2018届高考数学二轮复习寒假作业布置讲解二十八小题限时保分练_成都诊断名校试题节选注意命题点分布理

合集下载

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
则 .
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.

四川省外国语学校2024学年高三保温练习(二)数学试题

四川省外国语学校2024学年高三保温练习(二)数学试题

四川省外国语学校2024学年高三保温练习(二)数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.两圆()224x a y ++=和()221x y b +-=相外切,且0ab ≠,则2222a b a b +的最大值为( ) A .94B .9C .13D .12.已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是( )A .2935,2424⎡⎫⎪⎢⎣⎭ B .2935,2424⎡⎤⎢⎥⎣⎦ C .2935,2424⎛⎫⎪⎝⎭D .2935,2424⎛⎤⎥⎝⎦3.函数()2f x ax =-与()xg x e =的图象上存在关于直线y x =对称的点,则a 的取值范围是( ) A .,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(],e -∞ D .(2,e ⎤-∞⎦4.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3B .2C .1D .05.若复数12z i =+,2cos isin ()z ααα=+∈R ,其中i 是虚数单位,则12||z z -的最大值为( )A 1B .12C 1D .126.已知函数()0)f x x x =->,()xg x x e =+,()()ln 0h x x x x =+>的零点分别为1x ,2x ,3x ,则( )A .123x x x <<B .213x x x <<C .231x x x <<D .312x x x <<7.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( ) A .()112n n + B .()1312n n - C .2n n 1-+ D .222n n -+8.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( )A .3215B .6415C .5D .69.设i 是虚数单位,若复数1z i =+,则22||z z z+=( )A .1i +B .1i -C .1i --D .1i -+10.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则ab 的最小值为( ) 参考数据:2ln 20.69,ln 20.48≈≈A .12B .24C .2log 3D .2211.已知直线1:240l ax y ++=,2:(1)20l x a y +-+=,则“1a =-”是“12l l ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.执行如图所示的程序框图,若输出的310S =,则①处应填写( )A .3?k <B .3?kC .5?kD .5?k <二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学新课标全国2卷逐题解析

2018年高考理科数学新课标全国2卷逐题解析

2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及稿本纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。

1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。

成都市实验外国语学校高2018届零诊模拟考试数学及答案

成都市实验外国语学校高2018届零诊模拟考试数学及答案

成都市实验外国语学校⾼2018届零诊模拟考试数学及答案成都市实验外国语学校⾼2018届零诊模拟考试数学试题及答案命题⼈:赵光明第Ⅰ卷(选择题共60分)⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分, 在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.) 1、已知集合{||2}A x x =<,2{430}B x x x =-+<,则A B 等于( B ).A {21}x x -<< .B {12}x x << .C {23}x x <<.D {23}x x -<<2、设复数2zi =+,则z z -=( C ).A 4.B 0.C 2.D3、在等差数列{}n a 中,39a a =且公差0d <,则使前n 项和n S 取得最⼤值时的n 的值为( B ).A 4或5.B 5或6 .C 6或7 .D 不存在 4、某公司的班车在7:00,8:00,8:30发车,⼩明在7:50⾄8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )(A )13 (B )12 (C )23 (D )345、P 是双曲线22219x y a -=上⼀点,双曲线的⼀条渐近线为320x y -=,12F F 、分别是双曲线的左、右焦点,若16PF =,则2PF =( A ).A 2或10 .B 2.C 10.D 9 6、某⼏何体的三视图如右图所⽰,其中俯视图为扇形,则该⼏何体的体积为( D ) .A 23π.B 3π.C 29π.D 169π7、已知实数x ,y 满⾜21y x x y a x ≥+??+≤??≥?,其中320(1)a x dx =-?,则实数1y x +的最⼩值为( B )A .32B .43C .23D .52(⽂科)已知实数,x y 满⾜3,2,2.x y x y y +≥??-≤??≤? 那么2z x y =+的最⼩值为(B )(A )5(B )4(C )3(D )28、阅读程序框图,为使输出的数据为31,则①处应填的数字为( B ).A 4.B 5.C 6.D 7俯视图侧视图9、函数()f x 在定义域R内可导,若()(2)f x f x =-,且(1)()0x f x '-<,若(0),a f =1()2b f =,(3)c f =,则,,a b c 的⼤⼩关系是( B ).A a b c >>.B b a c >> .C c b a >> .D a c b >>10、如图,抛物线2:4W y x =与圆22:(1)25C x y -+=交于,A B 两点,点P 为劣弧AB 上不同于,A B 的⼀个动点,与x 轴平⾏的直线PQ 交抛物线W 于点Q ,则PQC 的周长的取值范围是( B )A ( 9,11) B(10,12) C(12,14) D (10,14)11、在平⾏四边形ABCD 中,0AB BD ?= ,22240AB BD +-=,若将其沿BD 折成直⼆⾯⾓ A BD C --,则三棱锥A BDC -的外接球的表⾯积为( A ) .A 4π.B 8π .C 16π .D 2π 12、设函数32()f x ax bx cx d =+++有两个极值点12,x x ,若点11(,())P x f x 为坐标原点,点22(,())Q x f x 在圆22:(2)(3)1C x y -+-=上运动时,则函数()f x 图象的切线斜率的最⼤值为( D )A.3+2+23第Ⅱ卷(⾮选择题共90分)⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分,把答案填在答题卷中相应的横线上.)13、平⾯向量a 与b的夹⾓为23π,且()1,0a =,1b = 则2a b + 14、若抛物线px y 22=的焦点与椭圆1522=+y x 的右焦点重合,则p =4_____. 15、已知数列错误!未找到引⽤源。

高中数学 课时分层作业2 导数的几何意义 新人教A版选修22

高中数学 课时分层作业2 导数的几何意义 新人教A版选修22

课时分层作业(二) 导数的几何意义(建议用时:40分钟)[基础达标练]一、选择题1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )【导学号:31062016】A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴相交但不垂直B [由导数的几何意义可知选项B 正确.] 2.若函数f (x )=x +1x,则f ′(1)=( )A .2B .52C .1D .0D [f ′(1)=lim Δx →0f+Δx -fΔx=lim Δx →0⎝ ⎛⎭⎪⎫1-11+Δx =0.] 3.已知点P (-1,1)为曲线上的一点,PQ 为曲线的割线,当Δx →0时,若k PQ 的极限为-2,则在点P 处的切线方程为( )A .y =-2x +1B .y =-2x -1C .y =-2x +3D .y =-2x -2B [由题意可知, 曲线在点P 处的切线方程为y -1=-2(x +1),即2x +y +1=0.]4.在曲线y =x 2上切线倾斜角为π4的点是( )A .(0,0)B .(2,4)C .⎝ ⎛⎭⎪⎫14,116D .⎝ ⎛⎭⎪⎫12,14 D [∵y ′=lim Δx →0 x +Δx 2-x 2Δx =lim Δx →0(2x +Δx )=2x ,∴令2x =tan π4=1,得x =12.∴y =⎝ ⎛⎭⎪⎫122=14,所求点的坐标为⎝ ⎛⎭⎪⎫12,14.]图1­1­105.如图1­1­10,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于( )【导学号:31062017】A .2B .3C .4D .5A [易得切点P (5,3),∴f (5)=3,k =-1,即f ′(5)=-1.∴f (5)+f ′(5)=3-1=2.]二、填空题6.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________. [解析] ∵f ′(1)=2, 又lim Δx →0f+Δx -fΔx=lim Δx →0a+Δx 2-aΔx=lim Δx →0(a Δx +2a )=2a ,∴2a =2,∴a =1.又f (1)=a +b =3,∴b =2.∴ba=2. [答案] 27.曲线y =x 2-2x +3在点A (-1,6)处的切线方程是__________.【导学号:31062018】[解析] 因为y =x 2-2x +3,切点为点A (-1,6),所以斜率k =y ′|x =-1 =lim Δx →0-1+Δx2--1+Δx +3-+2+Δx=lim Δx →0(Δx -4)=-4,所以切线方程为y -6=-4(x +1),即4x +y -2=0. [答案] 4x +y -2=08.若曲线y =x 2+2x 在点P 处的切线垂直于直线x +2y =0,则点P 的坐标是__________. [解析] 设P (x 0,y 0),则y ′|x =x 0=lim Δx →0x 0+Δx2+x 0+Δx -x 20-2x 0Δx=lim Δx →0(2x 0+2+Δx )=2x 0+2.因为点P 处的切线垂直于直线x +2y =0, 所以点P 处的切线的斜率为2,所以2x 0+2=2,解得x 0=0,即点P 的坐标是(0,0). [答案] (0,0)三、解答题9.若曲线y =f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 所围成的三角形的面积为16,求a 的值.[解] ∵f ′(a )=lim Δx →0a +Δx 3-a 3Δx =3a 2,∴曲线在(a ,a 3)处的切线方程为y =-a 3=3a 2(x -a ),切线与x 轴的交点为⎝ ⎛⎭⎪⎫23a ,0.∴三角形的面积为12⎪⎪⎪⎪⎪⎪a -23a ·|a 3|=16,得a =±1.10.已知曲线y =x 2,(1)求曲线在点P (1,1)处的切线方程;(2)求曲线过点P (3,5)的切线方程. 【导学号:31062019】 [解] (1)设切点为(x 0,y 0),∵y ′|x =x 0=lim Δx →0x 0+Δx2-x 2Δx=lim Δx →0x 20+2x 0·Δx +Δx 2-x 2Δx =2x 0,∴y ′|x =1=2.∴曲线在点P (1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.(2)点P (3,5)不在曲线y =x 2上,设切点为A (x 0,y 0), 由(1)知,y ′|x =x 0=2x 0, ∴切线方程为y -y 0=2x 0(x -x 0),由P (3,5)在所求直线上得5-y 0=2x 0(3-x 0), ①再由A (x 0,y 0)在曲线y =x 2上得y 0=x 20, ② 联立①,②得x 0=1或x 0=5. 从而切点为(1,1)时, 切线的斜率为k 1=2x 0=2,此时切线方程为y -1=2(x -1),即y =2x -1, 当切点为(5,25)时,切线的斜率为k 2=2x 0=10, 此时切线方程为y -25=10(x -5), 即y =10-25.综上所述,过点P (3,5)且与曲线y =x 2相切的直线方程为y =2x -1或y =10x -25.[能力提升练]1.已知函数f (x )的图象如图1­1­11所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )图1­1­11A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(3)<f ′(2)B [由函数的图象,可知函数f (x )是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在x =2处的切线斜率k 1大于在x =3处的切线斜率k 2,所以f ′(2)>f ′(3).记A (2,f (2)),B (3,f (3)),作直线AB ,则直线AB 的斜率k =f-f 3-2=f (3)-f (2),由函数图象,可知k 1>k >k 2>0,即f ′(2)>f (3)-f (2)>f ′(3)>0.故选B.]2.设f (x )为可导函数,且满足lim Δx →0f-f -x2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2D [∵lim Δx →0f-f -x2x=12lim Δx →0 f -x -f -x =-1,∴lim Δx →0f-x -f -x=-2,即f ′(1)=-2.由导数的几何意义知,曲线在点(1,f (1))处的切线斜率k =f ′(1)=-2,故选D.] 3.已知曲线y =x 3在点P 处的切线的斜率k =3,则点P 的坐标是________.【导学号:31062020】[解析] 因为y =x 3,所以y ′=lim Δx →0 x +Δx 3-x 3Δx =lim Δx →0[3x 2+3x ·Δx +(Δx )2]=3x 2.由题意,知切线斜率k =3,令3x 2=3,得x =1或x =-1. 当x =1时,y =1;当x =-1时,y =-1.故点P 的坐标是(1,1)或(-1,-1). [答案] (1,1)或(-1,-1)4.已知函数y =f (x )的图象如图1­1­12所示,则函数y =f ′(x )的图象可能是__________(填序号).图1­1­12[解析] 由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时f ′(x )=0,当x >0时f ′(x )<0,故②符合.[答案] ②5.已知曲线f (x )=1x.(1)求曲线过点A (1,0)的切线方程; (2)求满足斜率为-13的曲线的切线方程.[解] (1)f ′(x )=lim Δx →0 1x +Δx -1xΔx=lim Δx →0-1x +Δx x =-1x2.设过点A (1,0)的切线的切点为P ⎝ ⎛⎭⎪⎫x 0,1x 0,①则f ′(x 0)=-1x 20,即该切线的斜率为k =-1x 20.因为点A (1,0),P ⎝⎛⎭⎪⎫x 0,1x在切线上, 所以1x 0-0x 0-1=-1x 20,②解得x 0=12.故切线的斜率k =-4.故曲线过点A (1,0)的切线方程为y =-4(x -1), 即4x +y -4=0.(2)设斜率为-13的切线的切点为Q ⎝ ⎛⎭⎪⎫a ,1a , 由(1)知,k =f ′(a )=-1a 2=-13,得a =± 3.所以切点坐标为⎝ ⎛⎭⎪⎫3,33或⎝ ⎛⎭⎪⎫-3,-33. 故满足斜率为-13的曲线的切线方程为y -33=-13(x -3)或y +33=-13(x +3), 即x +3y -23=0或x +3y +23=0.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战32123

高三数学寒假作业冲刺培训班之历年真题汇编复习实战32123

一、选择题1.下列抽样试验中,最适宜用系统抽样法的是( )A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.从某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案:C2.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况,若用系统抽样方法,则抽样间隔和随机剔除的个数分别为( )A.3,2 B.2,3C.2,30 D.30,2答案:A3.在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为( )A.120B.1100C.1002 003D.12 000答案:C4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是( )A.8 B.6C.4 D.2答案:B5.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9答案:B二、填空题6.已知标有1~20号的小球20个,目的是估计总体号码的平均值,即20个小球号码的平均数.试验者从中抽取4个小球,以这4个小球号码的平均数估计总体号码的平均值,按下面方法抽样(按小号到大号排序):(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________. 解析:20个小球分4组,每组5个:(1)若以2号为起点,则另外三个球的编号依次为7,12,17,4个球编号的平均值为2+7+12+174=9.5. (2)若以3号为起点,则另外三个球的编号依次为8,13,18,4个球编号的平均值为3+8+13+184=10.5. 答案:(1)9.5 (2)10.57.某高三(1)班有学生56人,学生编号依次为01,02,03,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为06,34,48的同学在样本中,那么样本中另一位同学的编号应该是________.解析:由于系统抽样的样本中个体编号是等距的,且间距为56/4=14,所以样本编号应为06,20,34,48.答案:208.有40件产品,编号从1至40,现从中抽4件检验,用系统抽样的方法确定所抽的编号可能是________(填序号)①5,10,15,20;②2,12,22,32;③5,8,31,36解析:由系统抽样的定义可知,间隔k =404=10,可以在第一组1~10号个体中取一个l,1≤l ≤10,则抽到的样本为l ,l +10,l +20,l +30.答案:②三、解答题9.某批产品共有1 564件,产品按出厂顺序编号,号码从1到1 564,检测员要从中抽取15件产品做检测,请你给出一个系统抽样方案.解:(1)先从1 564件产品中,用简单随机抽样方法抽出4件产品,将其剔除.(2)将余下的1 560件产品编号:1,2,3,…,1 560.(3)取k =1 56015=104,将总体均分为15组,每组含104个个体. (4)从第一组即1号到104号利用简单随机抽样抽取一个编号s.(5)按编号把s,104+s,208+s ,…,1 456+s 共15个编号选出,这15个编号所对应的产品即组成样本.10.要装订厂平均每小时大约装订图书362册,需要检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.解:第一步,把这些图书分成40个组,由于36240的商是9,余数是2,所以每个小组有9册书,还剩2册书.这时抽样距就是9.第二步,先用简单随机抽样的方法从这些书中抽取2册,不进行检验.第三步,将剩下的书进行编号,编号分别为0,1, (359)第四步,从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法,抽取1册书,比如说,其编号为k.第五步,顺次抽取编号分别为下面数字的书:k ,k +9,k +18,k +27,…,k +39×9.这样总共就抽取了40个样本.11.将一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x ,那么依次错位地得到后面各组的号码,即第k 组中抽取的号码的后两位数为x +33k 的后两位数.(1)当x =24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个后两位数是87,求x 的取值范围.解:(1)由题意知,此系统抽样的间隔是100,根据x =24和题意得,24+33×1=57,第二组抽取的号码是157.由24+33×2=90,则从第三组抽取的号码是290,…故依次是24,157,290,323,456,589,622,755,888,921.(2)由x +33×0=87得x =87,由x +33×1=87得x =54,由x +33×3=187得x =88,…,依次求得x 值可能为21,22,23,54,55,56,87,88,89,90.一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则t anθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===. ∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.。

2018东城高三数学二模考试试题理科

2018东城高三数学二模考试试题理科

2018东城二模高三数学 (理科)本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合{|12}A x x =-<<,{|2B x x =<-或1}x >,则A B =(A ){|2x x <-或1}x > (B ){|2x x <-或1}x >- (C ){|22}x x -<< (D ){|12}x x <<(2)复数(1+i)(2-i)=(A )3+i (B )1+i (C )3-i (D )1-i(3)在5a x x ⎛⎫+ ⎪⎝⎭展开式中,3x 的系数为10,则实数a 等于(A )1- (B )12(C )1 (D )2 (4)已知双曲线C :x 2a 2-y 2b 2=1的一条渐近线的倾斜角为60º,且与椭圆x 25+y 2=1有相等的焦距,则C 的方程为(A )x 23-y 2=1 (B )x 29-y 23=1 (C )x 2-y 23=1 (D )x 23-y 29=1 (5)设a ,b 是非零向量,则“|a +b |=|a |-|b |”是“a // b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(6)某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.若甲地区和乙地区用户满意度评分的中位数分别为12,m m ;平均数分别为12,s s ,则下面正确的是(A ) 1212,m m s s (B )1212,m m s s (C )1212,m m s s (D )1212,m m s s(7)已知函数a x x g x x f +==2)(,log )(2,若存在]2,21[,21∈x x ,使得)()(21x g x f =,则a的取值 范围是(A )[5,0] (B )(,5][0,) (C )(5,0) (D )(,5)(0,)(8)A ,B ,C ,D 四名工人一天中生产零件的情况如图所示,每个点的横、纵坐标分别表示该工人一天中生产的I 型、 II 型零件数,则下列说法错误..的是 (A )四个工人中,D 的日生产零件总数最大(B )A ,B 日生产零件总数之和小于C ,D 日生产零件 总数之和(C )A ,B 日生产I 型零件总数之和小于II 型零件总数之和 (D )A ,B ,C ,D 日生产I 型零件总数之和小于II 型零件总数之和第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年四川省宜宾市高考数学二诊试卷(理科)

2018年四川省宜宾市高考数学二诊试卷(理科)

2018年四川省宜宾市高考数学二诊试卷(理科)副标题一、选择题(本大题共12小题,共60.0分)1.若集合A={x∈N|x<6},B={x|x2-8x+15<0},则A∩B等于()A. {x|3<x<5}B. {4}C. {3,4}D. {3,4,5}2.已知i是虚数单位,复数(1+2i)2的共轭复数虚部为()A. 4iB. 3C. 4D. -43.如图的平面图形由16个全部是边长为1且有一个内角为60°的菱形组成,,()C. 8D. 74.某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小组积分的方差为()A. 0.5B. 0.75C. 1D. 1.255.某几何体的三视图如图所示,则此几何体的表面积是()A.B.C.D. 24+46.设a=b=c=log a,b,c的大小顺序是()A. b<a<cB. c<a<bC. b<c<aD. c<b<a7.执行如图所示的程序框图,则输出的S的值为()8.在各项均不为零的等差数列{a n}中,若a n+1-a n2+a n-1=0(n≥2),则S2n-1-4n=()A. -2B. 0C. 1D. 29.cosα+2sinα=()A. -1B. 1C.D. 1或10.某班级需要把6名同学安排到周一、周二、周三这三天值日,每天安排2名同学,已知甲不能安排到周一,乙和丙不能安排到同一天,则安排方案的种数为()A. 24B. 36C. 48D. 7211.已知双曲线x2-y2=4上存在两点M,N关于直线y=2x-m对称,且线段MN的中点在抛物线y2=16x上,则实数m的值为()A. 0或-16B. 0或16C. 16D. -1612.设x=1是函数f(x)=a n+1x3-a n x2-a n+2x+1(n∈N+)的极值点,数列{a n},a1=1,a2=2,b n=log2a2n,若[x]表示不超过x的最大整数,则…()A. 1008B. 1009C. 2017D. 2018二、填空题(本大题共4小题,共20.0分)13.设x,y z=y+x,则z的最大值为______.14.已知正三棱锥P-ABC的侧面都是直角三角形,PA=3,顶点P在底面ABC内的射影为点Q,则点Q到正三棱锥P-ABC的侧面的距离为______.15.若动点P在直线a:x-2y-2=0上,动点Q在直线b:x-2y-6=0上,记线段PQ的中点为M(x0,y0),且(x0-2)2+(y0+1)2≤5,则x02+y02的取值范围为______.16.已知函数f(x)g(x)=kx2+be x(k≠0)的图象与曲线y=f(x)有且仅有一个公共点,则k的取值范围为______.三、解答题(本大题共7小题,共82.0分)17.如图,在△ABC中,tan A=7,∠ABC的平分线BD交AC于点D,设∠CBD=θ,其中θ是直线2x-4y+5=0的倾斜角.(1)求C的大小;(2)若f(x)=sin C sin x-2cos C sin f(x)的最小值及取得最小值时的x的值.18.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这组数据中选取组数据求线性回归方程,再用剩下的2组数据进行检验.(1)若选取的3组数据恰好是连续ξ天的数据(ξ=0表示数据来自互不相邻的三天),求ξ的分布列及期望;(2)根据12月2日至4日数据,求出发芽数y关于温差x由所求得线性回归方程得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?19.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABCAA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC(2)求直线BC1与平面A1AB所成角的正弦值.20.在直角坐标系xoy中,已知点F1(-1,0),F2(1,0),动点P.(1)求动点P的轨迹C的方程;(2)若分别过点(-1,0)、(1,0),作两条平行直线m,n,设m,n与轨迹C 的上半部分分别交于A、B两点,求四边形面积的最大值.21.已知f(x)=ln x+mx(m∈R).(1)求f(x)的单调区间;(2)若m=e(其中e为自然对数的底数),且f(x)≤ax-b22.在平面直角坐标系xOy中,椭圆Cφ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+ρsinθ=1(1)求椭圆C的极坐标方程和直线l的参数方程;(2)若点P的极坐标为(1l与椭圆C交于A,B两点,求|PA|+|PB|的值.23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10-|x-3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(-2n)≥16.答案和解析1.【答案】B【解析】解:∵集合A={x∈N|x<6}={0,1,2,3,4,5},B={x|x2-8x+15<0}={|3<x<5}∴A∩B={4}.故选:B.根据所给的两个集合,整理两个集合,写出两个集合的最简形式,再求出两个集合的交集.本题考查集合的表示方法,两个集合的交集的定义和求法.化简A、B两个集合,是解题的关键.2.【答案】D【解析】解:∵(1+2i)2=-3+4i,∴复数(1+2i)2的共轭复数为-3-4i,其虚部为-4.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】A【解析】解:如右图(•=3×2×1×故选:A.运用向量的平行四边形法则和向量数量积的定义和性质,主要是向量的平方即为模的平方,计算可得所求值.本题考查向量的平行四边形法则和向量数量积的定义和性质,考查运算能力,属于基础题.4.【答案】C【解析】解:根据题意,四个参赛小队的得分为11.5,13.5,13.5,11.5;计算平均数(11.5+13.5+13.5+11.5)=12.5,方差为s2[(11.5-12.5)2+(13.5-12.5)2+(13.5-12.5)2+(11.5-12.5)2]=1.故选:C.根据题意知四个参赛小队的得分,计算平均数与方差的值.本题考查了平均数与方差的计算问题,是基础题.5.【答案】B【解析】解:由三视图可知此几何体为一个三棱锥,其直观图如图:侧棱PA⊥平面ABC,△ABC为等腰直角三角形,且∠B=90°,PA=4,AB=BC=3,∵PA⊥平面ABC,∴BC⊥PA,又BC⊥AC,PA∩AC=A,∴∴此几何体的表面积为故选:B.由三视图画出几何体的直观图,确定几何体的线面关系和数量关系,由椎体的体积公式求出此几何体的体积;由线面垂直的判定定理和定义证明侧面均为直角三角形,由三角形的面积公式求出三棱锥的表面积.本题考查三视图求几何体的体积以及表面积,以及线面垂直的定义和判定定理,由三视图正确复原几何体是解题的关键,考查空间想象能力.6.【答案】D【解析】解:a=b=1>c=log则c<b<a.故选:D.利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.【答案】A【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.【解答】解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量,=1+++…+故选:A.8.【答案】A【解析】解:设公差为d,则a n+1=a n+d,a n-1=a n-d,由a n+1-a n2+a n-1=0(n≥2)可得2a n-a n2=0,解得a n=2(零解舍去),故S2n-1-4n=2×(2n-1)-4n=-2,故选:A.由等差数列的性质可得a n+1+a n-1=2a n,结合已知,可求出a n,又因为s2n-1=(2n-1)a n,故本题可解.本题考查了等差数列的前n项和公式与等差数列性质的综合应用,是高考重点考查的内容.9.【答案】B【解析】【分析】由题意利用三角恒等变换求得,再利用三角恒等变换化简要求的式子,求得cosα+2sinα的值.本题主要考查三角恒等变换,二倍角公式,属于中档题.【解答】∴,则,故选B.10.【答案】C【解析】解:根据题意,分2种情况讨论:①、甲、乙、丙三人分在不同的三天值班,甲可以分在周二、周三,有2种安排方法,将乙、丙全排列,分在其他2天,有A22=2种安排方法,剩余的3人,全排列,安排在周一、周二、周三这三天,有A33=6种安排方法,则此时有2×2×6=24种安排方法;②,甲和乙、丙中的1人,安排在同一天值班,在乙、丙中选出1人,和甲一起分在周二、周三值班,有2×2=4种情况,剩余4人,平均分成2组42=3种分组方法,再将2组全排列,对应剩下的2天值班,有A22=2种安排方法,则此时有4×3×2=24种安排方法;则有24+24=48种不同的安排方案,故选:C.根据题意,分2种情况讨论:①、甲、乙、丙三人分在不同的三天值班,②,甲和乙、丙中的1人,安排在同一天值班,分别求出每种情况下的安排方法数目,由加法原理,计算可得答案.本题考查排列组合的综合应用,注意有限制条件的排列组合问题的处理方法,有限制条件需要首先安排的原则11.【答案】B【解析】解:∵M,N关于直线y=2x-m对称,∴MN垂直直线y=2x-m,MN的斜率设MN中点P(x0,2x0-m)在y=2x-m上,且在MN上,设直线MN:,∵P在MN上,∴2x00+t,∴0-m,由,与双曲线x2-y2=4联立,消去y可得:3x2+4tx-4t2-16=0,△=16t2-4×3(-4t2-16)=64t2+192>0恒成立,∴M x+N x,∴x0,∴,解得,∴MN中点P,)∵MN的中点在抛物线y2=16x上,2,∴m=0或m=16,故选:B.根据双曲线x2-y2=4上存在两点M,N关于直线y=2x-m对称,运用中点坐标公式和两直线垂直的条件:斜率之积为-1,联立直线方程和双曲线的方程,运用韦达定理,求出MN中点P,),利用MN的中点在抛物线y2=16x 上,即可求得实数m的值.本题考查直线与双曲线的位置关系,考查对称性,考查抛物线的标准方程,解题的关键是确定MN中点P的坐标.12.【答案】A【解析】解:函数f(x)=a n+1x3-a n x2-a n+2x+1(n∈N+)的导数为f′(x)=3a n+1x2-2a n x-a n+2,由x=1是f(x)=a n+1x3-a n x2-a n+2x的极值点,可得f′(1)=0,即3a n+1-2a n-a n+2=0,即有2(a n+1-a n)=a n+2-a n+1,设c n=a n+1-a n,可得2c n=c n+1,可得数列{c n}为首项为1,公比为2的等比数列,即有c n=2n-1,则a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+1+2+…+=2n-2n-1,则b n=log2a2n=2n-1,=2018×=2018×(=1009×(则.故选:A.求得f(x)的导数,可得f′(1)=0,即3a n+1-2a n-a n+2=0,结合构造等比数列,以及等比数列的定义和通项公式,对数的运算性质,再由数列的求和方法:裂项相消求和,即可得到所求值.本题考查导数的运用:求极值点,考查数列恒等式的运用,以及等比数列的通项公式和求和公式,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.13.【解析】解:作出不等式组对应的平面区域如图:由z=y+x得y=-x+z,平移直线y=-x+z,由图象可知当直线y=-x+z经过点B时,直线y=-x+z的截距最大,此时z最大,即B此时故答案为作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.14.【答案】1【解析】解:∵正三棱锥P-ABC的侧面都是直角三角形,PA=3,顶点P在底面ABC内的射影为点Q,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,Q(1,1,2),平面PBC(1,0,0),∴点Q到正三棱锥P-ABC的侧面的距离:.故答案为:1.以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出点Q到正三棱锥P-ABC的侧面的距离.本题考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.【答案】16]【解析】解:∵动点P在直线a:x-2y-2=0上,动点Q在直线b:x-2y-6=0上,直线a:x-2y-2=0与直线b:x-2y-6=0互相平行动点P在直线a上,动点Q在直线b上,∴PQ的中点M在与a、b平行,且到a、b距离相等的直线上,设该直线为l,方程为x-2y+m=0,m=-4,可得直线l方程为x-2y-4=0,∵线段PQ的中点为M(x0,y0),且(x0-2)2+(y0+1)2≤5,∴点M在圆C:(x-2)2+(y+1)2=5内部或在圆C上,∴设直线l交圆C于A、B,可得点M在线段AB上运动.2,x2+y2的代表的几何意义为线段上的点到原点的距离的平方,故原点到直线AB的距离的平方为最小值,∴x02OA为最大值.联(4,0),B(0,-2),当M与A重合时,x02+y02的最大值为42+02=16.故x02+y02的取值范围是16].故答案为:16].根据题意判断出点M的轨迹,利用点到直线的距离求得最小值,进而联立直线和圆的方程求得B的坐标,进而求得最大值.本题主要考查了直线与圆的方程的综合运用,考查直角方程、圆、点到直线距离公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.【答案】(0,1)∪(1,+∞)【解析】解:∵g(x)=kx2+be x(k≠0)为偶函数,∴b=0,∴g(x)=kx2,令f(x)=g(x)得:令h(x)则h′(x)0,所以h(x)在(0,1)和(1,+∞)上单调递减,由洛必达法则(x),又因为h(x)>0(x),∵k=h(x)只有一解,∴k的范围是:(0,1)∪(1,+∞).故答案为:(0,1)∪(1,+∞).令f(x)=g(x)可得单调性和极值,从而求出k的范围.本题考查了函数单调性判断与值域计算,属于中档题.17.【答案】解:(1)由题可知:∠CBD=θ,其中θ是直线2x-4y+5=0的倾斜角.可得∵∠ABC的平分线BD交AC于点D,可得tan∠ABC由tan A=7,那么tan C=-tan(B+A),∵0<C<π.∴C(2)由(1)可知C可得f(x)=sin C sin x-2cos C sin xx x(x,∵x∴x∴所以当x+=即当x=0或x=f(x)取得最小值为sin.【解析】(1)设∠CBD=θ,其中θ是直线2x-4y+5=0的倾斜角.可得∠ABC的平分线BD交AC于点D,可得tan∠tanA=7,那么tanC=-tan (B+A)可得C的大小;(2)根据f(x)=sinCsinx-2cosCsin1)可知C,带入,化简,x层函数范围,即可得f(x)的最小值及取得最小值时的x的值.本题考查三角函数的化简,二倍角公式和三角函数有界性,考查转化思想以及计算能力.18.【答案】解:(1)由题意知,ξ=0,2,3;则P(ξ=0)P(ξ=3)∴P(ξ=2)=1-P(ξ=0)-P(ξ=3)=,数学期望为E+2×+3×;(2×(11+13+12)=12,(25+30+26)=27,x i y i=-1×(-2)+1×3+0×(-1)=5,(-1)2+12+02=2,-=27-×12=-3,∴y关于x的线性回归方程为-3;当x=10时,y10-3=22,且|22-23|<2,当x=8时,y×8-3=17,且|17-16|<2;∴所求得线性回归方程是可靠的.【解析】本题考查了线性回归方程与离散型随机变量的分布列问题,是中档题.(1)由题意知ξ的可能取值,计算对应的概率值,写出ξ的分布列,求出期望值;(2)由题意计归系数,写出线性回归方程,利用方程验证所求得线性回归方程是否可靠.19.【答案】(1)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.(1分)又由题意:平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.…………(6分)(条件不全扣2分)(2)解:如图,以O为原点,OB,OC,OA1所在直线分别为轴建立空间直角坐标系,AA1=A1C=AC=2,AB=BC,C1(0,2A(0,-1,0),A1(0,0,B(1,0,0)…………(7分)8分)设平面A1AB的一个法向量为=(x,y,z),令y=1,得x=-1,z(-1,1,…………(10分)所以…………(11分)因为直线与平面所成角和向量n与所成锐角互余,所以12分)【解析】(1)通过证明A1O⊥AC,结合侧面AA1C1C⊥底面ABC,即可推出结果.(2)此小题由于直线A1C与平面A1AB所成角不易作出,再由第(1)问的结论可以联想到借助于空间直角坐标系,设定参数,转的角去解决本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.【答案】解:(1)设点P(x,y),由点F1(-1,0),F2(1,0).动点P满足:..由椭圆定义可知点P的轨迹是以点(1,0),(-1,0)为焦点,长轴长为4的椭圆,.(2)设直线m:x=ty-1,它与轨迹C的另一个交点为D.|AF1|+|BF2|)•dd|dx=ty-1与C联立,消去x,得(3t2+4)y2-6ty-9=0,△>0,|AD又到的距离为d,令m,=,∵y=3m在[1,+∞)上单调递增∴当m=1即t=03,所以四边形面积的最大值为 3.【解析】(1)设点P(x,y),由点F1(-1,0),F2(1,0).动点P满.根据题意的定义即可得出.(2)设直线m:x=ty-1,它与轨迹C的另一个交点为D.由椭圆的对称性知:|AF1|+|BF2|)x=ty-1与C联立,消去x,得(3t2+4)y2-6ty-9=0,△>0,为d=函数的单调性即可得出.本本题考查了椭圆与圆的标准方程及其性质、点到直线的距离公式、一元二次方程的根与系数的关系、弦长公式、函数的单调性,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)由f(x)=ln x+mx,得f′(x)m…………(1分)(ⅰ)当m≥0时,f′(x)>0恒成立,f(x)在(0,+∞)上单调递增;…………(2分)(ⅱ)当m<0时,解f′(x)=0,得x当x∈(0,f′(x)<0,f(x)单调递增,当x∈(,+∞)时,f′(x)>0,f(x)单调递减.…………(4分)(2)当m=e时,f(x)=ln x+ex,令g(x)=ln x+9e-a)x+b,则g′(x)(e-a),…………(5分)由(1)可知,当a≤e时,f(x)在(0,+∞)上单调递增,不合题意;当a>e时,f(x)在(0+∞)上单调递减,当x f(x)取得最大值.…………(6分)所以f(≤0恒成立,即+(e-a)×b≤0,整理得ln(a-e)-b+1≥0,即b≤ln(a-e)+1,令h(a)=h′(a)8分)令H(a)=e-(a-e)ln(a-e),H′(a)=-ln(a-e)-1,解H′(a)=0,得a=e当a∈(e,e H′(a)>0,H(a)单调递增;当a∈(e+∞)时,H′(a)<0,H(a)单调递减;当a=e时H(a)取得最大值为H(e=e10分)因为当a→e时,H(a)>0,(根据洛必达法则可证),然而H(2e)=0,∴当a∈(e,2e)时,H(a)>0恒成立,当a∈(2e,+∞)时,H(a)<0恒成立,所以h(a)在(e,2e)上单调递增,在(2e,+∞)上单调递减,即函数h(a)的最大值为h(2e)…………(12分)【解析】(1)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(2)求出函数的导h(a)单调性求出其最大值即可.本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.【答案】解:(1)将椭圆Cφ为参数),消去参数可得椭圆C,得:2ρ2cos2θ+3ρ2sin2θ=6.化简得椭圆C的极坐标方程为2ρ2+ρ2sin2θ-6=0.ρcosθ+ρsinθ=1可得直线l的方程为x+y-1=0.故直线l t为参数)(2)设A、B对应的参数分别为t1,t2,将直线l(t为参数),又P的极坐标为(1,),在直线l上,所以:|PA|+|PB|=|t1-t2|=【解析】(1)直接把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用方程组,整理成一元二次方程根和系数的关系求出结果.本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用.23.【答案】解:(1)解得或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mnm+2n≥8,时取等号.∴f(m)+f(-2n)=|2m+1|+|-4n+1|≥|(2m+1)-(-4n+1)|=|2m+4n|=2(m+2n)≥16,∴f(m)+f(-2n)≥16.【解析】(1)通过讨论x的范围,得到关于x的不等式组,解出即可;(2)求出m+2n≥8,求出f(m)+f(-2n)的最小值即可.本题考查了解绝对值不等式以及绝对值不等式的性质,考查分类讨论思想,转化思想,是一道中档题.第21页,共21页。

(完整版)2018年高考全国2卷理科数学带答案解析

(完整版)2018年高考全国2卷理科数学带答案解析

范文范文 范例范例 指导指导 参考参考word 资料资料 整理分享整理分享绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:注意事项:11.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e()xxf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A .42B .30C .29D .257.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A .15B .56C .55D .221010.若.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是 A .π4 B .π2 C .3π4D .π 1111.已知.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =, 则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .501212.已知.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学全国卷2(含答案解析)

2018年高考理科数学全国卷2(含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。

河北省衡水市部分学校2024届高三下学期二模考试 数学试题(含解析)

河北省衡水市部分学校2024届高三下学期二模考试 数学试题(含解析)

2023—2024学年度下学期高三年级二调考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共4页,总分150分,考试时间120分钟.第Ⅰ卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a b a b +=- ,()()1,2,,3a b m == ,则实数m =()A .6B .6-C .3D .3-2.某中学举行数学解题比赛,其中5人的比赛成绩分别为:70,85,90,75,95,则这5人成绩的上四分位数是()A .90B .75C .95D .703.生活中有很多常见的工具有独特的几何体结构特征,例如垃圾畚箕,其结构如图所示的五面体ADE BCF -,其中四边形ABFE 与CDEF 都为等腰梯形,ABCD 为平行四边形,若AD ⊥面ABFE ,且222EF AB AE BF ===,记三棱锥D ABF -的体积为1V ,则该五面体的体积为()A .18V B .15V C .14V D .13V 4.已知tan 2α=,则sin3sin cos ααα=+()A .215-B .215C .79-D .795.将5本不同的书(2本文学书、2本科学书和1本体育书)分给甲、乙、丙三人,每人至少分得1本书,每本书只能分给一人,其中体育书只能分给甲、乙中的一人,则不同的分配方法数为()A .78B .92C .100D .1226.已知12,F F 分别为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为()A .3B CD .27.已知函数(),()f x g x 的定义域为R ,()g x '为()g x 的导函数,且()()2f x g x '+=,()()42f x g x '--=,若()g x 为偶函数,则下列结论一定成立的是()A .(4)2f =B .()20g '=C .(1)(3)f f -=-D .(1)(3)4f f +=8.已知正数a ,b ,c 满足3e 1.1a =,251030b b +-=,e 1.3c =,则()A .a c b <<B .b a c <<C .c<a<bD .c b a<<二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,z z ∈C 是z 的共轭复数,则()A .若13i13i z +=-,则43i 5z --=B .若z 为纯虚数,则20z <C .若(2i)0z -+>,则2iz >+D .若{||3i3}M z z =+≤∣,则集合M 所构成区域的面积为6π10.如图,点,,A B C 是函数()()sin (0)f x x ωϕω=+>的图象与直线2y =相邻的三个交点,且ππ,0312BC AB f ⎛⎫-=-= ⎪⎝⎭,则()A .4ω=B .9π182f ⎛⎫=⎪⎝⎭C .函数()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减D .若将函数()f x 的图象沿x 轴平移θ个单位,得到一个偶函数的图像,则θ的最小值为π2411.如图所示,有一个棱长为4的正四面体-P ABC 容器,D 是PB 的中点,E 是CD 上的动点,则下列说法正确的是()A .直线AE 与PB 所成的角为π2B .ABE 的周长最小值为4C .如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为3D .如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为25第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2230,A x x x x =--<∈R ,{},0B x x a a =>>,则A B = R ,则实数a 的取值范围为.13.已知圆2216x y +=与直线y =交于A ,B 两点,则经过点A ,B ,()8,0C的圆的方程为.14.已知等差数列{}n a (公差不为0)和等差数列{}n b 的前n 项和分别为,n n S T ,如果关于x 的实系数方程21003100310030x S x T -+=有实数解,则以下1003个方程()201,2,,1003i i x a x b i -+== 中,有实数解的方程至少有个.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()()21sin 02f x x x ωωω=-+>的最小正周期为4π.(1)求()f x 在[]0,π上的单调递增区间;(2)在锐角三角形ABC 中,内角,,A B C 的对边分别为,,,a b c 且()2cos cos ,a c B b C -=⋅求()f A 的取值范围.16.如图,在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,MB =MD =(1)证明:AB ⊥平面ADM ;(2)若23DC AB = ,2BE EM = ,求直线CE 与平面BDM 所成角的正弦值.17.王老师每天早上7:00准时从家里出发去学校,他每天只会从地铁与汽车这两种交通工具之间选择一个乘坐.王老师多年积累的数据表明,他到达学校的时间在两种交通工具下的概率分布如下表所示:到校时间7:30之前7:30-7:357:35-7:407:40-7:457:45-7:507:50之后乘地铁0.10.150.350.20.150.05乘汽车0.250.30.20.10.10.05(例如:表格中0.35的含义是如果王老师当天乘地铁去学校,则他到校时间在7:35-7:40的概率为0.35.)(1)某天早上王老师通过抛一枚质地均匀的硬币决定乘坐地铁还是乘坐汽车去学校,若正面向上则坐地铁,反面向上则坐汽车.求他当天7:40-7:45到校的概率;(2)已知今天(第一天)王老师选择乘坐地铁去学校,从第二天开始,若前一天到校时间早于7:40,则当天他会乘坐地铁去学校,否则当天他将乘坐汽车去学校.且若他连续10天乘坐地铁,则不论他前一天到校的时间是否早于7:40,第11天他都将坐汽车到校.记他从今天起(包括今天)到第一次乘坐汽车去学校前坐地铁的次数为X ,求()E X ;(3)已知今天(第一天)王老师选择乘坐地铁去学校.从第二天开始,若他前一天坐地铁去学校且到校时间早于7:40,则当天他会乘坐地铁去学校;若他前一天坐地铁去学校且到校时间晚于7:40,则当天他会乘坐汽车去学校;若他前一天乘坐汽车去学校,则不论他前一天到校的时间是否早于7:40,当天他都会乘坐地铁去学校.记n P 为王老师第n 天坐地铁去学校的概率,求{}n P 的通项公式.18.已知()2e 2e x xf x a x =-(其中e 2.71828= 为自然对数的底数).(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程,(2)当12a =时,判断()f x 是否存在极值,并说明理由;(3)()1R,0x f x a∀∈+≤,求实数a 的取值范围.19.已知动点P 与定点(),0A m 的距离和P 到定直线2n x m=的距离的比为常数m n .其中0,0m n >>,且m n ≠,记点P 的轨迹为曲线C .(1)求C 的方程,并说明轨迹的形状;(2)设点(),0B m -,若曲线C 上两动点,M N 均在x 轴上方,AM BN ,且AN 与BM 相交于点Q .①当4m n ==时,求证:11AM BN+的值及ABQ 的周长均为定值;②当m n >时,记ABQ 的面积为S ,其内切圆半径为r ,试探究是否存在常数λ,使得S r λ=恒成立?若存在,求λ(用,m n 表示);若不存在,请说明理由.1.B【分析】利用向量数量积坐标公式即可求解.【详解】因为a b a b +=-,所以()()22a ba b+=- ,即222222a b a b a b a b ++⋅=+-⋅,所以0a b ⋅= ,因为()1,2a =r ,(),3b m = ,所以6a b m ⋅=+,所以60+=m ,解得6m =-.故选:B.2.A【分析】根据第p 百分位数定义计算判断即可.【详解】将5人的比赛成绩由小到大排列依次为:70,75,85,90,95,575% 3.75i =⨯=,5人成绩的上四分位数为第四个数:90.故选:A.3.C【分析】将五面体分割成三个三棱锥,,D AEF D ABF F BCD ---,通过选择适当定点可得其体积关系,然后可得五面体体积.【详解】因为ABCD 为平行四边形,所以ABD BCD S S =△△,所以1F BCD F ABD V V V --==.记梯形ABFE 的高为h ,因为2EF AB =,所以112222AEF ABF S EF h AB h S =⋅=⨯⋅= ,所以122D AEF D ABF V V V --==,所以该五面体的体积111124D AEF D ABF F BCD V V V V V V V V ---=++=++=.故选:C4.A【分析】利用两角和的正弦,二倍角余弦结合齐次式化简求值.【详解】sin3sin cos2cos sin2tan cos2sin2sin cos sin cos tan 1ααααααααααααα++==+++()()22222cos sin 2sin cos 2cos2sin233sin cos αααααααα-++==+()()2221tan 2tan 2153tan 1ααα-+==-+.故选:A 5.C【分析】分体育书分给甲和乙两种情况求解.【详解】若将体育书分给甲,当剩余4本书恰好分给乙、丙时,此时的分配方法有22312242412222C C C C A A 14A ⋅⋅⋅+⋅=种,当剩余4本书恰好分给甲、乙、丙三人时,此时的分配方法有2343C A 36⋅=种.综上,将体育书分给甲,不同的分配方法数是143650+=.同理,将体育书分给乙,不同的分配方法数也是50.故不同的分配方法数是5050100+=.故选:C 6.C【分析】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,运用双曲线的定义和条件可得1||3PF a =,2||PF a =,12||2F F c =,再由渐近线的斜率和余弦定理,结合离心率公式,计算即可得到所求值.【详解】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,由双曲线的定义可得12||||2PF PF a -=,由12||3||PF PF =,可得1||3PF a =,2||PF a =,12||2F F c =,由12tan bF F P a ∠=可得12cos aF F P c ∠=,在三角形12PF F 中,由余弦定理可得:222121221212||||||2||||cos PF PF F F PF F F F F P =+-⋅∠,即有2229422a a a c a c c=+-⨯⨯,化简可得223c a =,所以双曲线的离心率==ce a.故选:C .7.ABD【分析】根据复合函数的导数法则,结合偶函数的性质、函数的对称性逐一判断即可.【详解】对A :∵()g x 为偶函数,则()()g x g x =-,两边求导可得()()g x g x ''=--,∴()g x '为奇函数,则()00g '=,令=4x ,则可得()0(4)2f g '-=,则(4)2f =,A 成立;对B :令=2x ,则可得()()(2)22(2)22f g f g ⎧+='-='⎪⎨⎪⎩,则()(2)=22=0f g '⎧⎨⎩,B 成立;∵()()2f x g x '+=,则可得()(2)22f x g x '+++=,()()42f x g x '--=,则可得()(2)22f x x g '+--=,两式相加可得:()(2)42x x f f ++=-,∴()f x 关于点()2,2成中心对称,则(1)(3)4f f +=,D 成立,又∵()()2f x g x '+=,则可得()()(4)4(4)42f x g x f x g x ''-+-=---=,()()42f x g x '--=,则可得()()4f x f x =-,∴()f x 以4为周期的周期函数,根据以上性质只能推出(1)(3)4f f -+-=,不能推出(1)(3)f f -=-,C 不一定成立,故选:ABD.【点睛】关键点睛:本题的关键是对已知等式进行求导、利用偶函数的性质.8.D【分析】分别构造函数21()ln(1)2f x x x x =--+,(1)x >-,2311()ln(1)23g x x x x x =-+-+,(1)x >-,利用导数研究其单调性,得到223111ln(1)223x x x x x x -<+<-+,(0)x >,再将a 看成3ln(10.1)+,c 看成ln(10.3)+,利用上述的不等式比较大小即可.【详解】解:由251030b b +-=解得1b =-,构造函数21()ln(1)2f x x x x =--+,(1)x >-,显然2()01x f x x -'=<+,故()f x 是减函数,结合(0)0f =,故0x >时,()0f x <,故21ln(1)2x x x +>-,(0)x >,再令2311()ln(1)23g x x x x x =-+-+,(1)x >-,3()1x g x x'=+,当0x >时,()0g x '>,故()g x 在(0,)+∞单调递增,结合(0)0g =,故2311ln(1)23x x x x +<-+,(0)x >,则11ln1.3ln(10.3)0.30.090.0270.26423c ==+<-⨯+⨯=,13ln1.13(0.10.01)0.2852a =>⨯-⨯=,所以22(1)(10.285) 1.651225a +>+=,28(1) 1.65b +==,22(1)(10.264) 1.597696c +=+=,故222(1)(1)(1)a b c +>+>+,由a ,b ,c 都是正数,故a b c >>.故选:D .9.AB【分析】根据共轭复数的定义以及复数四则运算可判断A ;z 为纯虚数,可设()i 0z b b =≠,根据复数的四则运算可判断B ;由()2i 0z -+>结合数大小比较只能在实数范围内可判断C ;设复数i z a b =+,根据复数模长定义计算可判断D.【详解】()()()213i 13i 43i13i 13i 13i 5z ++-+===--+,所以43i 5z --=,故A 正确;由z 为纯虚数,可设()i R,0z b b b =∈≠,所以222i z b =,因为2i 1=-且0b ≠,所以20z <,故B 正确;由()2i 0z -+>,得i(2)z a a =+>,因为i(2)z a a =+>与2i +均为虚数,所以二者之间不能比较大小,故C 错误;设复数i,,R z a b a b ∈=+,所以()3ia b ++由|3i3z +≤∣得()2239a b ++≤,所以集合M 所构成区域是以()0,3-为圆心3为半径的圆,所以面积为9π,故D 错误.故选:AB.10.ACD【分析】令()f x =,,A B C x x x 根据π3BC AB -=求得4ω=,根据π012f ⎛⎫-= ⎪⎝⎭求得()f x 的解析式,再逐项验证BCD 选项.【详解】令()()sin 2f x x ωϕ=+得,π2π3x k ωϕ+=+或2π2π3x k ωϕ+=+,Z k ∈,由图可知:π2π3A x k ωϕ+=+,π2π+2π3C x k ωϕ+=+,2π2π3B x k ωϕ+=+,所以1π2π3C B BC x x ω⎛⎫=-=-+ ⎪⎝⎭,1π3B A AB x x ω=-=⋅,所以π12π2π33BC AB ω⎛⎫=-=- ⎪⎝⎭,所以4ω=,故A 选项正确,所以()()sin 4f x x ϕ=+,由π012f ⎛⎫-= ⎪⎝⎭且π12x =-处在减区间,得πsin 03ϕ⎛⎫-+= ⎪⎝⎭,所以ππ2π3k ϕ-+=+,Z k ∈,所以4π2π3k =+ϕ,Z k ∈,所以()4π4ππsin 42πsin 4sin 4333f x x k x x ⎛⎫⎛⎫⎛⎫=++=+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,9π9ππ1sin 8232f ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,故B 错误.当ππ,32x ⎛⎫∈ ⎪⎝⎭时,π5ππ42π333x ⎛⎫+∈+ ⎪⎝⎭,因为sin y t =-在5ππ,2π33t ⎛⎫∈+ ⎝⎭为减函数,故()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减,故C 正确;将函数()f x 的图象沿x 轴平移θ个单位得()πsin 443g x x θ⎛⎫=-++ ⎪⎝⎭,(0θ<时向右平移,0θ>时向左平移),()g x 为偶函数得ππ4π32k θ+=+,Z k ∈,所以ππ244k θ=+,Z k ∈,则θ的最小值为π24,故D 正确.故选:ACD.11.ACD【分析】A 选项,作出辅助线,由三线合一得到线线垂直,进而得到线面垂直,进而得到线线垂直,求出答案;B 选项,把ACD 沿着CD 展开与平面BDC 同一平面内,由余弦定理求出AE BE +的最小值,得到周长的最小值;C 选项,求出正四面体的内切球即为小球半径的最大值;D 选项,当四个小球相切且与大正四面体相切时,小球半径最大,连接四个小球的球心,构成正四面体,设出半径,结合C 选项中结论得到方程,求出小球半径的最大值.【详解】A 选项,连接AD ,由于D 为PB 的中点,所以PB ⊥CD ,PB ⊥AD ,又CD AD D = ,,AD CD ⊂平面ACD ,所以直线PB ⊥平面ACD ,又AE ⊂平面ACD ,所以PB ⊥AE ,故A 正确;B 选项,把ACD 沿着CD 展开与平面BDC 同一个平面内,连接AB 交CD 于点E ,则AE BE +的最小值即为AB 的长,由于AD CD ==4AC =,22222241cos23CD AD ACADC CD AD+-+-∠===⋅,π1cos cos sin 23ADB ADC ADC ⎛⎫∠=+∠=-∠=- ⎪⎝⎭,所以(222222cos 22222163AB BD AD BD AD ADB ⎛=+-⋅∠=+-⨯⨯-=+ ⎝⎭故AB ==ABE 的周长最小值为4+B 错误;C 选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,设球心为O ,取AC 的中点M ,连接,BM PM ,过点P 作PF 垂直于BM 于点F ,则F 为ABC 的中心,点O 在PF 上,过点O 作ON ⊥PM 于点N ,因为2,4AM AB ==,所以BM =PM =,则133MF BM ==,故PF =设OF ON R ==,故OP PF OF R =-=,因为PNO ∽PFM △,所以ON OP FM PM =3R-=解得3R =,C正确;D 选项,4个小球分两层(1个,3个)放进去,要使小球半径要最大,则4个小球外切,且小球与三个平面相切,设小球半径为r ,四个小球球心连线是棱长为2r 的正四面体Q VKG -,由C选项可知,其高为3r ,由C 选项可知,PF 是正四面体-P ABC 的高,PF 过点Q 且与平面VKG 交于S ,与平面HIJ 交于Z ,则3QS r =,SF r =,由C 选项可知,正四面体内切球的半径是高的14得,如图正四面体P HJI -中,QZ r =,3QP r =,正四面体P ABC -高为34r r r +⨯,解得r =,D 正确.故选:ACD【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径12.()0,1【分析】由题意可以先将所给集合化简,若满足A B = R ,则B A ⊆R ð,故只需根据包含关系列出不等式组求出参数范围即可.【详解】由题意{}{}2230,|13A x x x x x x =--<∈=-<<R ,{}{,0B x x a a x x a =>>=或},0x a a -,若满足A B = R ,则B A ⊆R ð,又因为{}|B x a x a =-≤≤R ð,所以130a a a -<-⎧⎪<⎨⎪>⎩,解得01a <<.故答案为:()0,1.13.()(223328x y -+=【分析】设()()1122,,,A x y B x y ,直线方程与圆的方程联立求出,A B 点坐标,设经过点A ,B ,C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,代入三点坐标解方程组可得答案.【详解】设()()1122,,,A x y B x y ,由2216y x y ⎧=⎪⎨+=⎪⎩解得121222x x y y ==-⎧⎧⎪⎪⎨⎨=-=⎪⎪⎩⎩可得((2,,2,A B --,设经过点A ,B ,()8,0C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,所以412204120640800D F Dx F D F ⎧++-+=⎪⎪+-++=⎨⎪++++=⎪⎩,解得616D E F =-⎧⎪=-⎨⎪=-⎩,即226160+---=x y x ,可得()(22328x y -+=.故答案为:()(22328x y -+=.14.502【分析】依题意,由等差数列的性质及求和公式得到250250240a b -≥,想要有实根,则240(1,2,,1003)i i a b i -≥= ,结合根的判别式与基本不等式得10∆≥,10030∆≥中至少一个成立,同理得到20∆≥,10020∆≥中至少一个成立,L ,5010∆≥,5030∆≥中至少一个成立,且5020∆≥,即可解决问题.【详解】由题意得,210031003410030S T -⨯≥,又因为1100310035021003()10032a a S a +==,1100310035021003()10032b b T b +==,代入得250250240a b -≥,要使方程()201,2,,1003i i x a x b i -+== 有实数解,则240(1,2,,1003)i i a b i -≥= ,显然第502个方程有解,设方程2110x a x b -+=与方程1003103200x a x b -+=的判别式分别为11003,∆∆,则22222110031100311100310031100311003502()(4)(4)4()422a a ab a b a a b b b +∆+∆=-+-=+-+≥-⨯即2250211003502502502(2)82(4)02a b a b ∆+∆≥-=-≥,等号成立的条件11003a a =,所以10∆≥,10030∆≥中至少一个成立,同理可得20∆≥,10020∆≥中至少一个成立,L ,5010∆≥,5030∆≥中至少一个成立,且5020∆≥,综上,在所给的1003个方程中,有实根的方程最少502个,故答案为:502.15.(1)2π0,3⎡⎤⎢⎥⎣⎦;(2)⎫⎪⎪⎝⎭.【分析】(1)根据二倍角公式及辅助角公式化简函数解析式,根据周期求得ω的值,从而得到函数的解析式,整体代入法求解单调区间即可;(2)利用正弦定理即两角和的正弦公式化简条件,从而求得π,3B =继而得到ππ,62A <<整体代入求函数值的范围即可.【详解】(1)()21sin 22f x x x ωω=-+11cos2sin2222x x ωω-=-1πcos2sin 2226x x x ωωω⎛⎫=+=+ ⎪⎝⎭.因为2π4π,2T ω==所以1,4ω=故()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π,,2262k x k k -+≤+≤+∈Z 解得4π2π4π4π,,33k x k k -≤≤+∈Z 当0k =时4π2π,,33x -≤≤又[]0,π,x ∈所以()f x 在[]0,π上的单调递增区间为2π0,3⎡⎤⎢⎥⎣⎦.(2)由()2cos cos ,a c B b C -=⋅得(2sin sin )cos sin cos ,A CB BC -=所以()2sin cos sin cos cos sin sin sin =+=+=A B B C B C B C A .因为sin 0,A ≠所以1cos ,2B =又()0,π,B ∈所以π,3B =又三角形为锐角三角形,则π022ππ032A A ⎧<<⎪⎪⎨⎪<-<⎪⎩,则ππ62A <<,所以ππ5π42612A <+<,又()26πsin A f A ⎛⎫=+ ⎪⎝⎭,5πππππππsin sin sin cos cos sin 12464646⎛⎫=+=+= ⎪⎝⎭,则πsin 2264A ⎛⎫<+< ⎪⎝⎭,所以()f A的取值范围为⎝⎭.16.(1)证明见解析(2)15【分析】(1)根据2AB AM ==,MB =利用勾股定理得到AB AM ⊥,再由AB AD ⊥,利用线面垂直的判定定理证明.(2)由2AM AD ==,MD =120MAD ∠=︒,在平面ADM 内过点A 作x 轴垂直于AM ,再结合(1)以AM ,AB 所在直线为y ,z 轴建立空间直角坐标系,求得EC的坐标,平面BDM 的一个法向量n,利用空间向量求线面夹角.【详解】(1)为2AB AM ==,MB =,所以222AM AB MB +=,所以AB AM ⊥.又AB AD ⊥,且AM AD A = ,AM ⊂平面ADM ,AD ⊂平面ADM ,所以AB ⊥平面ADM .(2)因为2AM AD ==,MD =则44121cos 2222MAD +-∠==-⨯⨯,且0180MAD ︒<∠<︒,可知120MAD ∠=︒,在平面ADM 内过点A 作x 轴垂直于AM ,又由(1)知AB ⊥平面ADM ,分别以AM ,AB 所在直线为y ,z 轴建立如图所示空间直角坐标系A xyz -.则)3,1,0D-,43,1,3C ⎫-⎪⎭,()0,0,2B ,()0,2,0M .因为2BE EM =,则420,,33E ⎛⎫⎪⎝⎭,可得723,,33EC ⎫=-⎪⎭ ,()0,2,2BM =-,)3,1,2BD =-- ,设平面BDM 的一个法向量为(),,n x y z =,则·220·320BM n y z BD n y z ⎧=-=⎪⎨=--=⎪⎩ ,取1z =得)3,1,1n = ,设直线EC 与平面BDM 所成角为π0,2θ⎡⎤∈⎢⎥⎣⎦,则413sin cos ,54553EC n EC n EC nθ⋅====⨯,所以直线EC 与平面BDM 所成角的正弦值为15.17.(1)0.15(2)()10553225E X ⎛⎫=-⨯ ⎪⎝⎭(3)1225757n n P -⎛⎫=⨯-+⎪⎝⎭【分析】(1)由全概率公式求解即可;(2)X 可取1,2,3,…,9,10,由题:对于()*19N k k ≤≤∈,()12355k P X k -⎛⎫==⨯ ⎪⎝⎭;()93105P X ⎛⎫== ⎪⎝⎭,即可求出数学期望;(3)由题意:11P =,()1321155n n n n P P P P +=+-=-+,由递推关系求出数列的通项.【详解】(1)记事件A =“硬币正面向上”,事件B =“7:40-7:45到校”则由题有()0.5P A =,()0.2P B A =,()0.1P B A =,故()()()()()0.50.20.50.10.15P B P A P B A P A P B A =⋅+⋅=⨯+⨯=.(2)X 可取1,2,3,…,9,10,由题:对于()*19N k k ≤≤∈,()12355k P X k -⎛⎫==⨯ ⎪⎝⎭;()93105P X ⎛⎫== ⎪⎝⎭,故()2892232323312391055555555E X ⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯+⋅⋅⋅+⨯⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2891032323232331289105555555555E X ⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⋅⋅⋅+⨯⨯+⨯⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,以上两式相减得:()28922232323235555555555E X ⎛⎫⎛⎫⎛⎫=+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()1028910313333553513555522515E X ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅++==-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-.所以()10553225E X ⎛⎫=-⨯ ⎪⎝⎭.(3)由题意:11P =,()1321155n n n n P P P P +=+-=-+,则1525757n n P P +⎛⎫-=-- ⎪⎝⎭,这说明57n P ⎧⎫-⎨⎬⎩⎭为以15277P -=为首项,25-为公比的等比数列.故1522775n n P -⎛⎫-=⨯- ⎪⎝⎭,所以1225757n n P -⎛⎫=⨯-+ ⎪⎝⎭.18.(1)4e 2ey x =-+(2)有一个极大值,一个极小值,理由见解析(3)()1⎡⎣【分析】(1)当0a =时,求得()()21e xf x x +'=-,结合导数的几何意义,即可求解;(2)当12a =时,求得()()e e 22x xf x x '=--,令()e 22x F x x =--,利用导数求得()F x 的单调性与min ()0F x <,得到存在()11,ln2x ∈-使得()10F x =,存在()2ln2,2x ∈使得()20F x =,进而得到答案;(3)求得()()2e e 1x xf x a x '=--,根据题意,得到a<0,令()e 1xg x a x =--,得到()01,1x a ∃∈--使得()00g x =,利用函数()f x 的单调性,求得002max 0()e 2e x x f x a x =-,再由max 1()0f x a +≤,求得01x ≤<-,再由001e x x a +=,设()1ex x h x +=,利用导数求得函数()h x 的单调性,即可求解.【详解】(1)解:当0a =时,()2e x f x x =-,可得()()21e xf x x +'=-,则()()14e,12e f f =-=-',所以曲线()y f x =在点()()1,1f 处的切线方程为()2e 4e 1y x +=--,即4e 2e y x =-+.(2)解:当12a =时,()21e 2e 2x xf x x =-,定义域为R ,可得()()()2e 21e e e 22x x x xf x x x =-+=--',令()e 22x F x x =--,则()e 2xF x '=-,当(),ln2x ∞∈-时,()0F x '<;当()ln2,x ∞∈+时,()0F x '>,所以()F x 在(),ln2∞-递减,在()ln2,∞+上递增,所以()min ()ln222ln222ln20F x F ==--=-<,又由()()2110,2e 60eF F -=>=->,存在()11,ln2x ∈-使得()10F x =,存在()2ln2,2x ∈使得()20F x =,当()1,x x ∞∈-时,()()()0,0,F x f x f x >'>单调递增;当()12,x x x ∈时,()()()0,0,F x f x f x <'<单调递减;当()2,x x ∞∈+时,()()()0,0,F x f x f x >'>单调递增;所以12a =时,()f x 有一个极大值,一个极小值.(3)解:由()2e 2e x x f x a x =-,可得()()()22e 21e 2e e 1x x x xf x a x a x =-+=--',由()1R,0x f x a ∀∈+≤,因为()211100a f a a a a++=+=≤,可得a<0,令()e 1xg x a x =--,则()g x 在R 上递减,当0x <时,可得e (0,1)x ∈,则e (,0)x a a ∈,所以()e 11xg x a x a x =-->--,则()()1110g a a a ->---=,又因为()11e 0g a --=<,()01,1x a ∃∈--使得()00g x =,即()000e 10x g x a x =--=且当()0,x x ∞∈-时,()0g x >,即()0f x '>;当()00,x x ∞∈+时,()0g x <,即()0f x '<,所以()f x 在()0,x ∞-递增,在()0,x ∞+递减,所以()002max 00()e 2e x xf x f x a x ==-,由()000e 10xg x a x =--=,可得001e x x a +=,由max1()0f x a+≤,可得()000000e 1e 201x x x x x e x +-+≤+,即()()00011101x x x -++≤+,由010x +<,可得2011x -≤,所以01x ≤<-,因为001e x x a +=,设()1(1)e x x h x x +=≤<-,则()0x xh x e-='>,可知()h x在)⎡⎣上递增,()((1e h x h ≥=-()()10h x h <-=,所以实数a的取值范围是()1⎡⎣.【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.19.(1)答案见解析(2)①证明见解析;②存在;2()2m n nλ+=【分析】(1)设(),P x y ,由题意可得222221x y n n m+=-,结合椭圆、双曲线的标准方程即可求解;(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =-=-.(ⅰ)由//AM BN 可知,,M A M '三点共且BN AM =',设MM ':x ty =+C 的方程,利用韦达定理表示1313,y y y y +,进而表示出11AM BN+,结合(1)化简计算即可;由椭圆的定义,由//AM BN 得()8AM BNBQ AM BN-⋅=+,()8BN AMAQ AM BN-⋅=+,进而表示出AQ BQ +,化简计算即可;(ii )由(ⅰ)可知,,M A M '三点共线,且BN AM =',设MM ':x sy m =+,联立C 的方程,利用韦达定理表示1313,y y y y +,计算化简可得22112nAM BN m n +=-,结合由内切圆性质计算即可求解.【详解】(1)设点(),P x ym n =,即222()m x m y x n n ⎛⎫-+=- ⎪⎝⎭,经化简,得C 的方程为222221x y n n m +=-,当m n <时,曲线C 是焦点在x 轴上的椭圆;当m n >时,曲线C 是焦点在x 轴上的双曲线.(2)设点()()()112233,,,,,M x y N x y M x y ',其中120,0y y >>且3232,x x y y =-=-,(ⅰ)由(1)可知C的方程为()()221,,168x y A B +=-,因为//AM BN=因此,,,M A M '三点共线,且BN AM =='=,(法一)设直线MM '的方程为x ty =+C 的方程,得()22280t y ++-=,则1313282y y y y t +==-+,由(1)可知1134,4AM x BN AM x ====',所以131344222222112222x x ty ty AM BN AM BN AM BN ⎛⎫⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪ ⎪++=⋅--⎝⎭⎝⎭⎝⎭⎝⎭()()21321313442221142t y y t y y t y y ⎛⎫-⋅- ⎪++==++,所以11AM BN+为定值1;(法二)设MAx θ∠=4=,解得AM =,4=,解得AM =',所以111122144AM BN AM AM θθ=+'+=+=,所以11AM BN+为定值1;由椭圆定义8BQ QM MA ++=,得8QM BQ AM =--,8//,AM QM BQ AMAM BN BNBQBQ--∴==,解得()8AM BNBQ AM BN-⋅=+,同理可得()8BN AMAQ AM BN -⋅=+,所以()()()8882BN AM AM BNAM BN AM BNAQ BQ AM BNAM BNAM BN-⋅-⋅+-⋅+=+=+++2882611AM BN=-=-=+.因为AB =ABQ 的周长为定值6+.(ⅱ)当m n >时,曲线C 的方程为222221x yn m n-=-,轨迹为双曲线,根据(ⅰ)的证明,同理可得,,M A M '三点共线,且BN AM =',(法一)设直线MM '的方程为x sy m =+,联立C 的方程,得()()()222222222220m n s n y sm m n y m n ⎡⎤--+-+-=⎣⎦,()()()()222221313222222222,sm m n mn y y y y mn s nmn s n--∴+=-=----,(*)因为2113,m n m mAM x x n BN AM x n n m n n⎛⎫=-=-==- ⎝'⎪⎭,所以1111AM AM AM BN AM AM AM AM ''+=+=⋅'+2222131322221313sm m n sm m n m m y y x n x n n n n n n n m m sm m n sm m n x n x n y y n n nn n n ⎛⎫⎛⎫--⎛⎫⎛⎫+++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫⎛⎫----++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()()2213222222213132222m n smy y n n m n ms m n m s y y y y n n n -++=--+++,将(*)代入上式,化简得22112nAM BN m n +=-,(法二)设MAx θ∠=,依条件有2cos AMmn n m AM m θ=⎛⎫-+ ⎪⎝⎭,解得22cos m n AM n m θ-=-,同理由cos AM mn n m AM m θ=⎛⎫-- ⎪⎝⎭'',解得22cos m n AM n m θ-+'=,所以2222221111cos cos 2n m n m nAM BN AM AM m n m n m nθθ'-++=+=+=---.由双曲线的定义2BQ QM MA n +-=,得2QM n AM BQ =+-,根据AM QM BNBQ=,解得()2n AM BNBQ AM BN+⋅=+,同理根据AM AQ BNQN=,解得()2n BN AMAQ AM BN+⋅=+,所以()()2222n BN AM n AM BNAM BNAQ BQ n AM BNAM BNAM BN+⋅+⋅⋅+=+=++++222222211m n m n n n n n AM BN-+=+=++,由内切圆性质可知,()12S AB AQ BQ r =++⋅,当S r λ=时,()2221()222m n m n AB AQ BQ m n n λ++=++=+=(常数).因此,存在常数λ使得S r λ=恒成立,且2()2m n nλ+=.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战49727

高三数学寒假作业冲刺培训班之历年真题汇编复习实战49727

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

专项强化训练(三)数列的综合应用一、选择题1.设{an},{bn}分别为等差数列与等比数列,a1=b1=4,a4=b4=1,则下列结论正确的是()A.a2>b2B.a3<b3C.a5>b5D.a6>b6【解析】选A.设{an}的公差为d,{bn}的公比为q,由题可得d=1,q=,于是a2=3>b2=2,故选A.【加固训练】若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是.【解析】由等差数列与等比数列的性质得所以==2++.当x,y同号时,+≥2;当x,y异号时,+≤2.所以的取值范围为(∞,0]∪[4,+∞).答案:(∞,0]∪[4,+∞)2.已知数列{an},{bn}满足a1=1,且an,an+1是函数f(x)=x2bnx+2n的两个零点,则b10等于()A.24B.32C.48D.64【解析】选D.依题意有anan+1=2n,所以an+1an+2=2n+1.两式相除得=2,所以a1,a3,a5,…成等比数列,a2,a4,a6,…也成等比数列.而a1=1,a2=2,所以a10=2·24=32,a11=1·25=32.又因为an+an+1=bn,所以b10=a10+a11=64.3.设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为Sn的最大值【解析】选C.因为{an}是等差数列,所以Sn=n2+n.因为S5<S6,S6=S7>S8,所以Sn关于n的二次函数开口向下,对称轴为n=6.5,所以d<0,S6与S7均为Sn的最大值,S9<S5,a7=S7S6=0,故选C.4.(·北京模拟)已知函数f(x)=把函数g(x)=f(x)x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为()A.an=,n∈N*B.an=n(n1),n∈N*C.an=n1,n∈N*D.an=2n2,n∈N*【解析】选 C.当x≤0时,g(x)=f(x)x=2x1x是减函数,只有一个零点a1=0;当x>0时,若x=n,n∈N*,则f(n)=f(n1)+1=…=f(0)+n=n;若x不是整数,则f(x)=f(x1)+1=…=f(x[x]1)+[x]+1,其中[x]代表x的整数部分,由f(x)=x得f(x[x]1)=x[x]1,其中1<x[x]1<0,没有这样的x.所以g(x)=f(x)x的零点按从小到大的顺序为0,1,2,3,…,通项an=n1,故选C.【加固训练】定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:an=(n∈N*),若对任意正整数n,都有an≥ak(k∈N*)成立,则ak的值为()A. B.2 C.1 D.4【解析】选 A.an=,==,2n2(n+1)2=n22n1,只有当n=1,2时,2n2<(n+1)2,当n≥3时,2n2>(n+1)2,即当n≥3时,an+1>an,故数列{an}中的最小项是a1,a2,a3中的较小者,a1=2,a2=1,a3=,故ak的值为.5.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n天的维修保养费为(n∈N*)元,使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少),一共使用了()A.600天B.800天C.1000天D.1200天【解析】选 B.由第n天的维修保养费为(n∈N*)元,可以得出观测仪的整个耗资费用,由平均费用最少而求得最小值成立时的相应n的值.设一共使用了n天,则使用n天的平均耗资为=++,当且仅当=时取得最小值,此时n=800,故选B.【方法技巧】建模解数列问题(1)分析题意,将文字语言转化为数学语言,找出相关量之间的关系.(2)构建数学模型,将实际问题抽象成数学问题,明确是等差数列问题、等比数列问题,是求和还是求项,还是其他数学问题.(3)通过建立的关系求出相关量.【加固训练】植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()A.1和20B.9和10C.9和11D.10和11【解析】选D.设树苗放在第i个树坑旁边(如图所示)则各个树坑到第i个树坑的距离的和是S=10(i1)+10(i2)+…+10(ii)+10[(i+1)i]+…+10(20i)=10+=10(i221i+210).所以当i=10或11时,S有最小值.二、填空题6.(·镇江模拟)设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lg xn,则a1+a2+…+a99的值为.【解析】因为y=xn+1(n∈N*),所以y′=(n+1)xn(n∈N*),所以y′|x=1=n+1,所以在点(1,1)处的切线方程为y1=(n+1)(x1),即(n+1)xyn=0,当y=0时,x=,所以xn=,所以an=lgxn=lg=lg nlg(n+1),所以a1+a2+…+a99=(lg1lg2)+(lg2lg3)+(lg3lg4)+…+(lg99lg100)=lg1lg100=2.答案:27.某厂生产微机,原计划第一季度每月增产台数相同,在生产过程中,实际二月份比原计划多生产10台,三月份比原计划多生产25台,这样三个月产量成等比数列,而第三个月的产量比原计划第一季度总产量的一半少10台,则该厂第一季度实际生产微机台.【解析】原计划第一季度三个月分别生产a1,a1+d,a1+2d台微机,现在实际上生产了a1,a1+d+10,a1+2d+25台.由题意得211d 20d 5a 1000,a d 70,⎧+-+=⎨=+⎩解得1d 10,a 80,=⎧⎨=⎩故第一季度实际生产微机台数是3a1+3d+35=305. 答案:3058.数列{an}的前n 项和为Sn,若数列{an}的各项按如下规律排列: ,,,,,,,,,,…,,,…,,…,有如下运算和结论:①a24=;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n 项和为Tn=;④若存在正整数k,使Sk<10,Sk+1≥10,则ak=.其中正确的结论有.(将你认为正确的结论的序号都填上)【解析】依题意,将数列{an}中的项依次按分母相同的项分成一组,第n 组中的数的规律是:第n 组中的数共有n 个,并且每个数的分母均是n+1,分子由1依次增大到n,第n 组中的各数和等于=,对于①,注意到21=<24<=28,因此数列{an}中的第24项应是第7组中的第3个数,即a24=,因此①正确.对于②③,设bn 为②③中的数列的通项,则bn==,显然该数列是等差数列,而不是等比数列,其前n 项和等于×=,因此②不正确,③正确.对于④,注意到数列的前6组的所有项的和等于=10,因此满足条件的ak应是第6组中的第5个数,即ak=,因此④正确.综上所述,其中正确的结论有①③④.答案:①③④三、解答题9.(·天津高考)已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q1},集合A={x|x=x1+x2q+…+xnqn1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn1,t=b1+b2q+…+bnqn1,其中ai,bi∈M,i=1,2,…,n,证明:若an<bn,则s<t.【解析】(1)当q=2,n=3时,M={0,1},A={x|x=x1+2x2+4x3,xi∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)由s,t∈A,s=a1+a2q+…+anqn1,t=b1+b2q+…+bnqn1,ai,bi∈M,i=1,2,…,n及an<bn,可得st=(a1b1)+(a2b2)q+…+(an1bn1)qn2+(anbn)qn1≤(q1)+(q1)q+…+(q1)qn2qn1所以,s<t.10.(·洛阳模拟)在数列{an}中,a1=5,a2=2,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列.(1)求数列{an}的通项公式.(2)求数列{|an|}的前n项和.【解析】(1)根据题意A(n),B(n),C(n)成等差数列,所以A(n)+C(n)=2B(n),整理得an+2an+1=a2a1=2+5=3.所以数列{an}是首项为5,公差为3的等差数列,所以an=5+3(n1)=3n8.(2)|an|=3n8,n2,3n8,n3,-+≤⎧⎨-≥⎩记数列{|an|}的前n项和为Sn.当n≤2时,Sn==+n;当n≥3时,Sn=7+=n+14,【加固训练】已知等差数列{an}前三项的和为3,前三项的积为8.(1)求等差数列{an}的通项公式.(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.【解析】(1)设等差数列的公差为d,根据a1+a2+a3=3可得a2=1,进而得a1a3=8,即(a2d)(a2+d)=8,所以1d2=8,解得d=±3.当d=3时,a1+3=1,得a1=4,此时an=4+(n1)×3=3n7;当d=3时,a13=1,得a1=2,此时an=2+(n1)×(3)=3n+5.所以{an}的通项公式为an=3n7或an=3n+5.(2)d=3时,a2=1,a3=2,a1=4,此时a2,a3,a1成等比数列;当d=3时,a2=1,a3=4,a1=2,此时a2,a3,a1不是等比数列,故an=3n7,这个数列的第一、二两项为负值,从第三项开始为正值.方法一:当n≤2时,|an|=73n,这是一个首项为4,公差为3的等差数列,故Sn=4n+×(3)=+;当n>2时,|an|=an=3n7,此时这个数列从第三项起是一个公差为3的等差数列,故Sn=|a1|+|a2|+a3+a4+…+an=(4+1)+[2+5+…+(3n7)]=5+=+10.所以Sn=这个式子中n=2时两段函数值相等,故可以写为Sn=方法二:设数列{an}的前n项和为Tn,则Tn==.由于n≤2时,|an|=an,所以此时Sn=Tn=+;当n>2时,Sn=(a1a2)+(a3+a4+…+an)=T2+(TnT2)=Tn2T2=+10.所以Sn=这个式子中n=2时两段函数值相等,故可以写为Sn=11.已知{an}是由正数组成的数列,a1=1且点(,an+1)(n∈N*)在函数y=x2+1的图象上.(1)求数列{an}的通项公式.(2)若数列{bn}满足b1=1,bn+1=bn+n a2,求证:bn·bn+2<+1.【解题提示】(1)由点在函数图象上即可得出an+1与an的关系,从而可写出通项公式.(2)结合(1)找出bn+1与bn的关系式,从而可得bn,然后利用作差法比较大小.【解析】(1)由已知,得an+1=an+1,得an+1an=1,又a1=1,所以数列{an}是以1为首项,1为公差的等差数列.故an=1+(n1)×1=n.(2)由(1),知an=n,从而bn+1bn=2n.bn=(bnbn1)+(bn1bn2)+…+(b2b1)+b1=2n1+2n2+…+2+1==2n1.因为bn·bn+2+1=(2n1)(2n+21)(2n+11)2=(22n+22n+22n+1)(22n+22·2n+1+1)=5·2n+4·2n=2n<0,所以bn·bn+2<+1.【方法技巧】数列与函数的综合一般体现在两个方面:(1)以数列的特征量n,an,Sn等为坐标的点在函数图象上,可以得到数列的递推关系.(2)数列的项或前n项和可以看作关于n的函数,然后利用函数的性质求解数列问题.【加固训练】已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn.(1)求数列{an}的通项公式.(2)设Q={x|x=kn,n∈N*},R={x|x=2an,n∈N*},等差数列{cn}的任一项cn∈Q∩R,其中c1是Q∩R中的最小数,110<c10<115,求{cn}的通项公式.【解析】(1)因为点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,所以Sn=n2+2n(n∈N*).当n≥2时,an=SnSn1=2n+1,当n=1时,a1=S1=3满足上式,所以数列{an}的通项公式为an=2n+1.(2)因为Q={x|x=2n+2,n∈N*},R={x|x=4n+2,n∈N*},所以Q∩R=R.又因为cn∈Q∩R,其中c1是Q∩R中的最小数,所以c1=6,因为{cn}的公差是4的倍数,所以c10=4m+6(m∈N*).又因为110<c10<115,所以,解得m=27,所以c10=114,设等差数列{cn}的公差为d,则d===12,所以cn=6+(n1)×12=12n6,所以{cn}的通项公式为cn=12n6.12.已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+2+Sn=2Sn+1+1(n∈N*);数列{bn}中,b1=a1,bn+1=4bn+6(n∈N*).(1)求数列{an},{bn}的通项公式.(2)设cn=bn+2+(1)n1λ·n a2(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.【解题提示】【解析】(1)由已知,得Sn+2Sn+1(Sn+1Sn)=1,所以an+2an+1=1(n≥1).又a2a1=1,所以数列{an}是以a1=2为首项,1为公差的等差数列.所以an=n+1.又bn+1+2=4(bn+2),所以{bn+2}是以4为首项,4为公比的等比数列.所以bn=4n2.(2)由(1)知an=n+1,bn=4n2,则cn=4n+(1)n1λ·2n+1,要使cn+1>cn成立,需cn+1cn=4n+14n+(1)nλ·2n+2(1)n1λ·2n+1>0恒成立,即3·4n3λ(1)n12n+1>0恒成立,所以(1)n1λ<2n1恒成立.①当n为奇数时,即λ<2n1恒成立,当且仅当n=1时,2n1有最小值1,所以λ<1;②当n为偶数时,即λ>2n1恒成立,当且仅当n=2时,2n1有最大值2,所以λ>2.结合①②可知2<λ<1,又λ为非零整数,则λ=1.故存在λ=1,使得对任意n∈N*,都有cn+1>cn成立.【误区警示】遇到式子中含有(1)n的问题时要注意分n为奇数与偶数两种情况进行讨论,本题的易错点就是忘掉对n的奇偶性的讨论.【加固训练】已知等差数列{an}的公差为2,其前n项和Sn=pn2+2n(n∈N*).(1)求p的值及an.(2)若bn=,记数列{bn}的前n项和为Tn,求使Tn>成立的最小正整数n的值.【解题提示】【解析】(1)方法一:因为{an}是公差为2的等差数列,所以Sn=na1+d=na1+×2=n2+(a11)n.又由已知Sn=pn2+2n,所以p=1,a11=2,所以a1=3,所以an=a1+(n1)d=2n+1,所以p=1,an=2n+1.方法二:由已知a1=S1=p+2,S2=4p+4,即a1+a2=4p+4,所以a2=3p+2.又此等差数列的公差为2,所以a2a1=2,所以2p=2,所以p=1,所以a1=p+2=3,所以an=a1+(n1)d=2n+1,所以p=1,an=2n+1.方法三:由已知a1=S1=p+2,所以当n≥2时,an=SnSn1=pn2+2n[p(n1)2+2(n1)]=2pnp+2,所以a2=3p+2,由已知a2a1=2,所以2p=2,所以p=1,所以a1=p+2=3,所以an=a1+(n1)d=2n+1,所以p=1,an=2n+1.(2)由(1)知bn==,所以Tn=b1+b2+b3+…+bn=+++…+=1=.因为Tn>,所以>,所以20n>18n+9,即n>,又n∈N*,所以使Tn>成立的最小正整数n=5.13.某工厂年初用98万元购买一台新设备,第一年设备维修及燃料、动力消耗(称为设备的低劣化)的总费用12万元,以后每年都增加4万元,新设备每年可给工厂收益50万元.(1)工厂第几年开始获利?(2)若干年后,该工厂有两种处理该设备的方案:①年平均获利最大时,以26万元出售该设备;②总纯收入获利最大时,以8万元出售该设备.问哪种方案对工厂合算?【解析】(1)由题设每年费用是以12为首项,4为公差的等差数列,设第n年时累计的纯收入为f(n).所以f(n)=50n[12+16+…+(4n+8)]98=40n2n298.获利即为:f(n)>0,所以40n2n298>0⇒n220n+49<0⇒10<n<10+,又n∈N,所以n=3,4,5, (17)所以当n=3时,即第3年开始获利.(2)①年平均收入==402(n+)≤404=12(万元),当且仅当n=,即n=7时等号成立.即年平均收益最大时,总收益为:12×7+26=110(万元),此时n=7.②f(n)=2(n10)2+102,所以当n=10时,f(n)max=102,总收益为102+8=110万元,此时n=10.比较两种方案,总收益均为110万元,但第一种方案需7年,第二种方案需10年,故选择第一种方案.【加固训练】有一种零存整取的储蓄项目,在每月某日存入一笔相同金额,这是零存;到期可以提出全部本金和利息,这是整取,它的本利和公式如下:本利和=每期存入的金额×[存期+×存期×(存期+1)×利率].(1)试解释这个本利和公式.(2)若每月初存入100元,月利率为5.1%,到第12个月底的本利和是多少?(3)若每月初存入一笔金额,月利率是5.1%,希望到第12个月底取得本利和2000元,那么每月初应存入多少?【解析】(1)设每期存入的金额为A,每期利率为P,存期为n,则各期的利息之和为nAP+(n1)AP+…+2AP+AP=,所以本利和为nA+=A(元).(2)到第12个月底的本利和为100=1597.8(元).(3)设每月初应存入x元,则有x=2000,解得x≈125.2.所以每月初应存入125.2元.一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.417.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(9)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•= 6 .【分析】把复数代入表达式,利用复数代数形式的混合运算化简求解即可.【解答】解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6【点评】本题考查复数代数形式的混合运算,基本知识的考查.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.【分析】由二倍角的余弦公式化简,可得其周期.【解答】解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:【点评】本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程 x=﹣2 .【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2【点评】本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2]. 【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.【解答】解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为 2.【分析】由已知可得y=,代入要求的式子,由基本不等式可得.【解答】解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2【点评】本题考查基本不等式,属基础题.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.【分析】由题意,θ=0,可得C与极轴的交点到极点的距离.【解答】解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.【点评】正确理解C与极轴的交点到极点的距离是解题的关键.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=. 【分析】由已知条件推导出a1=,由此能求出q的值.【解答】解:∵无穷等比数列{an}的公比为q,a1=(a3+a4+…an)=(﹣a1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.【点评】本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1) .【分析】直接利用已知条件转化不等式求解即可.【解答】解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).【点评】本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).【分析】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.【解答】解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:.【点评】本题考查古典概型以及概率计算公式,属基础题.11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b= ﹣1 .【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.【分析】先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.【解答】解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:【点评】本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为 0.2 .【分析】设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.【解答】解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2.故答案为:0.2.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].【分析】通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.【解答】解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且xP∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.4【分析】建立空适当的间直角坐标系,利用坐标计算可得答案.【解答】解:=,则•=()=||2+,∵,∴•=||2=1,∴•(i=1,2,…,8)的不同值的个数为1,故选:A.【点评】本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解【分析】判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1.∴方程组有唯一解.故选:B.【点评】本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用.18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.【分析】利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.【解答】解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,VP﹣ABC==【点评】本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法. 20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.【分析】(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.【解答】解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;当a>0且a≠1时,f(x)为非奇非偶函数综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.当a>0且a≠1时,f(x)为非奇非偶函数【点评】本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).【分析】(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论. (2)利用正弦定理,建立方程关系,即可得到结论.【解答】解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.【点评】本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.【分析】(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围. (3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【解答】解:(1)依题意:,。

数学寒假作业布置方案

数学寒假作业布置方案

数学寒假作业布置方案数学寒假作业布置方案(9篇)为有力保证事情或工作开展的水平质量,就常常需要事先准备方案,方案是阐明行动的时间,地点,目的,预期效果,预算及方法等的书面计划。

那么你有了解过方案吗?下面是店铺精心整理的数学寒假作业布置方案,希望对大家有所帮助。

数学寒假作业布置方案1快乐的寒假生活开始了!大家在玩耍、游戏、旅游时可别忘了,数学就在我们的身边!我们一起去寻找生活中的数学,好吗?一、基础知识天天练(必做)。

1、认真完成《数学寒假乐园》,要求书写工整,仔细检查。

2、每天练习口算20题或者笔算5题。

(家长出题或购买相关的口算练习)。

二、实践操作我能行(选做)。

以下数学实践活动,学生可以自由选择自己喜欢的3项进行实践操作。

活动1:学生可以和家长一起玩一项数学游戏(如:算二十四点,猜数学字谜等)。

活动2:参加一次家庭大购物,让爸爸妈妈协助你,由你来选择、购买、付款,让你体验一下如何合理使用人民币。

(小朋友要将购物清单制成表格,列出物品名称、物品价格、总价、……)见《附表》。

活动3:写一篇数学日记,内容可以是用所学的数学知识解决生活中的实际问题,或者阅读数学故事后的感受等。

(写在A4纸上)活动4:选择假期生活中最有意义一天,把这一天主要活动开始的时刻和结束的时刻记录下来,再算一算每件事所用的时间。

(以表格的形式记录在A4纸上)(如:8:10-----9:00干什么。

所用时间50分) 活动5:小小气象统计员。

观察今年寒假的天气情况,记录下每天的天气状况,制作一张天气统计图和统计表。

晴用“△”,阴用“〇”,雨雪天用“□”,见《附表》。

活动6:“低碳出行”。

要求春节期间,学生至少有一次是采用公交车、自行车、步行等出行方式,向亲友拜年。

并记录出发地和目的地,采用何种交通工具,所用时间。

数学寒假作业布置方案2实践活动:由于每个学生的兴趣爱好不同,这里设计了一些适合二年级学生的数学实践活动,这些活动都和寒假生活紧密联系,学生可以自由选择自己喜欢的活动进行实践操作。

2024年高考总复习优化设计一轮用书数学配人教A版(适用于新教材)课时规范练40

2024年高考总复习优化设计一轮用书数学配人教A版(适用于新教材)课时规范练40

课时规范练40《素养分级练》P374基础巩固组1.(2023·山东青岛模拟)设集合A={(x ,y )|y=2x-3},B={(x ,y )|4x-2y+5=0},则A ∩B= ( )A.⌀B.{(118,14)} C.{(18,-114)} D.{(-18,-134)} 答案:A解析:由直线4x-2y+5=0,得y=2x+52.因为直线y=2x+52与直线y=2x-3的斜率相等,截距不相等,所以两直线相互平行,故A ∩B=⌀. 2.(2023·江苏无锡高三检测)在平面直角坐标系xOy 中,点(0,4)关于直线x-y+1=0的对称点为( ) A.(-1,2) B.(2,-1) C.(1,3) D.(3,1)答案:D解析:设点(0,4)关于直线x-y+1=0的对称点是(a ,b ),则{a 2-b+42+1=0,b -4a=-1,解得{a =3,b =1.3.(多选)(2023·山东青岛高三开学考试)已知直线l 1:4x-3y+4=0,l 2:(m+2)x-(m+1)y+2m+5=0(m ∈R ),则( )A.直线l 2过定点(-3,-1)B.当m=1时,l 1⊥l 2C.当m=2时,l 1∥l 2D.当l 1∥l 2时,两直线l 1,l 2之间的距离为1 答案:ACD解析:对于A,l 2:(m+2)x-(m+1)y+2m+5=0(m ∈R )变形为m (x-y+2)+2x-y+5=0,令{x -y +2=0,2x -y +5=0,则{x =-3,y =-1,因此直线l 2过定点(-3,-1),故A 正确;对于B,当m=1时,l 1:4x-3y+4=0,l 2:3x-2y+7=0,4×3+(-3)×(-2)≠0,故两直线不垂直,故B 错误;对于C,当m=2时,l 1:4x-3y+4=0,l 2:4x-3y+9=0,44=-3-3≠94,故两直线平行,故C 正确;对于D,当l 1∥l 2时,则满足m+24=-(m+1)-3≠2m+54⇒m=2,此时l 1:4x-3y+4=0,l 2:4x-3y+9=0,则两直线间的距离为√42+(-3)=1,故D 正确.故选ACD .4.已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.3√3 B.6 C.2√10 D.2√5答案:C解析:由题意直线AB 的方程为x+y=4,设P 关于直线AB 的对称点Q (a ,b ),则{ba -2=1,a+22+b2=4,解得{a =4,b =2,即Q (4,2).又P 关于y 轴的对称点为T (-2,0),所以光线所经过的路程为|QT|=√(-2-4)2+(0-2)2=2√10.5.(2023·福建福州高三检测)若直线ax+2y+1=0与直线x cos 2π3+y-1=0互相垂直,则a= . 答案:4解析:由题意得a2·cos 2π3=-1,解得a=4.6.已知直线l 过点P (-1,2),且点A (2,3),B (-4,5)到直线l 的距离相等,则直线l 的方程为 . 答案:x+3y-5=0或x=-1解析:(方法1)当直线l 的斜率存在时,设直线l 的方程为y-2=k (x+1),即kx-y+k+2=0.由题意知√k 2+1=√k 2+1,即|3k-1|=|-3k-3|,解得k=-13,所以直线l 的方程为y-2=-13(x+1),即x+3y-5=0.当直线l 的斜率不存在时,直线l 的方程为x=-1,符合题意.故所求直线l 的方程为x+3y-5=0或x=-1.(方法2)当AB ∥l 时,直线l 的斜率k=k AB =-13,则直线l 的方程为y-2=-13(x+1),即x+3y-5=0.当直线l 过AB 的中点(-1,4)时,直线l 的方程为x=-1.故所求直线l 的方程为x+3y-5=0或x=-1.综合提升组7.(2023·湖北武汉模拟)某菱形的一组对边所在的直线方程分别为x+2y+1=0和x+2y+3=0,另一组对边所在的直线方程分别为3x-4y+c 1=0和3x-4y+c 2=0,则|c 1-c 2|=( ) A.2√3 B.2√5 C.2 D.4答案:B解析:设直线x+2y+1=0与直线3x-4y+c 2=0的交点为A ,联立{x +2y +1=0,3x -4y +c 2=0,解得{x =-c 2+25,y =c 2-310,故A -c 2+25,c 2-310.同理,设直线x+2y+1=0与直线3x-4y+c 1=0的交点为B ,则B -c 1+25,c 1-310,设直线x+2y+3=0与直线3x-4y+c 1=0的交点为C ,则C -c 1+65,c 1-910,设直线x+2y+3=0与直线3x-4y+c 2=0的交点为D ,则D -c 2+65,c 2-910.由菱形的性质可知AC ⊥BD ,且AC ,BD 的斜率均存在,所以k AC ·k BD =-1,则c 2-310-c 1-910-c 2+25+c 1+65·c 1-310-c 2-910-c 1+25+c 2+65=-1,即36-(c 2-c 1)24[16-(c 2-c 1)2]=-1,解得|c 1-c 2|=2√5.8.(2023·河北大名高三检测)已知点P (-2,2),直线l :(λ+2)x-(λ+1)y-4λ-6=0,则点P 到直线l 的距离的取值范围为 . 答案:[0,4√2)解析:把直线l :(λ+2)x-(λ+1)y-4λ-6=0化为(2x-y-6)+λ(x-y-4)=0,联立{2x -y -6=0,x -y -4=0,解得{x =2,y =-2,即直线l 过定点M (2,-2).又k PM =-2-22-(-2)=-1,且λ+2λ+1×(-1)≠-1,所以直线PM 与l 不垂直,所以点P 到直线l 的距离的最大值小于|PM|=√(2+2)2+(-2-2)2=4√2,即点P 到直线l 的距离的取值范围为[0,4√2).9.(2023·四川成都七中高三检测)已知△ABC 的顶点B (5,1),AB 边上的高所在的直线方程为x-2y-5=0.(1)求直线AB 的方程.(2)在①②两个条件中任选一个,补充在下面问题中,并解答. ①角A 的平分线所在直线方程为x+2y-13=0; ②BC 边上的中线所在的直线方程为2x-y-5=0.,求直线AC 的方程.解:(1)因为AB 边上的高所在的直线方程为x-2y-5=0,所以直线AB 的斜率为k=-2. 又因为△ABC 的顶点B (5,1),所以直线AB 的方程为y-1=-2(x-5),即2x+y-11=0.(2)若选①:角A 的平分线所在直线方程为x+2y-13=0, 由{2x +y -11=0,x +2y -13=0,解得{x =3,y =5,所以点A (3,5).设点B 关于x+2y-13=0的对称点B'(x 0,y 0),则{y 0-1x 0-5×(-12)=-1,x 0+52+2×y 0+12-13=0,解得{x 0=375,y 0=295,所以B'375,295.又点B'375,295在直线AC 上,所以k AC =5-2953-375=211.所以直线AC 的方程为y-5=211(x-3),即2x-11y+49=0. 若选②:BC 边上的中线所在的直线方程为2x-y-5=0, 由{2x +y -11=0,2x -y -5=0,解得{x =4,y =3,所以点A (4,3).设点C (x 1,y 1),则BC 的中点在直线2x-y-5=0上,所以2×5+x 12−1+y 12-5=0,即2x 1-y 1-1=0,所以点C 在直线2x-y-1=0上.又点C 在直线x-2y-5=0上,由{x -2y -5=0,2x -y -1=0,解得{x =-1,y =-3,即C (-1,-3),所以k AC =-3-3-1-4=65.所以直线AC 的方程为y-3=65(x-4),即6x-5y-9=0.创新应用组10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点A (2,0),B (0,4),C (-4,0),则其欧拉线方程为 . 答案:x-y+2=0解析:设△ABC 的重心为G ,垂心为H ,由重心坐标公式得x=2+0+(-4)3=-23,y=0+4+03=43,所以G -23,43.由题,△ABC 的边AC 上的高线所在直线方程为x=0,直线BC :y=x+4,A (2,0),所以△ABC 的边BC上的高线所在直线方程为y=-x+2,联立{x =0,y =-x +2⇒H (0,2).所以欧拉线GH 的方程为y-2=2-430-(-23)x ,即x-y+2=0.。

2018年新版天利38套数学181920题整合

2018年新版天利38套数学181920题整合

【海淀区高三年级第一学期期末练习】 18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程. 19. (本小题满分14分)已知函数()ln 1af x x x=--.(Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围; (Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-=L L L ,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a L ,12min{,,,}k a a a L 分别表示12,,,k a a a L 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”.(Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ;(Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+L (1,2,3,)n =L ,求所有满足该条件的{}n a . 【西城区高三年级第一学期期末练习】 18.(本小题满分13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围 19.(本小题满分14分)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B 两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅为定值.20.(本小题满分13分)数字1,2,3,,(2)n n L ≥的任意一个排列记作12(,,,)n a a a L ,设n S 为所有这样的排列构成的集合.集合12{(,,,)|n n n A a a a S =∈L 任意整数,,1i j i j n <≤≤,都有}i j a i a j --≤;集合12{(,,,)|n n n B a a a S =∈L 任意整数,,1i j i j n <≤≤,都有}i j a i a j ++≤.(Ⅰ)用列举法表示集合3A ,3B ; (Ⅱ)求集合n n A B I 的元素个数;(Ⅲ)记集合n B 的元素个数为n b .证明:数列{}n b 是等比数列. 【东城区高三年级第一学期期末练习】 18.设函数.(Ⅰ)若f (0)为f (x )的极小值,求a 的值;(Ⅱ)若f (x )>0对x ∈(0,+∞)恒成立,求a 的最大值. 19.已知椭圆C :=1(a >b >0)经过点M (2,0),离心率为.A ,B 是椭圆C 上两点,且直线OA ,OB 的斜率之积为﹣,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若射线OA 上的点P 满足|PO|=3|OA|,且PB 与椭圆交于点Q ,求的值.20.已知集合A n ={(x 1,x 2,…,x n )|x i ∈{﹣1,1}(i=1,2,…,n )}.x ,y ∈A n ,x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n ),其中x i ,y i ∈{﹣1,1}(i=1,2,…,n ).定义x ⊙y=x 1y 1+x 2y 2+…+x n y n .若x ⊙y=0,则称x 与y 正交.(Ⅰ)若x=(1,1,1,1),写出A 4中与x 正交的所有元素; (Ⅱ)令B={x ⊙y|x ,y ∈A n }.若m ∈B ,证明:m+n 为偶数;(Ⅲ)若A ⊆A n ,且A 中任意两个元素均正交,分别求出n=8,14时,A 中最多可以有多少个元素.【朝阳区高三年级第一学期期末练习】 18. (本小题满分13分)已知椭圆22:132x y C +=上的动点P 与其顶点(A ,B 不重合. (Ⅰ)求证:直线PA 与PB 的斜率乘积为定值;(Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当//OM PA ,//ON PB 时,求OMN ∆的面积.19.(本小题满分14分)设函数2()ln(1)1f x x ax x =-+++,2()(1)e x g x x ax =-+,R a ∈.(Ⅰ)当1a =时,求函数()f x 在点(2,(2))f 处的切线方程; (Ⅱ)若函数()g x 有两个零点,试求a 的取值范围; (Ⅲ)证明()()f x g x ≤. 20.(本小题满分13分)设(3)m,n m n ≤≤是正整数,数列:m A 12m a ,a ,,a L ,其中(1)i a i m ≤≤是集合{123},,,,n L 中互不相同的元素.若数列m A 满足:只要存在1i,j i j m ≤<≤()使i j a a n +≤,总存在1k k m ≤≤()有i j k a a a +=,则称数列m A 是“好数列”. (Ⅰ)当6100m ,n ==时,(ⅰ)若数列6:11789790A ,,x,y,,是一个“好数列”,试写出x,y 的值,并判断数列:11789097,,,x,,y 是否是一个“好数列”?(ⅱ)若数列6:1178A ,,a,b,c,d 是“好数列”,且a b c d <<<,求a,b,c,d 共有多少种不同的取值?(Ⅱ)若数列m A 是“好数列”,且m 是偶数,证明:1212m a a a n m ++++≥L .【丰台区高三年级第一学期期末练习】 18.(本小题共13分)已知函数()e xf x x =与函数21()2g x x ax =+的图象在点(00),处有相同的切线. (Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[12],上的最小值. 19.(本小题共13分)已知抛物线C :22(0)y px p =>的焦点为F ,且经过点(12),A ,过点F 的直线与抛物线C 交于P ,Q 两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)O 为坐标原点,直线OP ,OQ 与直线2px =-分别交于S ,T 两点,试判断FS FT ⋅uu r uu u r 是否为定值?若是,求出这个定值;若不是,请说明理由. 20.(本小题共13分)已知无穷数列{}n c 满足1112n n c c +=--. (Ⅰ)若117c =,写出数列{}n c 的前4项; (Ⅱ)对于任意101c ≤≤,是否存在实数M ,使数列{}n c 中的所有项均不大于M ?若存在,求M 的最小值;若不存在,请说明理由;(Ⅲ)当1c 为有理数,且10c ≥时,若数列{}n c 自某项后是周期数列,写出1c 的最大值.(直接写出结果,无需证明)【石景山区高三年级第一学期期末练习】 18.(本小题共13分)已知椭圆2222:1(0)x y C a b a b+=>>,点(2,0)在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点(1,0)P 的直线(不与坐标轴垂直)与椭圆交于A B 、两点,设点B 关于x 轴的对称点为B '.直线B A '与x 轴的交点Q 是否为定点?请说明理由.19.(本小题共14分)已知函数2()11xf x x =++,2()(0)a x g x x e a =<. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意12,[0,2]x x ∈,12()()f x g x ≥恒成立,求a 的取值范围. 20.(本小题共13分)集合M 的若干个子集的集合称为集合M 的一个子集族.对于集合{1,2,3}n L 的一个子集族D 满足如下条件:若,A D B A ∈⊆,则B D ∈,则称子集族D 是“向下封闭”的. (Ⅰ)写出一个含有集合{1,2}的“向下封闭”的子集族D 并计算此时(1)AA D∈-∑的值(其中A 表示集合A 中元素的个数,约定0φ=;A D∈∑表示对子集族D 中所有成员A 求和);(Ⅱ)D 是集合{1,2,3}n L 的任一“向下封闭的”子集族,对A D ∀∈,记max k A =,()max (1)AA Df k ∈=-∑(其中max 表示最大值),(ⅰ)求(2)f ;(ⅱ)若k 是偶数,求()f k . 【通州区高三年级第一学期期末练习】18.(本小题满分13分)设函数()()1kxf x e k R =-∈.(Ⅰ)当k =1时,求曲线()y f x =在点))0(0(f ,处的切线方程; (Ⅱ)设函数kx x x f x F -+=2)()(,证明:当x ∈)0(∞+,时,()F x >0.19.(本小题满分13分)如图,已知椭圆()2222:10x yCaba b +=>>经过点)23,1(P ,离心率21=e .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设AB 是经过右焦点F 的任一弦(不经过点P ),直线AB 与直线:4l x =相交于点M ,记PA ,PB ,PM 的斜率分别为1k ,2k ,3k ,求证:1k ,3k ,2k 成等差数列. 20.(本小题满分14分)已知数列对任意的满足:+212n n n+a a a +>,则称数列为“T 数列”.(Ⅰ)求证:数列{}2n 是“T 数列”;(Ⅱ)若212nn a n ⎛⎫=⋅ ⎪⎝⎭,试判断数列{}n a 是否是“T 数列”,并说明理由;(Ⅲ)若数列{}n a 是各项均为正的“T 数列”, 求证:13212421n na a a n a a a n+++++>+++L L . 【昌平区高三年级第一学期期末练习】【大兴区高三年级第一学期期末练习】}{n a *N n ∈}{n a【房山区高三年级第一学期期末练习】18.已知函数f(x)=lnx﹣ax(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)如果f(x)≥0在[2,3]上恒成立,求a的取值范围.19.在平面直角坐标系xOy中,圆O的参数方程为(θ为参数),已知圆O与y轴的正半轴交于点A,与y轴的负半轴交于点B,点P为直线l:y=4上的动点.直线PA,PB与圆O的另一个交点分别为M,N.(Ⅰ)写出圆O的标准方程;(Ⅱ)若△PAN与△MAN的面积相等,求直线PA的方程;(Ⅲ)求证:直线MN经过定点.20.定义:二阶行列式=ad﹣bc(a,b,c,d∈R).已知数列{a n}满足a1=1,a2=2,=(﹣1)n+1(n∈N*).(Ⅰ)求a3,a4,a5;(Ⅱ)求证:a n+2=2a n+1+a n(n∈N*)(Ⅲ)试问该数列任意两个相邻项的平方和仍然是该数列中的一个项吗?如果是,请证明你的结论;如果不是,请说明理由.【北京市101中学高三统测】19.平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M . ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.20. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈;(1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集合既是自生集又是*N 的基底集?请说明理由; 【海淀区高三年级第二学期期中练习】 18.(本小题满分13分)已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[0,1]上恒成立,求a 的取值范围. 19.(本小题满分14分)已知椭圆G :2212x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率;(Ⅱ)是否存在直线l ,使得2AM CM DM =⋅成立?若存在,求出直线l 的方程;若不存在,请说明理由.20.(本小题满分13分)已知含有n 个元素的正整数集12{,,,}n A a a a =⋅⋅⋅12(,3)n a a a n <<⋅⋅⋅<≥具有性质P :对任意不大于()S A (其中12()n S A a a a =++⋅⋅⋅+)的正整数,k 存在数集A 的一个子集,使得该子集所有元素的和等于k . (Ⅰ)写出12,a a 的值;(Ⅱ)证明:“12,,,n a a a L 成等差数列”的充要条件是“(1)()2n n S A +=”; (Ⅲ)若()2017S A =,求当n 取最小值时,n a 的最大值.。

2018年高考全国2卷文科数学带答案解析

2018年高考全国2卷文科数学带答案解析

2018年普通高等学校招生全国统一考试文科数学本试卷共注意事项:23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

1•答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在 条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5毫米黑色字迹的签字笔 书写,字体工整、笔迹清楚。

3•请按照题号顺序在各题目的答题区域内作答, 超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。

4 •作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。

一、选择题:本题共 12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 项是符合题目要求的。

1. i(2+3i)=A. 3-2iB. 3 2iC. -3 _2iD. -3 2i2.已知集合A=「1,3,5,7 匚 B -「2,3,4,5 [则 A^B =A.「3 ?B.C. :3,5;D. 11,2,3,4,5,7 /3.函数 f(x)e x- e e 2e的图象大致为2 x4.已知向量 a , b 满足 | a |=1 , a b - -1,则 a (2a -b )=A. 0.6B. 0.5C. 0.4D. 0.32 26 •双曲线笃-1( a 0, b 0)的离心率为-3,则其渐近线方程为a bA. y =. 2xB. y = 3xC 占 C ・yx2D. y =二 3x2C7.在"Be 中,co 丁 5, BC=1 ,AC =5,贝U AB =A. 42B. , 30C.29D. 2 5绝密★启用前A. 45•从2名男同学和 B . 3 3名女同学中任选 C. 2 2人参加社区服务,则选中D. 02人都是女同学的概率为A CD&为计算S -1---- —,设计了右侧的程 2 3 499 100序框图,则在空白框中应填入A. i =i 1B. i =i 2C. i =i 3D. i =i 49.在长方体 ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线 AE 与CD 所成角的正切值为 A.二B.二C.」2 2 210 .若f (x) = cosx -sinx 在[0, a ]是减函数,则 a 的最大值是则C 的离心率为f(1) f (2) f(3) Hl • f (50)=二、 填空题:本题共 4小题,每小题5分,共20分。

2018年高考全国卷2理科数学真题附含答案解析

2018年高考全国卷2理科数学真题附含答案解析

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。

若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寒假作业(二十八) 小题限时保分练——成都诊断试题节选(注意命题点分布)(时间:40分钟 满分:80分)一、选择题(本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z 满足z (1-i)=2i ,则z =( ) A .-1+i B .-1-i C .1+iD .1-i解析:选A ∵复数z 满足z (1-i)=2i , ∴z =2i 1-i =2i 1+i 1-i 1+i=-1+i. 2.设集合A ={1,2,4,6,8},B ={1,2,3,5,6,7},则A ∩B 的子集个数为( ) A .3 B .6 C .8D .16解析:选C 由于A ∩B ={1,2,6},含有3个元素,故它的子集个数为23=8. 3.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( ) A.π6 B.π3 C.2π3D.5π6解析:选B 由(a -2b )⊥a ,(b -2a )⊥b ,得(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0, 所以a ·b =12a 2=12b 2,设a ,b 的夹角为θ,则cos θ=a ·b |a |·|b |=12,所以θ=π3.4.设a 为函数y =sin x +3cos x (x ∈R)的最大值,则二项式⎝⎛⎭⎪⎫a x -1x 6的展开式中含x 2项的系数是( )A .192B .-192C .182D .-182解析:选B 因为y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,由题意可得a =2,则二项展开式的通项为T r +1=C r6(2x )6-r⎝⎛⎭⎪⎫-1x r =(-1)r C r 626-r x 3-r ,令3-r =2,可得r =1,所以含x2项的系数是(-1)C 1625=-192.5.如图所示的程序框图,若输出的S =88,则判断框内应填入的条件是( )A .k >3?B .k >4?C .k >5?D .k >6?解析:选C 第一次循环:k =2,S =2; 第二次循环:k =3,S =7; 第三次循环:k =4,S =18; 第四次循环:k =5,S =41; 第五次循环:k =6,S =88,此时退出循环,所以判断框内应填入的条件为k >5?.6.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的侧视图的面积不可能等于( )A .1 B. 2 C.2-12 D.2+12解析:选C 由题意可知,该正方体的侧视图的面积是在1到2×1=2之间的数,而2-12不在这个范围之内,故选C. 7.已知2+23=223,3+38=338,4+415=4415,……,若 a +7t=a7t(a ,t 均为正实数),类比以上等式,可推测a ,t 的值,则t -a =( )A .31B .41C .55D .71解析:选 B 根据2+23=223, 3+38=338,4+415=4415,……,可得a 与等号右边根号下分子的值是相同的,因此a 的值为7,而分母为分子平方的值减1,所以t 的值为48,所以t -a =41.8.下列有关命题的说法中错误的是( ) A .若“p 或q ”为假命题,则p ,q 均为假命题 B .“x =π6”是“sin x =12”的必要不充分条件C .“x =1”是“x ≥1”的充分不必要条件D .若命题p :“∃实数x ,x 2≥0”,则命题綈p 为“∀x ∈R ,x 2<0”解析:选B 当x =π6时,sin x =12,但是当sin x =12时,x =π6+2k π,k ∈Z 或x =5π6+2k π,k ∈Z ,即x =π6⇒sin x =12,sin x =12⇒/ x =π6,因此B 错误.9.已知函数f (x )的定义域为A ,若其值域也为A ,则称区间A 为f (x )的保值区间.若g (x )=x +m -ln x 的保值区间是[e ,+∞),则m 的值为( )A .-1B .1C .eD .-e解析:选B ∵g ′(x )=1-1x =x -1x,又∵x ∈[e ,+∞),∴g ′(x )>0, ∴函数g (x )在[e ,+∞)上单调递增,∴g (x )≥g (e)=e +m -1,即g (x )的值域为[e +m -1,+∞), 又∵g (x )的保值区间为[e ,+∞),∴e +m -1=e. ∴m =1.10.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱的长度是( )A .4 2B .2 5C .6D .4 3解析:选D 该几何体的直观图如图所示,由三视图可以得到AB ⊥BC ,AB ⊥BE ,BC ⊥BE ,BC ⊥CD ,最长的棱为AD ,AD =AB 2+BC 2+CD 2=3×42=4 3.11.设F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使(OP uu u r +2OF uuu r )·2PF uuu r=0(O 为坐标原点),且2|PF 1|=3|PF 2|,则双曲线的离心率为( )A.13B.132C.32D .213解析:选A 如图所示,(OP uu u r +2OF uuu r )·2PF uuu r =OQ uuu r ·2PF uuu r=0,即平行四边形OPQF 2的对角线OQ ⊥PF 2, 所以四边形OPQF 2为菱形,所以|OF 1|=|OF 2|=|OP |,所以∠F 1PF 2=90°, 因为2|PF 1|=3|PF 2|,不妨设|PF 1|=3, 则|PF 2|=2,所以2c =|F 1F 2|=13,2a =1, 因此离心率e =c a=13.12.若函数f (x )=-1be ax (a >0,b >0)的图象在x =0处的切线与圆x 2+y 2=1相切,则a+b 的最大值是( )A .4B .2 2C .2 D. 2解析:选D f ′(x )=-abe ax,f ′(0)=-a b, 因为f (0)=-1b,所以切点坐标为⎝ ⎛⎭⎪⎫0,-1b ,则函数f (x )在x =0处的切线方程为y +1b=-abx ,即切线方程为ax +by +1=0,由于切线与圆x 2+y 2=1相切,则圆心到切线的距离为1,即a 2+b 2=1,因为a >0,b >0,设a =sin x ,b =cos x,0<x <π2,则a +b =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,因为0<x <π2,所以π4<x +π4<3π4,则当x +π4=π2时,a +b 取得最大值 2.二、填空题(本题共4小题,每小题5分)13.若函数y =-x 2-4mx +1在[2,+∞)上是减函数,则m 的取值范围是________. 解析:∵函数y =-x 2-4mx +1的图象是开口向下的抛物线, ∴函数的单调递减区间为[-2m ,+∞), 而当x ∈[2,+∞)时,函数为减函数,∴[2,+∞)⊆[-2m ,+∞),∴-2m ≤2,解得m ≥-1. 答案:[-1,+∞)14.已知实数m ,n ,且点(1,1)在不等式组⎩⎪⎨⎪⎧mx +ny ≤2,ny -2mx ≤2,ny ≥1表示的平面区域内,则m +2n 的取值范围为________.解析:由题意得⎩⎪⎨⎪⎧m +n ≤2,2m -n ≥-2,n ≥1.作出不等式组表示的可行域如图中阴影部分所示,即△ABC 及其内部.作直线l :m +2n =0,平移直线l 可知当直线经过A ⎝ ⎛⎭⎪⎫-12,1时,z 取得最小值32,当直线经过B (0,2)时,z 取得最大值4,故m +2n 的取值范围为⎣⎢⎡⎦⎥⎤32,4. 答案:⎣⎢⎡⎦⎥⎤32,4 15.直线l 1:y =x ,l 2:y =x +2与圆C :x 2+y 2-2mx -2ny =0的四个交点把圆C 分成的四条弧的长相等,则m =________.解析:圆的标准方程为(x -m )2+(y -n )2=m 2+n 2, 由题意可得⎩⎪⎨⎪⎧|m -n |2=|m -n +2|2,2⎝ ⎛⎭⎪⎫|m -n |22=m 2+n 2⇒m =0或m =-1.答案:0或-116.已知函数f (x )是R 上的减函数,且y =f (x -2)的图象关于点(2,0)成中心对称.若u ,v 满足不等式组⎩⎪⎨⎪⎧f u +f v -1 ≤0,f u -v -1 ≥0,则u 2+v 2的最小值为________.解析:∵y =f (x -2)的图象关于点(2,0)成中心对称,∴y =f (x )的图象关于点(0,0)成中心对称,即函数f (x )是奇函数,则不等式组⎩⎪⎨⎪⎧f u +f v -1 ≤0,f u -v -1 ≥0等价于⎩⎪⎨⎪⎧f u ≤-f v -1 =f 1-v ,f u -v -1 ≥0,又f (x )是R 上的减函数,∴⎩⎪⎨⎪⎧u ≥1-v ,u -v -1≤0,作出不等式组对应的平面区域,如图,u 2+v 2的几何意义为可行域内的点到原点距离的平方,则(u 2+v 2)min =⎝ ⎛⎭⎪⎫|-1|22=12.答案:12。

相关文档
最新文档