2012年陕西省初中毕业生学业考试数学

合集下载

2012年陕西省中考数学试题(含答案)

2012年陕西省中考数学试题(含答案)

2012陕西省中考数学试题及解析第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a −的结果是( )A .510a −B .610aC .525a −D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位) 12211 A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 8.在同一平面直角坐标系中,若一次函数533−=+−=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .2410.在平面直角坐标系中,将抛物线62−−=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:()02cos 45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 . B .用科学计算器计算:7sin 69︒≈ (精确到0.01). 14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b −−⎛⎫÷⎪+−+⎝⎭-.18.(本题满分6分)如图,在ABCD Y 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当35AB BC ==,时,求AEAC的值.某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分) 如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos 250.9063tan 250.4663sin 650.9063︒≈︒≈︒≈︒≈,,,, cos650.4226tan 65 2.1445︒≈︒≈,)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分)如图,PA PB 、分别与O e 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N . (1)求证:=OM AN ;(2)若O e 的半径=3R ,=9PA ,求OM 的长.如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形; (2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x b x b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由. 25.(本题满分12分) 如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A . 7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+−=−−=x x x x y ,可知其与x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B . 11、【答案】-52+1 【解析】原式2=2-322+1=-52+12⨯⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯.B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【答案】41【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD , 过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACO Rt BCE ∆∆:.所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得2=415AC ,3=415BC ,所以=+=41AB AC BC . 方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD ,由勾股定理,得'=41AB .所以='=41AB AB .17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b−−−++⋅+−− =22222()(2)a ab ab b ab b a b a b −−+−−−−=224()(2)a aba b a b −−−=2(2)()(2)a ab a b a b −−−=2aa b−.18、【答案】解:(1)如图,在ABCD Y 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠Q ,, ∴△AEF ∽△CEB ,∴35AE AF EC BC ==, ∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, cos65BD CD x ==︒.∴100cos65sin 65x x +︒=︒.∴100207sin 65cos 65x =≈︒−︒(米).∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=−⎪⎨⎪=⎩,∴4299125y x =−+. (2)当1200x =时,41200299260.6125y =−⨯+=(克/立方米). ∴该山山顶处的空气含氧量约为260.6克/立方米.22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种.∴P (点数和为2)= 136.(2)由右表可以看出,点数和大于7的结果 有15种.∴P (小轩胜小峰)= 1536=512.23、【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM .骰子2骰子11 2 3 4 5 61 23 4 5 6 7 23 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9105 6 7 8 910 11678910 11 1224、【答案】解:(1)等腰 (2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形, ∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b . ∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形.又∵=AO AB ,∴△OAB 为等边三角形.作AE OB ⊥,垂足为E .∴=AE 3OE .∴()2''=3'>042b b b ⋅. ∴'=23b .∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,. 设过点O C D 、、三点的抛物线2=+y mx nx ,则 12-23=03-3=-3.m n m n ⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩, ∴所求抛物线的表达式为2=+23y x x .25、【答案】解:(1)如图①,正方形''''EFPN 即为所求. (2)设正方形''''EFPN 的边长为x .∵△ABC 为正三角形,∴3'='=3AE BF x . ∴23+=3+33x x . ∴9+33=23+3x ,即=33-3x .(没有分母有理化也对, 2.20x ≈也正确) (3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥, 它们的面积和为S ,则=2NE m ,=2PE n .∴()2222222=+=2+2=2+PN NE PE m n m n. ∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥. 在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵33+++=3+333m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小.∴219=3=22S ⨯最小. ⅱ)当()2-m n 最大时,S 最大.即当m 最大且n 最小时,S 最大.∵+=3m n ,由(2)知,=33-3m 最大.∴()=3-=3-33-3=6-33n m 最小最大.∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小()21=9+33-3-6+33=99-5432⎡⎤⎢⎥⎣⎦.。

2012年陕西中考数学试题及答案word

2012年陕西中考数学试题及答案word

2012年陕西中考数学试题及答案word一、选择题(共10分,每题2分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 若a > 0,b < 0,且|a| < |b|,则a + b 一定:A. 等于0B. 大于0C. 小于0D. 大于a答案:C3. 下列哪个是二次根式?A. √2B. √(-1)C. √(0)D. √(1/2)答案:A4. 若m² + n² = 9,m + n = 4,求m - n的值。

A. 1B. 3C. -1D. -3答案:A5. 一个圆的半径是r,其面积是:A. πr²B. 2πrC. πrD. πr/2答案:A二、填空题(共10分,每题2分)6. 若一个数的平方根等于其本身,则这个数是______。

答案:07. 一个数的立方根是3,则这个数是______。

答案:278. 一个等腰三角形的底边长为5,两腰相等,若其周长为21,则腰长为______。

答案:89. 一个数的绝对值是5,这个数可以是______或______。

答案:5 或 -510. 若一个三角形的内角和为180°,则这个三角形是______三角形。

答案:锐角三、解答题(共80分)11. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。

12. 一个长方体的长、宽、高分别为a、b、c,求其体积。

答案:长方体的体积为V = a × b × c。

13. 已知一个多项式f(x) = ax³ + bx² + cx + d,其中a ≠ 0,求f(x)的导数。

答案:f'(x) = 3ax² + 2bx + c。

14. 一个圆的半径为5,求其周长和面积。

答案:周长为C = 2π × 5 = 10π,面积为A = π × 5² =25π。

2012年陕西省中考数学试题(word版,含答案)

2012年陕西省中考数学试题(word版,含答案)

2012陕西省中考数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( )A .-7 ℃B .+7 ℃C .+12 ℃D .-12 ℃2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( )A .(2.-3),(-4,6)B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2,3),(-4,6)7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50°8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( )A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:(02cos45=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. 第5题图第7题图第9题图A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 .B 69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可). 16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b --⎛⎫÷⎪+-+⎝⎭-.18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当35AB BC ==,时,求AEAC的值.19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?一周内该校学生从图书馆借出各类图书数量情况统计图20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65︒方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45︒方向(点、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与A B C湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos250.9063tan 250.4663sin650.9063︒≈︒≈︒≈︒≈,,,,cos650.4226tan65 2.1445︒≈︒≈,)21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.)23.(本题满分8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ,垂足为N .(1)求证:=OM AN ; (2)若O 的半径=3R ,=9PA ,求OM 的长.24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.25.(本题满分12分)如图,正三角形ABC 的边长为.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法); (2)求(1)中作出的正方形''''EFPN 的边长;(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.2012年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.试题解析:∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作-7℃.故选A.2、答案:C试题分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.从左边看竖直叠放2个正方形.故选C.3、答案:D试题分析:利用积的乘方与幂的乘方的性质求解即可求得答案.试题解析:(-5a3)2=25a6.故选D.4、答案:C试题分析:先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.试题解析:由题意知,最高分和最低分为97,89,则余下的数的平均数=(92×2+95×2+96)÷5=94.故选C.5、答案:D试题分析:在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC :S△ABC=()2=.故选D.6、答案:A试题分析:由于正比例函数图象上点的纵坐标和横坐标的比相同,找到比值相同的一组数即可.试题解析:A、∵=,∴两点在同一个正比例函数图象上;B、∵≠,∴两点不在同一个正比例函数图象上;C、∵≠,∴两点不在同一个正比例函数图象上;D、∵≠,两点不在同一个正比例函数图象上;故选A.7、答案:B试题分析:先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.试题解析:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°-130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°-∠BAO=90°-25°=65°.故选B.8、答案:D试题分析:联立两直线解析式,解方程组即可.试题解析:联立,解得,所以,点M的坐标为(2,1).故选D.9、答案:C试题分析:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM 的长.试题解析:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.10、答案:B试题分析:计算出函数与x轴、y轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向.试题解析:当x=0时,y=-6,故函数图象与y轴交于点C(0,-6),当y=0时,x2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A(-2,0),B(3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2.故选B.二、填空题11、答案:试题分析:先将二次根式化为最简,再计算零指数幂,然后代入cos45°的值即可得出答案.试题解析:原式=2×-3×2+1=-5+1.故答案为:-5+1.12、答案:试题分析:先提取公因式,再利用完全平方公式进行二次分解因式.试题解析:x3y-2x2y2+xy3,=xy(x2-2xy+y2),=xy(x-y)2.13、答案:试题分析:A、画出示意图,根据扇形的面积公式求解即可;B、用计算器计算即可.试题解析:A、由题意可得,AM=MB=AB=2,线段AB扫过的面积为扇形MCB和扇形MAD的面积和,故线段AB扫过的面积=+=.B、sin69°≈2.47.故答案为:、2.47.14、答案:试题分析:首先设小宏能买x瓶甲饮料,则可以买(10-x)瓶乙饮料,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.设小宏能买x瓶甲饮料,则可以买(10-x)瓶乙饮料,由题意得:7x+4(10-x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小宏最多能买3瓶甲饮料.故答案为:3.15、答案:试题分析:两个函数在同一直角坐标系中的图象无公共点,其k要满足-2x2+6x-k=0,△<0即可.试题解析:设反比例函数的解析式为:y=,∵一次函数y=-2x+6与反比例函数y=图象无公共点,则,∴-2x2+6x-k=0,即△=62-8k<0解得k>,则这个反比例函数的表达式可以是y=;故答案可为:y=.16、答案:试题分析:首先过点B作BD⊥x轴于D,由A(0,2),B(4,3),即可得OA=2,BD=3,OD=4,由题意易证得△AOC∽△BDC,根据相似三角形的对应边成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得这束光从点A到点B所经过的路径的长.如图,过点B作BD⊥x轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为:.故答案为:.三、解答题17、答案:试题分析:根据分式混合运算的法则先计算括号里面的,再把除法变为乘法进行计算即可.试题解析:原式=•====.18、答案:试题分析:(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠2=∠3,又由BF是∠ABC的平分线,易证得∠1=∠3,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.(1)如图,在▱ABCD中,AD∥BC.∴∠2=∠3,∵BF是∠ABC的平分线,∴∠1=∠2,∴∠1=∠3,∴AB=AF;(2)∵∠AEF=∠CEB,∠2=∠3,∴△AEF∽△CEB,∴==,∴=.19、答案:试题分析:(1)根据借出的文学类的本数除以所占的百分比求出借出的总本数,然后求出其它类的本数,再用总本数减去另外三类的本数即可求出漫画书的本数;根据百分比的求解方法列式计算即可求出科普类与漫画类所占的百分比;(2)根据扇形统计图可以一目了然进行的判断;(3)用总本数600乘以各部分所占的百分比,进行计算即可得解.试题解析:(1)借出图书的总本数为:40÷10%=400本,其它类:400×15%=60本,漫画类:400-140-40-60=160本,科普类所占百分比:×100%=35%,漫画类所占百分比:×100%=40%,补全图形如图所示;(2分)(2)该校学生最喜欢借阅漫画类图书.(3分)(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文学类:600×10%=60(本),其它类:600×15%=90(本).…(7分)20、答案:试题分析:如图作CD⊥AB交AB的延长线于点D,在Rt△ACD和Rt△BCD中分别表示出AC的长就可以求得AC的长.试题解析:如图作CD⊥AB交AB的延长线于点D,则∠BCD=45°,∠ACD=65°,在Rt△ACD和Rt△BCD中,设AC=x,则AD=xsin65°,BD=CD=xcos65°,∴100+xcos65°=xsin65°.∴x=≈207(米),∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207米.21、答案:试题分析:(1)利用在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米,代入解析式求出即可;(2)根据某山的海拔高度为1200米,代入(1)中解析式,求出即可.试题解析:(1)设y=kx+b(k≠0),则有:,解之得,∴y=-;(2)当x=1200时,y=-×1200+299=260.6(克/立方米).答:该山山顶处的空气含氧量约为260.6克/立方米.22、答案:试题分析:(1)首先根据题意列出表格,然后由表格求得所有等可能的结果与点数和为2的情况,利用概率公式即可求得答案;(2)根据(1)求得点数和大于7的情况,利用概率公式即可求得答案.试题解析:(1)随机掷骰子一次,所有可能出现的结果如表:2的结果只有一种.…..(3分)∴P(点数和为2)=.…(5分)(2)由表可以看出,点数和大于7的结果有15种.∴P(小轩胜小峰)==.…(8分)23、答案:试题分析:(1)连接OA,由切线的性质可知OA⊥AP,再由MN⊥AP可知四边形ANMO是矩形,故可得出结论;(2)连接OB,则OB⊥BP由OA=MN,OA=OB,OM∥AP.可知OB=MN,∠OMB=∠NPM.故可得出Rt△OBM≌△MNP,OM=MP.设OM=x,则NP=9-x,在Rt△MNP利用勾股定理即可求出x的值,进而得出结论.试题解析:(1)证明:如图,连接OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA,∵OM∥AP,∴四边形ANMO是矩形,∴OM=AN;(2)连接OB,则OB⊥BP∵OA=MN,OA=OB,OM∥AP.∴OB=MN,∠OMB=∠NPM.∴Rt△OBM≌Rt△MNP,∴OM=MP.设OM=x,则NP=9-x,在Rt△MNP中,有x2=32+(9-x)2∴x=5,即OM=5.24、答案:试题分析:(1)抛物线的顶点必在抛物线与x轴两交点连线的垂直平分线上,因此这个“抛物线三角形”一定是等腰三角形.(2)观察抛物线的解析式,它的开口向下且经过原点,由于b>0,那么其顶点在第一象限,而这个“抛物线三角形”是等腰直角三角形,必须满足顶点坐标的横、纵坐标相等,以此作为等量关系来列方程解出b的值.(3)由于矩形的对角线相等且互相平分,所以若存在以原点O为对称中心的矩形ABCD,那么必须满足OA=OB,结合(1)的结论,这个“抛物线三角形”必须是等边三角形,首先用b′表示出AE、OE的长,通过△OAB这个等边三角形来列等量关系求出b′的值,进而确定A、B的坐标,即可确定C、D的坐标,利用待定系数即可求出过O、C、D的抛物线的解析式.试题解析:(1)如图;根据抛物线的对称性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形.故填:等腰.(2)当抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,该抛物线的顶点(,),满足=(b>0).则b=2.(3)存在.如图,作△OCD与△OAB关于原点O中心对称,则四边形ABCD为平行四边形.当OA=OB时,平行四边形ABCD是矩形,又∵AO=AB,∴△OAB为等边三角形.∴∠AOB=60°,作AE⊥OB,垂足为E,∴AE=OEtan∠AOB=.∴=•(b>0).∴b′=2.∴A(,3),B(2,0).∴C(-),D(-2,0).设过点O、C、D的抛物线为y=mx2+nx,则,解得.故所求抛物线的表达式为y=x2+2x.25、答案:试题分析:(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m-n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.试题解析:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3-3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m-n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S=[32+(m-n)2]=+(m-n)2①当(m-n)2=0时,即m=n时,S最小.∴S最小=;②当(m-n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3-3.∴S最大=[9+(m最大-n最小)2]=[9+(3-3-6+3)2] =99-54….(S最大≈5.47也正确)综上所述,S最大=99-54,S最小=.。

2012年陕西中考数学真题(含标准答案)

2012年陕西中考数学真题(含标准答案)

2012年陕西省中考数学试卷参考答案与试题解析一、选择题(共10个小题,共计30分,每小题只有一个选项是符合题意的)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A. ﹣7℃B. +7℃ C. +12℃ D. ﹣12℃ 考点:正数和负数。

分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 解答: 解:℃“正”和“负”相对,℃零上5℃记作+5℃,则零下7℃可记作﹣7℃.故选A.点评: 此题考查了正数与负数的定义.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )考点:简单组合体的三视图。

分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 解答: 解:从左边看竖直叠放2个正方形.故选C .点评: 考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.计算(﹣5a 3)2的结果是( )A. ﹣10a 5 B . 10a6 C. ﹣25a5 D. 25a 6考点: 幂的乘方与积的乘方。

分析: 利用积的乘方与幂的乘方的性质求解即可求得答案.解答: 解:(﹣5a 3)2=25a 6. 故选D.点评: 此题考查了积的乘方与幂的乘方的性质.注意幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.A .B . C. D.4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分)89 92 95 96 97 评委(位)1 22 1 1A . 92分B . 93分C . 94分 D. 95分 考点: 加权平均数。

分析: 先去掉一个最低分去掉一个最高分,再根据平均数等于所有数据的和除以数据的个数列出算式进行计算即可.解答: 解:由题意知,最高分和最低分为97,89,则余下的数的平均数=(92×2+95×2+96)÷5=94.故选C.点评: 本题考查了加权平均数,关键是根据平均数等于所有数据的和除以数据的个数列出算式.5.如图,℃ABC 中,A D、BE 是两条中线,则S ℃E DC:S ℃ABC =( )A. 1:2 B. 2:3 C . 1:3 D. 1:4考点: 相似三角形的判定与性质;三角形中位线定理。

陕西省2012年中考数学试题(含解析)

陕西省2012年中考数学试题(含解析)

2012陕西省中考数学试题及解析第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位) 12211 A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2, 3),(-4,6) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130A D C ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D . 6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:()02cos 45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分.A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 . B .用科学计算器计算:7sin 69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b --⎛⎫÷⎪+-+⎝⎭-.18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =;(2)当35AB BC ==,时,求AEAC的值.某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分) 如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos250.9063tan 250.4663sin650.9063︒≈︒≈︒≈︒≈,,,, cos650.4226tan65 2.1445︒≈︒≈,)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB上,且//OM AP ,MN AP ⊥,垂足为N . (1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长. 24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x b x b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.25.(本题满分12分)如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A .7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B . 11、【答案】-52+1 【解析】原式2=2-322+1=-52+12⨯⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯. B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【答案】41【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACO Rt BCE ∆∆ .所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得2=415AC ,3=415BC ,所以=+=41AB AC BC .方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD ,由勾股定理,得'=41AB .所以='=41AB AB .17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+-- =22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a ab a b a b ---=2aa b-.18、【答案】解:(1)如图,在ABCD 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠ ,, ∴△AEF ∽△CEB , ∴35AE AF EC BC ==,∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本).20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, c o s 65B D C D x ==︒. ∴100cos65sin 65x x +︒=︒.∴100207sin 65cos65x =≈︒-︒(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米).∴该山山顶处的空气含氧量约为260.6克/立方米. 22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种. ∴P (点数和为2)=136. (2)由右表可以看出,点数和大于7的结果 有15种.∴P (小轩胜小峰)= 1536=512.23、【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM . 24、【答案】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b . ∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称, 则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形. 又∵=AO AB ,∴△OAB 为等边三角形. 作AE OB ⊥,垂足为E . ∴=AE 3OE .∴()2''=3'>042b b b ⋅.骰子2 骰子11 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9105 6 7 8 9 10 11 67891011 12∴'=23b .∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,. 设过点O C D 、、三点的抛物线2=+y mx nx ,则 12-23=03-3=-3.m n m n ⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩, ∴所求抛物线的表达式为2=+23y x x .25、【答案】解:(1)如图①,正方形''''EFPN 即为所求.(2)设正方形''''EFPN 的边长为x .∵△ABC 为正三角形,∴3'='=3AE BF x . ∴23+=3+33x x . ∴9+33=23+3x ,即=33-3x .(没有分母有理化也对, 2.20x ≈也正确) (3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥, 它们的面积和为S ,则=2NE m ,=2PE n .∴()2222222=+=2+2=2+PN NE PE m n m n. ∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥. 在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵33+++=3+333m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小.∴219=3=22S ⨯最小. ⅱ)当()2-m n 最大时,S 最大.即当m 最大且n 最小时,S 最大. ∵+=3m n ,由(2)知,=33-3m 最大. ∴()=3-=3-33-3=6-33n m 最小最大. ∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小()21=9+33-3-6+33=99-5432⎡⎤⎢⎥⎣⎦.。

2012年陕西省中考真题及答案

2012年陕西省中考真题及答案

2012年陕西省初中毕业生学业考试数 学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.如果零上5℃记作+5℃,那么零下7℃可记作( )(A )7-℃ (B )7+℃ (C )12+℃ (D )12-℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算32(5)a -的结果是( )(A )510a - (B )610a (C )525a - (D )625a 4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表.从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )(A )92分 (B )93分 (C )94分 (D )95分 5.如图,在ABC △中,AD 、BE 是两条中线,则EDC ABC S S △△:=( )(A )1:2 (B )2:3 (C )1:3 (D )1:46.下列四组点中,可以在同一个正比例函数图象上的一组点是( )(A )(23)(46)--,,, (B )(23)(46)-,,, (C )(23)(46)---,,, (D )(23)(46)-,,, 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,,OE AB ⊥垂足为,E 若130ADC =∠,则AOE ∠的大小为( )(A )75 (B )65 (C )55 (D )508.在同一平面直角坐标系中,若一次函数3y x =-+与35y x =-的图象交于点M ,则点M 的坐标为( )(A )(14)-, (B )(12)-, (C )(21)-, (D )(21), 9.如图,在半径为5的O ⊙中,AB 、CD 是互相垂直的两条弦,垂足为P ,且8A B C D ==,则OP 的长为( )(A )3 (B )4 (C ) (D )10.在平面直角坐标系中,将抛物线26y x x =--向上(下)或向左(右)平移m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( ) (A )1 (B )2 (C )3 (D )6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:02cos 4538(1-=____________.12.分解因式:32232x y x y xy -+=_____________.13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30,则线段AB 扫过的面积为__________.B 69≈_________(精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买_________瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数26y x =-+的图象无.公共点,则这个反比例函数的表达式是___________(只写出符合条件的一个即可). 16.如图,从点(02)A ,发出的一束光,经x 轴反射,过点(43)B ,,则这束光从点A 到点B 所经过路径的长为_________.三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)化简:22a bb a b a b a b a b --⎛⎫-÷⎪+-+⎝⎭.18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当3,5AB BC ==时,求AEAC的值.19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45方向(点A 、B 、C 在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos 250.9063tan 250.4663sin 650.9063≈,≈,≈,≈,cos65tan 65≈0.4226,≈2.1445)21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系,经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米,在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏.规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜,点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的小立方块,点数和:两枚骰子朝上的点数之和) 23.(本题满分8分)如图,PA 、PB 分别与O ⊙相切于点A 、B ,点M 在PB 上,且OM AP MN AP ∥,,垂足为N .(1)求证:OM AN =;(2)若O ⊙的半径39R PA ==,,求OM 的长.24.(本题满分10分)如果一条抛物线2(0)y ax bx c a =++≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形;(2)若抛物线2(0)y x bx b =-+>的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,OAB △是抛物线2(0)y x b x b ''=-+>的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O 、C 、D 三点的抛物线的表达式;若不存在,说明理由.25.(本题满分12分)如图,正三角形ABC 的边长为3(1)如图①,正方形EFPN 的顶点E 、F 在边AB 上,顶点N 在边AC 上,在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形E F P N '''',且使正方形E F P N ''''的面积最大(不要求写作法);''''的边长;(2)求(1)中作出的正方形E F P N(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF 在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值及最小值,并说明理由.2012年陕西省初中毕业生学业考试数学试题参考答案及评分标准一、选择题:二、填空题:11.1- 12.2()xy x y -13.A.23π(填2.093或2.094也正确) B.2.4714.3 15.18y x =(只要k y x =中的k 满足92k >即可) 16三、解答题: 17.解:原式=(2)()()()()2a b a b b a b a ba b a b a b---+++-- ······································ (1分)=22222()(2)a ab ab b ab b a b a b --+---- ·········································· (2分)=224()(2)a aba b a b --- ······························································ (3分)=2(2)()(2)a ab a b a b --- ······························································ (4分)=2aa b- ··········································································· (5分) 18.解:(1)如图,在ABCD 中,AD BC ∥.∴∠2=∠3.······················································································ (1分) BF 是ABC ∠的平分线,∴∠1=∠2, ··················································································· (2分) ∴∠1=∠3.AB AF ∴=. ····················································································· (3分) (2)23AEF CEB ==∠∠,∠∠,.AEF CEB ∴△∽△ ··········································································· (4分) 3.5AE AF EC BC ∴== ·············································································· (5分)3.8AE AC ∴= ······················································································· (6分) 19.解:(1)如图所示. ········································································ (2分)(2)该校学生最喜欢借阅漫画类图书. ···················································· (3分) (3)漫画类:600×40%=240(本),科普类:600×35%=210(本). 文学类:600×10%=60(本),其它类:600×15%=90(本). ······················· (7分) 20.解:如图,作CD AB ⊥交AB 的延长线于点D ,则45BCD =∠,65ACD =∠. ·························································· (2分) 在Rt ACD △和Rt BCD △中,设AC x =,则sin 65AD x =,cos65BD CD x ==. ········································································· (4分) 100cos65sin 65x x ∴+=.100sin 65cos 65x ∴=-≈207(米).······················································ (7分) ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米. ························· (8分)21.解:(1)设y kx b =+,则有2992000235.b k b =⎧⎨+=⎩,································· (3分)解之,得4125299.k b ⎧=-⎪⎨⎪=⎩, ·········································································· (4分) 4299.125y x ∴=-+ ·········································································· (5分) (2)当1200x =时,41200125y =-⨯+299=260.6(克/立方米).∴该山山顶处的空气含氧量约为260.6克/立方米. ······································ (8分) (学生在整个运算过程中,使用了“≈”也可以)22.解:(1)随机掷两枚骰子一次,所有可能出现的结果如下表:上表中共有36种等可能结果,其中点数和为2的结果只有一种. ··················· (3分)P ∴(点数和为2)=136. ····································································· (5分) (2)由上表可以看出,点数和大于7的结果有15种.P ∴(小轩胜小峰)=1553612=. ····························································· (8分) 23.解:(1)如图,连接OA ,则.OA AP ⊥ ············································ (1分)MN AP ⊥,.MN OA ∴∥ ···················································································· (2分) OM AP ∥,∴四边形ANMO 是矩形..OM AN ∴= ···················································································· (3分) (2)连接OB ,则.OB BP ⊥OA MN OA OB OM AP ==,,∥,.OB MN OMB NPM ∴==,∠∠Rt Rt .OBM MNP ∴△≌△ ································································· (5分) .OM MP ∴= 设OM x =,则9.NP x =- ···································································· (6分) 在Rt MNP △中,有2223(9)x x =+-.5 5.x OM ∴==,即 ·········································································· (8分)24.解:(1)等腰. (2)抛物线2(0)y x bx b =-+>的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2(0).24b b b =>2.b ∴= ··························································································· (4分) (3)存在. ························································································ (5分)如图,作OCD △与OAB △关于原点O 中心对称,则四边形ABCD 为平行四边形.当OA OB =时,平行四边形ABCD 为矩形. 又AO AB =, OAB ∴△为等边三角形. 作AE OB ⊥,垂足为E..AE ∴=23(0).42b bb '''∴=>b '∴= ······················································································· (7分)A B ∴(3)(C D ∴--, ································································ (8分)设过点O 、C 、D 的抛物线为2y mx nx =+,则1203 3.m m ⎧-=⎪⎨=-⎪⎩, 解之,得1m n=⎧⎪⎨=⎪⎩,∴所求抛物线的表达式为2.y x =+ ··············································· (10分)25.解:(1)如图①,正方形E F P N ''''即为所求. ····································· (2分)(2)设正方形E F P N''''的边长为x . ABC △为正三角形,.3AE BF x ''∴==3x x ∴=+ ·········································································(5分)x ∴=,即 3.x = ··························································· (6分)(没有分母有理化也对,x ≈2.20也正确)(3)如图②,连接NE EP PN ,,,则90NEP =∠.设正方形DEMN 、正方形EFPH 的边长分别为m 、()n m n ≥,它们的面积和为S ,则,.NE PE ==2222222222().PN NE PE m n m n ∴=+=+=+2221.2S m n PN ∴=+= ······································································ (8分) 延长PH 交ND 于点G ,则PG ND ⊥.在Rt PGN △中,22222()().PN PG GN m n m n =+=++-33 3.33m m n n m n +++=+=,即 2i)()0.m n m n S ∴-==当时,即时,最小2193.22S ∴=⨯=最小 ········································································· (10分) 2ii)()m n -当最大时,S 最大.即当m 最大且n 最小时,S 最大.3m n +=,由(2)知, 3.m =最大333)6n m ∴=-=-=-最小最大21[9()]2S m n ∴=+-最大最大最小=21[936]2+-+=99- ·········································································· (12分) (S 最大≈5.47也正确)。

2012年陕西省中考数学试卷

2012年陕西省中考数学试卷

2012年陕西省中考数学试卷一、选择题(共10个小题,共计30分,每小题只有一个选项是符合题意的) 1.( 3分)如果零上5C 记作+5C,那么零下7C 可记作( ) A .- 7CB . +7°CC. +12°CD .- 12°C2. (3分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是 4. (3分)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级 三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低6. (3分)在下列四组点中,可以在同一个正比例函数图象上的一组点是 ()分数(分) 89 92 95 96 97 评委(位)12211分,则余下的分数的平均分是( )A . 92 分B . 93 分 C. 94 分D . 95 分SxEDC : S\ABC =(B . 3. (3分)计算(-5a 3) 2的结果是(5 6 A .- 10a 5B . 10a 6C. ___ ) 5c.- 25a 5D . 25a 6BE 是两条中线,则 5. (3 分)如图,△ ABC 中,AD C. 1: 3D . 1: 4第1页(共22页)A . (2,- 3), (-4, 6) C. (- 2, - 3), (4,- 6)7. (3分)如图,在菱形ABCD 中,对角线AC 与BD 交于点O , 0E 丄AB ,垂足为 E ,若/ ADC=130,则/ AOE 的大小为()8. (3分)在同一平面直角坐标系中,若一次函数 y=- x+3与y=3x- 5的图象交于点M ,则点M 的坐标为( ) A . (- 1 , 4)B . (- 1, 2)C. (2,- 1)D . (2, 1)9. (3分)如图,在半径为5的。

O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8则0P 的长为( )10. (3分)在平面直角坐标系中,将抛物线 y 殳-x - 6向上(下)或向左(右) 平移m 个单位,使平移后的抛物线恰好经过原点,则| m|的最小值为( )二、填空题(共6小题,每小题3分共18分)11. __________________________________________ (3 分)计算:2cos45 - 3_+ (1 - _) 0= ________________________________ .12. ___________________________________ (3 分)分解因式:x 3y - 2x 2y 2+xf= _____________________________________ .13. (3分)请从以下两个小题中任选一个作答,若多选,则按所选的第一题计 分. A 、在平面中,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则 线段AB 扫过的面积为 ___________ .B. (-2, 3),C. 55°D . 50A . 1B . 2C. 3 D . 665°B、用科学记算器计算:_sin69显 _______ (精确到0.01).14. ______________________________________ (3分)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7 元,乙饮料每瓶4元,则小宏最多能买________________________________________ 瓶甲饮料.15.(3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y= -2x+6的图象无公共点,则这个反比例函数的表达式是________ (只写出符合条件的一个即可).16. (3分)如图,从点A (0,2)发出一束光,经x轴反射,过点B (4, 3),则这束光从点A到点B所经过的路径的长为________ .三、解答题(共9小题,计72分,解答应写出过程)仃.(5分)化简: ----- ------ ------- .18. (6分)如图,在?ABCD中,/ ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF(2)当AB=3, BC=5时,求一的值.19. (7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计.结果如图:一周內谨校学生从團书筑僧出吝类囲书数量情况统计图(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应的确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20. (8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据sin25鼻0.4226, cos25°~0.9063, tan25 °tan65 2.1445)21. (8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/ 立方米. (1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?22. (8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和为7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的小立方块,点数和:两枚骰子朝上的点数之和)23. (8分)如图,PA PB分别与。

2012年陕西省初中毕业学业考试副题

2012年陕西省初中毕业学业考试副题

2012年陕西省初中毕业学业考试(副题)数学试卷一、选择题(共10小题,每小题3分,共30分。

每个小题只有一个选项符合题意) 1. 23-的绝对值是( )A.23 B. 23- C.32D. 32-2. 下面几何体中,三视图(主视图、左视图、俯视图)完全相同的一个几何体是( )A. 长方体B.圆柱C. 圆锥D.球3. 我省某地今年6月份连续七天的日最高气温分别为29℃,31℃,31℃,29℃,31℃,33℃,33℃.则这七天的日最高气温的众数和众位数分别是( )A. 31℃,29℃B.31℃,31℃C.31℃,33℃D.33℃,33℃4.如图1,如果两条平行线a ,b 被直线l 所截,且α=55°那么β=( ) A. 95° B.105° C.125°D.145°5. 若正比例函数12yx=-的图象经过点P (m ,1)则m 的值是( ) A.-2 B. 12- C.12D. 26. 某商店换季促销,将一件标价为240元的T 恤打8折售出,获利20%,则这件T 恤的成本为 ( ) A. 144元 B.160元 C.192元 D. 200元7. 二次函数2(0)yax bx c a =++≠的图象如图2所示。

则下列结论正确的是A.a>0, b>0B. a>0, b<0C. a<0, b>0D. a<0, b<08. 如果M (x 1,y 1),N (x 2,y 2)是一次函数38y x =-图象上的两点,如果x 1+x 2=-3,那么y 1+y 2=( )A.-25B. -17C. -9D. 1 9. 如图3,在Rt △ABC 中,∠BAC=90°,AB=3,AC=4.若BD 是△ABC 的角平分线,则点D 到BC 边的距离为( )A.2B. 1C.2D.3210. 如图4,经过原点O 的⊙C 分别与x 轴、y 轴交于点A 、B ,P 为 OBA 上一点。

2012年陕西省中考数学试卷及答案

2012年陕西省中考数学试卷及答案

89
92
95
96
97
评委(位)
1
2
2
1
1
A. 92 分
B.93 分
C. 94 分
D. 95 分
5.如图,在 ABC 中, AD , BE 是两条中线,则 S EDC : S ABC (

A. 1∶2
B.2∶ 3
C. 1∶ 3
D. 1∶4
6.下列四组点中,可以在同一个正比例函数图象上的一组点是(

A.( 2.-3 ),(-4 , 6)
22.(本题满分 8 分) 小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰
子摞在一起,则重掷) ,点数和大的获胜;点数和相同为平局.
依据上述规则,解答下列问题:
( 1)随机掷两枚骰子一次,用列表法求点数和为
2 的概率;
( 2)小峰先随机掷两枚骰子一次,点数和是
B.( -2 ,3),( 4, 6)
C.( -2, -3 ),( 4, -6)
D .( 2, 3),( -4 , 6)
7.如图,在菱形 A B C D 中,对角线 AC 与 B D 相交于点 O ,O E A B ,垂足为 E ,若 ADC =130 ,
则 AO E 的大小为(

A. 75°
B.65°
2
个单位,恰好使得抛物线经过原点,且移动距离最小.选
B.
11、【答案】 -5 2 +1
【解析】原式 = 2
2 -3 2 2 +1=-5 2 +1
2
2
12、【答案】 xy x -y
【解析】
3
22
x y -2x y

2012年陕西省中考数学试卷-答案

2012年陕西省中考数学试卷-答案

【提示】作OM AB ⊥于M ,ON CD ⊥于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长. 【考点】垂径定理,勾股定理. 10.【答案】B
【解析】解:当0x =时,6y =-,故函数图象与y 轴交于点(0,6)C -,当0y =时,260x x --=,即(2)
x +(3)0x -=,解得2x =-或3x =,即(2,0)A -,(3,0)B ;
由图可知,函数图象至少向右平移2个单位恰好过原点,故||m 的最小值为2.故选B.
【提示】计算出函数与x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向. 【考点】二次函数图象与几何变换.
B 卷
B:2.47
【解析】解:A.
1
故答案为:41.
补全图形如图所示:
∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207米.
1234567 2345678 3456789 45678910 567891011 6789101112
=;
∴OM AN。

陕西省2012年中考数学试卷(解析版)

陕西省2012年中考数学试卷(解析版)

2012陕西省中考数学试题及解析第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC ED C S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2, 3),(-4,6)7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1) 9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D . 6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:(02cos 45=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分.A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 .B .用科学计算器计算:69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可). 16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b--⎛⎫÷⎪+-+⎝⎭-. 18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =;(2)当35AB BC ==,时,求AEAC的值.19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65︒方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45︒方向(点、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与A B C湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:,,,sin250.4226cos250.9063tan250.4663sin650.9063︒≈︒≈︒≈︒≈,,)cos650.4226tan65 2.1445︒≈︒≈21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB上,且//OM AP ,MN AP ⊥,垂足为N . (1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长. 24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由. 25.(本题满分12分)如图,正三角形ABC 的边长为.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''E F P N ,且使正方形''''E F P N 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''E F P N 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数,小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比=∆∆ABC ED C S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =,可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A .7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H .在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B .11、【答案】【解析】原式=2⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π 【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯. B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACO Rt BCE ∆∆ .所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得ACBC=+AB AC BC 方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=B C BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4B D,由勾股定理,得AB=AB AB17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+--=22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a a b a b a b ---=2aa b-.18、【答案】解:(1)如图,在ABCD 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠ ,,∴△AEF ∽△C EB , ∴35AE AF EC BC ==, ∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本).20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中,设AC x =,则sin 65AD x =︒,c o s 65B D C D x ==︒.∴100cos65sin 65x x +︒=︒. ∴100207sin 65cos 65x =≈︒-︒(米).∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米). ∴该山山顶处的空气含氧量约为260.6克/立方米.22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和为2的结果只有一种.∴P (点数和为2)= 136. (2)由右表可以看出,点数和大于7的结果有15种.∴P (小轩胜小峰)= 1536=512.23、【答案】解:(1)证明:如图,连接OA ,则OA A P ⊥.∵MN AP ⊥, ∴//MN OA . ∵//OM AP , ∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .骰子11 2 34 5 6 7 2 3 45 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9105 6 7 8 9 10 11 67891011 12在Rt MNP ∆中,有()222=3+9-x x . ∴=5x .即=5OM .24、【答案】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形, ∴该抛物线的顶点224b b ⎛⎫⎪⎝⎭,满足2=24bb ()>0b .∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形.又∵=AO AB ,∴△O A B 为等边三角形.作AE OB ⊥,垂足为E .∴=AE .∴()2'''>042b b b .∴b .∴)A,()B .∴()C,()D .设过点O C D 、、三点的抛物线2=+y mx nx ,则12=03=-3.m m ⎧⎪⎨⎪⎩,解之,得=1m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=y x .25、【答案】解:(1)如图①,正方形''''E F P N 即为所求.(2)设正方形''''E F P N 的边长为x .∵△ABC 为正三角形,∴'='=3AE BF x .∴+3x x .∴x ,即x .(没有分母有理化也对, 2.20x ≈也正确) (3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥,它们的面积和为S ,则NE ,PE .∴()2222222=+=2+2=2+PN NE PE m n m n .∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥. 在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵+++33m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小.∴219=3=22S ⨯最小. ⅱ)当()2-m n 最大时,S 最大.即当m 最大且n 最小时,S 最大.∵+=3m n ,由(2)知,m 最大.∴()=3-=3-n m 最小最大∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小(21=9+2⎡⎤⎢⎥⎣⎦.。

2012年陕西省中考数学试题(含答案)

2012年陕西省中考数学试题(含答案)

2012陕西省中考数学试题及解析第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a −的结果是( )A .510a −B .610aC .525a −D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位) 12211 A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 8.在同一平面直角坐标系中,若一次函数533−=+−=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .2410.在平面直角坐标系中,将抛物线62−−=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:()02cos 45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 . B .用科学计算器计算:7sin 69︒≈ (精确到0.01). 14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b −−⎛⎫÷⎪+−+⎝⎭-.18.(本题满分6分)如图,在ABCD Y 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当35AB BC ==,时,求AEAC的值.某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分) 如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos 250.9063tan 250.4663sin 650.9063︒≈︒≈︒≈︒≈,,,, cos650.4226tan 65 2.1445︒≈︒≈,)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分)如图,PA PB 、分别与O e 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N . (1)求证:=OM AN ;(2)若O e 的半径=3R ,=9PA ,求OM 的长.如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形; (2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x b x b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由. 25.(本题满分12分) 如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A . 7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+−=−−=x x x x y ,可知其与x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B . 11、【答案】-52+1 【解析】原式2=2-322+1=-52+12⨯⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯.B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【答案】41【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD , 过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACO Rt BCE ∆∆:.所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得2=415AC ,3=415BC ,所以=+=41AB AC BC . 方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD ,由勾股定理,得'=41AB .所以='=41AB AB .17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b−−−++⋅+−− =22222()(2)a ab ab b ab b a b a b −−+−−−−=224()(2)a aba b a b −−−=2(2)()(2)a ab a b a b −−−=2aa b−.18、【答案】解:(1)如图,在ABCD Y 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠Q ,, ∴△AEF ∽△CEB ,∴35AE AF EC BC ==, ∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, cos65BD CD x ==︒.∴100cos65sin 65x x +︒=︒.∴100207sin 65cos 65x =≈︒−︒(米).∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=−⎪⎨⎪=⎩,∴4299125y x =−+. (2)当1200x =时,41200299260.6125y =−⨯+=(克/立方米). ∴该山山顶处的空气含氧量约为260.6克/立方米.22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种.∴P (点数和为2)= 136.(2)由右表可以看出,点数和大于7的结果 有15种.∴P (小轩胜小峰)= 1536=512.23、【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM .骰子2骰子11 2 3 4 5 61 23 4 5 6 7 23 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9105 6 7 8 910 11678910 11 1224、【答案】解:(1)等腰 (2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形, ∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b . ∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形.又∵=AO AB ,∴△OAB 为等边三角形.作AE OB ⊥,垂足为E .∴=AE 3OE .∴()2''=3'>042b b b ⋅. ∴'=23b .∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,. 设过点O C D 、、三点的抛物线2=+y mx nx ,则 12-23=03-3=-3.m n m n ⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩, ∴所求抛物线的表达式为2=+23y x x .25、【答案】解:(1)如图①,正方形''''EFPN 即为所求. (2)设正方形''''EFPN 的边长为x .∵△ABC 为正三角形,∴3'='=3AE BF x . ∴23+=3+33x x . ∴9+33=23+3x ,即=33-3x .(没有分母有理化也对, 2.20x ≈也正确) (3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥, 它们的面积和为S ,则=2NE m ,=2PE n .∴()2222222=+=2+2=2+PN NE PE m n m n. ∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥. 在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵33+++=3+333m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小.∴219=3=22S ⨯最小. ⅱ)当()2-m n 最大时,S 最大.即当m 最大且n 最小时,S 最大.∵+=3m n ,由(2)知,=33-3m 最大.∴()=3-=3-33-3=6-33n m 最小最大.∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小()21=9+33-3-6+33=99-5432⎡⎤⎢⎥⎣⎦.。

2012年陕西中考数学真题解析版

2012年陕西中考数学真题解析版

2012年陕西中考数学真题解析版1 / 15绝密★启用前注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( )A .-7 ℃B .+7 ℃C .+12 ℃D .-12 ℃2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a 4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( )A .(2.-3),(-4,6)B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2, 3),(-4,6)7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )试卷第2页,总5页A .75°B .65°C .55°D .50°8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( )A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C. D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D .62012年陕西中考数学真题解析版3 / 15第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.计算:(02cos45=︒ . 12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 .B 69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可). 16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题17.化简:22a b b a b a b a b a b--⎛⎫÷ ⎪+-+⎝⎭-. 18.如图,在ABCD 中,ABC ∠的平分线BF 分别与AC、AD 交于点E 、F .(1)求证:AB AF =;(2)当35AB BC ==,时,求AE AC的值.试卷第4页,总5页19.某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?(无原图)20.如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos250.9063tan 250.4663sin650.9063︒≈︒≈︒≈︒≈,,,,cos650.4226tan65 2.1445︒≈︒≈,)21.科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?22.小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.)23.如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N .(1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长24.如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点2012年陕西中考数学真题解析版5 / 15和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.25.如图,正三角形ABC的边长为.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法); (2)求(1)中作出的正方形''''EFPN 的边长;(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.(无原图)2012年陕西中考数学真题解析版1 / 15 参考答案1.A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数,小于零摄氏度为负数.故选A2.C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下面两个正方体重叠,从而看到一个正方形,故选C .3.D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D4.C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数的平均数为94分.故选C5.D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比=∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D 6.A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =,可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A .7.B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8.D答案第2页,总9页【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D9.C【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB于点H .在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证OPH OPE ∆≅∆,所以OP =23,选C10.B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B .11.【解析】原式=22⨯⨯ 12.()2-xy x y 【解析】()()2322322-2-2-x y x y xy xy x xy yxy x y +=+= 13.A .23πB .2.47 【解析】A .将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯ B .略14.3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得()7+410-50x x ≤ 解得133x ≤所以小宏最多能买3瓶甲饮料. 15.18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=k y x ()0k ≠. 由==-2+6k y x y x ⎧⎪⎨⎪⎩,,得22-6+=0x x k .2012年陕西中考数学真题解析版3 / 15因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解.所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k 16【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠. 所以Rt ACO Rt BCE ∆∆.所以=AO BE CO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得ACBC=+AB AC BC 方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'BD y ⊥轴于点D .由反射的性质,知'A C B ,,这三点在同一条直线上.再由对称的性质,知'=BC BC .则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD,由勾股定理,得AB=AB AB17.2a a b- 【解析】解:原式=(2)()()()()2a b a b b a b a b a b a b a b---++⋅+-- =22222()(2)a ab ab b ab b a b a b --+---- =224()(2)a ab a b a b --- =2(2)()(2)a ab a b a b --- =2a a b- 18.见解析【解析】解:(1)如图,在ABCD 中,//AD BC ,∴23∠=∠.∵BF是ABC∠的平分线,∴12∠=∠.∴13∠=∠.∴AB AF=.(2)23AEF CEB∠=∠∠=∠,,∴△AEF∽△CEB,∴35 AE AFEC BC==,∴38 AEAC=.19.(1)(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类 240(本),科普类: 210(本),文学类: 60(本),其它类: 90(本).【解析】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本),文学类:600×10%=60(本),其它类:600×15%=90(本).20.207米【解析】解:如图,作CD AB⊥交AB的延长线于点D,答案第4页,总9页2012年陕西中考数学真题解析版则4565BCD ACD ∠=︒∠=︒,.在Rt △ACD 和Rt △BCD 中,设AC x =,则sin 65AD x =︒,cos65BD CD x ==︒.∴100cos65sin65x x +︒=︒.∴100207sin 65cos65x =≈︒-︒(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米21.(1)4299125y x =-+ (2)260.6克/立方米 【解析】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩ 解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米). ∴该山山顶处的空气含氧量约为260.6克/立方米.22.(1)136(2)512【解析】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和为2的结果只有一种.∴P (点数和为2)=136. (2)由右表可以看出,点数和大于7的结果有15种.∴P (小轩胜小峰)= 1536=512. 23.(1)见解析(2)5【解析】解:(1)证明:如图,连接OA ,则OA AP ⊥.∵MN AP ⊥,∴//MN OA .∵//OM AP ,∴四边形ANMO 是矩形.∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP ,∴=OB MN ,=OMB NPM ∠∠.∴Rt OBM Rt MNP ∆≅∆.∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM .24.(1)等腰(2)=2b (3)存在,2=y x【解析】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,2012年陕西中考数学真题解析版∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b . ∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形.又∵=AO AB ,∴△OAB 为等边三角形.作AE OB ⊥,垂足为E .∴=AE .∴()2'''>042b b b .∴b .∴)A,()B .∴()C,()D . 设过点O C D 、、三点的抛物线2=+y mx nx ,则12=03=-3.m m ⎧⎪⎨⎪⎩,解之,得=1m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=y x .25.(1)见解析(2)(3)9=2S 最小,S 最大【解析】解:(1)如图①,正方形''''EFPN 即为所求.(2)设正方形''''EFPN 的边长为x .∵△ABC 为正三角形,∴'=AE BF x .∴x x∴x ,即x .(没有分母有理化也对, 2.20x ≈也正确) (3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥,它们的面积和为S ,则NE ,PE .∴()2222222=+=2+2=2+PN NE PE m n m n . ∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥.在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .2012年陕西中考数学真题解析版++m n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小.∴219=3=22S ⨯最小. ⅱ)当()2-m n 最大时,S 最大.即当m 最大且n 最小时,S 最大.∵+=3m n ,由(2)知,m 最大.∴()=3-=3-n m 最小最大.∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小(21=9+2⎡⎤⎢⎥⎣⎦。

2012陕西省中考数学

2012陕西省中考数学

2012年陕西省中考数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位)1221 1A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6)7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( ) A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:()2cos 45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 . B .用科学计算器计算:7sin 69︒≈ (精确到0.01). 14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b--⎛⎫÷⎪+-+⎝⎭-. 18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =;(2)当35AB BC ==,时,求AEAC的值.某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图. 请你根据统计图中的信息,解答下列问题: (1)补全条形统计图和扇形统计图; (2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米). (参考数据:sin 250.4226cos250.9063tan 250.4663sin650.9063︒≈︒≈︒≈︒≈,,,, cos650.4226tan65 2.1445︒≈︒≈,)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分) 如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ,垂足为N . (1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长.如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形; (2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由. 25.(本题满分12分) 如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长;(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A .7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与 x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B . 11、【答案】-52+1 【解析】原式2=2-322+1=-52+12⨯⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯. B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【答案】41【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACORt BCE ∆∆.所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得2=415AC ,3=415BC ,所以=+=41AB AC BC .方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD ,由勾股定理,得'=41AB .所以='=41AB AB .17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+--=22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a ab a b a b ---=2aa b-. 18、【答案】解:(1)如图,在ABCD 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠,, ∴△AEF ∽△CEB ,∴35AE AF EC BC ==, ∴38AE AC =.19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, c o s 65B D C D x ==︒. ∴100cos65sin65x x +︒=︒.∴100207sin 65cos65x =≈︒-︒(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米).∴该山山顶处的空气含氧量约为260.6克/立方米. 22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:骰子2 骰子11 2 3 4 5 61 2 3 4 5 6 7∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,.设过点O C D 、、三点的抛物线2=+y mx nx ,则12-23=03-3=-3.m n m n ⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=+23y x x .25、【答案】解:(1)如图①,正方形''''EFPN 即为所求. (2)设正方形''''EFPN 的边长为x . ∵△ABC 为正三角形, ∴3'='=3AE BF x . ∴23+=3+33x x . ∴9+33=23+3x ,即=33-3x .(没有分母有理化也对,2.20x ≈也正确)(3)如图②,连接NE EP PN ,,,则=90NEP ∠︒.设正方形DEMN 、正方形EFPH 的边长分别为m n 、()m n ≥, 它们的面积和为S ,则=2NE m ,=2PE n . ∴()2222222=+=2+2=2+PN NE PE m n m n .∴2221=2S m n PN =+. 延长PH 交ND 于点G ,则PG ND ⊥.在Rt PGN ∆中,()()22222=+=++-PN PG GN m n m n .∵33+++=3+333m m n n ,即+=3m n . ∴ⅰ)当()2-=0m n 时,即=m n 时,S 最小. ∴219=3=S ⨯.3 4 5 6 7 8 9 4 5 6 7 8 9105 6 7 8 910 11678910 11 12ⅱ)当()2-m n 最大时,S 最大. 即当m 最大且n 最小时,S 最大. ∵+=3m n ,由(2)知,=33-3m 最大. ∴()=3-=3-33-3=6-33n m 最小最大. ∴()21=9+-2S m n ⎡⎤⎣⎦最大最大最小()21=9+33-3-6+33=99-5432⎡⎤⎢⎥⎣⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、只要你认真,你一定能算对!
1、直接写得数:
0.25×4= 0.56÷7= 500×0.02= 24÷2.4= 0.99+0.1=
7.07÷0.01= 0.12= 0.032 = 1.2x×2x= 2-0.9+0.1=
2、列竖式计算:
4.7×0.59 4÷15 7.8÷2.2
(得数精确到十分位)(得数保留两位小数)(商用循环小数表示)
3、计算下面各题,能简算的要简算。

12.5×4.5+4.5×12.5+12.5 1.2×98 2.4×1.25×0.3
(20-0.8×9) × 5.7 0.8×13-3.12+5.28 118-(11.4-12.5×0.8)
50×(6.7×0.02) (0.25+2.5+25)×0.4 3.5×1.02+35×0.098
4、解方程。

1.6x-9=3.8 4(0.9+x)=4.8 (x-1.9)÷5=1.1 0.4×20-0.4x=6
二、我来填一填:
1、用字母表示乘法分配律:
2、50平方米80平方分米 =()平方米0.4小时= ()分
3、57.95×32.7的积有()位小数。

18.9÷0.04 =()÷4
4、63.54646……可以记作( ),保留两位小数是( )。

5、从一个方向观察长方体,最多可以看到()个面。

6、在中,无限小数有( ),有限小数有( )。

7、小明用20元钱,买了X支铅笔,每支3.6元,还剩()元。

8、3.6×1.9+0.36×81=3.6×(1.9+ )
9、一个数比X的3.7倍少3,求这个数,用含有字母的式子表示是( )。

当X=6时,式子的值是( )。

新课标第一网
10、在○里填上“>”“<”或“=”。

4.27×0.07○4.27 4.56÷0.99○4.56 3.87×0.01○3.87÷0.01
9.61○9.61÷1.010.01×1○0.01 5.84×0.8○5.84×0
11、一个小数的小数点向左移动一位后,与原来的数的和是7.15,那么它们的积是( )。

三、我会分辨对错。

(对的打“√”,错的打“×” )
1、一个数(0除外)除以小于1的数,商一定比被除数大。

……………()
2、14.5656是循环小数。

……………………………………………………()
3、一个足球,无论从哪个方向观察一定是圆形。

…………………………()
4、0.28÷0.3=0.9……1。

……………………………………………………()
四、我来填一填。

(填序号)
1、把10.78的小数点去掉,原数就()倍
①扩大到10倍②缩小到③扩大到100倍
2、一个三位小数,保留两位小数后是7.68,原小数最小是()
① 7.675 ②7.684 ③7.679
3、下面式子中,()是方程。

① 5X+3 ② 1.5X+27= 36 ③ 3X +9 < 12
4、要使a²>2a ,那么a应是()。

①大于2 ②小于2 ③任意的自然数
五、开心动手。

(1)请你连一连:
从上面看从左面看从右面看
(2)请你画出从不同方向看到的画形。

上面左面
六、文字题:
(1)48减去1.5与4的积,差是多少?(2)32.76除以2.4与3.9的和,商是多少?
(3)一个数与2.5的积加15.6,和是20.6,求这个数。

(列方程解)
七、我会解决下面这些问题。

(一)只列式不计算。

1、一艘轮船3小时航行94.2千米,,平均航行1千米需要多少小时?
列式:
2、市公交公司的5辆汽车一星期节约汽油42千克,平均每辆汽车每天可以节约汽油多少千克?
列式:
3、面粉每千克0.74元,大米每千克0.62元,买面粉和大米各15千克,共付出多少元钱?
列式:
(二)解答。

1、一只蝴蝶0.4小时飞行3千米,蜜蜂的速度是它飞行速度的2.4倍,蜜蜂的速度是多少千米?
2、教室长8米,宽6.3米,用边长为8分米的正方形方砖铺地,一共要用这种方砖多少块?(得数保留整数)
3、一辆汽车上午行2.5小时,平均每小时行45千米。

下午共行了139千米。

这辆汽车一天共行
了多少千米?
4、五(3)班要买8本笔记本和8枝钢笔作为奖品奖励学习进步的同学。

买笔记本用了102.4元,买钢笔用了28元。

一本笔记本比一枝钢笔贵多少元?
5、国庆节小明一家人到狐尾山走新建的步行道。

从山底到山顶大约有2000米,他们上山用了
18分钟,下山用了14分钟。

小明一家人往返这个步行道每分钟是多少米?
6、新华农场修一条长7.5千米的水渠,已经修了4天,每天修0.65千米,剩下的要7天修完。

平均每天修多少千米?(用方程解)
7、工厂里有810吨煤,在过去的25天里已经烧了187.5吨。

照这样计算,剩下的煤还可以烧多
少天?
8、华联百货店搞庆典活动。

买满190元减60元,不足190元的,不能减。

小红的妈妈想买一双原价398元的鞋子,现在只需花多少元?
9、李双从甲地出发,先乘船,每小时航行24千米,5小时后改乘汽车又行驶了2.5小时到达乙地,乘汽车比乘船多行驶了40千米。

汽车每小时行驶多少千米?(先用算术方法解,再用方程解)10、长106厘米、宽65厘米的长方形彩纸剪小旗。

小旗是边长是20厘米的正方形。

每张彩纸最多能剪多少面小旗?
11、甲乙两辆汽车同时从东西两地相对开出,甲车每小时行55.6千米,乙车每小时行54.8千米,两车在离中点处5.2千米处相遇.求相遇时甲车行了多少千米?
【课外拓展】热胀冷缩
一根金属棒在0°C时的长度是q米,温度每升高1°C,它就伸长p米。

当温度为t°C时,金属棒
的长度L可用公式L=pt+q计算。

已测得当t=100°C时,L=2.002米;当t=500°C时,L=2.01米。

(1)求p、q的值。

(2)若这根金属棒加热后的长度伸长到2.016米,则此时这根金属棒的温度是多少?。

相关文档
最新文档