2017年春季学期新版新人教版八年级数学下学期18.2.1、矩形同步练习10
人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】
第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。
人教版八年级下册数学 矩形 同步检测
18.2.1矩形同步检测一、选择题1.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD =4,则AC的长是( )A. 4B. 8C. 43D. 832.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C 与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是()A. 5B. 3C. 365D. 1853.矩形具有而平行四边形不一定具有的性质是()A. 对边平行B. 对边相等C. 对角线互相平分D. 对角线相等4.如图所示,矩形ABCD的对角线交于O,AE⊥BD于E,∠1:∠2=2:1,则∠1的度数为().A. 22.5°B. 45°C. 30°D. 60°5.E为矩形ABCD的边CD上的一点,AB=AE=4,BC=2,则∠BEC 是().A. 15°B. 30°C. 60°D. 75°6.一个矩形和一个平行四边形的边分别相等,若矩形面积为这个平行四边形的面积的2倍,则平行四边形的锐角的度数为().A. 15°B. 30°C. 45°D. 60°7.已知E、F分别是矩形ABCD的对边BC和AD上的点,且BE=1BC,3 AD,连结AC、EF,那么().AF=23A. AC平分EF,但EF不平分ACB. AC与EF互相平分C. EF平分AC,但AC不平分EFD. AC与EF不会互相平分8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E 是AB的中点,CD=DE=a,则AB的长为( )A. 2aB. 22aC. 3aD. 43a39.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E、F分别是AB、AC边的中点,若AB=8,AC=6,则△DEF的周长为()A. 12B. 13C. 14D. 1510.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A. 3.5B. 3C. 4D. 4.5二、填空题11.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=8,AC=6,则四边形AEDF的周长为.12.如图,90∆中,5,6∆的顶∠=︒,已知ABCMON===, ABCAC BC AB点,A B分别在边,OM ON上,当点B在边ON上运动时,点A随之在边OM上运动,ABC∆的形状保持不变,在运动过程中,点C到点O的最大距离为____________.13.如图,将长方形纸片ABCD折叠,折痕为EF,若AB=2,BC=3,则阴影部分的周长为____________.14.如图,矩形ABCD中,对角线AC的中点为O,过O作EF⊥AC,分别交AB、DC于E、F,若AB=4,BC=2,那么线段EF的长为_____.15.如图,矩形ABCD内有一点E,连接AE,DE,CE,使AD=ED=EC,若∠ADE=20°,则∠AEC=____.16.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC 上一点,且AB=BE,∠1=15°,则∠2=________°.三、解答题17.已知:如图,在△ABC中,AD BC⊥,⊥,垂足为点D,BE AC垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED .(1)猜想△MED 的形状,并说明理由.(2)若4AB =,30DBE ∠=︒,求△MED 的面积.18.如图,已知矩形ABCD 的周长为20,AB =4,点E 在BC 上,点F 在CD 上,且AE ⊥EF ,AE =EF .求CF 的长.19.如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE=DC ,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.20.如图,在矩形ABCD中,连接对角线AC,BD,延长BC至点E,使BC=CE,连接DE.求证:DE=AC.21.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F 分别是AO、AD的中点,若AB=60cm,BC=80cm,则△AEF的周长是多少?22.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=C,试猜想a,b,c之间的一种关系,并给予证明.参考答案1.B【解析】因为∠AOD=60°,AD=4,,矩形ABCD,AC=BD, ,∠BDA=60°,所以AO=DO=AD所以AC=8.故选B.2.D【解析】过点G作GH⊥AD于点H,由题意知,AF=FC,AB=CD=AG=4,BC=AD=8,在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8﹣AF)2=AF2,解得AF=5,∵∠BAF+∠FAE=∠FAE+∠EAG=90°,∴∠BAF=∠EAG,∵∠B=∠AGE=90°,AB=AG,∴△BAF≌△GAE,∴AE=AF=5,ED=GE=3,∵S△GAE=12AG•GE=12AE•GH∴GH=125,∴S△GED= 12ED•GH= 12×3×125= 185,故选D.3.D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.故选D.4.B【解析】∵四边形ABCD为矩形,AE⊥BD,∴∠2+∠ABD=∠ADB+∠ABD =∠EAD+∠ADB=90°,∴∠ADB=∠2,∠1+∠OAD+∠ADB=90°,∵四边形ABCD是矩形,∴AO=OD,∴∠OAD=∠ADB=∠2,∴∠1+2∠2=90°,∵∠1:∠2=2:1,∴2∠2=∠1,∴2∠1=90°,∴∠1=45°,故选B.5.D【解析】∵在Rt△ADE中,AD=2,AE=4,∴∠AED=30°,∵AB∥CD,∴∠EAB=∠AED=30°,∵AB=AE,∴∠AEB=75°,∴∠BEC=180°-∠AED-∠AEB=180°-30°-75°=75°.故选D.【点睛】本题考查了矩形的性质,含30度角的直角三角形等,熟记矩形的性质和含30度角的直角三角形的性质是解题的关键.6.B【解析】如图,矩形ABCD与平行四边形BCFG中,BG=AB,过点G作GH⊥BC,垂足为H,∵S矩形ABCD=BC·AB=2S平行四边形BCFG=2BC·GH,∴BG=2GH,∵△BGH是Rt△,∠BHG=90°,∴∠GBH=30°,故选B.【点睛】本题考查了矩形的面积、平行四边形的面积以及直角三角形中,30度角所对直角边等于斜边的运用,根据已知条件推导出平行四边形的高与一边的关系是解题的关键.7.B【解析】∵四边形ABCD 是矩形,∴AD=BC ,AD//BC ,∴∠DAC=∠ACB ,∵BE=13BC ,AF=23AD ,∴AF=CE , 又∵∠AOF=∠COE ,∴△AOF ≌△COE ,∴AO=CO ,FO=EO ,即AC 与EF 互相平分,故选B.8.B【解析】CD ⊥AB ,CD =DE =a,所以222a a a +=点E 是AB 的中点,CE=1,2AB 所以2故选B.9.A【解析】试题解析:在ABC 中,由勾股定理可得:22226810.BC AB AC +=+= AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,则:1115,4, 3.222EF BC DE AB DF AC ======DEF 的周长为:45312.DE EF DF ++=++= 点睛:直角三角形的性质:直角三角形斜边的中线等于斜边的一半.10.B【解析】试题分析:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°,∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3.故选B .11.14【解析】试题解析:∵AD 是高,90ADB ADC ∴∠=∠=,∵E 、F 分别是AB 、AC 的中点,11,22ED EB AB DF FC AC ∴====, ∵AB=8,AC=6,∴AE+ED=8,AF+DF=6,∴四边形AEDF 的周长为8+6=14,故答案为:14.12.7【解析】试题解析:如图,取AB 的中点D ,连接CD .∵AC=BC=5,AB=6.∵点D是AB边中点,∴BD=12AB=3,∴CD=2222=53BC BD--=4;连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12AB=3,∴OD+CD=3+4=7,即OC=7.13.10【解析】∵AE=ME,AB=MN,BF=NF,∴ME+DE+MN+CD+CF+NF=AE+DE+AB+CD+CF+BF=AD+AB+CD+BC=2+3+2+3=10.点睛:本题主要考查了折叠问题以及矩形的性质的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.5【解析】如图,连接CE ,∵点O 是矩形ABCD 对角线AC 的中点,EF ⊥AC ,∴AE=CE ,AO=12AC=222242255AB BC +=+==.设AE=x ,则CE=x ,BE=4x -,在Rt △BCE 中,由勾股定理可得:CE2=BE2+BC2,即()22242x x =-+, 解得: 2.5x =,即AE=2.5,∴在Rt △AOE 中,OE=()222252.552AE AO -=-=, ∵点O 是矩形ABCD 对角线AC 的中点,∴点O 是矩形的对称中心,∴EF=2OE=5.点睛:由矩形是关于对角线中点成中心对称的可得:EF=2OE ,AO=12AC ,从而把求EF 的长转化为求OE 的长,进一步转化为求AE 的长,连接CE ,由已知得到CE=AE ,就可把问题转化到Rt △CEB 中求CE 的长,这样利用勾股定理建立方程即可解得AE ,从而求得EF.15.120°(180°【解析】在△ADE中,∵∠ADE=20°,AD=ED,∴∠AED=12-20°)=80°,∵四边形ABCD是矩形,∠ADE=20°,∴∠EDC=90°-20°=70°,在△DEC中,∵ED=EC,∴∠DEC=180°-70°×2=40°,∴∠AEC=∠AED+∠DEC=80°+40°=120.16.30【解析】∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=180°−90°−45°=45°,∵∠1=15°,∴∠OCB=∠AEB−∠EAC=45°−15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB−∠AEB=30°,故答案为:30.点睛:本题考查了矩形的性质,等边三角形的性质,等腰三角形的性质的综合应用,能求出∠OEB和∠AEB的度数是解此题的关键. 17.(1)等腰三角形;(2【解析】试题分析:(1)由于AD⊥BC,BE⊥AC,所以△ADB和△ABE是直角三角形,又因为M为AB边的中点,所以ME=MD=1AB,2所以△MED为等腰三角形;(2)由条件知∠EMD=2∠DAC=60°,从而可得等腰三角形DME是边长为2的等边三角形可得到问题答案.试题解析:(1)猜测△MED 为等腰三角形,理由如下.由题意可得,DM 是RT △ABD 斜边上的中线, ∴1DM AB BM 2==,EM 是Rt ABE 斜边上的中线, ∴1EM AB BM 2==,∴DM EM =,∴MED 为等腰三角形.(2)由(1)中可得:DM BM =,EM BM =,∴MBD MDB ∠∠=,MBE MEB ∠∠=,∴AMD MBD MDB 2MDB ∠∠∠∠=+=,AME MBE MEB 2MBE ∠∠∠∠=+=, ∴()EMB AMD AME 2MBD MBE 2DBE ∠∠∠∠∠∠=-=-=,∴在等腰MED 中,EMD 2DBE 60∠∠==︒,∴MED 是等边三角形,边长为AB DM BM 22===, ∴DEM S =点睛:本题考查了直角三角形斜边上的中线等于斜边的一半的性质、等边三角形的判定和性质和等边三角形的面积计算,题目综合性很好.18.2cm【解析】试题分析:根据已知条件易证△ABE ≌△ECF ,根据全等三角形的性质可得CE=AB=4cm ,根据矩形的周长为20cm 可得2(4+4+BE )=20,B E=2cm ,再由全等三角形的性质可得CF=BE=2cm.试题解析:∵AE⊥EF,∴∠AFE=90°,∴∠AEB+∠BAE =90°,而∠AEB+∠CEF=90°,∴∠BAE=∠CEF,又∠ABE=∠ECF=90°,AE=EF,∴Rt△ABE≌Rt△ECF,∴CE=AB=4cm又∵矩形ABCD周长为20cm∴2(4+4+BE)=20∴BE=2cm∴CF=BE=2cm19.详见解析.【解析】由已知条件易得:∠DEA=∠ABF=90°,∠DAE=∠AFB,DE=DC=AB,从而可得:△ABF≌△DEA.试题解析:图中:△ABF≌△DEA,证明如下:∵四边形ABCD为矩形,∴∠B=90°,AB=DC.∵DE⊥AG于E,DE=DC,∴∠AED=90°=∠B,AB=DE.∵四边形ABCD为矩形,∴AD∥CB.∴∠DAE=∠AFB.,∴△ABF≌△DEA(AAS).20.证明见解析【解析】试题分析:证明CD是线段BE的垂直平分线,得到DB=DE,又因为DB=AC,则得证.试题解析:∵四边形ABCD是矩形,∴AC=BD,∠BCD=90°,∵BC=CE,∴DC是BE的中垂线,∴BD=DE,∴DE=AC.21.△AEF的周长是90cm.【解析】试题分析:先根据勾股定理求出AC的长,由矩形的性质可知:矩形的两条对角线相等,可得BD=AC,即可得OD的长,在△AOD中,根据E、F分别是AO、AD在中点,分别求出AE、EF、AF的长,即可得△AEF的周长.试题解析:在Rt△ABC中,=100cm,在矩形ABCD中BD=AC=100cm,AD=BC=80cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF=12OD=14BD=25,AF=12AD=12BC=40cm,AE=12AO=14AC=25,∴△AEF的周长=AE+AF+EF=90cm.22.(1)证明见解析;(2)a,b,c三者存在的关系是a+b>c,理由见解析.【解析】(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;(2)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.证明:(1)由题意得B′F=BF,∠B′FE=∠BFE,在矩形ABCD中,AD ∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B'EF,∴B′F=BE,∴B′E=BF;解:(2)答:a,b,c三者关系不唯一,有两种可能情况:(ⅰ)a,b,c三者存在的关系是a2+b2=c2.证明:连接BE,则BE=B′E,由(1)知B′E=BF=c,∴BE=c.在△ABE中,∠A=90°,∴AE2+AB2=BE2,∵AE=a,AB=b,∴a2+b2=c2;(ⅱ)a,b,c三者存在的关系是a+b>c.证明:连接BE,则BE=B′E.由(1)知B′E=BF=c,∴BE=c,在△ABE中,AE+AB>BE,∴a+b>c.“点睛”此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(2)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;第三,解题策略多样化在本题中得到了充分的体现.。
八年级数学下册第十八章平行四边形18.2矩形同步练习含解析新版新人教版
八年级数学下册第十八章平行四边形18.2矩形同步练习含解析新版新人教版18.2矩形测试卷一.选择题(每题3分,共30分)1.如图,矩形ABCD 中,AB=3,BC=5,过对角线交点O 作OE⊥AC 交AD 于点E ,则AE 的长是()A.1.6B.2.5C.3D.3.42.如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD3.如图,在△ABC 中,∠ACB=90°,CD⊥AB,垂足为D ,点E 是AB 的中点,CD=DE=a ,则AB 的长为()A.2aB.22aC.3aD.334 a4.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为()A.310 B.4C.4.5D.55.如图所示,把矩形OABC 放入平面直角坐标系中,点B 坐标为(10,8),点D 是OC 上一动点,将矩形OABC 沿直线BD 折叠,点C 恰好落在OA 上的点E 处,则点D 的坐标是()A.(59-,512) B.(512-,59) C.(516-,512)D.(-512,516)6.下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线,看是否相等B.测量两条对角线,看是否互相平分C.用曲尺测量门框的三个角,看是否都是直角D.用曲尺测量对角线,看是否相互垂直7.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cmB.52cmC.5.5cmD.1cm8.下列说法错误的是()A.矩形的对角线互相平分B.有一个角是直角的四边形是矩形C.矩形的对角线相等D.有一个角是直角的平行四边形叫做矩形9.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需要添加的条件是()A.AO=OCB.AC=BDC.AC⊥BDD.BD平分∠ABC10.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°二.填空题(每小题3分,共24分)11.如图,在□ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB,请你添加一个条件,使四边形DBCE是矩形.12.如图,四边形ABCD是矩形,则∠BAD=度,∠ABC=度,∠BCD=度,∠ADC=度.13.如图,在Rt△ABC中,∠ACB=90°,若AB=6,D是AB的中点,则CD= .14.如图,在Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=.15.如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.①∠DCF=21∠BCD;②EF=CF;③S △BEC =2S △CEF ;④∠DFE=3∠AEF.16.四边形ABCD 中,AD∥B C ,∠D=90°,如果再添加一个条件,可以得到四边形ABCD 是矩形,那么可添加的条件是 .(不再添加线或字母,写出一种情况即可)17.如图,在Rt△ABC 中,∠ABC=90°,AC=10cm ,点D 为AC 的中点,则BD= cm.18.如图,四边形ABCD 是平行四边形,若∠A= 90°,则四边形ABCD 是矩形.【矩形的判定(定义法)】有一个角是的四边形叫做矩形.解答题(共66分)19.如图,□ABCD 的四个内角的平分线分别交于点E ,G ,F ,H.求证:四边形EFGH 为矩形.20.如图,在梯形ABCD 中,AD=31BC ,E ,F 两点在边BC 上,AD∥BC,AB∥DE,AF∥DC. (1)求证:四边形AEFD 是平行四边形;(2)当AB=DC 时,求证:□AEFD 是矩形.21.如图,矩形ABCD的对角线AC、BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点.求证:四边形EFGH是矩形.22.如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.23.题干长与宽之比为2:1的矩形纸片称为标准纸,请思考并解答下列问题:(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸,请给予证明.(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB <BC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上的点F处,折痕为AE(如图2甲);第二步:沿过D点的直线折叠,使C点落在AD边上的点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.请你探究:矩形纸片ABCD是不是标准纸,请说明理由.(3)不难发现:将一张标准纸按如图3所示的方式一次又一次对开后,所得的矩形纸片都是标准纸,现有一张标准纸ABCD,AB=1,BC=2,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2018次对开后所得标准纸的周长.24.如图,O是矩形ABCD的对角线AC与BD的交点,E,F,G,H分别是AO,BO,CO,DO上的点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.解答题(共34分)25.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形,请加以证明.人教版八年级下册18.2矩形测试卷一.选择题1.答案:D.解:连结CE.设AE=x,则DE=5-x.∵四边形ABCD为矩形,∴AO=CO,∠CDE=90°.∵EO⊥AC,AO=CO,∴EO所在直线为线段AC的垂直平分线,∴EC=AE=x.∵∠CDE=90°,CD=3,DE=5-x,EC=x,∴(5-x)2+32= x2解得x=3.4.则AE的长为3.4.故选D.2.答案:D.解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形.∵AC=BD,四边形ABCD是平行四边形,∴四边形ABCD是矩形.故选D.3.答案:B.解:∵CD⊥AB,CD=DE=a,∴CE=2a.∵点E是AB的中点,∠ACB=90°,∴BE=AE=CE=2a,∴AB=22a.故选B.4.答案:D.解:∵四边形ABCD是矩形,∴BC=AD=6,AB=CD=9,∵点C′是AD边的中点,BC=6,∴DC′=3.由折叠的性质可知,C′F=CF.在Rt△C′DF中,DF2+DC′2=C′F2,即CF2+9=(9-CF)2,解得CF=5.故选D.5.答案:C.解:∵折痕BD是四边形DEBC的对称轴,∴在Rt△ABE中,BE=BC=10,AB=8,AE=BE2?AB2=6,∴OE=4,在Rt△DOE中,DO2+OE2=DE2,∵DE=CD,∴(8-CD)2+42=CD2,∴CD=5,则OD=OC-CD=8-5=3,∴D(0,3).故选C.6.答案:C.解:A,两条对角线相等的四边形可能是等腰梯形,故错误;B,两条对角线互相平分的四边形是平行四边形,故错误;C,利用三个角是直角的四边形是矩形,正确;D,两条对角线互相垂直的四边形可能是菱形,故错误.故选C.7.答案:A.解:根据题意易知最长折痕为长方形对角线的长,根据勾股定理可知,对角线的长为62+52=61≈7.8cm,因此折痕长不可能为8cm.故选A.8.答案:B.解:A.矩形的对角线互相平分,正确;B.直角梯形有一个角是直角,但不是矩形,错误;C.矩形的对角线相等,正确;D.有一个角是直角的平行四边形是矩形,正确.故选B.9.答案:B.解:∵四边形ABCD是平行四边形,∵添加AC=BD,∴四边形ABCD是矩形.故选B.10.答案:A.解:连接AC,如图:∵四边形ABCD是距形,∴AD∥BE,AC=BD,且∠BDA=∠DAC=38°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A.填空题11.答案:DC=EB(答案不唯一).解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∵AD=DE,∴DE=BC.∵DE∥BC,DE=BC,∴四边形DBCE为平行四边形.所以根据对角线相等的平行四边形是矩形,我们可以添加一个条件即DC=EB.12.答案:90;90;90;90.解:∵四边形ABCD是矩形,∴∠BAD=90度,∠ABC=90度,∠BCD=90度,∠ADC=90度.13.答案:3.解:∵D是AB的中点,∴CD是Rt△ABC的斜边AB的中线,∴CD=12AB=3.14.答案:35°.解:∵∠ABC=90°,D为AC的中点,∴BD=AD=DC,∴∠ABD=∠A,∵∠C=55°,∴∠A=90°-55°=35°,∴∠ABD=35°.15.答案:①②④.解:①∵F是AD的中点,∴AF=FD.∵在平行四边形ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF.∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故结论①正确.延长EF,交CD的延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF.∵F为AD中点,∴AF=FD.在△AEF和△DFM中,{∠A=∠FDMAF=DF∠AFE=∠DFM,∴△AEF≌△DMF,∴FE=FM,∠AEF=∠M.∵CE⊥AB.∴∠AEC=90°,∴∠AEC=∠ECD=90°.∵FM=EF,∠ECD=90°,∴EF=CF,故②正确;③∵EF=FM,∴S△EFC=S△CFM.∵MC>BE,∴S△ECM>S△BEC.∵S△ECM=S△EFC+S△CFM,S△EFC=S△CFM,∴S△BEC<2S△EFC.故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x.∵∠AEF=90°-x,∴∠DFE=3∠AEF,故结论④正确.综上可知,一定成立的是①②④.16.答案:本题答案不唯一,如AB∥CD或AD=BC.解:答案不唯一,可添加AB∥CD.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,又∵∠D=90°,∴四边形ABCD是矩形.17答案:5.解:∵D是斜边AC的中点,∴BD是Rt△ABC斜边上的中线,∴BD=12×AC=5.故答案为5.18.答案:直角;平行.解:有一个角是直角的平行四边形叫做矩形.解答题(题5分,共15分)19.证明:∵ 四边形ABCD是平行四边形,∴BC∥AD,AB∥CD,∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°.又∵□ABCD的四个内角的平分线分别交于点E,F,G,H,∴∠BAF+∠ABF=90°,∠GBC+∠GCB=90°,∴ ∠GFE=∠AFB=90°,∠G=90°,同理可证∠GHE=90°,∠E=90°,∴ 四边形EFGH为矩形.20.证明:(1)∵AD∥BC,AB∥DE,∴四边形ABED是平行四边形,∴BE=AD=13BC,同理,FC=AD=13BC,∴E F=BC-BE-FC=13BC,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形.(2)∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF,∴平行四边形AEFD是矩形.21.证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵E、F、G、H分别是OA、OB、OC、OD的中点,∴AE=OE,OG=CG,OF=BF,OH=DH,∴OE=OG,OF=OH,EG=FH.∵OE=OG,OF=OH,∴四边形EFGH是平行四边形,又∵EG=FH,∴四边形EFGH是矩形.22.解:当点O运动到AC的中点(或OA=OC)时,四边形AECF 是矩形.证明:∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO,∴EO=FO.又∵OA=OC,∴四边形AECF是平行四边形.∵CF是∠BCA的外角平分线,∴∠4=∠5.∵∠1=∠2,∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.23.(1)证明:∵矩形纸片ABCD是标准纸,且AB<BC,∴BCAB=2.由对开的含义知:AF=12BC,∴ABAF=ABBC2=2ABBC=22=2,∴矩形纸片ABEF也是标准纸.(2)解:是标准纸.理由如下:设AB=CD=a,由图形折叠可知DN=CD=DG=a,DG⊥EM,△ABE≌△AFE,∴∠DAE=12∠BAD=45 °,∴△ADG是等腰直角三角形,∴在Rt△ADG中,AD=AG2+DG2=2a,∴ADAB=2,∴矩形纸片ABCD是一张标准纸.(3)解:第一次,周长为:2(1+122)=2+2,第二次,周长为:2(12+122)=1+2,第三次,周长为:2(12+142)=1+22,第四次,周长为:2(14+142)=1+22,第五次,周长为:2(14+182)=2+24,第六次,周长为:2(18+182)=1+24,∴第5次对开后所得标准纸的周长是:2+24,第2018次对开后所得标准纸的周长为:1+221008.24.证明:∵四边形ABCD是矩形,∴AC=BD,AO=BO=CO=DO.∵AE=BF=CG=DH,∴OE=OF=OG=OH,∴四边形EFGH是平行四边形.∵OE+OG=FO+OH即EG=FH,∴四边形EFGH是矩形.解答题(共34分)25.(1)证明:∵AE=CD,EC=DA,AC=AC,∴△DCA≌△EAC.(2)添加AB∥CD(答案不唯一).理由如下:∵BA=DC,AB∥CD,∴四边形ABCD是平行四边形.∵CE⊥AE,∴∠E=90°.∵△DCA≌△EAC,∴∠D=∠E=90°,∴平行四边形ABCD是矩形.。
2017年春季学期新版新人教版八年级数学下学期18.2.1、矩形同步练习23
数学补充练习(矩形菱形)
班级 座号 姓名
1.矩形ABCD 中,AC 与BD 相交于点O ,AB =6,BC =8,则矩形面积= ,
△BOC 的周长= .
2.矩形ABCD 中,AC 与BD 相交于点O ,AC =2AB ,则∠BO C = °.
3.如图,菱形ABCD 的两条对角线相交于O ,
(1)若AB =4,AC =2,则菱形的周长为 ,BD = , 菱形的面积为 .
(2)若AC =AB ,则△ABC 为 三角形,∠ABO 的度数为 .
4.如图,在直角坐标系中,四边形ABCD 为菱形,∠ABC =120°,且AB =4,
则点B 的坐标为 ,点A 的坐标为 .
5.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .求证:四边形OCED 是菱形.
6.如图,在△ABC 中,AD ⊥B C 于D ,点D ,E ,F 分别是BC ,AB ,AC 的中点.
求证四边形AEDF 是菱形.(或求证AD 和EF 互相垂直平分)
7.如图,在四边形ABCD 中,AD ∥BC ,对角线AC 的中点为O ,过点O 作AC 的垂直平分线分别与AD ,BC 相交于点E ,F ,连接AF .(1)求证:AE=AF ;(2)连接CE ,若CD=4,AD=8,求四边形AFCE 的面积.
O D C B A
8.如图,△ABC中,点O是边AC上一个动点,过O作直线M N∥BC.设M N交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.。
18.2.1【同步练习】《矩形》(人教版)
《正方形》同步练习1.正方形的定义:有一组邻边______并且有一个角是______的平行四边形叫做正方形,因此正方形既是一个特殊的有一组邻边相等的______,又是一个特殊的有一个角是直角的______.2.正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都______;四条边都______且__________________;正方形的两条对角线______,并且互相______,每条对角线平分______对角.它有______条对称轴.3.正方形的判定:(1)____________________________________的平行四边形是正方形;(2)____________________________________的矩形是正方形;(3)____________________________________的菱形是正方形;4.对角线________________________________的四边形是正方形.5.若正方形的边长为a,则其对角线长为______,若正方形ACEF的边是正方形ABCD的对角线,则正方形ACEF 与正方形ABCD 的面积之比等于______.6.延长正方形ABCD 的BC 边至点E ,使CE =AC ,连结AE ,交CD 于F ,那么∠AFC 的度数为______,若BC =4cm ,则△ACE 的面积等于______.7.在正方形ABCD 中,E 为BC 上一点,EF ⊥AC ,EG ⊥BD ,垂足分别为F 、G ,如果cm 25 AB ,那么EF +EG 的长为______.8.如图,将一边长为12的正方形纸片ABCD的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为( )(A)12(B)13 (C)14 (D)159.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )cm 2.(A)6(B)8 (C)16(D)不能确定10.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN , ∠MCE =35°,求∠ANM 的度数.。
人教版数学八年级下册:《18.2.1矩形》课时练习含答案
新人教版数学八年级下册18.2.1矩形课时练习一.选择题(共15小题)1.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)答案:B知识点:坐标与图形性质;矩形的性质解析:解答:解:如图可知第四个顶点为:即:(3,2).故选B.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.本题考查学生的动手能力,画出图后可很快得到答案.2.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A. B.C. D.答案:A知识点:函数的图像;分段函数;矩形的性质解析:解答:解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个选项.故选A.分析:根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.本题考查了分段函数的画法,是难点,要细心认真.3.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE 的长是()A.1.6B.2.5C.3D.3.4答案:D知识点:线段垂直平分线的性质;勾股定理;矩形的性质解析:解答:解:连接EC,由矩形的性质可得AO=CO,又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,设AE=x,则ED=AD﹣AE=5﹣x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,即x2=(5﹣x)2+32,解得x=3.4.故选D.分析:利用线段的垂直平分线的性质,得到EC与AE的关系,再由勾股定理计算出AE的长.本题考查了利用线段的垂直平分线的性质.矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.4.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50B.50或40C.50或40或30D.50或30或20答案:C知识点:等腰三角形的性质;勾股定理;矩形的性质解析:解答:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:①如图(1):△AEF中,AE=AF=10cm;S△AEF=•AE•AF=50cm2;②如图(2):△AGH中,AG=GH=10cm;在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;根据勾股定理有:BH=8cm;∴S△AGH=AG•BH=×8×10=40cm2;③如图(3):△AMN中,AM=MN=10cm;在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;根据勾股定理有DN=6cm;∴S△AMN=AM•DN=×10×6=30cm2.故选C.分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,①如图(1),②如图(2),③如图(3),分别求得三角形的面积.题主要考查了等腰三角形的性质.矩形的性质.勾股定理等知识,解题的关键在于能够进行正确的讨论.5.菱形具有而矩形不具有性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等答案:C知识点:菱形的性质;矩形的性质解析:解答:解:A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.分析:由于菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,据此进行比较从而得到答案.本题考查矩形与菱形的性质的区别:矩形的对角线互相平分且相等,菱形的对角线互相平分.垂直且平分每一组对角.6.在矩形ABCD中,AB=1,AD=3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③B.③④C.①②④D.②③④答案:D知识点:矩形的性质;角平分线的性质;等腰三角形的性质;等边三角形的性质。
八年级数学(下)第十八章《矩形》同步练习(含答案)
八年级数学(下)第十八章《矩形》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.矩形具有而平行四边形不一定具有的性质是A.对角相等B.对边相等C.对角线相等D.对角线互相平分【答案】C【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.2.如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是A.∠BAC=∠ACB B.∠BAC=∠ACDC.∠BAC=∠DAC D.∠BAC=∠ABD【答案】D3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是A.2 B.4 C.3D.3【答案】B【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD.∴△OAB是等腰三角形.∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OA.∵AB=2,∴OA=2.∵OA=OC,∴AC=4.故选B.4.如图,在矩形COED中,点D的坐标是(1,2),则CE的长是A.3B.2 C.5D.6【答案】C【解析】∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,2),∴OD=22125+=,∴CE=5,故选C.5.如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24°,则∠BAE的度数是A.24°B.33°C.42°D.43°【答案】B6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为A.12 B.10 C.8 D.6【答案】B【解析】四边形ABCD是矩形,∴DC=AB=8,AD=BC=4,∠D=90°,AB∥DC,∴∠FAC=∠DCA,由折叠的性质得∠FCA=∠DCA,∴∠FCA =∠FAC,∴AF=CF,设AF=CF =x,D′F=8-x,在Rt △AD ′F 中,根据勾股定理得AD ′2+D ′F 2=AF 2,即2224(8)x x +-=,解得5x =, ∴11541022AFC S AF AD =⋅=⨯⨯=△.故选B . 7.下列条件中,能判定四边形ABCD 是矩形的是 A .四边形ABCD 中,AC BD = B .四边形ABCD 中,AC BD ⊥C .四边形ABCD 中,90A ∠=︒,90C ∠=︒,90D ∠=︒ D .四边形ABCD 中,90ABC ∠=︒ 【答案】C8.在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF 、EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是A .②③B .③④C .①②④D .②③④【答案】D【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,90BAD ABC ∠=∠=︒,AO =OC ,OD =OB ,AC =BD ,∴AO =OB =OD ,∵AB =1,AD 3BD =2,∴∠ABD =60°,∴△ABO 是等边三角形, ∴AB =OA =OB ,∠BAO =∠AOB =60°,∵AF 平分∠BAD ,∴∠BAF =∠DAF =45°,∵∠DAF =∠AFB , ∴∠BAF =∠BFA ,∴BF AB OB ==,∴②正确;∵CE ⊥BD ,∴60DOC AOB ∠=∠=︒,∴∠ECO =30°,∵604515FAC ∠=︒-︒=︒ , ∴15H ACE CAF CAF ∠=∠-∠=︒=∠,∴AC =CH ,∴③正确; ∵CF 和AH 不垂直,∴AF ≠FH ,∴①错误;∵∠CEO=90°,∠ECA=30°,∴1122OE OC OD DE===,BE=3DE,∴④正确,正确的有②③④,故选D.二、填空题:请将答案填在题中横线上.9.如图,直角三角形ABC中,∠ACB=90°,CD、CE分别是斜边上的高和中线,AC=CE=10 cm,则BD=__________.【答案】15 cm10.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为__________.【答案】2.5【解析】∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.故答案为:2.5.11.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=34°,则∠DBC为__________度.【答案】56【解析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=34°,∴∠DBC=56°.故答案为:56.12.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把△ABE沿AE折叠,使点B 落在点B′处.当△CEB′为直角三角形时,CB/的长为__________.【答案】2或10【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图所示,连接AC,在Rt△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如图所示,此时ABEB′为正方形,∴B'E=AB=3,∴CE=4-3=1,∴Rt△B'CE中,CB2210.综上所述,13B'C的长为210.故答案为:210.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,四边形ABCD为矩形,PB=PC,求证:PA=PD.14.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【解析】(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)如图,作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=12EC·OF=1.15.如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接BE,DF.判断四边形EBFD的形状,并说明理由.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.16.如图,已知ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD=2,求AC的长.(2)如图,连接AC,∵AD=4,CD=2,四边形ABCD是平行四边形,四边形BECD是矩形,∴AB=BE=CD=2,BC=AD=4,∠AEC=90°,∴AE=AB+BE=4,在Rt△BCE中,CE22-=4223∴在Rt△ACE中,AC22+=4(23)27。
人教版八年级数学下册18.2.1第1课时矩形的性质1同步练习题及答案.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】18.2 特殊的平行四边形18.2.1 矩形第1课时矩形的性质1.我们把__________叫做矩形.2.矩形是特殊的____________,所以它不但具有一般________的性质,而且还具有特殊的性质:(1)_________;(2)___________.3.矩形既是______图形,又是________图形,它有_______条对称轴.4.如图1所示,矩形ABCD的两条对角线相交于点O,图中有_______个直角三角形,•有____个等腰三角形.5.矩形的两条邻边分别是5、2,则它的一条对角线的长是______.6.如图所示,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,OB=•4,•则DC=________.7.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分8.若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()A.83cm2B.43cm2C.23c m2D.8cm29.如图2所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE的度数是()A.29° B.32° C.22° D.61°10.矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BC O的周长差为4,•则AB的长是()A.12 B.22 C.16 D.2611.如图3所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是() A.5 B.4 C. 23 D.712.如图所示,在矩形ABCD中,点E在DC上,AE=2BC,且A E=AB,求∠CBE的度数.13.如图所示,在矩形ABCD中,对角线AC,BD交于点O,过顶点C作CE∥BD,交A•孤延长线于点E,求证:AC=CE.14.如图所示,在矩形ABCD中,AB=8,AD=10,将矩形沿直线AE折叠,顶点D恰好落在BC 边上的点F处,求CE的长.15.如图所示,在矩形ABCD中,AB=5cm,BC=4cm,动点P以1cm/s的速度从A点出发,•经点D,C到点B,设△ABP的面积为s(cm2),点P运动的时间为t(s).(1)求当点P在线段AD上时,s与t之间的函数关系式;(2)求当点P在线段BC上时,s与t之间的函数关系式;(3)在同一坐标系中画出点P在整个运动过程中s与t之间函数关系的图像.答案:1.有一个角是直角的平行四边形2.平行四边形,平行四边形(1)矩形的四个角都是直角(2)矩形的对角线相等3.中心对称,轴对称,2 4.4,4 5.3 6.437.A 8.B 9.B 10.C 11.D 12.15°13.证四边形BDCE是平行四边形,得CE=•BD=AC14. 3 15.(1)s=52t (2)s=-52t+35 (3)略中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
人教版八年级下册数学 18.2.1 矩形 同步测试题(含答案)
18.2.1 矩形同步测试题1.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°2.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变3.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD-DF4.如图,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论中不正确的是( )A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC5.如图,在矩形ABCD中,AB=3,将△ABD沿对角线BD折叠,得到△EBD,DE与BC 交于点F,∠ADB=30°,则EF=( )A. B.2 C.3 D.36.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是( )A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD7.(2016·菏泽)在▱ABCD中,AB=3,BC=4,连接AC,BD,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠BAD+∠BCD=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为( )A.14B.16C.17D.189.如图,在Rt△ABC中,∠ACB=90°,D,E分别为AC,AB边的中点,连接DE,CE.则下列结论中不一定正确的是( )A.ED∥BCB.ED⊥ACC.∠ACE=∠BCED.AE=CE10.如图,在矩形ABCD中,O为AC的中点,EF过O点且EF⊥AC分别交DC,AB于点F,E,点G是AE的中点,且∠AOG=30°,则下列结论正确的有( )①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.A.1个B.2个C.3个D.4个11.图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB 为直角三角时,AP= .12.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.13.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.14.如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD,△BCE,△ACF,连接DE,EF.请回答下列问题:(1)四边形ADEF是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEF是矩形?15.如图,在矩形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B 以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动,如果P,Q同时出发,用t(s)表示移动的时间(0≤t≤6).(1)当t为何值时,△QAP为等腰三角形?(2)求四边形QAPC的面积,并探索一个与计算结果有关的结论.参考答案1.【答案】D解:因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A,B 两选项为平行四边形具有的性质,C选项添加后也不一定是矩形,根据矩形的定义知D可以.故选D.2.【答案】C3.【答案】B4.【答案】A解:∵四边形ABCD是矩形,∴AD=BC,∠ADO=∠EDO=∠C=90°.∵AD=DE,∴BC=DE.在△BOC与△EOD中,∠BOC=∠DOE,∠C=∠EDO=90°,BC=DE,∴△BOC≌△EOD.故B选项正确.在△AOD和△EOD中,AD=DE,∠ADO=∠EDO=90°,OD=OD,∴△AOD≌△EOD.故C选项正确.由B,C知△AOD≌△BOC,故D选项正确.而A选项中两三角形明显不全等.5.【答案】A6.【答案】D7.【答案】B解:当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠BAD=∠ABC=∠BCD=90°,AC=BD,根据勾股定理求出AC,即可得出结论.8.【答案】D 9.【答案】C10.【答案】C解:根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GEO=60°,从而判断出△OGE是等边三角形,判断出③正确;设AE=2a,则OE=a,利用勾股定理求出AO的长,从而得到AC的长,再求出BC的长,然后利用勾股定理求出AB=3a,从而判断出①正确,②错误;再根据三角形的面积公式和矩形的面积公式列式判断出④正确.11.【答案】3或3或3解:当∠APB=90°时,分两种情况讨论.情况一:如图①,∵O为AB中点,∴PO=AB,AO=BO.∴PO=BO.∵∠1=120°,∴∠PBA=30°.∴AP=AB=3;情况二:如图②,∵AO=BO,∠APB=90°,∴PO=BO.∵∠1=120°,∴∠BOP=60°.∴△BOP为等边三角形.∴BP=AB=3.∴AP===3.当∠BAP=90°时,如图③,∵∠1=120°,∴∠AOP=60°,∴∠APO=30°,∴PO=2AO=6.∴AP===3.当∠ABP=90°时,如图④,∵∠1=120°,∴∠BOP=60°,∴∠BPO=30°,∴PO=2BO=6.∴BP===3.∴AP===3.12.证明:∵四边形ABCD为矩形,∴AC=BD.∴BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF.∴BE=CF.13.(1)证明:由折叠知AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°.∵四边形ABCD为矩形,∴AB=CD,AD∥BC.∴∠FAN=∠ECM,AM=CN.∴AM-MN=CN-MN,即AN=CM.在△ANF和△CME中,∴△ANF≌△CME(ASA).∴AF=CE.又∵AF∥CE,∴四边形AECF是平行四边形.(2)解:∵AB=6,AC=10,∴BC=8.设CE=x,则EM=BE=8-x,CM=10-6=4. 在Rt△CEM中,(8-x)2+42=x2,解得x=5. ∴四边形AECF的面积为CE·AB=5×6=30.14.解:(1)四边形ADEF是平行四边形.理由:∵△ABD,△BEC都是等边三角形,∴BD=AB,BE=BC,∠DBA=∠EBC=60°.∴∠DBE=60°-∠EBA,∠ABC=60°-∠EBA, ∴∠DBE=∠ABC.∴△DBE≌△ABC.∴DE=AC,又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可得△ABC≌△FEC,∴EF=BA=DA.∵DE=AF,DA=EF,∴四边形ADEF为平行四边形.(2)若四边形ADEF为矩形,则∠DAF=90°,∵∠DAB=∠FAC=60°,∴∠BAC=360°-∠DAB-∠FAC-∠DAF=360°-60°-60°-90°=150°.∴当△ABC满足∠BAC=150°时,四边形ADEF是矩形.15.解:(1)由题意得DQ=t cm,AP=2t cm,∴AQ=(6-t)cm.若△QAP为等腰三角形,则只能是AQ=AP,于是6-t=2t,∴t=2.故当t=2时,△QAP为等腰三角形.(2)S四边形QAPC=S矩形ABCD-S△CDQ-S△BPC=12×6-×12t-×(12-2t)×6=72-6t-36+6t=36(cm2).结论:在点P,Q的移动过程中,四边形QAPC的面积始终不变,为36 cm2.。
人教版数学八年级下册18.2.1---18.2.3同步基础练含答案不全
18.2.1《矩形》一、选择题1.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条2.如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=10,则AB的长为()A.10B.8C.6D.53.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A. 它们周长都等于10cm,但面积不一定相等B. 它们全等,且周长都为10cmC. 它们全等,且周长都为5cmD. 它们全等,但周长和面积都不能确定4.如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )A.∠ABC=90°B.∠BCD=90°C.AB=CDD.AB∥CD5.已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE 的长度是( )A.3B.4C.5D.66.如图,将矩形ABCD沿对角线BD折叠,点A落在点E处,DE交BC于点F,若∠CFD=40°,则∠ABD的度数为()A.50°B.60°C.70°D.80°7.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A.6B.5C.4D.38.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为( )A.0.5B.错误!未找到引用源。
C.2D.49.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A 落在EF上的点A/处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为()A. B. C. D.10.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12B.18C.2+错误!未找到引用源。
人教版八年级下册数学课时练《18.2.1 矩形》(含答案解析)(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版数学八年级下册《18.2.1矩形》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.矩形具有而一般平行四边形不具有的性质是()A .两组对边分别相等B .两组对角分别相等C .两条对角线互相平分D .两条对角线相等2.下列叙述中能判定四边形是矩形的个数是().①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A .1个B .2个C .3个D .4个3.如图,四边形ABCD 是平行四边形,两条对角线交于点O ,下列条件中,不能判定平行四边形ABCD 为矩形的是()A .∠ABC =∠BCDB .∠ABC =∠ADC C .AO =BOD .AO =DO 4.一直角三角形的两条直角边长分别为6和8,它斜边上的中线长为()A .5B .4C .3D .25.如图,矩形ABCD 中,对角线,AC BD 交于点O ,120,2Ð=°=AOB AD ,则矩形ABCD 的面积是()A .2B .C .D .86.如图,折叠矩形ABCD ,使点D 落在点F 处,已知AB =8,BC =10,则EC 的长()A .5cmB .2cmC .3cmD .4cm7.如图,在矩形纸片ABCD 中,6AB =,8AD =,点E 是边AD 上的一点,将AEB △沿BE 所在的直线折叠,使点A 落在BD 上的点G 处,则AE 的长是()A .2B .3C .4D .58.如图,矩形ABCD 的对角线AC ,BD 交于点O ,3AB =,4BC =,过点O 作OM AC ^,交BC 于点M ,过点M 作MN BD ^,垂足为N ,则OM MN +的值为()A .245B .165C .125D .65二、填空题9.如图,在四边形ABCD 中,AC 与BD 相交于点O ,且OA OC =,OB OD =,请你添加一个条件,使四边形ABCD 为矩形,你添加的条件是______________(填一个即可).10.如图,矩形ABCD 中,对角线AC ,BD 交于点O .若∠AOB =60°,BD =8,则AB 的长为___.11.如图,ABC 中,90ACB Ð=°,CD 是AB 边上的中线,且12CD AB +=,则AB 的长为______.12.在矩形ABCD 中对角线AC ,BD 交于点O ,且120AOD Ð=°.若3AB =,则BC 长为_________.13.如图,矩形ABCD 中,AC 、BD 相交于点O 且AC =12,如果∠AOD =60°,则DC =__.14.在矩形ABCD 中,对角线BD 的垂直平分线交直线AB 于点E .若BC =4,AE =3,则BD 的长为_____.15.如图,矩形ABCD 中,点E 在BC 边上,连接DE 交对角线AC 于点F ,若2ADF DAC Ð=Ð,3BE =,CD =,则线段AC 的长为______.16.如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上OA =5;OC =4.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.则D 坐标为_______.三、解答题17.如图,矩形ABCD 中,点E ,F 分别在AB ,CD 边上,连接CE 、AF ,∠DCE =∠BAF .试判断四边形AECF 的形状并加以证明.18.如图,在平行四边形ABCD中,点P是AB边上一点(不与A,B重合),过点P作PQ⊥CP,交AD 边于点Q,且∠QP A=∠PCB.求证:四边形ABCD是矩形.19.已知:如图,△ABC中,M是BA延长线上一点,AD是△ABC的中线,E是AC的中点,过点A作AF∥BC,与DE的延长线相交于点F.(1)求证:四边形ABDF是平行四边形.(2)如果AF平分∠MAC,求证:四边形ADCF是矩形.20.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E,且BD=BE.(1)求证:四边形ABCD 是矩形;(2)若∠DBC =30°,BO =6,求四边形ABED 的面积.21.如图,过ABC 边AC 的中点O ,作OE AC ^,交AB 于点E ,过点A 作AD BC ∥,与BO 的延长线交于点D ,连接CD ,CE ,若CE 平分ACB Ð,CE BO ^于点F .(1)求证:OC BC =.(2)四边形ABCD 是矩形.22.(1)问题:如图1,P 是矩形ABCD 内任意一点,通过构造直角三角形,利用勾股定理,你能发现22AP CP +与22BP DP +的数量关系为.(2)探究:如图2,P 是矩形ABCD 外任意一点,上面的结论是否成立?若成立,请写出证明过程:若不成立,请说明理由.(3)应用:如图3,在ABC 中,6CA =,8CB =,D 是ABC 内一点,且2CD =,90ADB Ð=°,求AB 的最小值.参考答案1.D 2.B 3.B 4.A 5.C 6.C 7.B 8.C 9.OA OB=10.411.812.13.14.15.16.()0,2.517.解:四边形AECF 是平行四边形.∵四边形ABCD 是矩形,∴//DC AB ,∴∠DF A =∠BAF ,又∵∠DCE =∠BAF ,∴∠DCE =∠DF A∴//FA CE ,∴四边形AECF 是平行四边形.18.证明:∵PQ CP ^,∴90QPC Ð=°,∴1809090QPA BPC Ð+Ð=°-°=°,∵QPA PCB Ð=Ð,∴90BPC PCB Ð+Ð=°,∴()18090B BPC PCB Ð=°-Ð+Ð=°,∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.19.解:(1)∵AD 是△ABC 的中线,E 是AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AB .∵AF∥BC,∴四边形ABDF是平行四边形.(2)∵四边形ABDF是平行四边形,∴AF=BD.∵AD是△ABC的中线,∴BD=CD,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形.∵AF平分∠MAC,∴∠MAF=∠CAF.∵AF∥BC,∴∠MAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴AB=AC,∴AD⊥BC,∴∠ADC=90°,∴平行四边形ADCF是矩形.20.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,又∵点E在DC的延长线上,∴AB∥CE,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,又BD=BE,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:∵在矩形ABCD中,∠DBC=30°,OA=OB,∴∠ABD=60°,∴△AOB 是等边三角形,∴AB =BO =6,∴BD =2BO =2×6=12,又∵四边形ABEC 是平行四边形,∴CE =AB =6,∴DE =CD +CE =12,在Rt △ABC 中,BC==,∴四边形ABED 的面积=12(6+12)21.(1)解:∵CE 平分ACB Ð,∴OCE BCE Ð=Ð,∵BO CE ^,∴90ÐÐ==°CFO CFB ,在OCF △与BCF △中,OCE BCE CF CFCFO CFB Ð=Ðìï=íïÐ=Ðî,∴()ASA OCF BCF △△≌,∴OC BC =.(2)解:∵点O 是AC 的中点,∴OA OC =,∵AD BC ∥,∴DAO BCO Ð=Ð.ADO CBO Ð=Ð,在OAD △与OCB 中,DAO BCO OA OCADO CBO Ð=Ðìï=íïÐ=Ðî,∴()ASA OAD OCB △△≌,∴AD BC =,∵AD BC ∥,∴四边形ABCD 是平行四边形,∵OE AC ^,∴90EOC Ð=°,在OCE △与BCE 中,CE CE OCE BEC OC BC =ìïÐ=Ðíï=î,∴()SAS OCE BCE △△≌∴90ÐÐ==°EBC EOC ,∴四边形ABCD 是矩形.22.【解析】(1)如图,过点P 作MN 垂直于AD 、BC ,垂足分别为M 、N 90AMP BNP DMP CNP \Ð=Ð=Ð=Ð=°由勾股定理得,222AP AM MP =+,222BP BN NP =+,222DP DM MP =+,222CP CN NP=+又 四边形ABCD 为矩形\四边形AMNB 、四边形DMNC 为矩形,AM BN DM CN\==\22AP MP -=22BP NP -,22DP MP -=22CP NP -\22AP CP +22BP DP =+;故答案为:22AP CP +22BP DP =+;(2)成立,理由如下:如图,过点P 作MN 垂直于AD 、BC ,垂足分别为M 、N 90AMP BNP DMP CNP \Ð=Ð=Ð=Ð=°由勾股定理得,222AP AM MP =+,222BP BN NP =+,222DP DM MP =+,222CP CN NP=+又 四边形ABCD 为矩形\四边形AMNB 、四边形DMNC 为矩形,AM BN DM CN\==\22AP MP -=22BP NP -,22DP MP -=22CP NP -\22AP CP +22BP DP =+,仍然成立;(3)如图,以AD 、BD 为边作矩形ADBE ,连接CE 、DEAB DE\=由题意得,22CD CE +22CA CB =+6CA =Q ,8CB =,2CD =2222268CE \+=+解得CE =当C 、D 、E 三点共线时,DE 最小,即AB 最小AB \的最小值DE =的最小值2=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导学稿
姓名:班级:
特殊的平行四边形———矩形(1课时)
教学目标:理解矩形的定义
掌握矩形的性质
自学过程:
活动一:(平行四边形的性质,判定的回顾。
独立完成 10分钟)
如图:在
ABCD中,找出相等的线段,相等的角,互相平行的线段
相等的线段:___________________________
___________________________
相等的角:______________________________
互相平行的线段:______________________
如图,已知AB=CD,O是AC的中点。
(1)当AB______CD时,可以说明四边形ABCD是平行四边形。
、
理由:()
(2)当AD______BC时,可以说明四边形ABCD是平行四边形。
理由:()
(3)当OB______OD时,可以说明四边形ABCD是平行四边形。
理由:()
活动二:(矩形的性质的学习)
矩形的定义:____________________________________________________。
矩形是特殊的平行四边形,想想生活中哪些图形给你矩形的形象?想想它和平行四边形有什么区别和联系?
∠BAD=∠ADC=∠DCB=∠CBA=_______度∠
BD与AC有是没关系?
B
A D
C
B
矩形的性质:从边看:________________________________
从角看:_________________________________
从对角线看:________________________________
活动三:(直角三角形的一条重要性质 )
从上图观察R t △ABC 找出BO 与AC 有什么关系?(BO 是R t △ABC 斜边AC 的中线)
直角三角形的一条重要性质:________________________________________ _________________________________. 课堂练习:
1,矩形具有而一般的平行四边形不一定具有的性质是( )
A ,对角线相等
B ,对边相等
C ,对角相等
D 对角线互相平分 2,如图,将矩形ABCD 沿A
E 折叠,使D 点落在BC 边上的
F 点处,若 ∠BAF=60度,则∠DAE=( )
A ,15
B ,30
C ,45
D ,60
3,如图,四边形ABCD 是矩形,找出相等的线段和相等的角。
3,如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60 ,AB=4cm ,求矩形对角线的长。
4,如果矩形的一条对角线长为8cm ,两条对角线的一个夹角为120 求矩形的边长。
A D C
B A D C
B
当堂检测:
1,在矩形ABCD中,对角线AC,BD相交于O, ∠AOB=2∠BOC,AC=20cm,则AD的长是?
2,在Rt△ABC中,∠C=90 ,周长为12,斜边上的中线长为2.5,则Rt△ABC的面积是?
3,如图,某市拟在工业园内矩形区域的四个顶点A、B、C、D处各建一个工厂,现要建造一个污水处理厂处理这四个工厂排出的污水,如果要求这个污水处理厂到四个工厂的距离相等,则污水处理厂应建在何处?请在图中确定。
4,如图,在矩形ABCD中,对角线AC,BD相交于点O,过顶点C作BD的平行线与AD的延长线交于点E,(1)试说明△ACE是等腰三角形。
(2)图中于△ABC全等的三角形有哪些?。