人教版八年级数学--因式分解习题课
第章习题课 整式的化简求值人教版八级数学上册课件
第1章4章 习习 题题 课课 整整 式式 的的 化化 简简 求求 值值 人-教20版20(秋广人东教)版八(级广数东学)上八册年课级件数 学上册 课件
(2)设三个连续的整数中间的一个为 n,计算最大数与最小数的平方差, 并说明它是 4 的倍数; 延伸:任意三个连续的奇数中,最大数与最小数的平方差是 8 的倍数, 请说明理由.
B组 3.计算: (1)(x-1)(x2+x+1); 解:原式=x3+x2+x-x2-x-1 =x3-1.
第章习题课 整式的化简求值人教版(广东)八级 数学上 册课件
第章习题课 整式的化简求值人教版(广东)八级 数学上 册课件
(2)(x+2y)(x2-4y2)(x-2y); 解:原式=[(x+2y)(x-2y)](x2-4y2) =(x2-4y2)(x2-4y2) =x4-8x2y2+16y4.
第章习题课 整式的化简求值人教版(广东)八级 数学上 册课件
(2)(2x+5y)2; 解:原式=4x2+20xy+25y2. (3)(3m-n)(-3m-n); 解:原式=n2-9m2. (4)(3x2y-6xy)÷6xy. 解:原式=3x2y÷6xy-6xy÷6xy =12x-1.
第章习题课 整式的化简求值人教版(广东)八级 数学上 册课件
类型 2 整式的化简与求值 【例 2】 先化简,再求值:(x-4y)(x+4y)+(3x+4y)2,其中 x=2,y =-1. 解:原式=x2-16y2+9x2+24xy+16y2 =10x2+24xy. 当 x=2,y=-1 时,原式=10×4-24×2=-8.
第章习题课 整式的化简求值人教版(广东)八级 数学上 册课件
第章习题课 整式的化简求值人教版(广东)八级 数学上 册课件
第章习题课 整式的化简求值人教版(广东)八级 数学上 册课件
2021年八年级数学上册第十四章《整式的乘法与因式分解》习题(答案解析)(1)
一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .7D 解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-5B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.3.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ C解析:C【分析】 利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论.【详解】解:空白部分的面积:2()a b -,还可以表示为:222a ab b -+,∴此等式是222()2a b a ab b -=-+.故选:C .【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.4.下列多项式中,不能用完全平方公式分解因式的是( ) A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29D 解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.6.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y = D .623x x x ÷= C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.7.已知1x =,1y =,则代数式222x xy y ++的值为( ). A .20B .10 C.D.解析:A【分析】 利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.8.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32D 解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.9.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --= D【分析】根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键.10.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题11.分解因式:32m n m -=________.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可.解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 12.已知18m x =,16n x =,则2m n x +的值为________.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘 解析:14【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22m m x x =,然后再代入18mx =,16n x =求值即可. 【详解】 解:()2222111684m n m n m n x x x x x +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ , 故答案为14. 【点睛】 此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.13.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭,∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.14.若231m n -=,则846m n -+=________.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6【分析】将原式化为82(23)m n --,再整体代入即可.【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6.故答案为:6.【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故 解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 16.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知}a =}b b =,且a 和b 是两个连续的正整数,则a+b =_____.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a,b的值,再求和即可.【详解】解:∵min{21,a}=21,min{21,b}=b,∴21<a,b<21,又∵a和b为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.17.关于x的一次二项式mx+n的值随x的变化而变化,分析下表列举的数据x01 1.52mx+n-3-101若mx+n=17,线段AB的长为x,点C在直线AB上,且BC=12AB,则直线AB上所有线段的和是_____________.20或30【分析】把表格中的前两对值代入求出m与n 的值即可求出x的值然后把x的值代入求解即可【详解】解:由表格得x=0时m0+n=-3∴n=-3;x=1时m1+(-3)=-1∴m=2;∵mx+n解析:20或30【分析】把表格中的前两对值代入求出m与n的值,即可求出x的值,然后把x的值代入求解即可.【详解】解:由表格得x=0时,m⋅0+n=-3,∴n=-3;x=1时,m⋅1+(-3)=-1,∴m=2;∵mx+n=17,∴2x-3=17,∴x=10,当点C在线段AB上时,∵BC=12AB,∴BC=12×10=5,∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键.18.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键19.若2x y a +=,2x y b -=,则22x y -的值为____________.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.20.若代数式23y y +-的值为0,则代数式3242020y y ++的值为___________.2029【分析】由题意得将原式变形成整体代入得再一次整体代入即可求出结果【详解】解:∵∴原式故答案为:【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想进行求解解析:2029【分析】由题意得23y y +=,将原式变形成()2232020y y y y +++,整体代入得2332020y y ++,再一次整体代入即可求出结果.【详解】解:∵23y y +-,∴23y y +=,原式()2232020y y y y =+++ 2332020y y =++()232020y y =++92020=+2029=.故答案为:2029.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想进行求解.三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+ 解析:(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+ 10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.解析:(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可; ②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=, ()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=225,a ∴=即()2201925,x -= 20195x ∴-=±.【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.24.计算:(1)()222--(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--解析:(13;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式4232=--3=;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 解析:(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.计算(1)20193(1)98|32|--;(2)9(3)(3)x x -+-;(3)2(23)4(3)a b a a b ---.解析:(1)2;(2)221839x b -;()【分析】(1)根据乘方、立方根、算术平方根、绝对值的意义计算出各项值再去括号进行加减即可;(2)先根据平方差公式计算后两项的积,然后去括号合并同类项即可;(3)根据完全平方公式或单项式乘多项式法则计算出前面两个乘法结果后合并同类项即可 .【详解】解:(1)原式=-1+3+2-(2=4-22=+(2)原式=()222999918x x x --=-+=-;(3)原式=222241294129a ab b a ab b -+-+=.【点睛】本题考查实数和整式的混合运算,熟练掌握有关运算法则和乘法公式的应用是解题关键. 27.好学的晓璐同学,在学习多项式乘以多项式时发现:(12x +4)(2x +5)(3x ﹣6)的结果是一个多项式,并且最高次项为:12x •2x •3x =3x 3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢? 根据尝试和总结她发现:一次项就是:12x ×5×(﹣6)+2x ×4×(﹣6)+3x ×4×5=﹣3x . 请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为 ,一次项为 ; (2)若计算(x +1)(﹣3x +m )(2x ﹣1)(m 为常数)所得的多项式不含一次项,求m 的值;(3)若(x +1)2021=a 0x 2021+a 1x 2020+a 2x 2019+…+a 2020x +a 2021,则a 2020= .解析:(1)15x 3,﹣11x ;(2)m =-3;(3)2021【分析】(1)求多项式的最高次项,把每个因式的多项式最高次项相乘即可;求一次项,含有一次项的有x ,3x ,5x ,这三个中依次选出其中一个再与另外两项中的常数相乘最终积相加,或者展开所有的式子得出一次项即可.(2)先根据(1)所求方法求出一次项系数,最后用m 表示,列出等式,求出m ; (3)根据前两问的规律可以计算出第(3)问的值.【详解】(1)由题意得:(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为x ×3x ×5x =15x 3,一次项为:1×1×(﹣3)x +2×3×(﹣3)x +2×1×5x =﹣11x ,故答案为:15x 3,﹣11x ;(2)依题意有:1×m ×(﹣1)+1×(﹣3)×(﹣1)+1×m ×2=0,解得m =﹣3;(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数,∵2021(1)x +展开之后x 的一次项共有2021个,且每一项的系数都为2021(111)1⨯⨯⨯=, ∴20202021202120212021(111)+(111)(111)2021a =⨯⨯⨯⨯⨯⨯++⨯⨯⨯=故答案为:2021.【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.28.阅读:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值. 解:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩ ∴另一个因式为x ﹣7,m 的值为﹣21问题:仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式及k 的值. (2)已知2x 2﹣13x +p 有一个因式x ﹣3,则P = .解析:(1)另一个因式为:4x +,20k =;(2)21.【分析】根据题意给出的方法即可求出答案.【详解】解:(1)设另外一个因式为:x n +,∴()()22325x x k x x n +-=-+, ∴2535n n k-=⎧⎨-=-⎩, ∴4n =,20k =;(2)设另一个因式为:2x n +,∴2x 2﹣13x +p =(2x +n )(x ﹣3)∴6133n n p -=-⎧⎨-=⎩∴解得:217p n =⎧⎨=-⎩故答案为:21.【点睛】本题考查因式分解的意义,解题的关键熟练运用因式分解法,本题属于基础题型.。
14.3 因式分解习题课教学设计
14.3 因式分解习题课教学设计教学目标:1.灵活运用提公因式法、平方差公式、完全平方公式分解因式;2.小组合作交流,培养学生团队意识和集体荣誉感.3.经过练习和讨论,体验分析、类比及化归思想,整体思想.教学重点:灵活运用提公因式法、平方差公式、完全平方公式分解因式;教学难点:经过练习和讨论,体验分析、类比及化归思想,整体思想.一.温故知新(一)因式分解的定义因式分解是把一个多项式化成几个整式的乘积 . 像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(二)因式分解的方法1、提公因式法①多项式各项都含有的公共的因式叫做这个多项式各项的_公因式.②确定公因式:系数部分是取多项式各项系数的最大公约数;字母部分是取多项式各项中同底数幂次数最低的.2、公式法①平方差公式:a2-b2=(a+b)(a-b).②完全平方公式:(1)a2+2ab+b2=_(a+b)2_;(2)a2-2ab+b2=_(a-b)2__. 二、考点解析(一)概念理解1、下列等式从左到右的变形,属于因式分解的是( B )A.a(x-y)=ax-ay B.x2-1=(x+1)(x-1)C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+12、把多项式2x2-8分解因式,结果正确的是( C )A.2(x2-8) B.2(x-2)2 C.2(x+2)(x-2) D.2x(x-4 )3.分解因式:x2y2-2xy+1的结果是(xy-1)2.4.已知x-2y=-5,xy=-2,则2x2y-4xy2= 9 .5.已知a-b=3,则a(a-2b)+b2的值为 20 .6.已知x2-2(m+3)x+9是一个完全平方式,则m=-6或0 .(二)几种类型的因式分解类型1 运用提公因式法分解因式1.分解因式:(1) a2b+ab2(2)8a3b2-12ab3c 解:原式=ab(a+b) 解:原式=4ab2(2a2-3bc)(3)3x(a-b)-9y(b-a)解:原式=3x(a-b)+9y(a-b)=3(a-b)(x+3y)(4)5x(x-2y)3-20y(2y-x)3解:原式=5x(x-2y)3+20y(x-2y)3=5(x-2y)3(x+4y)类型2 运用公式法分解因式2.分解因式:(1)a2-9b2 (2)4a2+4ab+b2解:原式=(a+3b)(a-3b) 解:原式=(2a+b)2(3)(x-1)2-6(x-1)+9 (4)81x4-72x2y2+16y4解:原式=(x-1-3)2 解:原式=(9x2-4y2)2=(x-4)2=(3x+2y)2(3x-2y)2(5)(x2+9)2-36x2解:原式=(x2+9-6x)(x2+9+6x)=(x-3)2(x+3)2类型3 公因式和公式法的结合分解因式3.分解因式:(1)ax2-4a解:原式=a(x2-4)=a(x+2)(x-2)(2)3x3-24x2+48x解:原式=3x(x2-8x+16)=3x(x-4)2(3)-18b(a-b)2-12(a-b)3解:原式=-6(a-b)2(3b+2a-2b)=-6(a-b)2(2a+b)类型4 x2+(p+q)x+pq型式子的分解因式4.分解因式:(1)x2-4x-12解:原式=(x+2)(x-6)(2)3x3-21x2+30x解:原式=3x(x2-7x+10)=3x(x-2)(x-5)类型5 分组分解法分解因式5.分解因式:(1)3x3-6x2+5x-10解:原式=(3x3-6x2)+(5x-10)=3x2(x-2)+5(x-2)=(x-2)(3x2+5)(2)x2-4xy-1+4y2解:原式=(x2-4xy+4y2)-1=(x-2y)2-1=(x-2y+1)(x-2y-1)类型6 先去(添)括号后因式分解6.分解因式:(1)(x+2)(x+4)+1解:原式=x2+6x+9=(x+3)2(2)(a+4)(a-4)+4(a+5)解:原式=a2-16+4a+20=a2+4a+4=(a+2)2(3)1-x2+2xy-y2解:原式=1-(x2-2xy+y2)=1-(x-y)2=(1+x-y)(1-x+y)三、总结反思1、通过本节课的活动,你有哪些收获?2、谈一谈,你还有哪些困惑呢?四、作业布置详见《精准作业》五、板书设计。
【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题
讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
14.3 因式分解【教案】八年级上册数学
14.3.1提公因式法课时目标1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念,体会数学知识的内在含义与价值.2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式,培养学生有条理的思考和运算能力.3.会利用因式分解进行简便计算,体会因式分解的价值,培养学生的创新意识.学习重点运用提公因式法分解因式.学习难点正确理解因式分解的概念,准确找出公因式.课时活动设计回顾引入1.回顾整式乘法完成填空:(1)m(a+b+c)=ma+mb+mc.(2)(x+1)(x-1)=x2-1.(3)(a+b)2=a2+2ab+b2.2.根据等式性质填空:(1)ma+mb+mc=m(a+b+c).(2)x2-1=(x+1)(x-1).(3)a2+2ab+b2=(a+b)2.设计意图:引导学生回顾旧知识,激活学生已有的知识体系,为学习新知识打下基础.探究新知探究1因式分解问题:回顾引入中第2组式子有什么共同特点?学生回答:将一个多项式化成多个整式相乘.教师引导并给出因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.p(a+b+c)pa+pb+pc通过观察,你发现因式分解和整式乘法有什么关系?学生发现:因式分解与整式乘法的互逆性.探究2提公因式法问题1:观察下列多项式有哪些相同因式?学生观察发现前者的相同因式为p,后者的相同因式为x.总结如下:多项式中各项都含有的相同因式,叫做这个多项式的公因式.师生活动:教师板书:pa+pb+pc=p(a+b+c).引导学生用文字进行总结:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.问题2:找出3x2-6xy的公因式,并思考如何确定一个多项式的公因式?师生活动:学生先独立思考,然后小组交流得出结论:公因式为3x.教师引导学生用文字总结如何确定一个多项式的公因式:1.定字母:字母取多项式各项中都含有的相同的字母;2.定系数:公因式的系数是多项式各项系数的最大公约数;3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,培养学生类比的思想方法和运算能力;学生从系数、字母、指数多个角度思考问题,培养学生思维的全面性和开阔性,养成积极思考的学习态度和创新意识.典例精讲例1把下列各式分解因式:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解:(1)8a3b2+12ab3c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).(2)2a(b+c)-3(b+c)=(b+c)(2a-3).(3)(a+b)(a-b)-a-b=(a+b)(a-b)-(a+b)=(a+b)(a-b-1).技巧:1.整体思想找公因式;2.整项被提取后,1不能丢;3.可以用整式乘法验证.例2以下因式分解是否正确?如果错误,请指出原因并改正.(1)把12x2y+18xy2分解因式.解:原式=3xy(4x+6y).解:不正确.正解:原式=6xy(2x+3y).注意:公因式要提尽.(2)把3x2-6xy+x分解因式.解:原式=x(3x-6y).解:不正确.正解:原式=3xx-6yx+1·x=x(3x-6y+1).注意:某项提出莫漏1.(3)把-x2+xy-xz分解因式.解:原式=-x(x+y-z).解:不正确.正解:原式=-(x2-xy+xz)=-x(x-y+z).注意:首项有负常提负.例3计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解:(1)原式=3×13×37-13×91=13×(3×37-91)=13×20=260.(2)原式=20.16×(29+72+13-14)=2 016.例4已知a+b=7,ab=4,求a2b+ab2的值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.设计意图:通过例题,让学生寻求不同的解题方法,体会在计算求值时,若式子各项都含有公因式,用提公因式的方法可使运算简便,感悟学习因式分解的作用,培养学生转化意识、整体思想,进一步训练运算能力.巩固训练1.多项式15m3n2+5m2n-20m2n3的公因式是(C)A.5mnB.5m2n2C.5m2nD.5mn22.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是(D)A.x+1B.2xC.x+2D.x+33.简便计算:2 0132+2 013-2 0142.解:原式=2 013×(2 013+1)-2 0142=2 013×2 014-2 0142=2 014×(2 013-2 014)=-2 014.设计意图:巩固训练共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.整式乘法和因式分解的关系是方向相反的变形,因式分解的目的是把一个多项式化成了几个整式的积的形式.2.找公因式的方法三定:定系数;定字母;定指数.3.提公因式的因式分解的步骤第一步找公因式,第二步提公因式.4.提公因式的技巧或注意问题1.要提尽;2.不漏项;3.提负数要注意变号.5.本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第115页练习第1,2,3题.2.作业.教学反思14.3.2公式法第1课时运用平方差公式因式分解课时目标1.探索并运用平方差公式进行因式分解,体会转化思想和逆向思维.2.能综合运用提公因式法和平方差公式对多项式进行因式分解,培养运算能力和应用意识.3.培养良好的推理能力,体会“化归”与“整体”的思想方法,形成灵活的应用能力.学习重点掌握平方差公式的特点,运用平方差公式进行因式分解.学习难点灵活应用平方差公式因式分解.课时活动设计回顾引入之前学习了平方差公式,今天先回顾一下.计算:(1)(x+2)(x-2);(2)(x-1)(x+1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x-2)=x2-4.(2)(x-1)(x+1)=x2-1.设计意图:从结构上认识本节课所研究的多项式的结构特点,引出课题,培养学生观察问题的能力和模型观念.探究新知问题:多项式a2-b2有什么特点?你能将它分解因式吗?学生观察得出结论:a2-b2=(a+b)(a-b)是a,b两数的平方差的形式.追问1:你能根据符号语言写出文字语言吗?师生活动:教师引导学生结合整式乘法归纳出因式分解平方差公式的文字语言:两个数的平方差,等于这两个数的和与这两个数的差的积.追问2:如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能验证刚才的公式吗?师生活动:教师首先引导学生利用面积验证平方差公式,提问两名同学分别列出左右两个图形涂色区域的面积.左:涂色区域的面积=a2-b2;右:涂色区域的面积=(a+b)(a-b).根据左右涂色区域的面积相等得到:a2-b2=(a+b)(a-b).设计意图:通过利用拼图求面积验证平方差公式,培养学生多角度思考问题的习惯和图形语言、符号语言、文字语言的相互转化能力.典例精讲例1分解因式:(1)4x2-9;(2)(x+p)2-(x+q)2.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式=[(x+p)+(x+q)]·[(x+p)-(x+q)].例2分解因式:(1)x4-y4;(2)a3b-ab.解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)原式=ab(a2-1)=ab(a+1)(a-1).例3已知x2-y2=-2,x+y=1,求x-y,x,y的值.解:∵x2-y2=(x+y)(x-y)=-2,∵x+y=1,①∴x-y=-2.②联立①②,组成二元一次方程组{x+y=1, x-y=−2,解得{x =−12,y =32. 例4 计算下列各题:(1)1012-992; (2)53.52×4-46.52×4. 解:(1)原式=(101+99)×(101-99)=200×2=400. (2)原式=4×(53.52-46.52) =4×(53.5+46.5)(53.5-46.5) =4×100×7=2 800.例5 求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除. 证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n , ∵n 为整数,∴8n 能被8整除.即多项式(2n +1)2-(2n -1)2一定能被8整除.设计意图:进一步通过例题强调平方差公式和因式分解的两种方法的综合应用,让学生体会若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解,分解到不能再分解为止,体会“一提二套三彻底”,培养学生归纳抽象能力和数学思想方法的掌握.巩固训练1.下列多项式中能用平方差公式分解因式的是( D )A.a 2+(-b )2B.5m 2-20mnC.-x 2-y 2D.-x 2+9 2.把下列各式分解因式: (1)16a 2-9b 2= (4a +3b )(4a -3b ) ; (2)(a +b )2-(a -b )2= 4ab ; (3)2x 2-8= 2(x +2)(x -2) ; (4)-a 4+16= (4+a 2)(2+a )(2-a ) .3.如图,在边长为6.8 cm 正方形钢板上,挖去4个边长为1.6 cm 的小正方形,求剩余部分的面积.解:根据题意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2).答:剩余部分的面积为36 cm2.设计意图:共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.因式分解有哪些方法?2.能用平方差公式因式分解的结构特点是什么?3.平方差公式因式分解的步骤及注意问题有什么?4.本节用到什么研究问题的方法?5.根据本节的研究思路思考因式分解还有什么方法?设计意图:以提问的方式引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页习题14.3第2,5(4)题.2.作业.教学反思第2课时运用完全平方公式因式分解课时目标1.理解完全平方公式的结构特点,培养模型观念.2.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.在运用完全平方公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力.学习重点掌握完全平方公式的结构特点,运用完全平方公式进行因式分解.学习难点理解完全平方公式的结构特征,灵活运用完全平方公式进行因式分解.课时活动设计回顾引入之前学习了完全平方公式,今天先来回顾一下.计算:(1)(x+2)(x+2);(2)(x-1)(x-1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x+2)=x2+4x+4.(2)(x-1)(x-1)=x2-2x+1.设计意图:通过复习旧知,巩固因式分解和整式乘法的关系,为探究新知做准备,回顾完全平方公式,注重知识间的联系和知识体系的渗透,培养知识的迁移能力.探究新知问题1:观察多项式a2+2ab+b2,a2-2ab+b2,并回答下列各题.(1)每个多项式有几项?解:三项.(2)每个多项式的第一项和第三项有什么特征?解:都是一个数的平方.(3)中间项和第一项,第三项有什么关系?解:中间项是正负这两个数的积的2倍.追问:你能用符号语言和文字语言表述完全平方式吗?师生活动:选两名学生在黑板上板书整式乘法的完全平方公式.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.等号两边互换位置,就得到:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.教师引导学生用文字表述完全平方式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.问题2:你能把下面4个图形拼成一个正方形,并根据拼成的图形的面积写出等量关系吗?学生动手操作,通过拼图前后图形面积相等写出等量关系a2+2ab+b2=(a+b)2.设计意图:学生在归纳出完全平方式的结构特征后,尝试用符号语言和文字语言表述完全平方式,最后通过动手操作,以拼图的形式再次验证完全平方式,同时在探究过程中感受到学习数学的乐趣.典例精讲例1分解因式:(1)16x2+24x+9;(2)-x2+4xy-4y2.解:(1)原式=(4x)2+2·4x·3+32=(4x+3)2.(2)原式=-(x2-4xy+4y2)=-(x-2y)2.例2把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(a2+4)2-16a2.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2.(2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.例3计算:(1)1002-2×100×99+992;(2)342+34×32+162;(3)7652×17-2352×17.解:(1)原式=(100-99)2=1.(2)原式=(34+16)2=2 500.(3)原式=17×(7652-2352)=17×(765+235)(765-235)=17×1 000×530=9 010 000.例4已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.解:由已知可得(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0,解得a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.设计意图:通过多种方法的综合应用,感受因式分解给计算带来的便捷,选题层次分明考察各有侧重点,让学生体会“数式同性”,掌握研究方法和知识的迁移性,形成体系,培养数感和运算能力.巩固训练1.下列四个多项式中,能因式分解的是(B)A.a2+1B.a2-6a+9C.x2+5yD.x2-5y2.把多项式4x2y-4xy2-x3分解因式的结果是(B)A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)3.把下列多项式因式分解.(1)4(2a+b)2-4(2a+b)+1;(2)y2+2y+1-x2.解:(1)原式=[2(2a+b)]2-2·2(2a+b)·1+12=(4a+2b-1)2.(2)原式=(y+1)2-x2=(y+1+x)(y+1-x).设计意图:共设计3个题目,针对所学内容对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结(1)因式分解有哪些方法?(2)能用完全平方公式因式分解的结构特点是什么?(3)因式分解的步骤及注意问题有什么?(4)本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页练习第1,2题.2.作业.教学反思。
人教版数学 八年级上册 14.3 因式分解 课后练习题
一、单选题
1. 设x2+3x+y=(x+1)(x+2),则y的值为()
A.1 B.2 C.3 D.4
2. 下列多项式能用完全平方公式分解因式的是()
A.x2﹣2x﹣1 B.(a+b)(a﹣b)﹣4ab
D.y2+2y﹣1
C.a2+ab+b2
3. 下列多项式中能用提公因式法分解的是()
A.x2+y2B.x2-y2C.x2+2x+1 D.x2+2x
4. 下列因式分解正确的是()
A.B.
C.D.
5. 下列各因式分解正确的是()
A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2
C.4x2﹣4x+1=(2x﹣1)2D.x2﹣4x=x(x+2)(x﹣2)
二、填空题
6. 因式分解:___________.
7. 因式分解:____.
8. 若a4+b4=a2﹣2a2b2+b2+6,则a2+b2=___.
三、解答题
9. 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:,,,因此,,这三个数都是神秘数.
(1)是神秘数吗?为什么?
(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的
神秘数是的倍数吗?为什么?
(3)若长方形相邻两边长为两个连续偶数,试说明其周长一定为神秘数.
(4)若将三位数中最大的神秘数记为,两位数中最大的神秘数记为,请直接写出
的值.
10. 证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).
11. 因式分解:
(1);
(2).。
人教版八年级数学上册课件:14章 整式的乘法与因式分解--知识点复习 (共53张PPT)
A.(6a3+3a2)÷
1 2
a=12a2+6a
B.(6a3-4a2+2a)÷2a=3a2-2a
C.(9a7-3a3)÷(﹣
1 3
a3)=﹣27a4+9
C.( 14a2+a)÷(﹣12a)=﹣12 a-2
5.一个多项式与﹣2x2的积为﹣2x5+4x3﹣x2,则这个多项式
为
.
6.计算:⑴
(9x2y-6xy2)÷3xy;
2.已知M= a-1,N=a2- a(a为任意实数),则M,N的
大小关系为( A ) A. M<N B. M=N C. M>N D.不能确定
3.若x2+y2+ =2x+y,则y-x= .
3、am﹣n=am ÷ an(a≠0,m,n都
是正整数,并且m>n).
10
知识点一:幂的运算性质
巩固练习
1.(易错题)若(1-x)1-3x=1,则x的取值有( C )个.
A.0 B.1 C.2 D.3 4
2.若3x=4,9y=7,则3x-2y的值为 7 . 3.已知am=3,an=2,则a2m-n的值为 4.5 .
为( B ) A M<N
B M>N
C M=N D.不能确定
10.计算:(1)(x+1)(x+4); (2)(y-5)(y-6); (3)(m-3)(m+4)
(x+p)(x+q)
18
知识点二:整式的运算
知识回顾
单项式的除法法则: 系数、同底数幂分别相除 只在被除式里含有的字母
19Βιβλιοθήκη 知识点二:整式的运算2
重点难点
重点:运用整式的乘法法则和除法法则进行运算;因式分 解. 难点:应用整式的乘法和因式分解决问题.
八年级数学上册14.3因式分解14.3.1提公因式法说课稿(新版)新人教版
八年级数学上册 14.3 因式分解 14.3.1 提公因式法说课稿(新版)新人教版一. 教材分析《八年级数学上册》第14.3节是关于因式分解的内容,其中14.3.1节是提公因式法。
这一节内容是在学生已经掌握了多项式乘法、完全平方公式和平方差公式的基础上进行教学的。
教材通过引入提公因式法,使学生能够更好地理解和掌握因式分解的方法,为后续学习更复杂的因式分解方法打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于多项式乘法和完全平方公式等概念有一定的了解。
但是,学生在学习过程中可能会对因式分解的方法和思路感到困惑,特别是对于提公因式法的应用可能会存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的困惑进行解答和指导。
三. 说教学目标1.知识与技能目标:使学生掌握提公因式法的概念和步骤,能够灵活运用提公因式法进行因式分解。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的解决问题的能力和合作意识。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和自信心。
四. 说教学重难点1.教学重点:使学生掌握提公因式法的概念和步骤,能够灵活运用提公因式法进行因式分解。
2.教学难点:如何引导学生理解和掌握提公因式法的应用,以及如何解决因式分解过程中的关键步骤。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件、黑板和教学卡片等辅助教学。
六. 说教学过程1.引入新课:通过一个具体的例子,让学生观察和分析,引导学生思考如何将一个多项式进行因式分解。
2.讲解提公因式法:讲解提公因式法的概念和步骤,通过示例进行讲解,让学生理解和掌握提公因式法的应用。
3.练习与讨论:给出一些练习题,让学生独立进行因式分解,然后进行小组讨论,共同解决问题。
4.总结与拓展:对提公因式法进行总结,引导学生思考如何解决更复杂的因式分解问题。
人教版八年级上册数学第14章 整式的乘法与因式分解 单项式与多项式相乘
答案显示
1.单项式与多项式相乘,就是用单项式去乘多项式的__每_一__项_____,
再把所得的积___相_加_______;其实质是将单项式与多项式相乘
单项式
单项式
转化为_________与_________相乘.
2.(2019·青岛)计算(-2m)2·(-m·m2+3m3)的结果是( A ) A.8m5 B.-8m5 C.8m6 D.-4m4+12m5
16.(1)先化简,再求值:3(2x+1)+2(3-x),其中 x=-1.
解:原式=6x+3+6-2x=4x+9. 当 x=-1 时,原式=4x+9=4×(-1)+9=-4+9=5.
(2)已知实数 a,b,c 满足|a-b-3|+(b+1)2+|c-1|=0,求 (-3ab)·(a2c-6b2c)的值. 解:由题意得 a-b-3=0,b+1=0,c-1=0, 解得 a=2,b=-1,c=1. 故(-3ab)·(a2c-6b2c)=-3a3bc+18ab3c=-3×23×(-1)×1+ 18×2×(-1)3×1=24-36=-12.
解法三(分割求和法):连接 BG,则 S 阴影部分=S△BDG+S△BGF+S△DGF =12a(a-b)+12b2+12b(a-b)=12a2-12ab+12b2+12ab-12b2=12a2.
明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=
-12xy2+6x2y+■,■的地方被墨水弄污了.你认为■处应为
(A )
A.3xy
B.(-3xy)
C.(-1)
D.1
8.要使 x(x+a)+3x-2b=x2+5x+4 成立,则 a,b 的值分别为
(C )
A.-2,-2 B.2,2
C.2,-2
初二数学因式分解1[人教版]
公因式 一个多项式中的每一项都含有的相同的因式,称
之为公因式(common factor)。
提公因式法 一般地,如果多项式的各项有公因式,可以把这
个公因式提到括号外面,将多项式写成因式乘积的形 式,这种因式分解的方法叫做提公因式法。如 ma+mb+mc=m(a+b+c)
1. 判断下列因式分解是否正确,并简要说明理由: (1) 4a2-4a+1=4a(a-1)+1 (2) x2-4y2=(x+4y)(x-4y) 2. 把下列各式分解因式: (1)a2+a(2)4ab-2a2b(3)9m2-n2 (4)2am2-8a (5)2a2+4ab+2b2 3.
3、丁丁和冬冬分别用橡皮泥做了一个长方体和圆 柱体,放在一起,恰好一样高。丁丁和冬冬想知道哪 一个体积较大,但身边又没有尺子,只找到一根短绳, 他们量得长方体底面的常正好是3个绳长,宽是2个绳 长,圆柱体的底面周长是10个绳长。你知道哪一个体 积较大吗?大多少?(提示:可设绳长为a厘米,长 方体和圆柱体的高均为h厘米)如果给你一架天平, 你有办法知道哪一个体积较大吗?
边发出“哈呵”的仙响!!超然间R.拉基希门童狂速地让自己仿佛樱桃般的腿隐出海蓝色的露水声,只见他歪斜的亮黄色细小竹竿一样的胡须中,萧洒地涌出九串下 巴状的阳台,随着R.拉基希门童的晃动,下巴状的阳台像勋章一样在掌心中温柔地折腾出飘飘光波……紧接着R.拉基希门童又连续使出二式凶鱼露水思,只见他圆 圆的卷发中,轻飘地喷出九片旋舞着『金火骨神哑铃珠』的瓜子状的手臂,随着R.拉基希门童的旋动,瓜子状的手臂像榛子一样,朝着壮扭公主饱满亮润如同红苹果 样的脸疯滚过来……紧跟着R.拉基希门童也神耍着法宝像鸭掌般的怪影一样朝壮扭公主疯抓过来壮扭公主突然把齐整严密特像两排闸门一样的牙齿甩了甩,只见七道 闪烁的活似牙签般的蓝烟,突然从结实丰满的胸部中飞出,随着一声低沉古怪的轰响,水红色的大地开始抖动摇晃起来,一种怪怪的火球毒跳味在优美的空气中飞舞… …接着跳动的犹如神盔模样的棕褐色短发连续膨胀疯耍起来……极像紫金色铜墩般的脖子透出暗紫色的阵阵幽雾……极像波浪一样的肩膀透出土黄色的隐约幽音。紧接 着像深白色的万须海滩鹤一样怒笑了一声,突然搞了个倒地狂舞的特技神功,身上瞬间生出了四十只活像石塔般的银橙色眉毛……最后摆起夯锤一般的金刚大脚一摆, 轻飘地从里面射出一道鬼光,她抓住鬼光阴森地一转,一样亮晶晶、亮光光的法宝¤天虹娃娃笔→便显露出来,只见这个这件玩意儿,一边收缩,一边发出“呜呜”的 余音。!超然间壮扭公主狂速地让自己刚劲有力的粗壮手指飘舞出暗紫色的门柱声,只见她如同红苹果样的脸中,猛然抖出九片摇舞着¤天虹娃娃笔→的手臂状的面包 ,随着壮扭公主的抖动,手臂状的面包像斑马一样在掌心中温柔地折腾出飘飘光波……紧接着壮扭公主又连续使出八千三百七十三派浪马风车梦,只见她异常结实的手 臂中,快速窜出九团转舞着¤天虹娃娃笔→的蜈蚣状的怪毛,随着壮扭公主的转动,蜈蚣状的怪毛像奶酪一样,朝着R.拉基希门童彪悍的淡黄色馅饼一样的脸疯勾过 去……紧跟着壮扭公主也神耍着法宝像鸭掌般的怪影一样朝R.拉基希门童疯踢过去随着两条怪异光影的猛烈碰撞,半空顿时出现一道春绿色的闪光,地面变成了亮青 色、景物变成了墨灰色、天空变成了暗黄色、四周发出了浪漫的巨响!壮扭公主饱满亮润如同红苹果样的脸受到震颤,但精神感觉很爽!再看R.拉基希门童瘦弱的仿 佛玉葱般的手臂,此时正惨碎成门槛样的浓黑色飞烟,加速射向远方R.拉基希门童疯哭着飞速地跳出界外,狂速将瘦弱的仿佛玉葱般的手臂复原,但元气已受损伤抓 壮扭公主:“哈
数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)
14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。
平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。
基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。
二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。
(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。
2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。
知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。
达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。
三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。
学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。
因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。
四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。
人教版八年级上册数学课后习题
第4页1、图中有几个三角形用符号表示这些三角形。
B C2、下列长度的三条线段能否组成三角形为什么(1)3,4,8;(2)5,6,11;(3)5,6,10.5页有什么不同这三条△ABC的边BC上的高AD在各自三角1、如图,(1)(2)和(3)中的三个B形的什么位置你能说出其中的规律吗B DC B(D) CD B C2、填空:(1)如下页图(1),AD,BE,CF是△ABC的三条中线,则AB=2____,BD=____,AE=1/2____.(2)如下页图(2),AD,BE,CF是△ABC的三条角平分线,则∠1=____,∠3=1/2____,∠ACB=2____,AAF FEE习题1、图中有几个三角形用符号表示这些三角形。
B D E C2、长为10,7,5,3的四根木条,选其中三根组成三角形,有几种选法为什么(1) (2)(3)4、 如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高。
填空: (1) BE=____=1/2____.(2) ∠(3)∠AFB=____=90° (4)B E D FC 5、 选择题。
下列图形中有稳定性的是()A 、正方形B 、长方形C 、直角三角形D 、平行四边形 12页例1 如图,在△ABC 中,∠BAC =40°, ∠B = 75°,AD 是△ABC 的角平分线.求∠ADB 的度数.CDA B例2:如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向。
求下面各题.13页1.如图,从A 处观测C 处时仰角∠CAD =30°,从B 处观测C 处时仰角∠CBD =45°.从C 处观测A 、B 两处时视角∠ACB 是多少 DBCE北2.如图,一种滑翔伞的形状是左右对称的四边形ABCD,其中∠A=150°,,∠B=∠D=40°,求∠C的度数。
人教版数学八年级上册《第十四课时用十字相乘法分解因式》说课稿
人教版数学八年级上册《第十四课时用十字相乘法分解因式》说课稿一. 教材分析人教版数学八年级上册《第十四课时用十字相乘法分解因式》这一课时的内容,是在学生已经掌握了多项式乘法、多项式除法以及提公因式法分解因式的基础上进行教学的。
本节课的主要内容是让学生掌握用十字相乘法分解因式的技巧和方法,从而提高他们解决代数问题的能力。
在这一课时的教材中,通过丰富的例题和练习题,引导学生逐步掌握十字相乘法分解因式的步骤和方法。
教材还注重培养学生的观察能力、思考能力和动手能力,使他们在解决实际问题的过程中,能够灵活运用所学的知识。
二. 学情分析在教学这一课时之前,学生已经具备了一定的代数基础,对多项式乘法、多项式除法和提公因式法有一定的了解。
但是,他们在运用这些知识解决实际问题时,还存在着一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,针对性地进行教学,帮助学生克服困难,提高他们的解题能力。
三. 说教学目标1.知识与技能目标:让学生掌握十字相乘法分解因式的方法和步骤,能够运用十字相乘法分解因式解决实际问题。
2.过程与方法目标:通过观察、思考、动手,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:让学生掌握十字相乘法分解因式的方法和步骤。
2.教学难点:如何引导学生观察、发现并运用十字相乘法分解因式。
五. 说教学方法与手段1.教学方法:采用引导发现法、讨论法、实践操作法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对用十字相乘法分解因式的兴趣,激发他们的学习欲望。
2.自主探究:让学生观察、分析例题,引导学生发现十字相乘法分解因式的规律。
3.小组讨论:让学生分组讨论,分享各自的心得体会,培养学生的团队协作能力。
课件《因式分解》[实用版]_人教版2
1.到目前为止,我们已经学过哪些解一元二 次方程的方法?
主要有:估算法、直接开平方法、配方法、公式法等。
用因式分解认法识求一解元一二元次二方次程方程
温故而知新
2.解下列方程
①. x22x150
②. x(x3)x3
用因式分解认法识求一解元一二元次二方次程方程
课题导入:
新知探索
问题:一个数的平方与这个数的3倍有可能相等吗?如果相 等,这个数是几?你是怎样求出来的?
∵Δ=b2 - 4ac = 28 > 0,
∵Δ=b2 - 4ac = 28 > 0,
用因式分解法求解一元二次方程
解得, x 1= 0 , x2=
你能根据上述规律求出物体经过多少秒落回地面吗(精确到0.
x2 - 12x + 62 = 4 + 62,
由方程 ,得
二看字母(找相同字母的最低次幂)。
(1)
(2)
x(5x4)0
x0 , 或 5x40 .
∴
x1 = 0,
x2
4 5
用因式分解法求解一元二次方程
(2)原方程可变形为
x(x2)(x2)0
(x2)(x1)0
x 2 0 , 或 x 1 0 .
∴
x1 2,x2 1.
新知探索
体现了一种什么 样的数学思想?
提问:1.例1主要用到了因式分解中的什么方法? 提公因式法
5x + 1 = ±1.
2. 解下列方程: 用因式分解法求解一元二次方程
适合运用因式分解法
;
三化-----方程化为两个一元一次方程;
用因式分解法求解一元二次方程
(1)(3x2) 4(3x2) 主要有:估算法、直接开平方法、配方法、公式法等。 2
八年级数学上第14章整式的乘法与因式分解14.3因式分解第3课时公式法__平方差公式新新人教1
答案显示
1.a2-b2=__(a_+__b_)_(_a_-__b_)__,即两个数的平方差,等于这 两个数的__和______与这两个数的___差_____的积.
2.(2020·金华)下列多项式中,能运用平方差公式分解因式 的是( C )
A.a2+b2 B.2a-b2 C.a2-b2 D.-a2-b2
(1)请你再写出两个(不同于上面的算式)具有上述规律的算式; 解:答案不唯一,如:112-92=8×5,132-112=8×6.
(2)用文字写出反映上述算式的规律; 解:任意两个奇数的平方差等于8的倍数.
(3)证明这个规律的正确性. 证明:设m,n为整数(m>n),两个奇数可分别表示为2m+ 1和2n+1,则(2m+1)2-(2n+1)2=4(m-n)(m+n+1). ①当m,n同是奇数或偶数时,m-n一定为偶数, ∴4(m-n)一定是8的倍数; ②当m,n是一奇一偶时,m+n+1一定为偶数, ∴4(m+n+1)一定是8的倍数. 综上所述,任意两个奇数的平方差等于8的倍数.
(3)3a2-48; 解:原式=3(a2-16)=3(a+4)(a-4);
(4)2a2(n-m)+8(m-n). 原式=2a2(n-m)-8(n-m)=2(n-m)(a2-4)=2(n- m)(a+2)(a-2).
人教版八年级上册数学《第十四章 14.3 因式分解》课后练习(含答案)
八年级上册数学《第十四章14.3因式分解》课后练习一、单选题1.下列各选项中因式分解正确的是()A.B.C.D.2.下列运算不正确的是()A.B.C.D.3.下列各式中,哪项可以使用平方差公式分解因式()A.B.C.D.4.多项式12ab3c+8a3b的公因式是()A.4ab2B.4abc C.2ab2D.4ab5.若,则().A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数6.设,,则,的大小关系是().A.B.C.D.无法确定二、填空题7.因式分解:______.8.因式分解:﹣x2﹣4y2+4xy=_____.9.若整式(为常数,且)能在有理数范围内分解因式,则的值可以是_____(写一个即可).10.若,则的值为_____.11.因式分解:_____.12.当时,代数式的值是_____.13.满足的整数对,共有______对.三、解答题14.分解因式:(1);(2);(3).15.先化简,再求值:,其中16.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.17.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.18.阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC 的形状,并说明理由.19.仔细阅读下面例题,解答问题:例题,已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n.∴,解得n=-7,m=-21,∴另一个因式为(x-7),m的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式3x2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.20.阅读下列材料解决问题:将下图一个正方形和三个长方形拼成一个大长方形,观察这四个图形的面积与拼成的大长方形的面积之间的关系.∵用间接法表示大长方形的面积为:,用直接法表示面积为:∴于是我们得到了可以进行因式分解的公式:(1)运用公式将下列多项式分解因式:①,②;(2)如果二次三项式“”中的“”只能填入有理数1,2,3,4,并且填入后的二次三项式能进行因式分解,请你写出所有的二次三项式.答案1.D2.B3.B4.D5.A6.B 7.8.﹣(x﹣2y)29.-110.411.12.13.314.解(1)原式=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)(2)原式=x3-16x+5x+20=x(x+4)(x-4)+5(x+4)=(x+4)(x2-4x+5).(3)原式=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3(a+b+c)ab=(a+b+c)[(a+b)2-ac-bc+c2-3ab]=(a+b+c)(a2+b2+c2-ab-bc-ca).15.解:原式.∵,∴原式.16.解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.17.解(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴得,即m的值是56,n的值是17.18.解:,故答案为:;,,,,;为等边三角形,理由如下:,,,,,为等边三角形.19.解:设另一个因式为(x+n),则3x2+5x-m=(3x-1)(x+n),则3x2+5x-m=3x2+(3n-1)x-n,∴,解得n=2,m=2,∴另一个因式为(x+2),m的值为2. 20.解(1)①=;=;(2),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
a b (a b)(a b) a 2ab b (a b)
2 2 2
(2)完全平方公式
例1 分解因式:
(1) x y 4 y
2
(2) 3x 12 x y 12 xy
3 2
2
1、把下列各式分解因式:
(1)12 x 3 y
八
年
级
数
学
第十五章
第四节
1. 分解因式:
(1)2a b 4ab 提公因式法
2
(2) x 0.25 y 公式法 (平方差公式)
2 2
1 公式法 (完全平方公式) (3) y y 4
2
分别用了什么方法?
因式分解方法
1.提公因式法:
am bm cm m(a b c)
小结:
因式分解的步骤:
1、有公因式的先提公因式 2、没有公因式的考虑用公式法 (1)两项式,考虑用平方差公式 (2)三项式,考虑用完全平方公式或十字相乘法 (3)四项或四项以上的多项式,考虑分组化成两 项或三项,再考虑提公因式法和公式法
(a b) 4ab
2
把下列多项式分解因式
(1). xn-xny2
(2). a(x-y)-b(x-y)-c(y-x)
(3). -x2-4y2+4xy
(4)( p 4)( p 1) 3 p (5). 3ax2+6axy+3ay2
(6). 9 - 12(a-b) + 4 (a-b)2
2
2
(2)a a3(3)3源自x 6axy 3ay2
2
例2 分解因式:
(1) x y
4
4
(2)a 8a 16
4 2
2、把下列各式分解因式:
(1)(2 x y) ( x 2 y)
2
2
(2) x 4 x 4 x
3 2
例3.分解因式:
(1) x 3x 2
2
(2) y 2 y 3
2
(3)a 6a 8
2
(4)b 2b 15
2
巩固练习: 2、分解因式:
(1) x 7x 12
2
(2) x 4 x 12
2
(3) x 8 x 12
2
(4) x 11x 12
2
思考:因式分解: 2x2+5x–7
例题精讲:
例4:分解因式: a 分解因式:
2 2
b a b 1
2 2
x 2x x y y 1
4 2 2
练习:分解因式:
1 x 4 xy 4 y 9a 6a 1 2 2 2 x 2 xy y 2 x 2 y 1
2 2 2
例5 分解因式: