项,且a + b + c = 9,则该等差数列的公差是()A. 1B. 2C. 3D. 67. 已知函数f(x) = x^2 - 2x + 1,若f(x) ≥ 0,则x的取值范围是()A. x ≤ 1 或x ≥ 1B. x ≤ 0 或x ≥ 2C. x ≤ 2 或x ≥ 0D. x ≤ 1 或x ≥ 28. 已知正方体ABCD-A1B1C1D1中,AB = 3cm,则该正方体的体积为()A. 27cm^3B. 18cm^3C. 9cm^3D. 6cm^39. 已知a、b、c是等比数列的前三项,且a b c = 27,则该等比数列的公比是()A. 1B. 3C. 9D. -310. 已知等腰三角形ABC中,AB = AC,AD是底边BC上的高,若BD = 3cm,AD = 4cm,则三角形ABC的面积是()A. 6cm^2B. 12cm^2C. 18cm^2D. 24cm^2二、填空题(每题4分,共20分)11. 已知等差数列{an}的前三项分别为2,5,8,则该等差数列的公差为________。

2020年福建省中考数学试题及答案

2020年福建省中考数学试题及答案

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)−15的相反数是( ) A .5B .15C .−15D .﹣52.(4分)如图所示的六角螺母,其俯视图是( )A .B .C .D .3.(4分)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .144.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算:|﹣8|=.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形.其中正确的是 .(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(8分)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②18.(8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE =∠DAF .19.(8分)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sin A =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2. (1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.B .2.B .3.D .4.C .5.B .6.C .7.D .8.A .9.A .10.C . 二、填空题:本题共6小题,每小题4分,共24分.11.8.12.13.13.4π.14.﹣10907.15.30.16.①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.【解答】解:解不等式①,得:x ≤2, 解不等式②,得:x >﹣3, 则不等式组的解集为﹣3<x ≤2. 18.【解答】证明:∵四边形ABCD 是菱形, ∴∠B =∠D ,AB =AD , 在△ABE 和△ADF 中, {AB =AD ∠B =∠D BE =DF, ∴△ABE ≌△ADF (SAS ), ∴∠BAE =∠DAF .19.【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=x+1x+2⋅x+2(x+1)(x−1) =1x−1,当x =√2+1时,原式=12+1−1=√22.20.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨, 10x +(100﹣x )×1=235, 解得,x =15, ∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨; (2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元. 21.【解答】解:(1)连接OB ,如图1, ∵AB 与⊙O 相切于点B , ∴∠ABO =90°, ∵sin A =12, ∴∠A =30°,∴∠BOD =∠ABO +∠A =120°, ∴∠BED =12∠BOD =60°;(2)证明:连接OF ,OB ,如图2, ∵AB 是切线, ∴∠OBF =90°, ∵BF =3√3,OB =3, ∴tan∠BOF =BFOB =√3, ∴∠BOF =60°, ∵∠BOD =120°, ∴∠BOF =∠DOF =60°, 在△BOF 和△DOF 中, {OB =OD∠BOF =∠DOF OF =OF, ∴△BOF ≌△DOF (SAS ),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.22.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120(户);(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.【解答】解:(1)如图,四边形ABCD即为所求;(2)证明:如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP , ∴△ABP ∽△CDP , ∴AB CD=AP CP,∵AB ,CD 的中点分别为M ,N , ∴AB =2AM ,CD =2CN , ∴AM CN=AP PC,连接MP ,NP , ∵∠BAP =∠DCP , ∴△APM ∽△CPN , ∴∠APM =∠CPN , ∵点P 在AC 上,∴∠APM +∠CPM =180°, ∴∠CPN +∠CPM =180°, ∴M ,P ,N 三点在同一条直线上.24.【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到, ∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF ,∴EP PF =PC CF .25.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3解析式为:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t=10t+80t−40=10(√t2√2√t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.。

2020年福建省中考数学试卷-答案

2020年福建省中考数学试卷-答案
x OA OC , OB OD , 四边形 ABCD 是平行四边形,故①正确, 如图,若四边形 ABCD 是菱形, 则 AC BD , COD 90 , 显然: COD<90 , 所以四边形 ABCD 不可能是菱形,故②错误,
x
【考点】分式方程的应用 9.【答案】A 【解析】根据 AB CD , A 为 BD 中点求出 CBD ADB ABD,再根据圆内接四边形的性质得到 ABC ADC 180 ,即可求出答案.
A 为 BD 中点, AB AD , ADB ABD , AB AD ,
2 / 13
AB CD , CBD ADB ABD ,
四边形 ABCD 内接于 O , ABC ADC 180 , 3ADB 60 180 , ADB 40 , 故选:A. 【考点】圆周角定理 10.【答案】C 【解析】分别讨论 a>0 和 a<0 的情况,画出图象根据图象的增减性分析 x 与 y 的关系. 根据题意画出大致图象:
当 a>0 时, x 1 为对称轴, x 1 表示为 x 到 1 的距离, 由图象可知抛物线上任意两点到 x 1 的距离相同时,对应的 y 值也相同, 当抛物线上的点到 x 1 的距离越大时,对应的 y 值也越大,由此可知 A、C 正确.
1 / 13
【考点】中心对称图形与轴对称图形的概念
5.【答案】B
【解析】根据等腰三角形三线合一的性质即可判断 CD 的长. AD 是等腰三角形 ABC 的顶角平分线,
CD BD 5 .故选:B.
【考点】等腰三角形的三线合一
6.【答案】C
【解析】根据数轴确定 m 和 n 的范围,再根据有理数的加减法即可做出选择.解:根据数轴可得 0<m<1 ,
4
BC ,CA 的FEC≌△DFE ,△DFE 的面积是 1 . 4

德化中考数学试卷

德化中考数学试卷

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列各数中,是整数的是()A. -3.14B. 2/3C. 0.001D. 22. 下列各数中,是有理数的是()A. √2B. πC. -√3D. 2/33. 已知a=2,b=-1,则a+b的值是()A. 1B. -1C. 3D. -34. 下列方程中,正确的是()A. 2x+3=7B. 3x-5=2x+3C. 4x+2=3x+5D. 5x-3=2x-55. 下列不等式中,正确的是()A. 2x<5B. 3x>6C. 4x<7D. 5x>86. 已知函数y=2x-1,当x=3时,y的值是()A. 5B. 6C. 7D. 87. 下列图形中,是圆的是()A. 正方形B. 矩形C. 三角形D. 圆8. 已知等腰三角形的底边长为4cm,腰长为5cm,则该三角形的面积是()A. 6cm²B. 8cm²C. 10cm²D. 12cm²9. 下列各式中,正确的是()A. 2²=4B. 3³=27C. 4²=16D. 5³=12510. 已知x²+4x+4=0,则x的值是()A. 1B. -2C. 2D. -4二、填空题(本大题共10小题,每小题3分,共30分。

把答案填写在题中的横线上。

)11. 0.25的小数形式是______。

12. 已知a=-3,b=2,则a-b的值是______。

13. 方程2x-5=0的解是______。

14. 已知y=3x-2,当x=2时,y的值是______。

15. 等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是______cm²。

16. 已知x²-4x+4=0,则x的值是______。

17. 下列各式中,正确的是______。

2020年福建省中考数学试卷(权威解析)

2020年福建省中考数学试卷(权威解析)

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣52.如图所示的六角螺母,其俯视图是( )A .B .C .D .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( ) A .1B .12C .13D .14第3题 第5题 第6题4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A.10B.5C.4D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|=.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x≤6−x,①3x+1>2(x−1).②18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE =∠DAF.19.(8分)先化简,再求值:(1−1x+2)÷x2−1x+2,其中x=√2+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣5【解答】解:−15的相反数是15,故选:B .2.如图所示的六角螺母,其俯视图是( )A .B .C .D .【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆. 故选:B .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14【解答】解:∵D ,E ,F 分别是AB ,BC ,CA 的中点, ∴DE =12AC ,DF =12BC ,EF =12AB , ∴DF BC=EF AB=DE AC=12,∴△DEF ∽△ABC , ∴S △DEF S △ABC=(DE AC)2=(12)2=14,∵等边三角形ABC 的面积为1, ∴△DEF 的面积是14,故选:D .4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A .等边三角形是轴对称图形,不是中心对称图形; B .平行四边形不是轴对称图形,是中心对称图形; C .圆既是轴对称图形又是中心对称图形; D .扇形是轴对称图形,不是中心对称图形. 故选:C .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A .10B .5C .4D .3【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a⋅1a=1,故本选项符合题意;故选:D.8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=3【解答】解:依题意,得:3(x﹣1)=6210 x.故选:A.9.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A .40°B .50°C .60°D .70°【解答】解:∵A 为BD ̂中点,∴AB ̂═AD ̂,∵AB =CD ,∴AB ̂=CD ̂,∴AB ̂=AD ̂=CD ̂,∵圆周角∠BDC =60°,∴∠BDC 对的BC ̂的度数是2×60°=120°,∴AB ̂的度数是13×(360°﹣120°)=80°,∴AB ̂对的圆周角∠ADB 的度数是12×80°=40°,故选:A .10.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2﹣2ax 上的点,下列命题正确的是()A .若|x 1﹣1|>|x 2﹣1|,则y 1>y 2B .若|x 1﹣1|>|x 2﹣1|,则y 1<y 2C .若|x 1﹣1|=|x 2﹣1|,则y 1=y 2D .若y 1=y 2,则x 1=x 2【解答】解:∵抛物线y =ax 2﹣2ax =a (x ﹣1)2﹣a ,∴该抛物线的对称轴是直线x =1,当a >0时,若|x 1﹣1|>|x 2﹣1|,则y 1>y 2,故选项B 错误;当a <0时,若|x 1﹣1|>|x 2﹣1|,则y 1<y 2,故选项A 错误;若|x 1﹣1|=|x 2﹣1|,则y 1=y 2,故选项C 正确;若y 1=y 2,则|x 1﹣1|=|x 2﹣1|,故选项D 错误;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|= 8 .【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为 13 .【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为13, 故答案为:13. 13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 4π .(结果保留π)【解答】解:S 扇形=90⋅π⋅42360=4π, 故答案为4π.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 ﹣10907 米.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC = 30 度.【解答】解:正六边形的每个内角的度数为:(6−2)⋅180°6=120°,所以∠ABC =120°﹣90°=30°,故答案为:30. 16.设A ,B ,C ,D 是反比例函数y =k x图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【解答】解:如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当OA =OC =OB =OD 时,四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②【解答】解:解不等式①,得:x ≤2,解不等式②,得:x >﹣3,则不等式组的解集为﹣3<x ≤2.18.(8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE=∠DAF .【解答】证明:四边形ABCD 是菱形,∴∠B =∠D ,AB =AD ,在△ABE 和△ADF 中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .19.(8分)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=1x−1,当x =√2+1时,原式=1√2+1−1=√22. 20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨,10x +(100﹣x )×1=235,解得,x =15,∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.【解答】解:(1)连接OB ,如图1,∵AB 与⊙O 相切于点B ,∴∠ABO =90°,∵sinA =12,∴∠A =30°,∴∠BOD =∠ABO +∠A =120°,∴∠BED =12∠BOD =60°;(2)连接OF ,OB ,如图2,∵AB 是切线,∴∠OBF =90°,∵BF =3√3,OB =3,∴tan ∠BOF =BF OB =√3, ∴∠BOF =60°,∵∠BOD =120°,∴∠BOF =∠DOF =60°,在△BOF 和△DOF 中,{OB =OD ∠BOF =∠DOF OF =OF,∴△BOF ≌△DOF (SAS ),∴∠OBF =∠ODF =90°,∴DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.【解答】解:(1)如图,四边形ABCD 即为所求;(2)如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP ,∴△ABP ∽△CDP ,∴AB CD =AP PC ,∵AB ,CD 的中点分别为M ,N ,∴AB =2AM ,CD =2CN ,∴AM CN =AP PC ,连接MP ,NP ,∵∠BAP =∠DCP ,∴△APM ∽△CPN ,∴∠APM =∠CPN ,∵点P 在AC 上,∴∠APM +∠CPM =180°,∴∠CPN +∠CPM =180°,∴M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;②求证:EP PF =PC CF .【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF , ∴EP PF =PC CF .25.(14分)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.(1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t=10t+80t−40=10(√t√2√t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.。

2020福建省中考数学试题及答案解析

2020福建省中考数学试题及答案解析

福建省2020年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.有理数15-的相反数为()A. 5B. 15C.15- D. 5-【答案】B【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数即得.【详解】A选项与15-的符号和符号后的数值均不相同,不符合题意;B选项与15-只有符号不同,符合题意,B选项正确;C选项与15-完全相同,不符合题意;D选项与15-符号相同,不符合题意.故选:B.【点睛】本题考查相反数的定义,解题关键是熟知相反数的定义:只有符号不同的两个数互为相反数.2.如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】【分析】根据图示确定几何体的三视图即可得到答案.【详解】由几何体可知,该几何体的三视图依次为.左视图为:俯视图为:故选:B .【点睛】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.3.如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF 的面积是()A. 1B. 12C. 13 D. 14 【答案】D【解析】【分析】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是14.【详解】∵,,D E F 分别是AB ,BC ,CA 的中点,且△ABC 是等边三角形,∴△ADF ≌△DBE ≌△FEC ≌△DFE,∴△DEF 的面积是14.故选D .【点睛】本题考查等边三角形的性质及全等,关键在于熟练掌握等边三角形的特殊性质.4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.BD=,则CD等于()5.如图,AD是等腰三角形ABC的顶角平分线,5A. 10B. 5C. 4D. 3【答案】B【解析】【分析】根据等腰三角形三线合一的性质即可判断CD的长.【详解】∵AD是等腰三角形ABC的顶角平分线∴CD=BD=5.故选:B.【点睛】本题考查等腰三角形的三线合一,关键在于熟练掌握基础知识.M N所对应的实数分别为,m n,则m n-的结果可能是()6.如图,数轴上两点,A. 1-B. 1C. 2D. 3【答案】C【解析】分析】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择.【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3故选:C【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确m 和n 的范围,然后再确定m n -的范围即可.7.下列运算正确的是( )A. 2233a a -=B. 222()a b a b +=+C. ()222436-=-ab a bD. 11(0)-⋅=≠a a a 【答案】D【解析】【分析】 根据整式的加减乘除、完全平方公式、1(0)p p a a a-=≠逐个分析即可求解. 【详解】解:选项A :22232a a a -=,故选项A 错误;选项B :222()2a b a ab b +=++,故选项B 错误;选项C :()222439-=ab a b ,故选项C 错误; 选项D :111(0)-⋅=⋅=≠a aa a a ,故选项D 正确. 故选:D .【点睛】本题考查整式的加减乘除及完全平方公式、负整数指数幂等运算公式,熟练掌握公式及运算法则是解决此类题的关键.8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A. 62103(1)-=x x B. 621031=-x C. 621031-=x x D. 62103=x【答案】A【解析】【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答. 【详解】解:由题意得:62103(1)-=x x , 故选A.【点睛】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.9.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于( )A. 40︒B. 50︒C. 60︒D. 70︒【答案】A【解析】【分析】 根据AB CD =,A 为BD 中点求出∠CBD=∠ADB=∠ABD ,再根据圆内接四边形的性质得到∠ABC+∠ADC=180°,即可求出答案.【详解】∵A 为BD 中点,∴AB AD =,∴∠ADB=∠ABD ,AB=AD ,∵AB CD =,∴∠CBD=∠ADB=∠ABD ,∵四边形ABCD 内接于O ,∴∠ABC+∠ADC=180°,∴3∠ADB+60°=180°,∴ADB ∠=40°,故选:A .【点睛】此题考查圆周角定理:在同圆中等弧所对的圆周角相等、相等的弦所对的圆周角相等,圆内接四边形的性质:对角互补.10.已知()111,P x y ,()222,P x y 是抛物线22y ax ax =-上的点,下列命题正确的是( )A. 若12|1||1|->-x x ,则12y y >B. 若12|1||1|->-x x ,则12y y <C. 若12|1||1|-=-x x ,则12y y =D. 若12y y =,则12x x =【答案】C【解析】【分析】 分别讨论a >0和a <0的情况,画出图象根据图象的增减性分析x 与y 的关系.【详解】根据题意画出大致图象:当a >0时,x =1为对称轴,|x -1|表示为x 到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y 值也相同,当抛物线上的点到x=1的距离越大时,对应的y 值也越大,由此可知A 、C 正确.当a<0时,x=1为对称轴,|x-1|表示为x到1的距离,由图象可知抛物线上任意两点到x=1的距离相同时,对应的y值也相同,当抛物线上的点到x=1的距离越大时,对应的y值也越小,由此可知B、C正确.综上所述只有C正确.故选C.【点睛】本题考查二次函数图象的性质,关键在于画出图象,结合图象增减性分类讨论.第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.计算:8-=__________.【答案】8【解析】【分析】根据绝对值的性质解答即可.【详解】|﹣8|=8.故答案为8.【点睛】本题考查了绝对值的性质,掌握绝对值的性质是解答本题的关键.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.【答案】1 3【解析】【分析】利用概率公式即可求得答案.【详解】解:从甲、乙、丙3位同学中随机选取1人进行在线辅导功课共有3种等可能结果,其中甲被选中的只有1种可能,故答案为:13.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.一个扇形的圆心角是90︒,半径为4,则这个扇形的面积为______.(结果保留π)【答案】4π【解析】【分析】根据扇形的面积公式2360n r Sπ=进行计算即可求解.【详解】解:∵扇形的半径为4,圆心角为90°,∴扇形的面积是:29044360ππ⨯⨯==S.故答案为:4π.【点睛】本题考查了扇形面积的计算.熟记扇形的面积公式是解题的关键.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为_________米.【答案】10907-【解析】【分析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案.【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,∴“海斗一号”下潜至最大深度10907米处,可记为-10907,故答案为:-10907.【点睛】本题考查了正数,负数的意义及其应用,解题的关键是掌握正数、负数的意义.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.【答案】30【解析】【分析】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB 的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC ,BC=AF ,∴CD=CF ,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°,∴∠ABC=30°,故答案为:30.【点睛】本题考查正多边形的证明、多边形的内角和以及三角形的内角和,熟练掌握多边形内角和的计算是解题的关键.16.设,,,A B C D 是反比例函数k y x=图象上的任意四点,现有以下结论: ①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是_______.(写出所有正确结论的序号)【答案】①④【解析】【分析】利用反比例函数的对称性,画好图形,结合平行四边形,矩形,菱形,正方形的判定可以得到结论,特别是对②的判断可以利用反证法.【详解】解:如图,反比例函数kyx=的图象关于原点成中心对称,,,OA OC OB OD∴==∴四边形ABCD是平行四边形,故①正确,如图,若四边形ABCD是菱形,则,AC BD⊥90,COD∴∠=︒显然:COD∠<90,︒所以四边形ABCD不可能是菱形,故②错误,如图,反比例函数kyx=的图象关于直线y x=成轴对称,当CD垂直于对称轴时,,, OC OD OA OB ∴==,OA OC=, OA OB OC OD ∴===,AC BD ∴=∴ 四边形ABCD 是矩形,故③错误,四边形ABCD 不可能是菱形,∴四边形ABCD 不可能是正方形,故④正确,故答案:①④.【点睛】本题考查的是平行四边形,矩形,菱形,正方形的判定,反比例函数的对称性,掌握以上知识是解题的关键.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解不等式组:26312(1)x x x x ≤-⎧⎨+>-⎩①②【答案】32x -<≤. 【解析】 【分析】分别求出各不等式的解集,再找到其公共解集即可求解. 【详解】解:由①得26+≤x x ,36x ≤, 2x ≤.由②得3122+>-x x ,3221->--x x , 3x >-.∴原不等式组的解集是32x -<≤.【点睛】本小题考查一元一次不等式组的解法等基础知识,解题的关键是熟知不等式的性质. 18.如图,点,E F 分别在菱形ABCD 的边BC ,CD 上,且BE DF =.求证:BAE DAF ∠=∠. 【答案】详见解析 【解析】 【分析】根据菱形的性质可知AB=AD ,∠B=∠D ,再结合已知条件BE=DF 即可证明ABE ADF ∆∆≌后即可求解. 【详解】解:证明:∵四边形ABCD 是菱形, ∴B D ∠=∠,AB AD =.在ABE ∆和ADF ∆中,ABAD B D BEDF∴()≌∆∆ABE ADF SAS , ∴BAE DAF ∠=∠.【点睛】本题考查菱形的性质、全等三角形的判定与性质等基础知识,熟练掌握其性质是解决此类题的关键.19.先化简,再求值:211(1)22x x x --÷++,其中21x =. 【答案】11x -,22【解析】 【分析】根据分式运算法则即可求出答案. 【详解】原式()()212211x x x x x +-+=⋅++-11x =-; 当21x =时,原式222==【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润. 【答案】(1)甲特产15吨,乙特产85吨;(2)26万元. 【解析】 【分析】(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨,根据题意列方程解答;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m ,根据题意列函数关系式(10.510)(1.21)(100)0.320=-+--=+w m m m ,再根据函数的性质解答.【详解】解:(1)设这个月该公司销售甲特产x 吨,则销售乙特产()100x -吨, 依题意,得()10100235+-=x x , 解得15x =,则10085-=x , 经检验15x =符合题意,所以,这个月该公司销售甲特产15吨,乙特产85吨;(2)设一个月销售甲特产m 吨,则销售乙特产()100m -吨,且020≤≤m , 公司获得的总利润(10.510)(1.21)(100)0.320=-+--=+w m m m , 因为0.30>,所以w 随着m 的增大而增大, 又因为020≤≤m ,所以当20m =时,公司获得的总利润的最大值为26万元, 故该公司一个月销售这两种特产能获得的最大总利润为26万元.【点睛】此题考查一元一次方程的实际应用、一次函数的性质等基础知识,考查运算能力、应用意识,考查函数与方程思想,正确理解题意,根据问题列方程或是函数关系式解答问题. 21.如图,AB 与O 相切于点B ,AO 交O 于点C ,AO 的延长线交O 于点D ,E 是BCD 上不与,B D重合的点,1sin 2A =.(1)求BED ∠的大小; (2)若O 的半径为3,点F 在AB 的延长线上,且33BF =,求证:DF 与O 相切.【答案】(1)60°;(2)详见解析 【解析】 【分析】(1)连接OB ,在Rt △AOB 中由1sin 2A =求出∠A =30°,进而求出∠AOB=60°,∠BOD=120°,再由同弧所对的圆周角等于圆心角的一半可以求出∠BED 的值; (2)连接OF ,在Rt △OBF 中,由tan 3∠==BFBOF OB可以求出∠BOF=60°,进而得到∠FOD=60°,再证明△FOB ≌△FOD ,得到∠ODF=∠OBF=90°. 【详解】解:(1)连接OB ,∵AB 与O 相切于点B ,∴OB AB ⊥, ∵1sin 2A =,∴30A ∠=︒, ∴60AOB ∠=︒,则120BOD ∠=︒. 由同弧所对的圆周角等于圆心角的一半可知:1602︒∠=∠=BED BOD .故答案为:60︒. (2)连接OF ,由(1)得OB AB ⊥,120BOD ∠=︒, ∵3OB =,33BF=,∴tan 3∠==BFBOF OB, ∴60BOF ∠=︒,∴60DOF ∠=︒.在BOF ∆与DOF ∆中,OB OD BOF DOF OF OF =⎧⎪∠=∠⎨⎪=⎩∴()≌∆∆BOF DOF SAS , ∴90ODF OBF ∠=∠=︒. 又点D 在O 上,故DF 与O 相切.【点睛】本题考查圆的有关性质、直线与圆的位置关系、特殊角的三角函数值、解直角三角形、全等三角形的判定和性质,熟练掌握其性质是解决此类题的关键.22.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【答案】(1)120;(2)2.4千元;(3)可以预测该地区所有贫困家庭能在今年实现全面脱贫,理由详见解析 【解析】 【分析】(1)用2000乘以样本中家庭人均年纯收入低于2000元(不含2000元)的频率即可; (2)利用加权平均数进行计算;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.【详解】解:(1)依题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元的户数为6100012050⨯=. (2)依题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为()1.56 2.08 2.210 2.512 3.09 3.25 2.4150⨯⨯+⨯+⨯+⨯+⨯+⨯=(千元). (3)依题意,2020年该地区农民家庭人均月纯收入的最低值如下: 月份12 3 4 5 6 人均月纯收入(元) 500 300 150 200 300 450 月份78 9 10 11 12 人均月纯收入(元) 620 790960113013001470由上表可知当地农民2020年家庭人均年纯收入不低于500300150200300450620790960113013001470+++++++++++9601130130014704000>+++>.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.【点睛】本小题考查频数和频数分布的意义、加权平均数、条形图、折线图等基础知识,考查运算能力、推理能力、数据分析观念、应用意识,考查统计与概率思想. 23.如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.【答案】(1)详见解析;(2)详见解析 【解析】 【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到180∠+∠=︒CPN CPM ,即可说明,,M P N 三点在同一条直线上. 【详解】解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠, ∴ABP CDP ∆∆∽,∴ABAP CD CP. ∵,M N 分别为AB ,CD 的中点, ∴2AB AM =,2CD CN =,∴=AM APCN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠, ∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.24.如图,ADE ∆由ABC ∆绕点A 按逆时针方向旋转90︒得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且∠=∠CDF DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:=EP PCPF CF. 【答案】(1)90°;(2)①=DF PF ,证明详见解析;②详见解析 【解析】 【分析】(1)根据旋转的性质,得出ABC ADE ∆∆≌,进而得出=B ADE ADB ∠=∠∠,求出结果;(2)①由旋转的性质得出AC AE =,90CAE ∠=︒,进而得出45∠=∠=︒ACE AEC ,再根据已知条件得出∠+∠=∠+∠ADB CDF ACE CAD ,最后得出结论即可;②过点P 作//PH ED 交DF 于点H ,得出≌∆∆HPF CDF ,由全等得出HF CF =,=DH PC ,最后得出结果.【详解】解:(1)由旋转的性质可知,AB AD =,90BAD ∠=︒,ABC ADE ∆∆≌, ∴B ADE ∠=∠,在Rt ABD ∆中,45∠=∠=︒B ADB , ∴45∠=∠=︒ADE B ,∴90∠=∠+∠=︒BDE ADB ADE . (2)①=DF PF .证明:由旋转的性质可知,AC AE =,90CAE ∠=︒, 在Rt ACE ∆中,45∠=∠=︒ACE AEC , ∵CDF CAD ∠=∠,45∠=∠=︒ACE ADB , ∴∠+∠=∠+∠ADB CDF ACE CAD , 即∠=∠FPD FDP , ∴=DF PF .②过点P 作//PH ED 交DF 于点H , ∴∠=∠HPF DEP ,=EP DHPF HF, ∵45∠=∠+∠=︒+∠DPF ADE DEP DEP ,45∠=∠+∠=︒+∠DPF ACE DAC DAC , ∴∠=∠DEP DAC , 又∵∠=∠CDF DAC , ∴∠=∠DEP CDF , ∴=∠∠HPF CDF . 又∵FD FP =,F F ∠=∠ ∴≌∆∆HPF CDF , ∴HF CF =, ∴=DH PC ,又∵=EP DHPF HF , ∴=EP PCPF CF.【点睛】本题考查了旋转的性质、三角形内角与外角的关系、等腰三角形的判定、全等三角形的判定与性质、平行线的性质、平行线分线段成比例等基础知识,解题的关键是熟练运用这些性质.25.已知直线1:210=-+l y x 交y 轴于点A ,交x 轴于点B ,二次函数的图象过,A B 两点,交x 轴于另一点C ,4BC =,且对于该二次函数图象上的任意两点()111,P x y ,()222,P x y ,当125>≥x x 时,总有12y y >. (1)求二次函数的表达式;(2)若直线2:(10)=+≠l y mx n n ,求证:当2m =-时,21//l l ;(3)E 为线段BC 上不与端点重合的点,直线3:2=-+l y x q 过点C 且交直线AE 于点F ,求ABE ∆与CEF ∆面积之和的最小值.【答案】(1)221210y x x =-+;(2)详见解析;(3)∆∆+ABE FCE S S 的最小值为40. 【解析】 【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A ,B 两点的坐标,再根据BC=4,得出点C 的坐标,最后利用待定系数法可求二次函数的表达式; (2)利用反证法证明即可;(3)先求出q 的值,利用//CF AB ,得出∽∆∆FCE ABE ,设()04=<<BE t t ,然后用含t 的式子表示出∆∆+ABE FCE S S 的面积,再利用二次函数的性质求解即可. 【详解】解:(1)对于1:210=-+l y x , 当0x =时,10y =,所以()0,10A ;当0y =时,2100x -+=,5x =,所以()5,0B , 又因为4BC =,所以()9,0C 或()1,0C ,若抛物线过()9,0C ,则当57x <<时,y 随x 的增大而减少,不符合题意,舍去. 若抛物线过()1,0C ,则当3x >时,必有y 随x 的增大而增大,符合题意. 故可设二次函数的表达式为210=++y ax bx , 依题意,二次函数的图象过()5,0B ,()1,0C 两点,所以255100100a b a b ++=⎧⎨++=⎩,解得212a b =⎧⎨=-⎩所求二次函数的表达式为221210y x x =-+.(2)当2m =-时,直线2:2(10)=-+≠l y x n n 与直线1:210=-+l y x 不重合,假设1l 和2l 不平行,则1l 和2l 必相交,设交点为()00,P x y ,由00002102y x y x n=-+⎧⎨=-+⎩得002102-+=-+x x n , 解得10n =,与已知10n ≠矛盾,所以1l 与2l 不相交,所以21//l l .(3)如图,因为直线3:2=-+l y x q 过()1,0C ,所以2q ,又因为直线1:210=-+l y x ,所以31//l l ,即//CF AB ,所以∠=∠FCE ABE ,∠=∠CFE BAE ,所以∽∆∆FCE ABE ,所以2∆∆⎛⎫= ⎪⎝⎭FCE ABE S CE S BE , 设()04=<<BE t t ,则4CE t =-, 1110522∆=⋅=⨯⨯=ABE S BE OA t t , 所以2222(4)5(4)5∆∆--⎛⎫=⨯=⨯= ⎪⎝⎭FCE ABE CE t t S S t BE t t , 所以25(4)5∆∆-+=+ABE FCEt S S t t 801040=+-t t 2221040240=+t t 所以当22t =∆∆+ABE FCE S S 的最小值为40240.【点睛】本题考查了一次函数和二次函数的图象与性质、相似三角形的性质与判定、三角形面积等基础知识,注意函数与方程思想、数形结合思想、化归与转化思想及分类与整合思想的运用.。

2020年福建省中考数学试卷(含解析)印刷版

2020年福建省中考数学试卷(含解析)印刷版

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)﹣的相反数是()A.5B.C.﹣D.﹣52.(4分)如图所示的六角螺母,其俯视图是()A.B.C.D.3.(4分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.4.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=39.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)|﹣8|=.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.19.(8分)先化简,再求值:(1﹣)÷,其中x=+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D重合的点,sin A=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC 的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x 轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)﹣的相反数是()A.5B.C.﹣D.﹣5【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:B.2.(4分)如图所示的六角螺母,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B.3.(4分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【分析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.4.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.故选:C.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得﹣2<n<﹣1<0<m<1,m﹣n的结果可能是2.【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)【分析】根据合并同类项法则,完全平方公式,幂的乘方和积的乘方,负整数指数幂分别求出每个式子的值,再判断即可.【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a=1,故本选项符合题意;故选:D.8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=3【分析】根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【解答】解:依题意,得:3(x﹣1)=.故选:A.9.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°【分析】求出==,根据圆周角∠BDC的度数求出它所对的的度数,求出的度数,再求出答案即可.【解答】解:∵A为中点,∴═,∵AB=CD,∴=,∴==,∵圆周角∠BDC=60°,∴∠BDC对的的度数是2×60°=120°,∴的度数是(360°﹣120°)=80°,∴对的圆周角∠ADB的度数是,故选:A.10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2【分析】根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)|﹣8|=8.【分析】负数的绝对值是其相反数.【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.【分析】直接利用概率公式求解可得.【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为,故答案为:.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为4π.(结果保留π)【分析】利用扇形的面积公式计算即可.【解答】解:S扇形==4π,故答案为4π.14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为﹣10907米.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=30度.【分析】由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.【解答】解:正六边形的每个内角的度数为:=120°,所以∠ABC=120°﹣90°=30°,故答案为:30.16.(4分)设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是①④.(写出所有正确结论的序号)【分析】如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≤2,解不等式②,得:x>﹣3,则不等式组的解集为﹣3<x≤2.18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.【分析】根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.【解答】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.19.(8分)先化简,再求值:(1﹣)÷,其中x=+1.【分析】先把括号内通分,再计算括号内的减法运算和把除法运算化为乘法运算,然后把分母因式分解后进行约分得到原式=,再把x的值代入计算即可.【解答】解:原式=•=,当时,原式==.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【分析】(1)根据题意,可以列出相应的一元一次方程,从而可以求得这个月该公司销售甲、乙两种特产分别为多少吨;(2)根据题意,可以得到利润与甲种特产数量的函数关系式,再根据甲种特产的取值范围和一次函数的性质,可以得到利润的最大值.【解答】解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w万元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D重合的点,sin A=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.【分析】(1)连接OB,由切线求出∠ABO的度数,再由三角函数求出∠A,由三角形的外角性质求得∠BOD,最后由圆周解与圆心角的关系求得结果;(2)连接OF,OB,证明△BOF≌△DOF,得∠ODF=∠OBF=90°,便可得结论.【解答】解:(1)连接OB,如图1,∵AB与⊙O相切于点B,∴∠ABO=90°,∵sin A=,∴∠A=30°,∴∠BOD=∠ABO+∠A=120°,∴∠BED=∠BOD=60°;(2)连接OF,OB,如图2,∵AB是切线,∴∠OBF=90°,∵BF=3,OB=3,∴,∴∠BOF=60°,∵∠BOD=120°,∴∠BOF=∠DOF=60°,在△BOF和△DOF中,,∴△BOF≌△DOF(SAS),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【分析】(1)用2000乘以样本中家庭人均纯收入低于2000元(不含2000元)的频率即可;(2)利用加权平均数进行计算即可;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.【分析】(1)利用尺规作图作CD∥AB,且CD=2AB,即可作出四边形ABCD;(2)在(1)的四边形ABCD中,根据相似三角形的判定与性质即可证明M,P,N三点在同一条直线上.【解答】解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD∥AB,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴=,∵AB,CD的中点分别为M,N,∴AB=2AM,CD=2CN,∴=,连接MP,NP,∵∠BAP=∠DCP,∴△APM∽△CPN,∴∠APM=∠CPN,∵点P在AC上,∴∠APM+∠CPM=180°,∴∠CPN+∠CPM=180°,∴M,P,N三点在同一条直线上.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC 的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.【分析】(1)由旋转的性质得出AB=AD,∠BAD=90°,△ABC≌△ADE,得出∠ADE=∠B=45°,可求出∠BDE的度数;(2)①由旋转的性质得出AC=AE,∠CAE=90°,证得∠FPD=∠FDP,由等腰三角形的判定得出结论;②过点P作PH∥ED交DF于点H,得出∠HPF=∠DEP,,证明△HPF≌△CDF(ASA),由全等三角形的性质得出HF=CF,则可得出结论.【解答】解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x 轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.【分析】(1)先求出点A,点B,点C坐标,利用待定系数法可求解析式;(2)利用反证法可得结论;(3)通过证明△CEF∽△BEA,可得=()2,BE=t(0<t<4),则CE=4﹣t,可求S△ABE =×t×10=5t,S△CEF=,利用二次函数的性质可求解.【解答】解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,∴点A(0,10),点B(5,0),∵BC=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,假设l1与l2不平行,则l1与l2必相交,设交点为P(x P,y P),∴解得:n=10,∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3解析式为:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴=()2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=×t×10=5t,∴S△CEF=()2×S△ABE=()2×5t=,∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.。

德化县期中考初三数学试卷

德化县期中考初三数学试卷

一、选择题(每题3分,共30分)1. 下列选项中,不是有理数的是()A. -3B. 2/3C. √2D. -2/52. 已知方程 2x - 5 = 3,则 x =()A. 2B. 3C. 4D. 53. 在等腰三角形ABC中,AB=AC,若∠BAC=60°,则∠ABC=()A. 30°B. 45°C. 60°D. 90°4. 下列函数中,y是x的函数的是()A. y = x + 2B. y = x^2C. y = x^3D. y = √x5. 下列选项中,不是一元二次方程的是()A. x^2 - 2x + 1 = 0B. x^2 + 2x - 3 = 0C. x^2 - 3x + 2 = 0D. 2x + 3 = 06. 下列不等式中,不正确的是()A. 2x > 4B. 3x ≤ 9C. -2x ≥ -6D. 5x < 157. 下列选项中,不是同类二次根式的是()A. √18B. √24C. √36D. √488. 若 a > b > 0,则下列不等式中正确的是()A. a + b > b + aB. a - b > b - aC. a^2 > b^2D. ab > ba9. 下列选项中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...10. 若 a、b、c 是等差数列的项,且 a + b + c = 12,则 b =()A. 4B. 6C. 8D. 10二、填空题(每题3分,共30分)11. 2√3 - √12 = _______12. 若 x^2 - 3x + 2 = 0,则 x = _______13. 在直角三角形ABC中,∠A = 90°,AB = 3,AC = 4,则 BC = _______14. 已知函数 y = 2x + 3,当 x = 2 时,y = _______15. 若 a、b、c 是等比数列的项,且 a = 2,b = 4,则 c = _______16. 下列数列中,不是等比数列的是 _______17. 若 a、b、c 是等差数列的项,且 a + b + c = 12,则 b = _______18. 若 x^2 - 2x - 3 = 0,则 x = _______19. 在直角三角形ABC中,∠A = 90°,AB = 5,AC = 12,则 BC = _______20. 已知函数 y = x^2 - 2x + 1,当 x = 3 时,y = _______三、解答题(每题10分,共40分)21. 解下列方程:(1)2x - 5 = 3(2)√(x + 2) = 322. 已知函数 y = 2x + 3,求:(1)当 x = 2 时,y 的值(2)当 y = 7 时,x 的值23. 已知等差数列 {an} 的首项为 2,公差为 3,求:(1)第 10 项的值(2)前 10 项的和24. 已知等比数列 {bn} 的首项为 2,公比为 3,求:(1)第 6 项的值(2)前 6 项的和。

福建德化县中考数学试题及答案.doc

福建德化县中考数学试题及答案.doc

人教新版七年级历史(下)三维同步训练第一单元第二课“贞观之治”【维度A】基础知识一、选择题:2.隋朝灭亡最根本的原因是:()A. 权臣当道B.隋炀帝的暴政C.土地兼并严重D. 隋末农民起义2.毛泽东在《沁园春雪》中写道“惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚”,这里“唐宗”指的是:( )A. 唐太宗B.唐高宗C.唐中宗D.唐玄宗3.如果你是唐太宗时期中央的一名官员,那么你可能遇到的情况有:()①有幸与魏征、杜如晦等名臣同朝为官。

②唐太宗常常告诫大臣“水能载舟,亦能覆舟”的道理。

③由于唐太宗善于纳谏,因此你提出一些有利于朝政的提议,得到唐太宗的赏识。

④见证了唐太宗死后,武则天登上皇位的一幕。

A. ①②③B. ②③④C. ①③④D. ①②④4.在唐太宗统治时期有一位大臣,前后向唐太宗进谏二百多次,是著名的谏臣。

以至于在他死后,唐太宗说“以铜为镜,可以正衣冠;以史为镜,可以鉴兴衰;以人为镜,可以知得失。

我现在失去一面好镜子啊。

”那么这位大臣是:()A. 长孙无忌B. 杜如晦C. 狄仁杰D.魏征5.“政启开元,治宏贞观”指的是谁的统治:()A.唐高祖B. 唐太宗C. 唐高宗D.武则天6.我们今天肯定武则天,主要是因为:()A.她是我国历史上唯一的女皇。

B.她替多病的高宗处理政事,显示了卓越的政治才能。

C.继承唐太宗的政策,重用人才,发展农业,为唐朝盛世的出现打下基础。

D. 创造了一个新字“曌”(Zhao)。

7.唐太宗和武则天统治的相似点有:()①都重视农业生产的发展②都实行选拔贤才的政策③都虚心采纳谏言④都注意戒奢从简A. ①②B.②③C.①④D.③④8.对“房谋杜断”中的“房”解释正确的是:()A. 帐篷B. 房间C. 内室D. 宰相房玄龄二、填空题:9.公元_________年,隋朝灭亡。

同年,在太原起兵的贵族__________,进入___________,建立___________。

10.唐太宗统治时期,政治比较清明,经济发展较快,国力逐步加强,历史上称为__________________。

德化中考数学试题及答案

德化中考数学试题及答案

德化中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. \(\sqrt{2}\)B. 0.5C. \(\frac{2}{3}\)D. 32. 一个数的平方等于它本身,这个数可能是?A. 0或1B. -1或1C. 0或-1D. 1或-13. 已知函数\(y=x^2\),当\(x=2\)时,\(y\)的值是?A. 4B. 2C. -4D. -24. 一个等腰三角形的两边长分别为3和5,它的周长是?A. 11B. 13C. 16D. 145. 计算\((-3)^2\)的结果是?A. 9B. -9C. 3D. -36. 下列哪个选项是不等式\(2x-3>0\)的解?A. \(x>1.5\)B. \(x<1.5\)C. \(x>-1.5\)D. \(x<-1.5\)7. 如果\(a\)和\(b\)互为相反数,那么\(a+b\)等于?A. 0B. 1C. -1D. 28. 一个圆的半径为2,它的面积是?A. \(4\pi\)B. \(2\pi\)C. \(\pi\)D. \(8\pi\)9. 计算\(\frac{1}{2} \times \frac{3}{4}\)的结果是?A. \(\frac{3}{8}\)B. \(\frac{1}{4}\)C. \(\frac{3}{2}\)D.\(\frac{1}{8}\)10. 一个数的绝对值是5,这个数可能是?A. 5或-5B. 5C. -5D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,这个数是______。

12. 一个数的相反数是-3,这个数是______。

13. 一个数的倒数是\(\frac{1}{2}\),这个数是______。

14. 一个直角三角形的两条直角边长分别为3和4,斜边长是______。

15. 计算\((-2)^3\)的结果是______。

16. 一个数的绝对值是3,这个数可能是______或______。

德化中考数学试卷真题答案

德化中考数学试卷真题答案

一、选择题1. 下列各数中,是整数的是()A. √4B. -2.5C. √-1D. 0.1答案:D解析:整数包括正整数、0和负整数。

选项A、B、C分别为正数、负数和无理数,不属于整数。

2. 若a、b、c为三角形的三边,且a+b=c,则该三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 无法确定答案:D解析:根据三角形的性质,任意两边之和大于第三边,所以a+b>c。

由于题目中a+b=c,无法确定三角形的形状。

3. 下列函数中,是奇函数的是()A. y=x^2B. y=x^3C. y=xD. y=|x|答案:B解析:奇函数的定义是f(-x)=-f(x)。

选项B中,f(-x)=(-x)^3=-x^3,与f(x)=x^3相反,符合奇函数的定义。

4. 已知一次函数y=kx+b,若该函数的图象经过点(1,-2)和(2,4),则该函数的解析式为()A. y=2x-4B. y=2x+4C. y=-2x+4D. y=-2x-4答案:A解析:将点(1,-2)和(2,4)代入一次函数y=kx+b,得到两个方程:k+b=-22k+b=4解这个方程组,得到k=2,b=-4。

所以该函数的解析式为y=2x-4。

5. 在直角坐标系中,点P(2,3)关于x轴的对称点为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)答案:A解析:点P(2,3)关于x轴的对称点,其x坐标不变,y坐标取相反数。

所以对称点为(2,-3)。

二、填空题6. 2的平方根是_______,3的立方根是_______。

答案:±√2,∛3解析:2的平方根即√2,3的立方根即∛3。

7. 若|a|=5,则a的取值可以是_______。

答案:±5解析:绝对值表示数与0的距离,所以a可以是5或-5。

8. 已知一元二次方程x^2-4x+3=0的解为_______。

答案:x1=1,x2=3解析:因式分解得(x-1)(x-3)=0,解得x1=1,x2=3。

精品解析:福建省2020年中考数学试题(解析版).docx

精品解析:福建省2020年中考数学试题(解析版).docx

福建省2020年中考数学试题第I 卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是 符合要求的.1. 有理数■的相反数为()1 1 A. 5B. -C.——D. -55 5 【参考答案】B【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数即得.【详解】A 选项与-(的符号和符号后的数值均不相同,不符合题意; B 选项与-,只有符号不同,符合题意,B 选项正确;C 选项与-,完全相同,不符合题意;D 选项与-!符号相同,不符合题意.故选:B.【点睛】本题考查相反数的定义,解题关键是熟知相反数的定义:只有符号不同的两个数互为相反数.2. 如图所示的六角螺母,其俯视图是()【参考答案】B 【解析】【分析】根据图示确定几何体的三视图即可得到参考答案.D.【详解】由几何体可知,该几何体的三视图依次为.主视图为:□zn左视图为:【点睛】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.3. 如图,面积为1的等边三角形A BC 中,D,E,F 分别是AB,BC, CA 的中点,则的面积是()D.-【解析】【分析】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是L. 4【详解】•: D,E,F 分别是AB, BC, C4的中点,且Z\AB C 是等边三角形, .I A ADF^ ADBE^ AFEC^ ADFE, 「.△DEF 的面积是上.4故选D.【点睛】本题考查等边三角形的性质及全等,关键在于熟练掌握等边三角形的特殊性质.4. 下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()【参考答案】C俯视图为:故选:B.【参考答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;3、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;。

2020年福建省中考数学试卷和答案解析

2020年福建省中考数学试卷和答案解析

2020年福建省中考数学试卷和答案解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)﹣的相反数是()A.5B.C.﹣D.﹣5解析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.参考答案:解:﹣的相反数是,故选:B.点拨:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)如图所示的六角螺母,其俯视图是()A.B.C.D.解析:根据俯视图是从上面看得到的图形,可得答案.参考答案:解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B.点拨:本题考查了简单组合体的三视图,利用三视图的意义是解题关键.3.(4分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.解析:根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.参考答案:解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.点拨:本题考查了三角形中位线定理,等边三角形的性质,相似三角形的判定和性质,熟练掌握三角形的中位线定理是解题的关键.4.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.故选:C.点拨:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3解析:根据等腰三角形三线合一的性质即可求解.参考答案:解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.点拨:考查了等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.6.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3解析:根据在数轴上表示的两个实数,右边的总比左边的大可得﹣2<n<﹣1<0<m<1,m﹣n的结果可能是2.参考答案:解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.点拨:本题考查了实数与数轴,利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.7.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)解析:根据合并同类项法则,完全平方公式,幂的乘方和积的乘方,负整数指数幂分别求出每个式子的值,再判断即可.参考答案:解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a=1,故本选项符合题意;故选:D.点拨:本题考查了合并同类项法则,完全平方公式,幂的乘方和积的乘方,负整数指数幂等知识点,能正确求出每个式子的值是解此题的关键.8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=3解析:根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.参考答案:解:依题意,得:3(x﹣1)=.故选:A.点拨:本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°解析:求出==,根据圆周角∠BDC的度数求出它所对的的度数,求出的度数,再求出答案即可.参考答案:解:∵A为中点,∴═,∵AB=CD,∴=,∴==,∵圆周角∠BDC=60°,∴∠BDC对的的度数是2×60°=120°,∴的度数是(360°﹣120°)=80°,∴对的圆周角∠ADB的度数是,故选:A.点拨:本题考查了圆周角定理,圆心角、弧、弦之间的关系等知识点,能根据定理求出==是解此题的关键.10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2解析:根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.参考答案:解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.点拨:本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)|﹣8|=8.解析:负数的绝对值是其相反数.参考答案:解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.点拨:本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.解析:直接利用概率公式求解可得.参考答案:解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为,故答案为:.点拨:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为4π.(结果保留π)解析:利用扇形的面积公式计算即可.参考答案:解:S扇形==4π,故答案为4π.点拨:本题考查扇形的面积,解题的关键是记住扇形的面积==lr(r是扇形的半径,l是扇形的弧长).14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为﹣10907米.解析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答.参考答案:解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.点拨:本题考查了正数和负数.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=30度.解析:由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.参考答案:解:正六边形的每个内角的度数为:=120°,所以∠ABC=120°﹣90°=30°,故答案为:30.点拨:本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.(4分)设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是①④.(写出所有正确结论的序号)解析:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.参考答案:解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,点拨:本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:解不等式①,得:x≤2,解不等式②,得:x>﹣3,则不等式组的解集为﹣3<x≤2.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.解析:根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.参考答案:证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.点拨:本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质.19.(8分)先化简,再求值:(1﹣)÷,其中x=+1.解析:先把括号内通分,再计算括号内的减法运算和把除法运算化为乘法运算,然后把分母因式分解后进行约分得到原式=,再把x的值代入计算即可.参考答案:解:原式=•=,当时,原式==.点拨:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解析:(1)根据题意,可以列出相应的一元一次方程,从而可以求得这个月该公司销售甲、乙两种特产分别为多少吨;(2)根据题意,可以得到利润与甲种特产数量的函数关系式,再根据甲种特产的取值范围和一次函数的性质,可以得到利润的最大值.参考答案:解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w万元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.点拨:本题考查一次函数的应用、一元一次方程的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO 的延长线交⊙O于点D,E是上不与B,D重合的点,sinA=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.解析:(1)连接OB,由切线求出∠ABO的度数,再由三角函数求出∠A,由三角形的外角性质求得∠BOD,最后由圆周解与圆心角的关系求得结果;(2)连接OF,OB,证明△BOF≌△DOF,得∠ODF=∠OBF=90°,便可得结论.参考答案:解:(1)连接OB,如图1,∵AB与⊙O相切于点B,∴∠ABO=90°,∵sinA=,∴∠A=30°,∴∠BOD=∠ABO+∠A=120°,∴∠BED=∠BOD=60°;(2)连接OF,OB,如图2,∵AB是切线,∴∠OBF=90°,∵BF=3,OB=3,∴,∴∠BOF=60°,∵∠BOD=120°,∴∠BOF=∠DOF=60°,在△BOF和△DOF中,,∴△BOF≌△DOF(SAS),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.点拨:本题主要考查了圆的切线的性质与判定,解直角三角形,圆周角定理,全等三角形的性质与判定,第(2)题关键是证明三角形全等.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.解析:(1)用2000乘以样本中家庭人均纯收入低于2000元(不含2000元)的频率即可;(2)利用加权平均数进行计算即可;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.参考答案:解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.点拨:本题考查了折线统计图、用样本估计总体、条形统计图、加权平均数,考查运算能力、推理能力、考查统计思想.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD 的中点分别为M,N,求证:M,P,N三点在同一条直线上.解析:(1)利用尺规作图作CD∥AB,且CD=2AB,即可作出四边形ABCD;(2)在(1)的四边形ABCD中,根据相似三角形的判定与性质即可证明M,P,N三点在同一条直线上.参考答案:解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD∥AB,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴=,∵AB,CD的中点分别为M,N,∴AB=2AM,CD=2CN,∴=,连接MP,NP,∵∠BAP=∠DCP,∴△APM∽△CPN,∴∠APM=∠CPN,∵点P在AC上,∴∠APM+∠CPM=180°,∴∠CPN+∠CPM=180°,∴M,P,N三点在同一条直线上.点拨:本题考查了作图﹣复杂作图、相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.解析:(1)由旋转的性质得出AB=AD,∠BAD=90°,△ABC≌△ADE,得出∠ADE=∠B=45°,可求出∠BDE的度数;(2)①由旋转的性质得出AC=AE,∠CAE=90°,证得∠FPD=∠FDP,由等腰三角形的判定得出结论;②过点P作PH∥ED交DF于点H,得出∠HPF=∠DEP,,证明△HPF≌△CDF(ASA),由全等三角形的性质得出HF=CF,则可得出结论.参考答案:解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.点拨:本题是相似形综合题,考查了旋转的性质,三角形内角与外角的关系,等腰三角形的判定,全等三角形的判定与性质,平行线的性质,平行线分线段成比例定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.解析:(1)先求出点A,点B,点C坐标,利用待定系数法可求解析式;(2)利用反证法可得结论;(3)通过证明△CEF∽△BEA,可得=()2,BE=t(0<t <4),则CE=4﹣t,可求S△ABE=×t×10=5t,S△CEF=,利用二次函数的性质可求解.参考答案:解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,∴点A(0,10),点B(5,0),∵BC=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,假设l1与l2不平行,则l1与l2必相交,设交点为P(x P,y P),∴解得:n=10,∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴=()2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=×t×10=5t,∴S△CEF=()2×S△ABE=()2×5t=,∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.点拨:本题是二次函数综合题,考查了一次函数和二次函数的图象和性质,利用待定系数法可求解析式,相似三角形的判定和性质,三角形的面积等知识,利用数形结合思想和函数和方程的思想解决问题是本题的关键.。

2020年福建省中考数学试卷(含详细解析)

2020年福建省中考数学试卷(含详细解析)
C选项与 完全相同,不符合题意;
D选项与 符号相同,不符合题意.
故选:B.
【点睛】
本题考查相反数的定义,解题关键是熟知相反数的定义:只有符号不同的两个数互为相反数.
2.B
【解析】
【分析】
根据图示确定几何体的三视图即可得到答案.
【详解】
由几何体可知,该几何体的三视图依次为.
主视图为:
左视图为:
俯视图为:
22.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.
A. B. C. D.
9.如图,四边形 内接于 , , 为 中点, ,则 等于()
A. B. C. D.
10.已知 , 是抛物线 上的点,下列命题正确的是()
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
评卷人
得分
二、填空题
11.计算: __________.
12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.
(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;
(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;
(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.

2020年福建省中考数学试试题和答案

2020年福建省中考数学试试题和答案

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)﹣的相反数是()A.5B.C.﹣D.﹣5 2.(4分)如图所示的六角螺母,其俯视图是()A.B.C.D.3.(4分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.4.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.(4分)下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=39.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)|﹣8|=.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.19.(8分)先化简,再求值:(1﹣)÷,其中x=+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO 的延长线交⊙O于点D,E是上不与B,D重合的点,sinA=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD 的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.参考答案:解:﹣的相反数是,故选:B.2.参考答案:解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B.3.参考答案:解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.4.参考答案:解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.故选:C.5.参考答案:解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.参考答案:解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.参考答案:解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a=1,故本选项符合题意;故选:D.8.参考答案:解:依题意,得:3(x﹣1)=.故选:A.9.参考答案:解:∵A为中点,∴═,∵AB=CD,∴=,∴==,∵圆周角∠BDC=60°,∴∠BDC对的的度数是2×60°=120°,∴的度数是(360°﹣120°)=80°,∴对的圆周角∠ADB的度数是,故选:A.10.参考答案:解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.参考答案:解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.参考答案:解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为,故答案为:.13.参考答案:解:S扇形==4π,故答案为4π.14.参考答案:解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.参考答案:解:正六边形的每个内角的度数为:=120°,所以∠ABC=120°﹣90°=30°,故答案为:30.16.参考答案:解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.参考答案:解:解不等式①,得:x≤2,解不等式②,得:x>﹣3,则不等式组的解集为﹣3<x≤2.18.参考答案:证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.19.参考答案:解:原式=•=,当时,原式==.20.参考答案:解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w万元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.参考答案:解:(1)连接OB,如图1,∵AB与⊙O相切于点B,∴∠ABO=90°,∵sinA=,∴∠A=30°,∴∠BOD=∠ABO+∠A=120°,∴∠BED=∠BOD=60°;(2)连接OF,OB,如图2,∵AB是切线,∴∠OBF=90°,∵BF=3,OB=3,∴,∴∠BOF=60°,∵∠BOD=120°,∴∠BOF=∠DOF=60°,在△BOF和△DOF中,,∴△BOF≌△DOF(SAS),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.22.参考答案:解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.参考答案:解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD∥AB,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴=,∵AB,CD的中点分别为M,N,∴AB=2AM,CD=2CN,∴=,连接MP,NP,∵∠BAP=∠DCP,∴△APM∽△CPN,∴∠APM=∠CPN,∵点P在AC上,∴∠APM+∠CPM=180°,∴∠CPN+∠CPM=180°,∴M,P,N三点在同一条直线上.24.参考答案:解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.25.参考答案:解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x 轴于点B,∴点A(0,10),点B(5,0),∵BC=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,假设l1与l2不平行,则l1与l2必相交,设交点为P(x P,y P),∴解得:n=10,∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴=()2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=×t×10=5t,∴S△CEF =()2×S△ABE =()2×5t =,∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.第21页(共21页)。

2020年福建省中考数学试卷(含答案)

2020年福建省中考数学试卷(含答案)

【word版】2020年福建省中考数学试卷(含答案) 一、选择题:本题共10小题,每小题4分,共40分1.–15的相反数是( )A.5 B.15C.-15D.–52.如图所示的六角螺母,其俯视图是( )3.如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是( )A.1 B.12C.13D.144.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )5.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于( )A.10 B.5 C.4 D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m–n的结果可能是( ) A.–1 B.1 C.2 D.37.下列运算正确的是( )A.3a2 –a2 =3 B.(a+b)2 =a2 +b2C.(–3ab2 )2=–6a2b4D.a·a–1 =1 (a≠0)8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”.其大意为:现请人代买一批椽.这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试冋6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )A.3(x–1)=6210x B.6210x–1=3 C.3x–1=6210x D.6210x=39.如图,四边形ABCD内接于⊙O,AB=CD,A为BD中点,∠BDC=60°,则∠ADB等于A.40°B.50°C.60°D.70°111222A.若│x1-1│>│x2-1│,则y1> y2B.若│x1-1│>│x2-1│,则y1<y2C.若│x1-1│=│x2-1│,则y1=y2D.若则y1=y2,x1=x2二、填空题:本题共6小题,每小题4分,共24分11.计算:|–8|= .12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC 等于 .16.设A ,B ,C ,D 是反比例函数y = kx 图象上的任意四点,现有以下结论①四边形ABCD 可以是平行四边形; ②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形其中正确的是(写出所有正确结论的序号) .三、解答题:本题共9小题,共86分17.(8分)解不等式组⎩⎨⎧2x ≤ 6 – x 3x + 1 > 2(x – 1)18.(8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE=DF .求证:∠BAE=∠DAF19.(8分)先化简,再求值:(1– 1x +2 )÷x 2 –1x +2,其中x =2+120.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ⌒上 不与B ,D 重合的点,sinA= 12(1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF=33.求证:DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)已知C为线段AB外的一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(保留作图痕迹,不写作法)(2)在(1)的四边形ABCD中,AC、BD相交于P点,M、N分别为AB、CD的中点,求证:M、N、P三点在同一条直线上.24. (12分)如图,△AED 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 延长线上,AD 、EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC ,①判断DF 与PF 的数量关系,并证明; ③求证: PE PF = PC FC .25.(14分)已知直线l 1:y =-2x +10交y 轴于点A ,交x 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 两点,交x 轴于另一点C ,BC=4,且对于抛物线上的任意两点P 1(x 1,y 1)、P 2(x 2,y 2),当x 1> x 2≥5时,总有y 1> y 2.(1)求抛物线的解析式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =-2时, l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =-2x +q 过点C 且交直线AE 于点F ,求△ABE 和△CEF 面积之和的最小值.P FE D CB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ADB C2020年福建省德化县中考数学试题(word 版)(含答案)数学试题〔总分值:150分;考试时刻:120分钟〕友情提示:所有答案都必须填涂在答题卡相应的位置上。

毕业学校____________________ 姓名______________ 考生号____________一、选择题〔每题3分,共21分〕每题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应选项涂黑。

选对的得3分,选错,不选或涂黑超过一个的一律得0分。

1、2-的3倍是〔 〕A 、 6-B 、1C 、6D 、5- 2、以下运算正确的选项是〔 〕A 、20=102B 、632=⋅ C 、224=- D 3=-3、以下调查方式合适的是〔 〕A 、为了了解市民对电影«南京»的感受,小华在某校随机采访了8名初三学生B 、为了了解全校学生用于做数学作业的时刻,小民同学在网上向3位好友做了调查C 、为了了解〝嫦娥一号〞卫星零部件的状况,检测人员采纳了普查的方式D 、为了了解全国青青年儿童的睡眠时刻,统计人员采纳了普查的方式 4、以下各组线段〔单位:㎝〕中,成比例线段的是〔 〕 A 、1、2、3、4 B 、1、2、2、4 C 、3、5、9、13 D 、1、2、2、3 5、以下多边形中,不能..铺满地面的是〔 〕 A 、正三边形 B 、正四边形 C 、正五边形 D 、正六边形6、如图,点B 、C 在⊙O 上,且BO=BC ,那么圆周角BAC ∠等于〔 〕A .60︒B .50︒C .40︒D .30︒ 7、:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作AB PE ⊥于点E ,作BC PF ⊥于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在以下图象中,大致表示y 与x 之间的函数关系的是〔 〕.二、填空题:〔本大题有10小题,每题4分,共40分〕8、运算:32a a ⋅=__________9、某班7名学生的数学考试成绩〔单位:分〕如下:52,76,80,76,71,92,67 那么这组数据的众.数.是 分. 10、分解因式:442++a a =_______________11、如图是一个立体图形的三视图,那么那个立体图形的名称叫 .12、北京2018年奥运会火炬接力活动的传递总路约为137000000米,这人数据用科学记数法表示为_______米.俯视图 左 视 图 主视图 C FOC BA13、圆锥的底面半径是3cm ,母线长为6cm ,那么侧面积为________cm 2.〔结果保留π〕14、菱形的两对角线长分不为6㎝和8㎝,那么菱形的面积为 ㎝2.15、关于x 的一元二次方程的一个根是1,写出一个符合条件的方程: . 16、假设整数m 满足条件2)1(+m =1+m 且m <52,那么m 的值是 .17、如图,直线43y x =与双曲线ky x=〔0x >〕交于点A .将 直线43y x =向下平移个6单位后,与双曲线ky x=〔0x >〕交于点B ,与x轴交于点C ,那么C 点的坐标为___________;假设2AO BC =,那么k = .三、解答题〔本大题有9小题,共89分〕 18、(1)〔5分〕运算: |-2|-(2-3)0+2)21(-- ;(2)〔5分〕化简:a 〔a +2〕- a 2bb;(3)〔5分〕运算:)3()2)(2(x x x x -+-+.19、〔8分〕如图,点A ,B 在数轴上,它们所对应的数分不是3-和xx--21,且点A ,B 到原点的距离相等,求x 的值.20、〔9分〕如图,在ABC ∆中,90,C P ∠=为AB 上一点,且点P 不与点A 重合,过P 作PE AB ⊥交AC边于点E ,点E 不与点C 重合,假设10,8AB AC ==,设AP 的长为x ,四边形PECB 周长为y . 〔1〕求证:APE ∆∽ACB ∆;B〔2〕写出y与x的函数关系式,并在直角坐标系中画出图象.21、〔8分〕2010年4月1日«××日报»公布了〝2018年××市国民经济和社会进展统计公报〞,依照其中农林牧渔业产值的情形,绘制了如下两幅统计图,请你结合图中所给信息解答以下咨询题:〔1〕2018年全市畜牧业的产值为亿元;〔2〕补全条形统计图;〔3〕××作为全国重点林区之一,市政府大力进展林业产业,打算2018年林业产值达60.5亿元,求2018,2018这两年林业产值的年平均增长率.22、〔8分〕有三张卡片〔形状、大小、质地都相同〕,正面分不写上整式x+1,x,3。

将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.〔1〕请写出抽取两张卡片的所有等可能结果〔用树状图或列表法求解〕;〔2〕试求抽取的两张卡片结果能组成分式..的概率.23、〔8分〕某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价) 〔1〕假设商店打算销售完这批商品后能获利1100元,咨询甲、乙两种商品应分不购进多少件?〔2〕假设商店打算投入资金少于4300元,且销售完这批商品后获利多于1260元,请咨询有哪几种购货方案? 并直截了当写出其中获利最大的购货方案.24、〔9分〕如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分不交于点E 、F ,且∠ACB=∠DCE .(1)判定直线CE 与⊙O 的位置关系,并证明你的结论; (2)假设tan ∠ACB=22,BC=2,求⊙O 的半径. 25、〔12分〕在△ABC 中,AB=BC=2,∠ABC=120°,将△ABC 绕点B 顺时针旋转角α(0<α<120°),得△A 1BC 1,交AC于点E ,AC 分不交A 1C 1、BC 于D 、F 两点.〔1〕如图①,观看并猜想,在旋转过程中,线段EA 1与FC 有如何样的数量关系?并证明你的结论; 〔2〕如图②,当 =30°时,试判定四边形BC 1DA 的形状,并讲明理由; 〔3〕在〔2〕的情形下,求ED 的长.26、〔12分〕如图1,抛物线通过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分不在x 轴、y 轴上,且AD=2,AB=3. 〔1〕求该抛物线的函数关系式;〔2〕将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 动身向B 匀速移动,设它们运动的时刻为t 秒〔0≤t ≤3〕,直线AB 与该抛物线的交点为N 〔如图2所示〕.① 当t=25时,判定点P 是否在直线ME 上,并讲明理由;② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试咨询S 是否存在最大值?假设存在,求出那个最大值;假设不存在,请讲明理由.2018年福建省临德化县初中毕业班学业质量检查数学试题参考答案及评分意见一、选择题:〔本大题有7小题,每题3分,共21分〕 1、A 2、B 3、C 4、B 5、C 6、D 7、A二、填空题:(本大题有10小题,每题4分,共40分〕8、5a ; 9、76; 10、2)2(+a 11、三棱柱 12、81037.1⨯; 13、π18; 14、24;15、如12=x 等; 16、0; 17、〔)0,29,12 三、解答题:(本大题有9小题,共89分〕18、〔1〕解:原式=412+-…3分 〔2〕解:原式=a a a -+2…3分=5 …………5分 =a 2…………5分〔3〕解:原式=2234x x x -+-…3分=43-x ……………5分19、解:依题意可得,321=--x x解得:25=x ……………6分经检验,25=x 是原方程的解.……………7分答:略…………………………………………8分 20、〔1〕证明:∵PE ⊥AB ∴∠APE=90°又∵∠C=90° ∴∠APE=∠C 又∵∠A=∠A∴△APE ∽△ACB ……………4分 〔2〕解:在Rt △ABC 中,AB=10,AC=8 ∴BC=68102222=-=-AC AB由〔1〕可知,△APE ∽△ACB ∴BCPE ACAP ABAE ==∵x AP = ∴x PE 43=,x AE 45=∴64584310+-++-=x x x y =x 2324- 过点C 作CF ⊥AB 于F ,依题意可得:68211021⨯⨯=⋅⋅CF ∴8.4=CF∴8.443=x ,解得:4.6=x ∴4.60<<x∴y 与x 的函数关系式为:x y 2324-= (4.60<<x ) y 与x 的函数图象如右图:……………9分21、(1) 41; ……………2分(2)如图, ……………………………4分(3) 设今明两年林业产值的年平均增长率为x . 依照题意,得 250(1)60.5x +=解得:10.1x ==10% ,2 2.1x =-(不合题意,舍去)答:今明两年林业产值的年平均增长率为10%.…8分 22、(1) 树状图:…………………………………5分列表法:(2)32=分式P ………………………………………………………8分 23、解:〔1〕设甲种商品应购进x 件,乙种商品应购进y 件.依照题意,得 1605101100.x y x y +=⎧⎨+=⎩ 解得:10060.x y =⎧⎨=⎩答:甲种商品购进100件,乙种商品购进60件. ……………4分〔2〕设甲种商品购进a 件,那么乙种商品购进(160-a )件.1+x x 3 1+x1+x x 13+x x x x 1+ x 3 3 31+x 3x 第一次 第二次 结果1+x x 3 1+x x x 3 3 1+x xx 1+31+x 1+x x 3x 13+x x 3依照题意,得1535(160)4300510(160)1260.a a a a +-<⎧⎨+->⎩解不等式组,得 65<a <68 . ∵a 为非负整数,∴a 取66,67. ∴ 160-a 相应取94,93.答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一. ……………8分24、解:〔1〕直线CE 与⊙O 相切。

……………1分证明:∵四边形ABCD 是矩形 ∴BD ∥AD ,∠ACB=∠DAC , 又 ∵∠ACB=∠DCE∴∠DAC=∠DCE,连接OE ,那么∠DAC=∠AEO=∠DCE ,∵∠DCE+∠DEC=900 ∴∠AE0+∠DEC=900 ∴∠OEC=900 ∴直线CE 与⊙O 相切。

相关文档
最新文档