Effect of silane coupling agents on the performance of RO membranes
硅烷偶联剂及其对白炭黑的改性研究进展
硅烷偶联剂及其对白炭黑的改性研究进展摘要:介绍硅烷偶联剂的作用机理及其对白炭黑的改性效果。
硅烷偶联剂与白炭黑表面的羟基发生反应,使白炭黑由亲水性变为疏水性,从而增大其与橡胶的相容性,改善白炭黑的分散性,提高填充硫化胶的物理性能和动态力学性能。
最后提出了目前改性存在的问题及对未来的研究的展望。
关键词:硅烷偶联剂;白炭黑;改性;作用机理白炭黑是橡胶工业中一种重要的补强填料,同炭黑比较, 白炭黑的粒径小、比表面积大,填充硫化胶的拉伸强度、撕裂强度和耐磨性均较高;但它与烃类橡胶的相容性较差,大量填充胶料的粘度较大,加工性能随贮存时间的延长而变差,贮存后胶料存在硬化、挤出困难以及成型粘性差等问题,填充胶料还易产生静电积累,加工性能较差, 在橡胶工业中的应用受到限制。
使用硅烷偶联剂对白炭黑进行改性, 解决了白炭黑与胶料的亲和性, 改善了胶料的加工性能。
同时可使胶料的定伸应力、拉伸强度、撕裂强度及耐磨性提高。
轮胎使用白炭黑补强时加入硅烷偶联剂, 可以获得滚动阻力( 生热) , 抓着性能和耐磨耗性能三者之间的最佳平衡。
本文主要对硅烷偶联剂及其对白炭黑作用机理进行了介绍。
1硅烷偶联剂硅烷偶联剂的通式为RSiX。
,式中R为有机基团,如乙烯基、环氧基、氨基、甲基丙烯酰氧基、巯基等,它能与树脂反应形成牢固的化学结合;X为能够水解的有机基团,如甲氧基、乙氧基、氯等,其水解副产物在低温下可以挥发,而异丙基、异丁基则需要较长的反应时间,且反应副产物也难以从处理的无机填料中去除,X基团能与白炭黑表面的活性羟基缩合形成硅氧烷键。
在橡胶工业中使用较多的是含硫硅烷偶联剂,如TESPT、双一[(三乙氧基硅烷基)一丙基]二硫化物(TESPD或Si75)、r巯基丙基三甲氧基硅烷(A一189)等,而在轮胎工业中使用最多的是硅烷偶联剂TESPT。
一般选用硅烷偶联剂的原则是:聚烯烃橡胶多选用乙烯基硅烷;硫黄硫化胶多选用含硫硅烷偶联剂,如Si69和Si75等;环氧树脂一般选用端基是环氧基或氨基的硅烷;不饱和聚酯多用乙烯基、环氧基硅烷。
两种硅烷偶联剂修饰的铝合金表面超疏水性能研究
表面技术第52卷第9期两种硅烷偶联剂修饰的铝合金表面超疏水性能研究李文艳1,2,杨含铭3,夏祖西1,2,彭华乔1,2,石涛1,2*(1.中国民航局第二研究所,成都 610041;2.民航航油航化产品适航与绿色发展重点实验室, 成都 610041;3.西南交通大学 地球科学与环境工程学院,成都 611756)摘要:目的探究硅烷偶联剂对铝合金超疏水表面性能的影响。
方法通过化学刻蚀并结合硅烷偶联剂修饰,在AMS 4037铝合金上制备超疏水表面。
首先,通过HCl/H2O2混合液对铝合金进行刻蚀,在其表面构造具有多级蜂巢状的微/纳复合结构,再分别采用硅烷偶联剂和含氟硅烷进行疏水改性。
详细研究2种改性剂的浓度对刻蚀铝合金表面润湿性的影响。
采用接触角测量仪对材料表面润湿性和表面自由能进行测试,通过扫描电镜、能谱仪、激光共聚焦显微镜对表面微观结构和化学成分进行表征。
同时,对2种硅烷偶联剂修饰的铝合金超疏水表面进行液滴冻结时间、防覆冰及自清洁行为测试。
结果铝合金表面的疏水性并不总是与改性剂的浓度呈正相关。
当改性剂的质量分数为0.5%时,经硅烷偶联剂修饰后其刻蚀表面的接触角为156.3°,但滚动角大于30°,而经含氟硅烷修饰后其表面的接触角可达164.4°,滚动角为6°。
液滴在硅烷偶联剂和含氟硅烷修饰后的超疏水表面的冻结时间分别为37、45 s。
结论相较于硅烷偶联剂修饰的刻蚀表面,含氟硅烷改性后其表面能更低,疏水效果更好。
相较于未处理的铝合金表面,经硅烷偶联剂修饰后铝合金超疏水表面可显著抑制液滴的冻结过程,具有更长的冻结时间和延迟覆冰的能力,并且含氟硅烷修饰后表面的防冰性能更佳。
自清洁实验也证明经含氟硅烷修饰后的表面具有更好的自清洁性能,其表面的微小灰尘颗粒更易被带走。
关键词:铝合金;超疏水;冻结时间;结霜;自清洁中图分类号:O69 文献标识码:A 文章编号:1001-3660(2023)09-0340-11DOI:10.16490/ki.issn.1001-3660.2023.09.030Superhydrophobic Properties of Aluminum Alloy SurfacesModified by Two Silane Coupling AgentsLI Wen-yan1,2, YANG Han-ming3, XIA Zu-xi1,2, PENG Hua-qiao1,2, SHI Tao1,2*(1. The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China; 2. Key Laboratory ofAviation Fuel & Chemical Airworthiness and Green Development, Civil Aviation Administration of China, Chengdu 610041, China; 3. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China)ABSTRACT: In order to investigate the effects of the silane coupling agent on properties of superhydrophobic aluminum alloy surfaces, superhydrophobic surfaces were prepared on AMS 4037 aluminum alloy by chemical etching combining with收稿日期:2022-09-11;修订日期:2023-02-24Received:2022-09-11;Revised:2023-02-24基金项目:国家自然科学基金(U1833202)Fund:National Natural Science Foundation of China (U1833202)引文格式:李文艳, 杨含铭, 夏祖西, 等. 两种硅烷偶联剂修饰的铝合金表面超疏水性能研究[J]. 表面技术, 2023, 52(9): 340-350.LI Wen-yan, YANG Han-ming, XIA Zu-xi, et al. Superhydrophobic Properties of Aluminum Alloy Surfaces Modified by Two Silane Coupling第52卷第9期李文艳,等:两种硅烷偶联剂修饰的铝合金表面超疏水性能研究·341·modification of two kinds of silane coupling agents. Via an etching process with hydrochloric acid and hydrogen peroxide mixed solution, hierarchical honeycomb micro/nano structures were formed on AMS 4037 aluminum alloy surfaces. Then, the etched surface was treated with different concentrations of silane and fluorosilane, respectively. The effect of silane coupling concentration on wettability was also investigated systematically. The wettability and surface free energy of as-prepared samples were characterized and calculated by a contact angle meter. The microscopic appearance and chemical composition were analyzed by SEM, LSCM and energy spectrum. Meanwhile, the freezing process of water droplets on the surface with various wettability was observed with a high speed camera and the freezing time was calculated based on the video images. Anti-icing and self-cleaning behaviors of the surfaces treated with two modifiers were tested respectively. The results showed that the hydrophobicity of as-prepared samples was not always positively related to the concentration of the silane coupling. When the modifier was 0.5wt.%, the contact angle of the etched surface treated with silane coupling agent was 156.3°, but the sliding angle was more than 30°, while the fluorosilane-modified surface reached a maximum contact angle of 164.4° and a rolling angle of 6°, which was definitely a superhydrophobic surface. When the concentration of modifiers continued to increase, the hydrophobicity of both surfaces became worse, which may be due to the effect of the way in which the surface modifier molecules were packed. The freezing time of water droplets with a volume of 5 μL on the superhydrophobic surface modified by silane coupling agent and the fluorosilane was divided into 37 s and 45 s, respectively. And the lower freezing front speed on the surface with better hydrophobicity was observed. The anti-icing for the superhydrophobic surface attributed to the quite small contact area and the high thermal resistance between the liquid-solid interfaces. The anti-icing test illustrated that compared with the original aluminum alloy surface, the superhydrophobic surfaces had longer freezing time and could delay icing, and the surface modified by fluorosilane had better anti-icing performance. It was found that the size of areas frozen was negatively correlated with hydrophobicity of surface. Under the same conditions, the better the hydrophobicity, the less ice is covered on the surface of the aluminum alloy. The frozen area of the etched surface modified with silane coupling agent is smaller than that of the untreated surface. The frozen area of the etched surface modified by the fluorosilane coupling agent is smaller than that of the surface modified by the silane coupling agent. This fact can be explained by the reduction of solid-droplet interface and increase of thermal resistance resulting from trapped gas. The self-cleaning experiments also prove that the surface modified by fluorosilane has better self-cleaning performance than the silane-modified surface, and the small dust particles on the surface are easier to remove.KEY WORDS: aluminum alloy; superhydrophobic; freezing time; frosting; self-cleaning超疏水材料通常指与水的接触角大于150°、滚动角小于10°的材料。
硅烷偶联剂对溶胶凝胶法纳米二氧化硅复合材料制备及应用的影响
文章编号:1000-3851(2004)02-0070-06收稿日期:2003-01-20;收修改稿日期:2003-05-07基金项目:教育部科学技术研究重大项目(0202);北京化工大学青年基金项目(QN 0019); 可控化学反应科学与工程教育部重点实验室开放课题通讯作者:毋 伟,博士,副研究员,主要从事纳米复合材料的制备与应用研究。
E -m ail :w uw ei @m ail .buct .edu .cn硅烷偶联剂对溶胶凝胶法纳米二氧化硅复合材料制备及应用的影响毋 伟1,贾梦秋2,陈建峰1,邵 磊1,初广文1(1.北京化工大学教育部超重力工程研究中心,北京100029;2.北京化工大学材料科学与工程学院,北京100029)摘 要: 研究了在溶胶-凝胶法原位制备纳米二氧化硅复合材料过程中硅烷偶联剂与纳米二氧化硅间的作用机理,硅烷偶联剂量的变化对机理的影响以及对在环氧树脂清漆中应用性能的影响。
结果表明:溶胶凝胶法纳米二氧化硅复合材料的形成机理是纳米二氧化硅表面的物理吸附水和硅羟基被硅烷偶联剂的有机部分所代替,生成分散均匀的纳米复合材料。
当硅烷偶联剂的用量适当时该复合材料在环氧树脂清漆中具有良好的应用性能,表现出纳米材料特有的既增强又增韧特性,有很好的应用前景。
关键词: 溶胶-凝胶法;硅烷偶联剂;用量;纳米二氧化硅;复合材料中图分类号: T B 332 文献标识码:AEFFECT OF SILANE COUPLING AGENT ON THE PREPARATION ANDAPPLICATION OF NANO SILICON DIOXIDE COMPOSITEMATERIAL BY SOL -GEL METHODWU Wei 1,JIA M eng qiu 2,CHEN Jianfeng 1,SHAO Lei 1,CHU Guangw en1(1.R esear ch Center of t he M inistr y o f Educatio n for High G rav ity Eng ineer ing and T echno log y ,Beijing 100029,China ;2.College o f M ater ials Science and Eng ineering ,Beijing U niver sity o f Chemical T echno lo gy ,Beijing 100029,China )Abstract : T he inter action mechanism betw een silane coupling agent and nano silico n diox ide in the pro cess of in -situ preparation of nano silicon diox ide com posite material w as studied by so l-gel metho d .T he effects of silane coupling agent dosages on the mechanism and the application per-fo rmance of the nano silico n diox ide com posite mater ial in epo xy var nish w er e also investigated .The m echanism o f prepar ing nano silicon dioxide composite m aterial is that the or ganic g roup of silane coupling agent substitutes the physisorption w ater and silicon alcoholic g roup on the sur-face of the nano silicon dio xide and forms nano composite mater ial w ith g ood dispersibility .When the dosag e of silane coupling agent is suitable,the composite material ex hibits a goo d application perform ance in epox y varnish as well as reinfor cing and toughening pro perties of nano mater ials.The preparation techno logy has a go od application prospect.Key words : so l -gel ;silane coupling agent ;dosag e ;nano silicon diox ide ;com posite material 纳米复合材料是由两种或两种以上的固相至少有一维以纳米级大小复合而成的复合材料。
苯丙乳液中硅烷偶联剂对浸渍滤纸性能的影响
Ch/na Pu/p&Paper V01.26,No.7,2007
行得比较完全,基本无残余单体,确定VMS与其余 单体发生了共聚反应。
《井捌煅
l;}∞踮∞佰伯lg∞};的蚯如
3000
2000
波IR/cm-1
图3乳液红外光谱图
2.2硅烷偶联剂对浸渍滤纸性能的影响 在苯丙乳液的合成中加入不超过单体总量4%的
(3)耐破度 汽车工业滤纸同样要求有足够的耐破性能。与抗 张强度和挺度一样,滤纸的耐破性能同样主要由聚合 物膜的耐破性能决定。从表3可以看出,随VMS用 量的增加,滤纸的耐破度也随之增加,这主要是由于 聚合物膜的形成提高了原来单纯由纤维间结合所能提 供的抗拉和抗撕能力所致。 苯丙乳液中VMS的引入提高了浸渍滤纸的机械 强度,表现为抗张强度、挺度、耐破度的提高,但提 高幅度有限。 (4)透气性 汽车工业滤纸过滤空气、机油和燃油中尘埃杂 质,其过滤效率的高低很大程度上决定于滤纸的透气 性。经乳液浸渍干燥后的滤纸表面形成一层致密的 膜,对滤纸透气性有负面影响。从表3可以看出, VMS用量为0和1%时,浸渍滤纸的透气度由原纸的 334 L/(m2·s)下降为313 L/(m2·s)和305 L/(m2·8)。 随VMS用量的增加,交联密度增加,滤纸的透气性 逐渐降低。在VMS用量为2%时,透气性下降为272 L/(m2·s),比原纸降低了18.2%,以后降低程度减 小,透气度损失不大。 (5)耐水性 经浸渍干燥后的滤纸,在极易吸水的植物纤维与 空气界面问存在一道聚合物膜的屏障。在湿润的环境 下,水首先在滤纸上的聚合物膜表面润湿,吸附在膜 的表面。然后水分子依靠膜的空隙以及膜的分子运动 在膜中扩散,由纸面向纸内扩散,到达纤维表面。因 此滤纸的耐水性主要决定于聚合物膜的耐水性以及膜 的均匀性和致密性。所以,随着VMS用量的增加, 聚合物膜交联更密,滤纸耐水性提高明显。表3中滤 纸的耐水性变化证明了这一点。 2.3交联剂的作用 由上述研究可知,单独使用VIVlS后,滤纸的耐 水性仍然与实际使用要求有一定差距。为了缩小差 距,本实验在浸渍液的制备过程中加入了起交联作用 的三聚氰胺甲醛树脂,对浸渍后滤纸的透气度和耐水 性进行了分析。
水性环氧树脂的合成
分类号:学校代码:10426密级:学号:**********硕士学位论文MASTER DEGREE THESIS水性环氧树脂的合成**:******:***学科专业:安全工程专业代码:085224研究方向:化工过程安全2018年6月8日水性环氧树脂的合成摘要随着人们绿色环保意识的不断提高,对印刷品要求也越高,水性油墨因其低挥发性,减轻了大气污染,同时降低了溶剂在包装中的残留,得到广泛应用。
1、本文先将环氧树脂用丙烯酸酯化开环,对生成的环氧酯进行改性,以甲基丙烯酸甲酯(MMA)、苯乙烯(St)、丙烯酸丁酯(BA)和甲基丙烯酸(MAA)为改性单体,以正丁醇为溶剂,采用接枝法合成水性环氧树脂。
通过研究化学试剂用量和不同工艺条件对水性环氧树脂乳液性能的影响,确立了合成油墨用水性环氧树脂的最佳方案为酯化率为75%,软硬单体最佳质量配比为4:1,引发剂用量为3%,硅烷偶联剂用量为4%,反应温度为110℃。
2、以甲基丙烯酸甲酯、苯乙烯、丙烯酸丁酯、甲基丙烯酸为共聚单体,硅烷偶联剂为功能单体制得的水性环氧树脂乳液在室温贮存时不产生交联反应,而在干燥时随着水分的蒸发和中和剂的挥发,体系p H值发生变化,在酸的催化下固化成膜。
研究结果表明,实验制得的水性环氧树脂乳液粒径主要分布在26nm左右,并具有分布窄的特点,室温交联后胶膜透明度、耐水性好,成膜速度快,各项性能更加优异。
3、采用接枝法制备的水性环氧树脂乳液,配以黑色碱性颜料配制成水性油墨。
讨论了水性环氧树脂乳液对水性油墨各性能的影响。
研究显示,随着环氧树脂酯化率的增加,乳液粒径变小,水性油墨的粘度减小,大大提高了乳液的稳定性,而随着交联单体硅烷偶联剂用量的增加,乳液附着牢度增大,耐水性增强,可以满足粘度、细度、附着力及初干性等油墨印刷适性的要求。
4、在实验室的基础实验的基础上,对水性环氧树脂连接料合成的工艺进行了放大,研究确定了工艺设计参数,设计了工艺装置,并对其进行了危险与可操作性分析(HAZOP),确定并完善了各工艺单元的工艺控制措施,形成了完善的带控制点的工艺流程图(PIDs)。
硅烷偶联剂对地质聚合物基胶合板胶合性能的影响
China Forest Products Industry林产工业,2021,58(05):1-4+29在大力倡导人造板产业绿色发展的背景下,无机胶黏剂因其具有原料广泛、成本低廉、环境友好等优点,具有巨大的市场应用潜力。
地质聚合物作为一种新型无机胶凝材料,与传统硅酸盐水泥相比具有生产能耗低、原料成本少、耐候性优良等优势[1-5]。
然而,相关研究发现,地质聚合物与木材在复合过程中存在界面相容性差,湿态胶合强度低等问题,限制了其作为无机人造板胶黏剂的广泛应用[6-9]。
因此,要提高地质聚合物基人造板的胶合性能,需解决木材与地质聚合物“有机-无机”界面相容性问题。
已有研究表明,硅烷偶联剂处理木材可提高木质复合材料的力学性能与耐水性能等[10-14],但关于硅烷偶联剂处理木材的改性机理以及处理后木材与地质聚合物间胶合界面的研究较硅烷偶联剂对地质聚合物基胶合板胶合性能的影响∗邓穆玲 张 扬 潘大卫 (北京林业大学材料科学与技术学院,北京 100083) 摘 要:为提高木材与地质聚合物的界面胶合强度,使用 KH550、KH560 和 KH570 三种硅烷偶联剂对杨木单板进行涂刷处理,以实验室自制的偏高岭土基地质聚合物为木材胶黏剂,热压制备胶合板,研究硅烷偶联剂处理对杨木单板表面微观形貌和润湿性能、胶接界面化学基团和微观结构、胶合板干态和湿态胶合强度的影响。
结果表明:KH550、KH560、KH570偶联剂处理后,木材表面形成的硅烷薄膜层,有利于碱激发剂在木材表面的进一步扩散,平衡接触角分别降低了25.8%、31.8%、14.8%;硅烷偶联剂处理有利于促进地质聚合物在木材内部的渗透,其中偶联剂 KH550处理组的地质聚合物在木材中渗透更为均匀;经浓度为 10%的 KH550处理后,胶合板胶合强度达到最大值,其湿态胶合强度与干态胶合强度分别比未处理材提高了41.5%和47.5%。
关键词:胶合板; 地质聚合物; 硅烷偶联剂; 胶合强度; 表面形貌中图分类号:TS653.3 文献标识码:A 文章编号:1001-5299 (2021) 05-0001-05DOI:10.19531/j.issn1001-5299.202105001Effect of Silane Coupling Agent Treatment on the Bonding Properties of Geopolymer-based PlywoodDENG Mu-ling ZHANG Yang PAN Da-wei(College of Materials Science and Technology, Beijing Forestry University, Beijing100083, P.R.China) Abstract: In order to improve the bonding strength between wood and geopolymer, silane coupling agents named KH550, KH560 and KH570 were used in this study. Lab-made metakaolin-based geopolymer was used as the wood adhesive, and plywood was prepared by hot-pressing. The effects of different silane coupling agents on the microstructure and wettability of the veneer, microstructure and chemical groups of the bonding interface, and the wet and dry bonding strength of geopolymer-based plywood were evaluated. The results showed that KH550, KH560 and KH570 could form silane thin film layer, which was conducive to the further diffusion of alkali activator on the surface of wood. Compared with the untreated wood, the final equilibrium contact angle of wood treated by KH550, KH560 and KH570 was reduced by 25.8%, 31.8% and 14.8%, respectively. Silane coupling agent treatment was beneficial to promote the penetration of geopolymer into wood. Compared with KH560 and KH570, geopolymer penetrated more uniform in the wood treated with KH550. Compared with that of the untreated wood, the adhesive strength of the plywood treated with KH550 at 10% reached the maximum, and the wet bonding strength and dry bonding strength increased by 41.5% and 47.5%, respectively.Key words: Plywood; Geopolymer; Silane coupling agent; Bonding strength; Surface morphology*基金项目:国家自然科学基金项目(3180030195)作者简介:邓穆玲,女,研究方向为木质复合材料与胶黏剂E-mail:**********************通讯作者:张 扬,男,教授,研究方向为木质复合材料与胶黏剂E-mail:**********************.cn修回日期:2021-03-21林产工业2第58卷少。
硅烷偶联剂对氧化铝陶瓷浆料流动性能和3D_打印性能的影响
第43卷第3期2024年3月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.3March,2024硅烷偶联剂对氧化铝陶瓷浆料流动性能和3D 打印性能的影响缪新宇1,刘双宇1,陆㊀萍2,张福隆1,Vasilieva Tatiana Mikhailovna 3,黄传锦1,王立岩1,王斌华4(1.盐城工学院机械工程学院,盐城㊀224051;2.盐城工学院汽车工程学院,盐城㊀224051;3.莫斯科物理技术学院,多尔戈普鲁德内㊀141700;4.江苏铬莱伯数字科技有限公司,盐城㊀224001)摘要:基于光固化3D 打印技术需要高固相含量㊁低黏度的陶瓷浆料以防止烧结陶瓷部件产生裂纹㊁孔洞㊁翘曲等缺陷,通过测试流变性能与固化性能,本文优化了树脂单体的选用及配比,采用KH550㊁KH560㊁KH570三种硅烷偶联剂对Al 2O 3粉体表面改性,以改善陶瓷浆料的流变性能和稳定性,探讨了硅烷偶联剂降低Al 2O 3陶瓷浆料体系黏度的机理,获得了固相含量为75%(质量分数)(体积分数为45.5%)㊁黏度为4540mPa㊃s 的Al 2O 3陶瓷浆料,并提出了一种光固化Al 2O 3陶瓷浆料制备的优化方法,这有望对用于制备复杂陶瓷的高固含量㊁低黏度的3D 打印Al 2O 3陶瓷浆料提供帮助㊂关键词:光固化技术;氧化铝陶瓷;浆料优化;表面改性;硅烷偶联剂;3D 打印性能中图分类号:TQ174㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)03-1058-12Effect of Silane Coupling Agent on Flow and 3D Printing Performance of Alumina Ceramic PastesMIAO Xinyu 1,LIU Shuangyu 1,LU Ping 2,ZHANG Fulong 1,Vasilieva Tatiana Mikhailovna 3,HUANG Chuanjin 1,WANG Liyan 1,WANG Binhua 4(1.College of Mechanical Engineering,Yancheng Institute of Technology,Yancheng 224051,China;2.College of Automotive Engineering,Yancheng Institute of Technology,Yancheng 224051,China;3.Moscow Institute of Physics and Technology,Drezna 141700,Russia;4.Jiangsu Global Laser Box Digital Tech Co.,Ltd.,Yancheng 224001,China)Abstract :In order to prevent cracks,holes,warpage and other defects in sintered ceramic parts,ceramic paste with high solid content and low viscosity is needed based on light-curing 3D printing technology.By testing the flow and curing proformances,the selection and ratio of resin monomers were optimized.KH550,KH560and KH570were used to modify the surface of Al 2O 3powder to improve flow performance and stability of ceramic paste.The mechanism of silane coupling agent reducing the viscosity of Al 2O 3ceramic paste was discussed.Al 2O 3ceramic paste with a solid content of 75%(mass fraction)(volume fraction of 45.5%)and a viscosity of 4540mPa㊃s was obtained.An optimization method for the preparation of light-curing Al 2O 3ceramic paste was proposed,which is expected to be helpful for the preparation of 3D printing Al 2O 3ceramic paste with high solid content and low viscosity for complex ceramics.Key words :light-curing technology;alumina ceramics;paste optimisation;surface modification;silane coupling agent;3D printing performance 收稿日期:2023-11-15;修订日期:2023-12-08基金项目:江苏省创新创业人才项目(JSSCRC2021545)作者简介:缪新宇(1997 ),男,硕士研究生㊂主要从事光固化陶瓷性能的研究㊂E-mail:1304952350@通信作者:刘双宇,博士,教授㊂E-mail:liushuangyu@0㊀引㊀言氧化铝陶瓷具有熔点高㊁硬度高㊁耐蚀性好㊁抗氧化性好㊁耐磨性好等特点,广泛应用于电子㊁机械㊁化工㊁㊀第3期缪新宇等:硅烷偶联剂对氧化铝陶瓷浆料流动性能和3D打印性能的影响1059医疗等领域[1]㊂然而,由于氧化铝陶瓷固有的脆性和硬度,传统的方法如热注射成型和凝胶铸造存在制备周期长㊁成本高㊁效率低等问题,这限制了复杂形状和结构的制备[2-4]㊂近年来发展迅速的增材制造技术(即3D打印技术)为氧化铝陶瓷材料的快速成型提供了可能[5-6]㊂立体光刻(stereo lithography appearance,SLA)是一种利用紫外光固化成型技术的3D打印技术,具有精度高㊁打印速度快㊁原料可回收㊁陶瓷浆料固相含量高㊁不需要结构支撑等优点[7-8]㊂与数字光处理(digital light processing,DLP)技术相比,SLA技术可以打印固体含量更高的陶瓷浆料并完成大尺寸零件的制造[6],成为目前陶瓷增材制造发展的热点㊂SLA技术是通过紫外光照射光敏树脂使其光固化,将陶瓷颗粒锚定在树脂的交联聚合物网络中,为打印坯体提供必要的机械强度[9]㊂为了制备尺寸精确㊁机械性能优异的复杂陶瓷零件,制备稳定㊁高固相含量且低黏度的陶瓷浆料仍是整个光固化3D打印过程中最关键的步骤之一㊂应用于SLA技术的陶瓷浆料应使流变性能㊁分散稳定性和固化特性满足一定的标准[10]㊂已有的研究[11-14]表明,在30s-1剪切速率下,陶瓷浆料的黏度不应超过5Pa㊃s,以保持层重涂效率;陶瓷浆料应含有至少40%(体积分数)的固相含量,以避免在随后的脱脂和烧结过程中出现缺陷;同时要求陶瓷浆料的固化深度必须高于设定的层厚,以保证层间的良好结合㊂近年来,更多学者致力于研究更高固相含量的陶瓷浆料以制备高性能光固化陶瓷,如2021年,Li 等[15]通过优化分散剂,制备了固相含量为82%(质量分数)Al2O3陶瓷浆料;2022年,Yu等[1]通过调整浆料配方中分散剂的含量,制备了固相含量为85%(质量分数)Al2O3陶瓷浆料,但因其黏度为51733mPa㊃s,远大于陶瓷浆料黏度标准,无法满足常规光固化3D打印技术浆料黏度要求,因此,制备高固相含量的陶瓷浆料及优化浆料流变性能仍然是热门话题㊂众所周知,Al2O3颗粒表面含有羟基是其表现亲水性的主要原因㊂光敏树脂在性质上表现为亲水性或疏水性取决于它们的链端㊂亲水性单体容易与陶瓷颗粒形成氢键,使得颗粒在悬浮液中均匀分散,然而,大部分常用光敏树脂表现为疏水性,要使疏水单体形成稳定的悬浮液,必须对陶瓷颗粒表面进行改性处理㊂另外,在高固相含量下,浆料黏度不断增大且粉体分散不均匀,这主要是Al2O3粉体颗粒本身带有负电荷,受范德华力的影响互相耦合产生静电吸引,使粉体颗粒以强絮凝状态聚集[16]㊂因此,为了获得分散均匀㊁稳定且黏度低的陶瓷浆料,需对Al2O3陶瓷粉体进行表面改性处理,使其由亲水性转向疏水性,能更均匀地溶解在疏水性光敏树脂之中[17-18]㊂2014年,Adake等[19]使用不饱和脂肪酸(OA)与硬酯酸(SA)改性Al2O3粉体,使脂肪酸中的羧基赋予陶瓷颗粒疏水性质,以制备高固相骨支架结构,但硬脂酸在单体中的溶解度有限,不能完全有效地分散Al2O3颗粒㊂而油酸具有碳双键结构,对紫外光具有吸光作用,极大减小了陶瓷浆料的固化深度㊂坯体脱脂烧结完后的部件易产生裂纹,对产品质量产生影响㊂2017年,Zhang等[10]对比了不同种类的二羧酸,测定了二羧酸的最大吸附量,并论证了短链二羧酸与氧化铝表面的化学键吸附,以减弱假塑性,提高稳定性,降低悬浮液的黏度和剪切增稠行为㊂2018年,Xing等[20]对比了SA与硅烷偶联剂作为Al2O3颗粒表面改性剂的润湿性效果,表明硅烷偶联剂无论是在浆料稳定性和流变性能上都明显优于硬脂酸,且确定了硅烷偶联剂的最佳用量为陶瓷粉体的2%(质量分数)㊂在此基础上,本文采用不同硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550)㊁γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)作为Al2O3颗粒的表面改性剂,比较不同表面改性剂改性后浆料的稳定性㊁流变性能以及固化性能,揭示硅烷偶联剂对Al2O3陶瓷粉体的改性机理,详细研究并综合比较了改性后浆料的不同性能,选择出最佳试剂及含量,为高固相含量㊁低黏度Al2O3浆料配制提供参考㊂1㊀实㊀验1.1㊀氧化铝陶瓷浆料的材料选用在本研究中,选用硅烷偶联剂KH550㊁KH560㊁KH570(东莞山一塑化有限公司,中国)作为Al2O3粉末的表面改性剂;选用丙烯酸异冰片酯(IBOA,密度为0.99g/mL,折射率为1.474,官能度为1)㊁1,6-己二醇二丙烯酸酯(HDDA,密度为1.03g/mL,折射率为1.457,官能度为2)和乙氧基季戊四醇四丙烯酸酯(PPTTA,密度为1.15g/mL,折射率为1.475,官能度为4)三种不同官能度的光敏树脂(均产自上海光易化工有限公司,中国)作为预聚物和稀释剂;采用光敏树脂质量分数为3%的苯基双氧化磷RYOJI819(广州市利厚贸易有限1060㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷公司,中国)作为光引发剂进行光聚合;采用粒径为500~2000nm的Al2O3粉末(上海中冶新材料有限公司,中国)作为原始粉末㊂采用陶瓷粉体质量分数2%的DS-195H分散剂(天津赫普菲乐新材料有限公司,中国)改善陶瓷浆料的流变特性㊂以树脂单体质量分数22%的聚乙二醇PEG-200(上海麦克林生化科技有限公司,中国)作为增塑剂来提高打印生坯的强度㊂1.2㊀氧化铝陶瓷浆料的制备首先,分别用三种不同的表面改性剂对Al2O3粉体进行改性㊂方法如下:将不同硅烷偶联剂(KH550㊁KH560和KH570分别占陶瓷粉体质量的2%)与乙醇混合,Al2O3粉体与溶剂配比为1ʒ4(体积比),将Al2O3粉体与溶剂在超声振动环境下反应2h,将改性后的溶剂放入真空干燥箱中,在60ħ下干燥48h,以去除多余乙醇㊂之后,将光敏树脂预混料在烧杯中磁力搅拌4h,将树脂㊁Al2O3粉体㊁光引发剂㊁分散剂以及增塑剂加入浆料体系㊂将制备好的光敏树脂浆料与Al2O3陶瓷粉混合初搅,以200r/min高速球磨6h,将剩余Al2O3陶瓷粉末加入浆料中继续以180r/min高速球磨6h,得到Al2O3陶瓷浆料㊂1.3㊀氧化铝陶瓷元件的制备将制备好的陶瓷浆料放在光固化陶瓷3D打印机CeraBuilder100Pro-D(武汉因泰莱激光科技有限公司)上进行单层测试,制备流程如图1所示㊂根据模型切片的厚度来确定单层厚度大小,单层厚度为模型切片厚度的4倍,确保与上一层连接而不发生断层㊂为了研究铺装效果和翘曲变形,本研究采用355nm紫外光对陶瓷浆料进行逐层扫描以制备所需部件,打印与烧结流程如图2所示㊂当打印过程完成后,用酒精清洗陶瓷零件周围多余的浆料,得到Al2O3陶瓷零件坯体㊂将打印完成的Al2O3陶瓷零件坯体放入GF1750Q高温烧结炉(南京博蕴通仪器科技有限公司)加热至1650ħ进行高温烧结,加热路径如图3所示㊂在脱脂过程中,多级保温的目的是将树脂成分完全去除,C1到C9为脱脂过程,其平均升温速率为1ħ/min,其中,C2到C3表示在200ħ保温2h,C4到C5表示在300ħ保温2h,C6到C7表示在700ħ保温2h,C8到C9表示在1150ħ保温2h㊂C9到C11为烧结过程,其平均升温速率为5ħ/min,C10到C11表示在1650ħ保温2h,C11到C12为炉冷降温过程㊂图1㊀陶瓷浆料的制备工艺流程图Fig.1㊀Process flow diagram for the preparation of ceramic paste1.4㊀性能测试方法利用旋转流变仪(SNB-2,China)测量Al2O3陶瓷浆料的黏度,表征其流变特性㊂在25ħ下观察黏度变化,剪切速率范围为30~80s-1㊂利用陶瓷3D打印机制备了10组10mmˑ10mm的正方形单层样品,并使㊀第3期缪新宇等:硅烷偶联剂对氧化铝陶瓷浆料流动性能和3D打印性能的影响1061用测厚仪测量每组的厚度,用于确定不同激光打印参数下的单层固化厚度,以研究陶瓷浆料的光固化性能㊂采用扫描电子显微镜(SEM,Nova Nano SEM450,FEI公司,美国)观察Al2O3陶瓷浆料的微观结构㊂通过对Al2O3陶瓷浆料进行表面烘干和镀金处理,观察其微观结构,确定浆料中的粉体颗粒分散以及排列情况㊂图2㊀Al2O3陶瓷的打印和脱脂烧结示意图Fig.2㊀Schematic diagram of printing and degreasing sintering of Al2O3ceramics图3㊀脱脂烧结程序Fig.3㊀Degreasing sintering program2㊀结果与讨论2.1㊀树脂单体对陶瓷浆料性能的影响2.1.1㊀树脂单体对陶瓷浆料流变性能的影响用于光固化的树脂种类和搭配众多,试验采用单因素法确定树脂的组成㊁配比和用量[21]㊂利用具有不同官能度的丙烯酸酯单体制备了紫外光固化树脂预混溶液㊂单体树脂的官能度对于光固化体系的固化性能有很大影响,树脂单体中官能团的数目越多,官能度越大,因此光固化反应的活性越高,光固化反应速率越快,光固化深度也越大㊂但高官能度的单体其黏度相比于低官能度的单体高,过量的高官能度单体,会导致浆料体系黏度过高,使打印无法完成㊂本文选用了三种不同官能度的单体,以保证陶瓷浆料具有较低的黏度和较高的固化深度,单体性能如表1所示(T g为玻璃化转变温度)㊂以高官能度(f=4)的PPTTA树脂作为预聚物,低官能度IBOA和HDDA树脂作为活性稀释剂,设计Al2O3陶瓷树脂体系,其树脂配比如表2所示㊂1062㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷表1㊀不同官能度树脂单体的物理性能Table1㊀Physical properties of resin monomers with different functionalitiesMonomer Functionality Molecular mass/(g㊃mol-1)Density/(g㊃cm-3)Viscosity/(mPa㊃s)RefractiveindexSurface tension/(mN㊃gm-1)T g/ħIBOA12080.999 1.4731.794 HDDA2226 1.037 1.4635.143 PPTTA4571 1.15150 1.4837.92表2㊀光固化氧化铝悬浮液的树脂组成Table2㊀Resin composition of light-curing aluminium oxide suspensionsGroup Mass fraction/%IBOA HDDA PPTTA 160020270030380040406040507030608020720503082550259305020101060301120602012306010树脂基浆料的流动性能是决定光固化打印过程中打印质量的关键㊂流动性高的树脂基浆料表现出粉体在树脂中分散更均匀,打印时不会出现分层现象㊂本试验配制相同体积的树脂体系,通过树脂流尽所需时间长短来评价每组树脂单体体系的流动性㊂本文采用低落试验的方法可以更加直观地反映浆料的流动性㊂此外,低固相含量的浆料黏度差距不明显,且低落试验可以更好对比浆料流动性能的优劣㊂相同体积的树脂流尽的时间越短,证明其流动性越好,所制备的陶瓷浆料流变性能越好㊂利用滴落式流动测试仪测量每组树脂滴落时间,如图4所示,根据流动性计算式(1)得出树脂的流变性能[22]㊂V=T-60.223(1)式中:V为流动性,mm2/s;T为流尽时间,s㊂2.1.2㊀树脂单体对陶瓷浆料固化性能的影响图5为激光功率与Al2O3陶瓷浆料固化厚度的关系㊂从图5中可以看出,在相同时间内,Al2O3陶瓷浆料固化厚度与激光功率成正比关系㊂在更高的激光功率下,浆料具有更深的打印深度,其原因是随着激光功率的增大,浆料体系中树脂单体固化速度增快,最终表现为单层厚度增大㊂图4㊀树脂单体滴落时间Fig.4㊀Resin monomer dropping time㊀图5㊀激光功率与Al2O3陶瓷浆料固化厚度的关系Fig.5㊀Relationship between laser power and cured thickness of Al2O3ceramic paste第3期缪新宇等:硅烷偶联剂对氧化铝陶瓷浆料流动性能和3D 打印性能的影响1063㊀通过试验数据分析以及浆料流变性能和固化性能要求,Al 2O 3陶瓷浆料必须保证较高的流动性和足够的固化深度,以保证打印质量和精度并防止成型件出现开裂现象㊂以下列为参考标准:1)陶瓷浆料满足滴落时间低于15s;2)陶瓷浆料具有较好的流动性且固化厚度高于0.35mm;3)3D 打印时具有足够的固化深度;4)防止烧结时因为打印深度过低出现开裂现象,经对比,当树脂选用质量比为m (HDDA)ʒm (PPTTA)=8ʒ2时,同时满足浆料所需的流动性和固化特性要求,故选择第6组树脂配比进行后续试验㊂2.2㊀硅烷偶联剂表面改性对陶瓷浆料的稳定性和流变性能采用硅烷偶联剂KH550㊁KH560和KH570作为Al 2O 3原料粉体的表面改性剂㊂将三组改性后的Al 2O 3粉末和一组未改性的粉末分别分散到选取的树脂单体中,制备10%(质量分数)的Al 2O 3浆料㊂通过沉降试验来评价Al 2O 3改性粉体在不同溶剂中的稳定性,如图6(a)㊁(b)所示㊂图6(c)为静止不同时间后Al 2O 3析出高度h 的变化曲线㊂与未改性的Al 2O 3颗粒相比,KH570改性的Al 2O 3陶瓷浆料沉积量最小,这表明KH570改性的Al 2O 3粉体与HDDA-PPTTA 预混溶剂的相容性都比KH550㊁KH560的改性能力好㊂但无论是KH550还是KH560改性的Al 2O 3颗粒都能阻止疏水浆料的聚集和吸引,避免大颗粒快速沉降,从而提高浆料的稳定性㊂图6㊀(a)质量分数为10%固相含量的Al 2O 3陶瓷浆料与各种预混溶剂的沉降试验示意图;(b)沉降试验图;(c)不同硅烷偶联剂改性后树脂析出高度Fig.6㊀(a)Schematic diagram of sedimentation test of Al 2O 3ceramic paste with 10%solid mass fraction and various premixed solvents;(b)settling experimental plot;(c)resin precipitation height h after modification with different silane couplingagents 图7㊀不同剪切速率下质量分数为10%固相含量的Al 2O 3陶瓷浆料的黏度Fig.7㊀Viscosity of Al 2O 3ceramic paste with 10%solid mass fraction at different shear rates 图7为不同剪切速率下质量分数为10%固相含量的Al 2O 3陶瓷浆料的黏度㊂可以看出,相比于KH570,经过KH550和KH560两种硅烷偶联剂改性后,Al 2O 3陶瓷浆料的黏度明显降低,其中KH550改性的Al 2O 3陶瓷浆料黏度最低,且随着剪切速率的增大,浆料黏度变化速率不明显,约为29mPa ㊃s㊂相反,KH570改性的Al 2O 3陶瓷浆料与未改性的Al 2O 3陶瓷浆料黏度相差不多且浆料黏度随剪切速率的增大而增大,说明KH570与试验所用树脂体系匹配性较差;而KH550改性的Al 2O 3陶瓷浆料黏度最低,且随着剪切速率的增大黏度变化不明显,表现出较好的稳定性和流变性能㊂当浆料固相含量提高到60%(质量分数)时,Al 2O 3粉末很容易均匀地分散在光固化树脂中㊂图8为不同剪切速率下陶瓷浆料的黏度㊂从图8可以看出,当剪切速率为30s -1时,使用原始Al 2O 3粉末配制的浆料的黏度高达4197mPa㊃s,而KH550改性的Al 2O 3陶瓷浆料黏度仅为1941mPa㊃s,KH550改性的Al 2O 3陶瓷浆料的黏度相比原始粉末降低了54%㊂浆料黏度的降低归因于表面活性剂在粉末表面的改性行为㊂黏度1064㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图8㊀不同剪切速率下Al 2O 3陶瓷浆料的黏度Fig.8㊀Viscosity of Al 2O 3ceramic paste at different shear rates 测试结果说明KH550改性的Al 2O 3粉体与HDDA-PPTTA 基光固化树脂匹配良好,具有良好的流变性能㊂Zhang 等[10]和Zhang 等[23]给出了固相含量和黏度关系的Krieger-Dougherty 球体模型,在涉及光固化陶瓷浆料的多项研究中,该模型与试验数据非常吻合,如式(2)所示㊂ηr =ηs /η0=(1-φ/φm )-Bφm (2)式中:ηr 为相对黏度,ηs 为浆料黏度,η0为介质黏度,φ为浆料实际固相含量(体积分数),φm 为浆料最大固相含量(体积分数),B 为爱因斯坦系数㊂通过数据拟合得出Al 2O 3陶瓷浆料的固相含量与黏度的关系如图9所示㊂在低固相含量的浆料中,黏度随固相含量的增大而缓慢增大㊂随着Al 2O 3陶瓷粉体的不断加入,当固相含量超过30%(体积分数)时,浆料相对黏度急剧增大㊂这是因为颗粒间间隙显著减小,颗粒间相互吸引力显著增大,Al 2O 3陶瓷粉体发生显著的凝聚现象,导致浆料黏度增大㊂试验中测定了10组高固相含量(质量分数为75%)的浆料黏度值,如图10所示㊂发现经KH550表面改性后的浆料黏度在不同固相含量(质量分数为10%㊁60%㊁75%)下测试值与模拟值有很好的一致性㊂当固相含量超过质量分数70%(体积分数约为44%)时,浆料的黏度与之前所测得质量分数为60%的浆料黏度相比急剧增加㊂这是因为随着固体含量从60%增加到75%时,浆料中孔隙数量逐渐减少,陶瓷颗粒的填充密度增大㊂这种致密分布状态减少了紫外光固化过程引起的收缩变形,提高了零件的密度,有利于控制脱脂和烧结过程中的收缩变形㊂图10为质量分数为75%固相含量的Al 2O 3陶瓷浆料黏度-剪切速率曲线㊂从图10可以看出,当剪切速率为30~80s -1时,随剪切速率的增加浆料的黏度降低,表现出剪切变稀的特征㊂Al 2O 3通过KH550表面改性后获得的浆料表现出更低的黏度㊂当剪切速率为30s -1时,Al 2O 3原始粉与经过KH550㊁KH560㊁KH570硅烷偶联剂改性后的浆料黏度分别为13296㊁4540㊁5090㊁8124mPa㊃s㊂图9㊀30s -1剪切速率下Al 2O 3陶瓷浆料的固相含量与相对黏度的关系Fig.9㊀Relationship between solid content and relative viscosity of Al 2O 3ceramic paste at 30s -1shearrate 图10㊀75%固相含量下Al 2O 3陶瓷浆料黏度-剪切速率曲线Fig.10㊀Viscosity shear rate curves of Al 2O 3ceramic paste with 75%solid content 图11为不同固相含量的陶瓷粉体颗粒分布㊂从微观角度,浆料的流变行为受粉体颗粒间相互作用的影响㊂在固相含量较低的浆料中,光固化Al 2O 3陶瓷浆料中由于粉体颗粒较为分散,粉体颗粒间间隙较大,粉体流动性好,浆料的黏度随剪切速率增大而降低,如图11(a)所示㊂而随着Al 2O 3陶瓷粉体持续增多,颗粒从静止状态发生剪切细化而导致分层排列,进而促进了陶瓷浆料的流动性[24],如图11(b)所示㊂在高固相含量的Al 2O 3陶瓷浆料中(体积分数超过40%),浆料黏度随固相含量的增大而急剧增大,其原因是粉体颗粒不断增加而导致流层失效,粉体颗粒因团聚而阻塞,最终使浆料表现出黏度急剧增大的现象[25],如图11(c)所示㊂第3期缪新宇等:硅烷偶联剂对氧化铝陶瓷浆料流动性能和3D 打印性能的影响1065㊀图11㊀不同固相含量的陶瓷粉体颗粒分布Fig.11㊀Particle distribution of ceramic powder with different solid phase content 2.3㊀硅烷偶联剂改性对陶瓷浆料固化性能和打印质量的影响图12㊀不同激光功率下Al 2O 3陶瓷浆料的固化深度Fig.12㊀Curing depth of Al 2O 3ceramic paste at different laser powers 通过采用KH550改性Al 2O 3成功制备了固相含量为75%(质量分数)㊁黏度为4.54Pa㊃s 的Al 2O 3陶瓷浆料㊂利用陶瓷3D 打印机制备10mm ˑ10mm 的正方形样品,每组用千分尺测10次厚度㊂图12不同激光功率下Al 2O 3陶瓷浆料的固化深度㊂随着激光功率的增加,浆料的固化深度增加,当激光功率为50%~60%时,陶瓷浆料固化深度较低,且由于激光能量的衰减,激光无法穿透浆料底部,易造成坯体塌陷,如图12(a)所示㊂当激光功率从60%增加到70%时,浆料的固化深度接近原定固化深度0.2mm,保证了浆料层间接合,如图12(b)所示㊂当高激光功率超过70%,浆料固化深度过大,导致3D 打印时同一区域被多次固化,造成零件尺寸精度变差,且易造成坯体翘曲,如图12(c)所示㊂因此,选择激光功率在60%~70%,以控制打印件的变形,采用该浆料和合适的打印工艺成功制备出不同尺寸和结构的零件,如图13所示㊂图13㊀改性后质量分数为75%固相含量的Al 2O 3陶瓷浆料制备的零件Fig.13㊀Parts prepared from Al 2O 3ceramic paste with 75%solid mass fraction after modification1066㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷2.4㊀硅烷偶联剂改性Al2O3粉体的微观形貌根据陶瓷粉体的质量,用粉体质量分数2%的硅烷偶联剂对Al2O3粉体进行了改性,并制备了固相含量为75%(质量分数)陶瓷浆料㊂图14为硅烷偶联剂表面改性Al2O3陶瓷浆料的SEM照片㊂从图14(a)~ (b)可以看出,未改性Al2O3陶瓷浆料的颗粒聚集现象明显,小颗粒吸附在大颗粒周围,颗粒之间间距很小,产生这种现象的主要原因是Al2O3粉体表面的亲水性引起颗粒相互吸引,导致浆料黏度急剧升高,以致超出光固化打印黏度要求㊂而通过硅烷偶联剂改性的Al2O3陶瓷浆料中,颗粒粒径明显增大,颗粒间间隙明显增大,且小颗粒没有完全吸附在大颗粒表面,表明改性Al2O3颗粒在预混树脂中具有良好的分散均匀性,如图14(c)~(h)㊂图14㊀硅烷偶联剂表面改性Al2O3陶瓷浆料的SEM照片Fig.14㊀SEM images of silane coupling agent surface-modified Al2O3ceramic paste under different magnifications第3期缪新宇等:硅烷偶联剂对氧化铝陶瓷浆料流动性能和3D 打印性能的影响1067㊀通过EDS 能谱分析了经过硅烷偶联剂改性的Al 2O 3粉体表面的元素分布,如图15所示㊂可以看出,Al 2O 3粉体颗粒表面含有Si㊁N 元素,说明硅烷偶联剂已经吸附于Al 2O 3陶瓷粉体表面,硅烷偶联剂表面的疏水结构已完全引入到Al 2O 3陶瓷粉体表面㊂图15㊀硅烷偶联剂KH550改性Al 2O 3粉体的SEM 照片和EDS 分析Fig.15㊀SEM image and EDS analysis of silane coupling agent KH550modified Al 2O 3powder 2.5㊀硅烷偶联剂降低Al 2O 3陶瓷浆料黏度的机理Al 2O 3是亲水性粉末,其与疏水性预混树脂之间的不相容性会导致颗粒在液体中凝聚和沉淀㊂根据相似性易于相互溶解的理论,将Al 2O 3粉体由亲水性转变成疏水性是制备性能稳定的Al 2O 3陶瓷浆料的关键㊂上述的研究结果表明:经过硅烷偶联剂改性的Al 2O 3陶瓷制备的陶瓷浆料黏度远低于未改性Al 2O 3制备的浆料,这是由于硅烷偶联剂改性后的Al 2O 3颗粒能阻止疏水浆料的聚集和吸引,避免大量大颗粒的快速沉降,引起浆料黏度的急剧增大㊂图16㊀Al 2O 3改性后与未改性的FTIR 谱Fig.16㊀FTIR spectra of Al 2O 3before and after modification 为验证硅烷偶联剂的改性行为,通过FTIR 光谱进一步分析,通过化学吸附鉴定了Al 2O 3粉体表面的疏水结构㊂图16为Al 2O 3改性后与未改性的FTIR谱,在3445cm -1处观察到主峰振动,这是因为Al 2O 3粉体表面含有羟基基团( OH),这也证实了Al 2O 3粉体的亲水特性㊂而在图16(a)中,此处振动峰明显减弱,这表明改性Al 2O 3颗粒表面存在的羟基( OH)被去除,大大削弱了颗粒的亲水性㊂Cheng 等[26]证明了Al 2O 3颗粒表面的羟基基团( OH)能够与硅烷偶联剂水解发生缩合反应,产生的硅醇基团NH 2 Si (OH)3㊂在图16(a)~(c)中,在805cm -1处发现 (Si O)n 基团也证实了改性Al 2O 3颗粒表面已经引入硅烷偶联剂分子的疏水结构[27]㊂另外,在1100cm -1处(a)~(c)出现平缓峰表明,硅烷偶联剂改性后Al 2O 3粉体表面形成了Al O Si 结构㊂文中通过对硅烷偶联剂KH550与Al 2O 3颗粒表面分析发现,KH550表面的 Si O 和 NH 2 与Al 2O 3颗粒表面的羟基基团( OH)产生吸附,如图17所示㊂通过。
SiO2_
第43卷第1期2024年1月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.1January,2024SiO 2/KH560改性玄武岩纤维混凝土力学性能研究杨㊀鑫1,于㊀奎1,吉冯春2,聂堂哲1,李㊀科3,白㊀天3(1.黑龙江大学水利电力学院,哈尔滨㊀150800;2.国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙㊀410073;3.南阳师范学院土木工程学院,冲击与结构安全重点实验室,南阳㊀473061)摘要:为了研究硅烷偶联剂(KH560)和纳米SiO 2协同KH560改性玄武岩纤维(BF)对混凝土力学性能的影响,本文采用KH560对BF 进行表面改性,制得KH560-BF,并采用纳米SiO 2和KH560改性BF 制得SiO 2-KH560-BF㊂通过正交试验筛选出高强度改性纤维,研究了纳米SiO 2分散液㊁润滑剂和KH560三者的质量分数对SiO 2-KH560-BF的丝束强度影响㊂采用SEM 和EDS 对改性混凝土的7和28d 的力学性能进行评估,并对混凝土的微观结构进行表征㊂结果表明,SiO 2-KH560-BF 的最佳上浆剂成分为纳米SiO 2分散液1.6%㊁润滑剂0.4%和KH5600.5%,且三个因素的影响程度从大到小依次为纳米二氧化硅分散液㊁KH560㊁润滑剂㊂与KH560-BF 相比,SiO 2-KH560-BF 纤维丝束强度提高了8.62%,拉伸强度提高了4.41%,Si 含量提升了24.9%,并且从SEM 照片中可以看出SiO 2-KH560-BF 团状堆积比KH560-BF 少㊂掺入适量SiO 2-KH560-BF 的混凝土7和28d 抗压㊁劈裂抗拉和轴心抗压强度提升效果均高于掺入KH560-BF 的混凝土㊂关键词:纳米二氧化硅;玄武岩纤维;纤维混凝土;硅烷偶联剂;正交试验;力学性能中图分类号:TU528㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)01-0102-11收稿日期:2023-09-25;修订日期:2023-11-25基金项目:河南省高校人文社会科学研究一般项目(2021-ZDJH-0257);大学生实践教学创新项目(SPCP2023355,SPCP2023323)作者简介:杨㊀鑫(1997 ),男,硕士研究生㊂主要从事水利水电工程和高性能混凝土的研究㊂E-mail:yxyangxin16@通信作者:于㊀奎,副教授㊂E-mail:1995075@Mechanical Properties of SiO 2/KH560Modified Basalt Fiber Reinforced ConcreteYANG Xin 1,YU Kui 1,JI Fengchun 2,NIE Tangzhe 1,LI Ke 3,BAI Tian 3(1.College of Water Resources and Electric Power,Heilongjiang University,Harbin 150800,China;2.Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China;3.Key Laboratory of Impact and Structural Safety,College of Civil Engineering,Nanyang NormalUniversity,Nanyang 473061,China)Abstract :To study the effect of silane coupling agent (KH560)and nano-SiO 2synergistically KH560modified basalt fiber (BF)on the mechanical properties of concrete,KH560was used to surface modify for BF to produce KH560-BF,and nano-SiO 2and KH560were used to modify BF to produce SiO 2-KH560-BF.Orthogonal tests were used to screene high-strength modified fibers,and the effects of mass fractions of nano-SiO 2dispersion,lubricant and KH560on the filament bundle strength of SiO 2-KH560-BF were investigated.The mechanical properties of modified concrete at 7and 28d were evaluated and the microstructure of the concrete was characterized by SEM and EDS.The results show that the optimal upper agent composition for SiO 2-KH560-BF is nano-SiO 2dispersion 1.6%,lubricant 0.4%,and KH5600.5%,and the degree of influence of the three factors is nano-SiO 2dispersion >KH560>pared with KH560-BF,the fiber tow strength of SiO 2-KH560-BF increases by 8.62%,tensile strength increases by 4.41%,Si content increases by 24.9%,and there were fewer agglomerated buildups in the SEM images of SiO 2-KH560-BF than those of KH560-BF.The 7and 28d compressive,split tensile,and axial compressive strength enhancement effects of the concrete with a moderate amount of SiO 2-KH560-BF are higher than those of the concrete with KH560-BF.第1期杨㊀鑫等:SiO2/KH560改性玄武岩纤维混凝土力学性能研究103㊀Key words:nano-silica;basalt fiber;fiber reinforced concrete;silane coupling agent;orthogonal test;mechanical property0㊀引㊀言玄武岩纤维混凝土(basalt fiber reinforced concrete,BFRC)是一种建筑材料,其中的玄武岩纤维(basalt fiber,BF)能改善混凝土骨料的连通性和微观结构,从而影响力学性能[1-3]㊂纤维力学性能的改善与纤维的生产工艺密切相关[4],Iyer等[5]通过控制BF的体积分数和伸长系数,研究了压缩和弯曲条件下混凝土力学性能的影响,并指出适量的BF可以提高混凝土的力学性能㊂王新忠等[6]将12和24mm的BF掺入混凝土柱体构件,提高了混凝土长柱的大㊁小偏心受压性能㊂Ayub等[7]在含有高岭石的混凝土中掺入体积分数为1%~3%的BF,从而提高了混凝土的密实度㊂赵燕茹等[8]指出将BF掺入混凝土可以提高混凝土的单轴受压性能并改善其微观结构㊂High等[9]采用BF作为水泥基体的外加料,改善了水泥基体的耐久性㊂此外,表面改性的BF因其优异的力学性能以及能够在混凝土中改善骨料黏结性的突出表现,成为学者们的重点研究对象[10-11]㊂Li等[12]采用硅烷偶联剂KH550改性BF,研究纤维在沥青混凝土路面上的行为,并指出改性后的纤维影响了沥青路面的流动性和力学性能㊂李根群[13]将硅烷偶联剂KH550改性后的BF 掺入混凝土,提高了其抗压㊁劈裂抗拉和抗折强度㊂Iorio等[14]使用氨基硅烷对BF表面进行改性,并使用X射线衍射和傅里叶变换红外光谱对纤维丝进行了表征,得到了增强型的BF㊂王林等[15]采用三种不同的硅烷偶联剂改性BF,并将改性后的BF掺入混凝土,提高了混凝土的力学性能㊂Lin等[16]使用静压涂料在碳化硅纤维表面涂覆四种聚合物乳液,提升了碳化硅纤维的力学性能㊂Cie'slak等[17]用纳米TiO2处理BF,发现处理后的纤维可以提高水泥基体的界面结合力㊂根据上述的研究成果,对纤维材料进行改性可以提高纤维的强度,而且能够增加纤维与混凝土的界面结合力,从而改善混凝土的力学性能,改性混凝土的制作如图1所示㊂但是,研究学者普遍是通过对比的方式挑选改性纤维材料,并将纤维掺入混凝土,这种方式是单因素的,并不一定是较为合适的溶液量㊂为了获得各物质改性BF更为精确的溶液量,采用了正交试验挑选改性BF,并将较高强度的改性纤维掺入混凝土,在一定程度上避免了过多的混凝土试验组而造成资源浪费㊂目前将纳米SiO2结合硅烷偶联剂KH560改性BF 掺入混凝土的研究较少,具有很大的研究空间㊂基于此,本文采用KH560改性BF㊁纳米SiO2结合KH560改性BF和两种改性纤维掺入混凝土,对其力学性能进行研究,分析两种改性纤维对混凝土的影响机制㊂图1㊀改性混凝土的制作Fig.1㊀Modified concrete fabrication104㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷1㊀实㊀验1.1㊀试验材料试验材料包括:普通硅酸盐水泥P㊃O42.5㊁中砂㊁玄武岩纤维㊁二级粉煤灰㊁最大粒径为37mm的碎石㊁聚羟酸系高效减水剂(减水率不小于25%)㊁浓度为30%(质量分数)的纳米SiO2分散液㊁硅烷偶剂KH560㊁润滑剂(双油酸三聚甘油酯)㊁冰乙酸㊁环氧乳液㊁成助膜剂㊁娃哈哈纯净水㊂玄武岩纤维物理力学性能如表1所示㊂表1㊀玄武岩纤维物理力学性能Table1㊀Physical and mechanical properties of BFLength/mm Monofilament diameter/μm Density/(g㊃cm-3)Elastic modulus/GPa Tensile strength/MPa Elongation at break/% 1213 2.65~2.7095~1153300~4500 2.4~3.0 1.2㊀纤维混凝土试验方法将水泥㊁砂石骨料和粉煤灰先称取适量倒入混凝土单轴搅拌机中,搅拌3min㊂紧接着加入KH560-BF 搅拌5min,加入聚羟酸系高效减水剂后称取适量水倒入搅拌机中搅拌2min,制得掺KH560-BF的混凝土(A-K)㊂仿照以上步骤,将KH560-BF改为SiO2-KH560-BF,制得掺SiO2-KH560-BF的混凝土(B-K)㊂对立方体试件进行了抗压(100mmˑ100mmˑ100mm)㊁劈裂抗拉(100mmˑ100mmˑ100mm)和轴心抗压(100mmˑ100mmˑ300mm)强度试验,并记录了相应的结果㊂改性混凝土的配合比见表2,试件分组加载,每组3个,并记录7和28d时的测量值㊂表2㊀改性混凝土配合比Table2㊀Mix ratios of modified concreteGroup m co/(kg㊃m-3)βf/%βc/%Water-cement ratioβs/%l f/mmρf/% CO42012.50.650.538120A-K142012.50.650.538120.05 A-K242012.50.650.538120.1 A-K342012.50.650.538120.15 A-K442012.50.650.538120.2 A-K542012.50.650.538120.3 B-K142012.50.650.538120.05 B-K242012.50.650.538120.1 B-K342012.50.650.538120.15 B-K442012.50.650.538120.2 B-K542012.50.650.538120.3㊀㊀注:m co为水泥用量,βf为二级粉煤灰,βc为减水剂,βf和βc为水泥质量占比,βs为砂率,l f为纤维长度,ρf为纤维体积掺量,CO为混凝土基准块㊂1.3㊀改性BF制作BF上浆剂采用四川拓新玄武岩工业有限公司的纤维表面改性生产工艺制成㊂BF上浆剂主要含有0.5%(质量分数,下同)KH560㊁0.5%冰乙酸㊁0.3%成膜助剂和6.0%环氧乳液,以此剂量制备对照组纤维KH560-BF㊂1.4㊀纳米SiO2-KH560改性BF制作由于BF表面光滑,在BF上浆剂中加入纳米SiO2分散液来增强BF,并设计了如表3所示的纳米二氧化硅-二氧化硅改性玄武岩纤维正交因子水平测试表,进一步检验纳米SiO2分散液㊁润滑液及KH560在BF的作用效果㊂正交试验为三个因素,每个因素分为三个水平,所以选用了正交试验表L9(33)㊂表3㊀纳米二氧化硅-二氧化硅改性玄武岩纤维正交因子水平测试表Table3㊀Level test table of orthogonal factors of nano-SiO2-silica-modified basalt fiberStandards FactorNano-silica dispersion A content/%Lubricant B content/%KH560C content/% 10002 1.50.40.53511㊀㊀注:纳米二氧化硅分散液㊁润滑剂和KH560掺量均为质量分数㊂第1期杨㊀鑫等:SiO2/KH560改性玄武岩纤维混凝土力学性能研究105㊀1.5㊀试验设备和方法根据‘玄武岩纤维无捻粗纱“(GB/T25045 2010)和‘玻璃纤维无捻粗纱浸胶纱试样的制作和拉伸强度的测定“(GB/T20310 2006),使用万能材料试验机(WDW-200)测试KH560-BF和SiO2-KH560-BF的纤维束强度㊂使用SEM对两种不同改性纤维的微观表面形貌进行了表征,并使用EDS能谱对Si含量进行了分析㊂采用微机控制自动压力试验机(YAW-300B)对改性混凝土的力学强度进行测试㊂为了更好地分辨混凝土强度的提升率,引入了混凝土强度提升率公式,如式(1)所示㊂P=[(P SCC-P CO)/P CO]ˑ100%(1)式中:P为强度提升率,%;P SCC为改性混凝土实际强度,MPa;P CO为素混凝土强度,MPa㊂2㊀结果与讨论2.1㊀改性纤维分析2.1.1㊀SiO2-KH560-BF丝束强度分析通过正交试验得出SiO2-KH560-BF纤维丝束强度试验结果,汇总见表4,为进一步分析丝束强度和纳米SiO2分散液㊁KH560和润滑剂质量分数之间的关系,将表4中的试验结果绘制成图2所示的曲面图㊂由图2可知:当润滑剂和KH560质量分数一定时,纤维丝束强度随着纳米SiO2分散液质量分数的增加先增大后减小;当润滑剂一定时,纤维丝束强度随着KH560质量分数的增大而增大㊂从表4的试验结果可知,上述影响纤维束强度的因素由高到低依次为纳米SiO2分散液㊁KH560㊁润滑剂㊂根据正交试验所得的结果和成本效益分析,选择A2B2C2剂量组,以此剂量制备改性纤维SiO2-KH560-BF,并和对照组KH560-BF进行比较,以评估丝束强度和拉伸性能㊂经SiO2和KH560改性的纤维束强度和拉伸强度分别为0.63N㊃Tex-1和2843.2MPa,而经KH560改性的纤维束强度和拉伸强度分别为0.58N㊃Tex-1和2723.1MPa,SiO2-KH560-BF 纤维丝束强度和拉伸强度分别提高了8.62%和4.41%㊂表4㊀SiO2-KH560-BF丝束强度正交试验结果Table4㊀Orthogonal test results of tow strength of SiO2-KH560-BFTest number FactorA B C Q/(N㊃Tex-1)11110.4921220.5831330.5942120.6252230.6462310.6073130.5783210.5893320.61k10.55330.560.5567k20.62000.600.6033k30.58670.600.6000R j0.06670.040.0467㊀㊀注:R j=k max-k min,R j为极差,k max为水平取值的最高值,k min为水平取值的最小值;Q为SiO2-KH560-BF的纤维束强度㊂2.1.2㊀SiO2-KH560-BF㊁KH560-BF表面微观分析Zhang等[18]指出对BF表面进行改性可显著增强纤维生物膜的吸附力㊂Mi'skiewicz等[19]利用磁控溅射技术对BF的外观进行改性㊂图3为改性纤维SEM照片和EDS谱㊂图3(a)为对照KH560改性的BF,图3(b)为经过优选正交试验后的SiO2-KH560-BF㊂两种表面改性方法都会在纤维表面产生团聚沉积物,这是成膜后上浆剂分布不均匀造成的㊂图3(b)中的团聚沉积物比图3(a)中的少,这是因为纳米SiO2的引入增加了BF的表面张力,从而引导上浆剂快速均匀的涂覆,形成质地均匀的保护层㊂图3(c)为对照KH560-BF相对应的EDS谱,图3(d)为优选SiO2-KH560-BF相对应的EDS谱㊂SiO2-KH560-BF的Si含量相较于KH560-BF增加了24.9%,Si含量的增加和表面均匀涂覆的颗粒表明SiO2涂覆在了BF表面㊂106㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图2㊀纳米SiO2分散液㊁KH560和润滑剂对SiO2-KH560-BF丝束强度的影响Fig.2㊀Effects of nano-silica dispersion,KH560and lubricant on tow strength of SiO2-KH560-BF图3㊀改性纤维的SEM照片和EDS谱Fig.3㊀SEM images and EDS spectra of modified fibers第1期杨㊀鑫等:SiO 2/KH560改性玄武岩纤维混凝土力学性能研究107㊀2.2㊀混凝土塌落度变化图4㊀混凝土塌落度Fig.4㊀Concrete collapse 混凝土塌落度的变化见图4,素混凝土CO 的塌落度为154mm,A-K 型混凝土的塌落度为132~59mm,B-K 型混凝土的塌落度为129~58mm㊂在混凝土中掺入改性BF 会降低和易性和流动性,其原因是添加的改性纤维及其纤维表面附着的纳米材料与水泥骨料嵌合,抑制了骨料的流动或纤维在混凝土内部形成不规则网状结构,从而抑制了骨料的相互作用㊂2.3㊀混凝土破坏模式Chen 等[20]的研究表明,在混凝土试件中加入纤维可显著提高韧性,而且试件在破坏后仍能保持完整性㊂基准块CO㊁A-K 和B-K 的抗压破坏见图5,基准块CO 破坏时,混凝土裂缝贯通,表面大片水泥块脱落,混凝土无法维持试块完整性㊂而加入了改性BF 的A-K 和B-K 可改善这一现象,混凝土破坏后其表面仅有少量水泥脱落或者无脱落,并且有数条裂纹产生,混凝土能够较好地维持其完整性㊂图5㊀混凝土抗压破坏Fig.5㊀Compressive damage of concrete 基准块CO㊁A-K 和B-K 的劈裂抗拉破坏见图6㊂与基准块CO 相比,A-K 和B-K 在加载初期,主要由混凝土主体承担应力,随着荷载的继续增加,混凝土内部应力增大,主裂缝沿中心部位由底端开始向上扩展,此时改性BF 承担由混凝土传递的拉应力,裂缝间的应力重新分布,内部应力集中的现象得到缓解,直至试件破坏㊂在增加荷载过程中,能够明显感觉到添加改性BF 的混凝土试块延缓了混凝土裂缝的扩展㊂图6㊀混凝土劈裂抗拉破坏Fig.6㊀Splitting tensile damage of concrete 基准块CO㊁A-K 和B-K 的轴心抗压破坏见图7㊂基准块CO 在加压时,试件内部纵向裂缝在荷载的作用108㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图7㊀混凝土轴心抗压破坏Fig.7㊀Axial compressive damage of concrete 下不断延伸开裂,最终在混凝土表面形成一条主裂缝,伴随水泥脱落,并且由于混凝土内部应力的传递,在主裂缝周围产生了许多细小裂缝分支㊂而添加改性BF的A-K 和B-K 混凝土表面仅有数条裂缝产生,能够较好地维持其整体性㊂这主要是因为混凝土中均匀分散的改性BF 起到了 箍筋 的作用,约束了试件的横向变形,并分担了混凝土内部应力㊂2.4㊀混凝土力学性能2.4.1㊀混凝土抗压性能Kaswala 等[21]指出,混凝土中掺入纤维可以提高水泥基体的力学性能㊂改性混凝土的7㊁28d 抗压强度和强度提升率结果如图8所示㊂A-K 的7d 抗压强度提升范围为-28.65%~5.31%,其最佳纤维掺量为0.15%;28d 抗压强度提升范围为-5.05%~10.11%,最佳纤维掺量为0.15%㊂B-K 的7d 抗压强度提升范围为-3.18%~6.1%,其最佳纤维掺量为0.05%;28d 抗压强度提升范围为-6.19%~11.65%,其最佳纤维掺量为0.1%㊂B-K 的7和28d 抗压强度提升率均高于A-K㊂混凝土抗压强度的提高是因为适量的改性纤维提高了混凝土的密实度,改性后的纤维增加了混凝土的界面结合力,并且纤维强度的提升进一步提高了混凝土的抗压性能[13]㊂图8㊀改性混凝土的抗压强度和抗压强度提升率Fig.8㊀Compressive strength and compressive strength effectiveness of modified concrete 为进一步判定改性混凝土的抗压强度增长趋势,对A-K 和B-K 的28d 抗压强度进行非线性拟合回归分析,如式(2)和(3)所示,混凝土抗压强度的拟合度良好㊂从拟合曲线中可以看出,A-K 和B-K 随着纤维含量的不断增加,混凝土抗压强度均呈先增大后减小的变化,这与戴勇[22]和谢金东等[23]的研究结果一致㊂F cu,a =42.270+2ˑ2.043π0.1674(ρf -0.078)2+0.1672㊀R 2=0.834(2)F cu,b =42.862+2ˑ1.303π0.8044(ρf -0.127)2+0.8042㊀R 2=0.934(3)式中:F cu,a 为A-K 混凝土抗压强度,MPa;F cu,b 为B-K 混凝土抗压强度,MPa;ρf 为纤维掺入量,%㊂2.4.2㊀混凝土劈裂抗拉强度图9为改性混凝土的劈裂抗拉强度和劈裂抗拉强度提升率㊂A-K 的7d 劈裂抗拉强度提升范围为-5%~9.84%,其最佳纤维掺量为0.15%;28d 劈裂抗拉强度提升范围为2.56%~17.95%,其最佳纤维掺量为0.3%㊂B-K 的7d 劈裂抗拉强度提升范围为3.91%~21.27%,其最佳纤维掺量为0.3%,28d 劈裂抗拉强度提升范围为7.69%~20.51%,其最佳纤维掺量为0.15%㊂B-K 的7和28d 劈裂抗拉强度的提升效果均高于A-K㊂劈裂抗拉强度的提高是因为均匀分布的纤维对混凝土的骨料起到了 桥连 作用[24];纤维强第1期杨㊀鑫等:SiO 2/KH560改性玄武岩纤维混凝土力学性能研究109㊀度的提高增强了混凝土试块抵抗劈裂变形的能力㊂图9㊀改性混凝土的劈裂抗拉强度和劈裂抗拉强度提升率Fig.9㊀Split tensile strength and split tensile strength effectiveness of modified concrete 为进一步分辨改性混凝土的劈裂抗拉强度增长趋势,对A-K 和B-K 的28d 劈裂抗拉强度进行非线性拟合回归,如式(4)和(5)所示,混凝土劈裂抗拉拟合度良好㊂从拟合曲线中可以看出,随着纤维掺量的不断增加,混凝土的劈裂抗拉强度不断增大(见图9(a));随着纤维掺量的不断增加,混凝土的劈裂强度先增大后减小(见图9(b))㊂同样的劈裂抗拉强度变化趋势也分别出现在李根群[13]采用KH550改性的BF 混凝土和任莉莉[25]的研究结果中㊂F t,a =-15.963+2ˑ103.157π 3.1974(ρf -0.292)2+3.1972㊀R 2=0.851(4)F t,b =-5.100+2ˑ19.712π 1.2844(ρf -0.188)2+1.2842㊀R 2=0.939(5)式中:F t,a 为A-K 混凝土劈裂抗拉强度,MPa;F t,b 为B-K 混凝土劈裂抗拉强度,MPa;ρf 为纤维掺入量,%㊂2.4.3㊀混凝土轴心抗压强度混凝土的轴心抗压强度是设计混凝土建筑时必须考虑的一个因素,轴心抗压会影响混凝土的耐久性和承压能力[26-28]㊂图10为改性混凝土轴心抗压强度和轴心抗压强度提升率,A-K 的7d 轴心抗压提升率范围为-37.58%~12.67%,其最佳纤维掺量为0.2%;28d 轴心抗压强度提升率范围为-8.23%~4.11%,其最佳纤维掺量为0.2%㊂B-K 的7d 轴心抗压强度提升率范围为-14.03%~18.61%,其最佳纤维掺量为0.2%;28d 轴心抗压强度提升率范围为-5.14%~5.14%,其最佳纤维掺量为0.1%㊂B-K 的7和28d 轴心抗压强度提升效果均高于A-K,在混凝土中添加适量改性纤维有助于提升混凝土的7和28d 轴心抗压强度㊂其原因是:1)均匀分布的改性BF 分散了混凝土内部的应力,减轻了外界荷载对混凝土的影响;2)B-K 所用改性BF 的丝束强度高于A-K,从而进一步提升了混凝土轴心抗压强度㊂混凝土的强度比为28d 混凝土的轴心抗压强度与抗压强度的比值[29],从图10(c)可知,A-K 的强度比为0.81,B-K 的强度比为0.83;一般而言,对于低于C50的混凝土,混凝土的强度比取0.76;A-K 和B-K 的强度比均高于0.76,这更加表明在混凝土中添加改性纤维能提升混凝土的轴心抗压性能㊂2.5㊀改性混凝土微观表征图11为28d 的混凝土经过加压测试破碎后的SEM 照片㊂图11(a)为CO 的SEM 照片,混凝土破碎后有着明显裂缝,这主要是混凝土在受到外加荷载后,内部薄弱区域由于应力集中而产生,并且随着外加荷载的增大,裂缝逐渐扩大㊂图11(b)为A-K 经测试仪器压碎后SEM 照片,KH560-BF 与混凝土骨料之间存在界面过渡区(interfacial transition zone,ITZ),这主要是纤维与混凝土骨料之间的界面黏结所致㊂此外,A-K 中的裂缝弱于基准块CO 所形成的裂缝,这使得A-K 在达到承载力极限后,能够较好地维持混凝土试块的整体性㊂图11(c)为B-K 混凝土试块经测试压碎后的SEM 照片,B-K 仅有少量的裂缝,水泥的胶结性较好,可能是因为适量的改性BF 提高了混凝土的密实度,优化了基体结构,这与Zheng 等[30]研究结果一致,适量的纤110㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷维可以提高混凝土的密实度,可以有效防止裂缝发展㊂图10㊀改性混凝土轴心抗压强度㊁轴心抗压强度提升率和28d强度比Fig.10㊀Axial compressive strength,axial compressive strength effectiveness and28d strength ratio of modified concrete图11㊀改性混凝土的SEM照片Fig.11㊀SEM images of modified concrete3㊀结㊀论1)纳米SiO2㊁硅烷偶联剂KH560和润滑剂的协同作用可提高BF的丝束强度和拉伸强度,其中SiO2-KH560-BF丝束强度和拉伸强度均高于KH560-BF㊂通过正交试验结果分析,纳米二氧化硅㊁硅烷偶联剂KH560和润滑剂的最佳质量分数分别为1.5%㊁0.5%和0.4%㊂2)与KH560-BF相比,SiO2-KH560-BF的表面在SEM照片下沉积的颗粒较少,上浆更为均匀,EDS能谱下的Si含量增加了24.9%㊂第1期杨㊀鑫等:SiO2/KH560改性玄武岩纤维混凝土力学性能研究111㊀3)添加改性纤维会影响混凝土的塌落度,随着纤维数量的增加,塌落度逐渐变小㊂两种改性混凝土的破坏模式相似,添加改性纤维有助于维持混凝土的整体性㊂掺入适量的改性纤维有助于提高混凝土7和28d的力学性能,并且掺SiO2-KH560-BF的混凝土7和28d抗压㊁劈裂抗拉和轴心抗压强度均高于掺KH560-BF的混凝土㊂4)掺KH560-BF的混凝土型混凝土28d的抗压强度拟合度为0.834,劈裂抗拉强度拟合度为0.934;掺SiO2-KH560-BF型28d混凝土的抗压强度拟合度为0.851,劈裂抗拉拟合度为0.939,轴心抗压强度与混凝土抗压强度之间没有显著关系,但改性混凝土的轴心抗压强度比均高于0.76㊂参考文献[1]㊀LI W,XU J.Strengthening and toughening in basalt fiber-reinforced concrete[J].Journal of the Chinese Ceramic Society,2008,36(4):476-481+486.[2]㊀SHI J W,ZHU H,WU Z S,et al.Bond behavior between basalt fiber-reinforced polymer sheet and concrete substrate under the coupled effectsof freeze-thaw cycling and sustained load[J].Journal of Composites for Construction,2013,17(4):530-542.[3]㊀YOO D Y,PARK J J,KIM S W,et al.Early age setting,shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete[J].Construction and Building Materials,2013,41:427-438.[4]㊀GUR EV V V,NEPROSHIN E I,MOSTOVOI G E.The effect of basalt fiber production technology on mechanical properties of fiber[J].Glassand Ceramics,2001,58(1):62-65.[5]㊀IYER P,KENNO S Y,DAS S.Mechanical properties of fiber-reinforced concrete made with basalt filament fibers[J].Journal of Materials inCivil Engineering,2015,27(11):04015015.[6]㊀王新忠,李传习.玄武岩纤维混凝土长柱偏心受压承载能力试验研究[J].硅酸盐通报,2016,35(10):3242-3246.WANG X Z,LI C X.Experimental study on load-carrying capacity of basalt fiber reinforced concrete long columns under eccentric compression[J].Bulletin of the Chinese Ceramic Society,2016,35(10):3242-3246(in Chinese).[7]㊀AYUB T,SHAFIQ N,NURUDDIN M F.Mechanical properties of high-performance concrete reinforced with basalt fibers[J].ProcediaEngineering,2014,77:131-139.[8]㊀赵燕茹,郭子麟,范晓奇,等.玄武岩纤维混凝土应力应变关系及孔结构分析[J].硅酸盐通报,2017,36(12):4142-4150.ZHAO Y R,GUO Z L,FAN X Q,et al.Basalt fiber reinforced concrete stress-strain relationship and pore structure analysis[J].Bulletin of the Chinese Ceramic Society,2017,36(12):4142-4150(in Chinese).[9]㊀HIGH C,SELIEM H M,EL-SAFTY A,et e of basalt fibers for concrete structures[J].Construction and Building Materials,2015,96:37-46.[10]㊀GOTS V,BERDNYK O,MAYSTRENKO A,et al.Study of the fracture surface of concretes reinforced with basalt fiber coated with titanium andzirconium dioxides.Fiber-reinforced concrete composites[J].IOP Conference Series:Materials Science and Engineering,2021, 1164(1):012011.[11]㊀TICHÁP,DOMONKOS M,DEMO P.Fiber reinforced concrete:residual flexure strength enhancement using surface modified fibers[C]//Special Concrete and Composites2020:17th International Conference,AIP Conference Proceedings.Skalsk'y Dvuʎr,Czech Republic.AIP Publishing,2021.[12]㊀LI L,ZHAO H L,YU X,et al.Mechanism and road performance of basalt fiber modified by silane coupling agent[J].Jianzhu Cailiao Xuebao/Journal of Building Materials,2017.[13]㊀李根群.改性玄武岩纤维分散性及其对混凝土力学性能的影响研究[D].沈阳:沈阳理工大学,2022.LI G Q.Study on dispersion of modified basalt fiber and its influence on mechanical properties of concrete[D].Shenyang:Shenyang Ligong University,2022(in Chinese).[14]㊀IORIO M,SANTARELLI M L,GONZÁLEZ G G,et al.Surface modification and characterization of basalt fibers as potential reinforcement ofconcretes[J].Applied Surface Science,2018,427:1248-1256.[15]㊀王㊀林,王梦尧,王佩勋,等.偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J].材料导报,2019,33(增刊2):273-277.WANG L,WANG M Y,WANG P X,et al.Mechanic properties of cement matrix composites reinforced with basalt fiber modified with silane coupling agent[J].Materials Reports,2019,33(supplement2):273-277(in Chinese).[16]㊀LIN D,WANG C J,DONG F B,et al.Surface modification of carbon fiber by polymer emulsions and mechanical property of modified carbonreinforced concrete[J].Advanced Materials Research,2011,233/234/235:2002-2005.[17]㊀CIE'SLAK M,CELICHOWSKI G,GIESZ P,et al.Formation of nanostructured TiO2-anatase films on the basalt fiber surface[J].Surface andCoatings Technology,2015,276:686-695.[18]㊀ZHANG X Y,RONG X S,XU J C,et al.Effect of surface modification of basalt fiber on biofilm attachment[J].Journal of Materials112㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷Engineering,2019.[19]㊀MI'SKIEWICZ P,FRYDRYCH I,PAWLAK W.The influence of basalt fabrics modifications on their resistance to contact heat and comfortproperties[J].International Journal of Clothing Science and Technology,2019,31(6):874-886.[20]㊀CHEN F B,XU B,JIAO H Z,et al.Triaxial mechanical properties and microstructure visualization of BFRC[J].Construction and BuildingMaterials,2021,278:122275.[21]㊀KASWALA T H,RAMANI S D.Experimental investigation on mechanical properties of basalt fiber concrete[J].International Journal forScientific Research&Development,2015,3(3):1117-1119.[22]㊀戴㊀勇.玄武岩纤维对混凝土抗压和劈裂抗拉强度的影响[J].合成纤维,2023,52(10):75-78.DAI Y.Analysis of the influence of basalt fibers on the compressive strength and splitting tensile strength of concrete[J].Synthetic Fiber in China,2023,52(10):75-78(in Chinese).[23]㊀谢金东,武㊀亮,刘志洪,等.短切玄武岩纤维混凝土力学性能试验研究[J].贵州大学学报(自然科学版),2022,39(4):105-109+117.XIE J D,WU L,LIU Z H,et al.Experimental research on mechanical properties of chopped basalt fiber reinforced concrete[J].Journal of Guizhou University(Natural Sciences),2022,39(4):105-109+117(in Chinese).[24]㊀GUO R J,BI Z,WANG F.Influence of different mixing methods on the axial compressive strength of basalt fiber recycled concrete[C]//20163rd International Conference on Informative and Cybernetics for Computational Social Systems(ICCSS).August26-29,2016,Jinzhou,China.IEEE,2016:368-371.[25]㊀任莉莉.玄武岩纤维纳米SiO2增强混凝土力学性能试验研究[J].复合材料科学与工程,2021(8):85-90.REN L L.Experimental study on mechanical properties of basalt fiber SiO2reinforced concrete[J].Composites Science and Engineering,2021(8):85-90(in Chinese).[26]㊀ZHANG X G,GAO X,WANG X G,et al.Axial compression performance of basalt-fiber-reinforcedrecycled-concrete-filled square steel tubularstub column[J].Advances in Concrete Construction,2020(6):10.[27]㊀DONG C H,MA X W.Experimental research on mechanical properties of basalt fiber reinforced reactive powder concrete[J].AdvancedMaterials Research,2014,893:610-613.[28]㊀QINGYUAN W.Experimental research of mechanical properties of basalt fiber aggregate concrete and its short columns under axial compression[J].Journal of North China Institute of Water Conservancy and Hydroelectric Power,2013.[29]㊀王㊀钧,马㊀跃,张㊀野,等.短切玄武岩纤维混凝土力学性能试验与分析[J].工程力学,2014,31(增刊1):99-102+114.WANG J,MA Y,ZHANG Y,et al.Experimental research and analysis on mechanical properties of chopped basalt fiber reinforced concrete[J].Engineering Mechanics,2014,31(supplement1):99-102+114(in Chinese).[30]㊀ZHENG Y X,ZHUO J B,ZHANG Y M,et al.Mechanical properties and microstructure of nano-SiO2and basalt-fiber-reinforced recycledaggregate concrete[J].Nanotechnology Reviews,2022,11(1):2169-2189.。
NaA型纳米沸石分子筛的研究进展
NaA型纳米沸石分子筛的研究进展段维维;王薇【摘要】介绍NaA型纳米沸石分子筛的结构、水热晶化制备方法以及制备影响因素,包括原料摩尔比、反应温度和焙烧温度对NaA型纳米沸石成型的影响,并简要介绍了NaA型纳米沸石的应用进展.%The structure, and preparation method and preparation influencing factors of NaA nano-zeolite molecular, including mole ratio of raw materials, reaction temperature and calcination temperature, are introduced.The application progress of NaA nano-zeolite are reviewed.【期刊名称】《天津工业大学学报》【年(卷),期】2013(032)002【总页数】4页(P69-72)【关键词】NaA型沸石分子筛;制备;催化;吸附剂【作者】段维维;王薇【作者单位】天津工业大学中空纤维膜材料与膜过程省部共建国家重点实验室培育基地,天津300387;天津工业大学天津膜天膜工程技术有限公司,天津300160【正文语种】中文【中图分类】TQ424.25反渗透技术的核心在于一个高选择性、高通量的反渗透复合膜,在保证高截留率的同时,高通量反渗透复合膜是现代工业应用之需[1].目前,反渗透膜的改良方法主要集中在新的反应单体开发、膜表面改性及在两相中采用添加剂等方法,但不能从根本上达到要求[2-4].2007年Hoek团队[5]首次提出将纳米级颗粒通过界面聚合方法均匀地填充到聚酰胺复合反渗透膜中,由于纳米沸石分子筛的超亲水性、带负电荷的三维结构等特点,为水分子的渗透提供了优先的渠道,因此在不影响截留率的同时提高了水的通量.在此基础上,Hoek等[5]发现填充的沸石粒径越小越有利于提高截留率.Kim等[6-7]将纳米分子筛填充到复合膜中,提高了TFC膜抗生物污染的特性.由于纳米沸石分子筛具有独特的孔道结构和较好的亲水性,成为反渗透膜中较理想的无机添加剂.由于其特殊的优点,无机颗粒填充界面聚合反渗透的研究也成为改进反渗透膜性能的研究热点之一 [5,8-13].本文概述了NaA型纳米沸石分子筛的制备方法和应用领域.1 NaA型沸石分子筛的结构A型沸石分子筛是具有立方晶格的硅铝酸盐化合物,由硅氧四面体和铝氧四面体构成三维网络[14],在结构中有很多孔径均匀的孔道和排列整齐、比表面积较大的孔穴.这些孔穴能把比孔道直径小的分子吸附到内部中来,而把比孔道直径大的分子排斥在外,对性质不同的分子起到了筛分的作用,故称分子筛.其化学通式为:式中:Mx/n为阳离子,保持晶体的电中性;M表示其价态数;(AlO2)x·(SiO2)y 为沸石晶体的骨架,具有不同形状的孔和孔道;x为AlO2分子数;y为SiO2分子数;z为吸附的水分子数目.分子筛的微观空间结构主要由笼构成,笼分为α笼、β笼和γ笼等.α笼是A型分子筛的主要孔穴,α、β笼是构成A型分子筛的主要骨架,A型分子筛的微观形状类似削顶的正八面体,只允许NH3、H2O等尺寸较小的分子进入,如图1所示.A型分子筛由于化学元素组成和孔径的不同,可分为3种类型,如表1所示.表1 3种A型分子筛的化学性质Tab.1 Chemical property of 3 kinds of nanozeolite类型名称化学式钾型分子筛2/3K2O·1/3Na2O·Al2O3·2SiO2·9/2H2O 0.3 气体液体干燥钠型分子筛Na2O·Al2O3·2SiO2·9/2H2O 0.4 气体液体干燥、提纯钙型分子筛3/4CaO·1/4Na2O·Al2O3·2SiO2·9/2H2O 0.5 气体干燥剂孔径/nm 应用2 NaA型沸石分子筛的制备2.1 制备原理水热晶化法[15]是合成沸石分子筛的常规方法,晶化出分子筛可表示为 R2O-Al2O3-SiO2-H2O.沸石分子筛的晶化过程[16-20]十分复杂,原理可以粗略概述为:将原料按比例搅拌混合至均匀后,铝酸根和硅酸根发生一定程度的聚合反应,形成硅铝酸盐初始凝胶;在某种恒温下,初始凝胶发生重排,并形成特定的结构单元,进一步围绕着模板分子构成多面体,形成晶核后,再逐渐成长为分子筛晶体;反应凝胶多为四元组分体系.水热晶化法主要分为添加有机胺模板剂和不添加模板剂2种方法.反应式为:2.2 无有机添加剂的制备方法水玻璃法是制备沸石分子筛的基本方法,原料主要有纯度较高的石英(硅石)和铝.首先,石英与纯碱作用生成水玻璃,铝与烧碱作用产生偏铝酸钠,然后使水玻璃与偏铝酸钠作用转化为合成沸石.2008年,Sahand科技大学Bayati[21]团队在没有使用模板剂的情况下,向铝源已溶解的溶液中滴加硅源,再进行水热晶化[22-24],通过对化学元素摩尔比、反应时间和温度的控制,最终制备出粒径在50 nm 以内的NaA型分子筛.2.3 添加有机添加剂的制备方法20世纪60年代初,有机添加剂(模板剂)如四烷基铵盐第一次被引入合成凝胶,模板剂的引入至少存在2个方面的潜在效果:①在相同的反应体系中,由于模板剂的引入,可提高合成沸石的Si/Al值.②合成完全新型的沸石,如用四乙基铵或四丙基铵阳离子作模板剂合成出了β—沸石和ZSM—5沸石等[25].利用以上方法,按一定比例配入Na2O、Al2O3、SiO2和H2O,在控制其他反应条件的情况下,可制备NaA型无机纳米颗粒.2006年,大连理工大学杨国辉[25]利用有机胺(TMAOH)为模板剂,采用分步法,先将铝源和硅源溶解,再混合晶化制备出100 nm左右的NaA型沸石晶体,并用于沸石膜的制备.2011年,浙江大学瞿新营等[26]利用同样的制备原理,采用聚乙烯醇溶液作为分散剂,制备出粒径较均匀的NaA型沸石分子筛,粒径为70~80 nm,由于其较强的亲水性,制备出的聚酰胺复合反渗透膜的截留率和通量均有提高.2.4 制备NaA型沸石分子筛的影响因素(1)化学组分摩尔比的影响.制备NaA型分子筛的原料比例直接影响着纳米级沸石颗粒的合成结果.2006年,杨国辉[25]在研究纳米级沸石合成影响因素时,考虑到了钠离子对NaA分子筛合成的影响.利用(2.5-x)(TMA)2O ∶xNa2O ∶A12O3∶3.4SiO2∶370H2O 函数式,发现Na2O/Al2O3的摩尔比在0.2~0.5之间时,NaA分子筛的产率最高;Na2O/Al2O3的摩尔比低于0.2时,产物为NaA和NaY的混合物.2008年,Bayati等[21]在反应时间和温度一定的情况下,发现如果摩尔比Na2O/Al2O3≥50则合成方钠石分子筛;但在SiO2∶Al2O3∶Na2O的摩尔比为2∶1∶3时,随着反应时间、温度的不同,均可制备出粒径在25~40 nm的NaA型沸石颗粒.(2)反应温度影响.晶化反应的反应温度也会影响沸石分子筛颗粒的形成,对沸石颗粒的粒径有一定影响.2008年,Bayati等[21]在反应物化学组分一定的情况下,研究了反应温度对产物的影响,发现反应温度对合成NaA型分子筛的粒径和构型有一定的影响,随着晶化反应温度的增加产物的粒径显著增长.(3)焙烧温度的影响.模板剂起到结构导向的作用,硅铝酸盐初始凝胶围绕着模板剂构成多面体,由晶核逐渐生长成分子筛.因此高温焙烧分子筛,脱去分子筛中的模板剂,是孔道形成的关键.2006年杨国辉[25]确定了合适的NaA纳米分子筛焙烧温度,热重分析结果表明在425℃区域可使分子筛笼内的模板剂分解,使得沸石分子筛内的孔道均匀分布.3 NaA型分子筛的应用NaA型沸石分子筛的应用主要有3个方面.3.1 NaA型分子筛作为制膜添加剂通过界面聚合制备聚酰胺反渗透复合膜,往往是采用无机酸或有机添加剂的方法来改变膜的性能,但成效不显著,并会导致截留率的下降.纳米沸石分子筛因其独特的孔道结构和较好的亲水性,为反渗透膜提供了选择性水分子通道,成为较理想的无机添加剂.2011年浙江大学瞿新营等[26]在界面聚合反应过程中添加NaA型纳米沸石分子筛,制备了沸石/聚酰胺反渗透复合膜,发现将无机沸石颗粒添加在油相中,沸石可以均匀地贯穿于聚酰胺膜层中,分散较均匀,膜结构较均一,膜截留率维持在98%以上,而通量可提高1倍;将所制备的NaA沸石浸泡在酰氯中,并进行红外光谱分析,谱图中的局部特征峰说明沸石可以通过表面羟基与油相中的酰氯发生酯化反应,由此可知将沸石添加进有机相当中,有利于进一步产生含沸石的聚酰胺膜层,形成均匀致密的膜,这也是提高通量的根本原因.Tawfik等[27]以同样方法制备反渗透聚酰胺复合膜,在不影响截留率的前提下提高了通量;由于纳米级颗粒的添加改变了聚酰胺层的交联方式,增加了膜表面的羟基,因此为水分子渗透提供了更多通道,并使膜具备了亲水性和抗污染性.3.2 NaA型沸石分子筛作为助洗剂在早期的合成洗剂中,为了增加清洗作用,常用三聚磷酸钠(STPP)作助洗剂,由于其工业生产方便、助洗效果好,迅速得到了推广.但是,加有STPP的合成洗涤剂在洗涤后排放的废液中残留相当数量的磷,污染了水质环境.NaA型沸石具有较强的表面活性剂吸附特性,并且生产原料充足、合成工艺简单、成本低廉、不会对环境造成危害.因此,NaA型沸石分子筛作为助洗剂在洗涤剂中得到广泛的应用.日本花王肥皂公司在洗涤剂中一般加入12%~14%(质量分数)的合成沸石来代替三聚磷酸钠(STPP)作助洗剂.3.3 NaA型沸石分子筛作为吸附剂在工业上,孔隙率高且通常用于气体或蒸气混合物分离的吸附剂主要有沸石分子筛、活性炭、活性粘土、硅胶及活性氧化铝.沸石分子筛以其规整的晶体结构、均匀一致的孔分布和可调变的表面性质在吸附分离领域得到广泛应用.Zeng等[28-30]在碳管中添加2%(质量分数)NaA型沸石分子筛制备碳膜,提高了膜对CO2/N2和O2/N2气体的高分离性;随着环境温度的升高,H2和N2的扩散量也随之增加,表明NaA型沸石碳膜对气体具有高选择性扩散机能.4 结束语水热合成方法是目前各研究领域最常用的用来合成NaA型纳米沸石分子筛的方法,其反应因素的改变会影响NaA型纳米沸石分子筛的粒径、微观结构及产物纯度.研究表明:反应物摩尔比、反应时间温度、反应后焙烧温度都会对晶化反应起到一定作用.纳米沸石分子筛因其独特的孔道结构和较好的亲水性,为反渗透膜提供了选择性水分子通道,成为较理想的无机添加剂,经其改性后的反渗透聚酰胺膜的截留率和水通量均有所提高.NaA型沸石分子筛的应用较为环保,合成粒径较小的NaA 型沸石分子筛将是未来的重点研究方向.参考文献:【相关文献】[1]ROH I J,KHAREK V P.Investigation of the specific role of chemical structure on the material and permeation properties of ultrathin aromatic polyamides[J].Journal of Materials Chemistry,2002,12:2334-2338.[2]KANG Guodong,LIU Ming,LIN Bin,et al.A novel method of surface modification on thin film composite reverse osmosis membrane by grafting poly (ethyleneglycol)[J].Polymer,2007,48(5):1165-1170.[3]KIMB Nowon,SHIN Dongho,LEE Yong Taek.Effect of silane coupling agents on the performance of RO membranes[J].Journal of Membrane Science,2007,300(1/2):224-231.[4]QIU Shi Wu,LI Guang,ZHANG Lin,et al.Preparation of reverse osmosis composite membrane with high flux by interfacial polymerization of MPD and TMC[J].Journal of Applied Polymer Science,2009,112(4):2066-2072.[5]LIND M L,GHOSHA K,JAWOR A,et al.Influence of zeolite crystal size on zeolite polyamide thin film nanocomposite mem-branes[J].Langmuir,2009,25(17):10139-10145[6]KIM S H,KWAK S Y,SOHN B H,et al.Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-lmcomposite(TFC)membrane as an approach to solve biofouling problem[J].Membr Sci,2003,211:157-165.[7]SOROKO I,LIVINGSTON A.Impact of TiO2nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration(OSN)membranes[J].Membr Sci,2009,343:189-198.[8]JEONG Byeong Heon,HOEK Ericm V,YAN Yushan,et al.Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes[J].Journal of Membrane Science,2007,294(1/2):21-45.[9]JADAVG L,SINGH P S.Synthesis of novel silica polyamide nanocomposite membrane with enhanced properties[J].Journal of Membrane Science,2009,328(1/2):257-267.[10]LIND M L,JEONG Byeong Heon,SUBRAMAN I A,et al.Effect of mobile cation on zeolite polyamide thin film nanocomposite membranes[J].Journal of Materials Research,2009,24(5):1624-1631.[11]LEE Seung Yun,KIM Heep Jin,PATEL R,et al.Silver nanoparticles immobilized on thin film composite polyamide membrane:Characterization,nanofiltration,antifouling properties[J].Polymers for Advanced Technologies ,2007,18(7):562-568.[12]LEE Hyun Soo,IM Se Joon,KIM Jong Hak,et al.Polyamide thin film nanofiltration membranes containing TiO2nanoparticles[J].Desalination,2008,219(1/2/3):48-56. [13]SINGHP S,WALVK A S.Characterization of physical structure of silica nanoparticles encapsulated in polymeric structure of polyamide films[J].Journal of Colloid and Interface Science,2008,326(1):176-185.[14]MAHDI Fathizadeh,ABDOLREZ Aroujalian,AHMADREZA Raisi.Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process[J].Journal of Membrane Science,2011,375:88-95.[15]AMANO Fumiaki,YAMAKATA Akira.Enhancement of activity by crystallization under hydrothermal treatment[J].American Chemical Society,2008,58:65-70.[16]CORMA Avelino,LLOPIS J Francisco,MARTÍNEZ Cristin a.The benefit of multipore zeolites:Catalytic behaviour of zeolites with intersecting channels of different sizes for alkylation reactions[J].Journal of Catalysis,2009,268:9-17.[17]GARCÍA Raquel,HORTIGÜELA Gómez Luis,BLASCO Teresa.Zeolite synthesis using 1-benzyl-1-methylpyrrolidinium and tetraethylammonium[J].Microporous and Mesoporous Materials,2010,132:375-383.[18]ZHANG Lin,YANG Chengguang,MENG anotemplate-free syntheses of ZSM-34 zeolite and its heteroatom-substituted analogues with good catalytic performance[J].Chem Mater,2010,22:3099-3107.[19]MUKTI Rino R,HIRAHARA Hirotomo,SUGAWARA Ayae.Direct hydrothermal synthesis of hierarchically porous siliceous zeolite by using alkoxysilylated nonionic surfactant[J].American Chemical Society,2010,26(4):2731-2735.[20]NAZMUL Abedin Khan,JUNG Hwa Park.Phase-selective synthesis of a silicoaluminophosphate molecular sieve from dry gels[J].Materials Research Bulletin,2010,45:377-381.[21]BAYATI B,BABALUO R,KARIMI.Hydrothermal synthesis of nanostructure NaA zeolite:The effect of synthesis parameters on zeolite seed size and crystallinity[J].Journal of the European Ceramic Society,2008,28 :2653-2657.[22]SATHUPUNYA M,GULARI E,WONGHASEMJIT S.ANA and GIS zeolite synthesis directly from alumatrane and silatrane by sol-gel process and microwave techniques[J].Eur Ceram Soc,2002,22:2305-2314.[23]XU X,BOA Y,YANG W,et al.Synthesis,characterization and single gas permeation properties of NaA zeolitemembranes[J].J Member Sci,2005,249:51-64.[24]TAVOLARO A,DRIOLIE.Zeolite membrane[J].Adv Mater,1999,11:975-996.[25]杨国辉.自组装NaA沸石膜以及H-ZSM-5胶囊催化剂的设计和应用[D].大连:大连理工大学,2006.[26]瞿新营,董航,张林,等.沸石/聚酰胺反渗透复合膜的制备[J].化学工程,2011,39(2):54-60.[27]TAWFIK A Saleh,VINOD K Gupta.Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance[J].Separation and Purification Technology,2012,89:245-251.[28]ZENG Changfeng,ZHANG Lixiong,CHENG Xinhua,et al.Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes[J].Membrane Science,2004,311:121-145.[29]VU D Q,KOROS W J,MILLER S J.Mixed matrix membranes using carbon molecular sieves,part I:Preparation and experimental results[J].Membr Sci,2003,211:21-45. [30]SHIFLETT M B,FOLEY H C.On the preparation of supported nanoporous carbon membranes[J].Membr Sci,2000,179(27):354-367.。
硅烷偶联剂处理对玄武岩单丝拉伸性能的影响
硅烷偶联剂处理对玄武岩单丝拉伸性能的影响宋秋霞1,刘华武1,钟智丽1,徐萍2(1.天津工业大学纺织学院,天津300160;2.新西兰林科院,新西兰8540)摘要:用硅烷偶联剂KH-550对不同品种的玄武岩纤维进行表面改性处理,采用单丝拉伸试验,结合扫描电镜和SPSS 统计分析的方法,研究了硅烷偶联剂处理对玄武岩单丝拉伸性能的影响.结果表明:表面处理前后,玄武岩纤维品种2和3的拉伸强度和断裂伸长率均没有显著变化;玄武岩纤维品种1的拉伸强度和断裂伸长率明显增大,其拉伸强度提高32.8%,断裂伸长率增大31.79%.这证明用硅烷偶联剂KH-550对玄武岩纤维进行表面改性处理,可以达到表面处理的目的且不损伤玄武岩单丝的拉伸性能,一定程度上可以弥补玄武岩纤维生产工艺的不足.关键词:玄武岩纤维;偶联改性;硅烷偶联剂;单丝拉伸中图分类号:TS102.41文献标志码:A文章编号:1671-024X(2010)01-0019-04Effect of silane coupling agent treatment on tensile propertiesof single basalt filamentSONG Qiu-xia 1,LIU Hua-wu 1,ZHONG Zhi-li 1,XU Ping 2(1.School of Textiles ,Tianjin Polytechnic University ,Tianjin 300160,China ;2.New Zealand Forest Research Limited ,New Zealand ,8540)Abstract :In order to study the effect of silane coupling agent treatment on the tensile properties of single basaltfilament ,the surface of different kinds of basalt fibers is treated with silane coupling agent KH-550.Single filament tensile test is applied ,combined with scanning electron microscopy and SPSS statistical analysis methods.The results show that :pre-and post-surface treatment ,the tensile strength and elongation at break of second type and the third type of basalt fibers does not significantly change ,whereas these properties of the first type of basalt fiber are remarkably improved.The tensile strength of the first type increases up to 32.8%,and elongation at break go up around 31.79%.This proves that treating the basalt fiber with silane coupling agent KH -550,the purpose of surface treatment could be achieved without damage of tensile strength and elongation properties of basalt single filament ,and the surface treatment can make up for the lack of basalt fiber production process in a certain extent.Key words :basalt fiber ;coupling modification ;silane coupling agent ;single filament tensile收稿日期:2009-09-07基金项目:天津市自然科学基金资助项目(05YFJMJC13000)作者简介:宋秋霞(1985—),女,硕士研究生.通讯作者:刘华武(1952—),男,教授,硕士生导师.E-mail :huawu_liu@玄武岩纤维是一种无机矿物纤维,具有耐高温、耐腐蚀、耐磨、抗辐射等一系列性能特点,因此在某些应用领域完全可以代替玻璃纤维乃至价格昂贵的碳纤维,应用前景广阔[1-4].玄武岩纤维增强复合材料预制件的制备多采用纺织的混合、梳理、铺网、针刺成型的工艺,在混合梳理的过程中,玄武岩纤维丝束被针布梳理成细小的丝束,甚至单丝形式,这样玄武岩单丝承载着玄武岩复合材料的增强作用[5-6].同时,又因玄武岩纤维的表面呈化学惰性,与分子链缺乏活性基团的有机聚合物(如聚丙烯、聚乙烯等)亲和性较差,复合时难以形成理想的界面粘结,做复合材料的增强体时,必须经过表面改性处理.目前,针对玄武岩纤维的表面改性研究较多的是偶联改性[7-10].众多的研究结果证明偶联改性是改善复合界面、提高复合材料力学第29卷第1期2010年2月天津工业大学学报JOURNALOFTIANJINPOLYTECHNICUNIVERSITYVol.29No.1February 2010天津工业大学学报第29卷性能的有效方法,但缺乏对偶联改性后增强纤维性能的研究.表面处理的目的是改善复合材料的界面粘结,同时利于纺织织造加工.但必须避免或尽可能减少对增强纤维本身各项性能的损害,尤其是纤维拉伸性能的降低.玄武岩纤维属于高强低伸的无机纤维,经表面改性后若它的拉伸强度和断裂伸长率明显降低,则此处理方法应判为不成功.基于这个目的,本文用硅烷偶联剂KH-550对玄武岩纤维进行表面处理,用宏观分析和SPSS 统计分析的方法探讨表面处理后玄武岩单丝拉伸性能的变化,获得硅烷偶联剂KH-550与玄武岩纤维间关联关系的第一手数据,为进一步研发高性能的玄武岩纤维复合材料奠定了基础.1实验部分1.1实验材料和仪器实验材料:玄武岩纤维,成都航天拓鑫科技有限公司产品,规格见表1;硅烷偶联剂KH-550,江苏辰光偶联剂有限公司产品;95%的乙醇溶液;蒸馏水.实验仪器:YG001A 型单纤维强力仪,江苏太仓纺织仪器厂产品;QUANTA200型扫描电子显微镜,FEI 公司产品;电子天平,北京赛多利斯仪器系统有限公司产品.1.2玄武岩纤维的偶联改性有机硅早期用作玻璃纤维增强聚合物的交联剂,它几乎可以将所有的聚合物交联在任何用于增强复合材料的矿物质上[11].硅烷偶联剂KH-550是一种具有特殊结构的有机硅化合物,分子式为H 2N (CH 2)3Si (OC 2H 5)3.KH-550与玄武岩纤维发生偶联反应过程经历4步,反应的过程如图1所示.文献[8]中指出用质量分数为0.75%的偶联剂处理过的玄武岩纤维作为增强材料制备的热塑板其力学性能最优,且增强纤维与基体聚丙烯的界面粘结状况最好.玄武岩纤维偶联改性的工艺过程具体如下:以无水乙醇和蒸馏水混合液作为溶剂,将硅烷偶联剂KH-550配成质量分数为0.75%的溶液,用玻璃棒搅拌均匀,水解5min ,再按照3∶10的浴比加入玄武岩纤维(长度为60mm ),浸泡30min 后取出,在室温下自然晾干,再放入120℃烘箱中干燥,使玄武岩纤维在高温下与硅烷偶联剂反应完全,1h 后取出,装入塑料袋中防吸湿备用.1.3单丝拉伸试验从玄武岩原丝中任意截取一段纤维,在显微镜下小心地分出一根玄武岩单丝,采用YG001A 型单纤维强力仪对处理前后的玄武岩单丝进行拉伸性能测试,拉伸速度为5mm/min ,夹头隔距为25mm ,预加张力为0.2cN ,每种试样数量为20根.可以得到的力学性能指标包括玄武岩单丝的拉伸强力、断裂伸长率.根据所得到的单丝拉伸断裂强力数据,运用公式(1)可以得到单丝的拉伸强度.σ=4P bπD 2×10(1)式中:σ为单丝拉伸强度(GPa );P b 为单丝拉伸断裂强力(cN);D 为单丝直径(μm ).2结果与讨论2.1改性处理前后的玄武岩单丝表面形态处理前后的玄武岩单丝表面形态如图2所示.从图2可以看出,未经偶联剂处理(a )的玄武岩单丝表面光滑,而改性处理后(b )的玄武岩单丝表面变粗糙,有附着物和小突起,这有利于改善玄武岩单丝表1玄武岩纤维的规格Tab.1Basic specification of continuous basalt fibers代号单丝直径/μm原丝规格生产时间品种1品种2品种399139μm ×200根9μm ×200根13μm ×200根2006年2008年2008年20——第1期和有机聚合物的界面粘结状况.改性处理后的玄武岩单丝表面发生的变化是因为KH-550与玄武岩单丝发生了偶联反应,并附着在其表面形成一层薄膜.2.2玄武岩单丝拉伸性能的宏观分析表面处理前后的玄武岩单丝拉伸性能测试结果如表2所示.由表2可以看出,与表面处理前的拉伸性能指标相比,品种1和2的拉伸性能指标均上升,品种3的拉伸性能指标均下降,其中品种1的拉伸性能变化最大,拉伸强度提高32.80%,断裂伸长率提高31.79%,品种2的拉伸性能变化最小.从各指标的CV%值看,品种2和3的变化相对较小.玄武岩纤维经过改性处理后,KH-550与玄武岩单丝表面形成共价键连接,但偶联反应仅发生在玄武岩单丝表面纳米级深度范围内,因此这对玄武岩单丝的整体性能,尤其是拉伸性能的影响极小,表面处理前后,品种2和品种3拉伸性能的较小变化很好地揭示了这一点.对于品种1来说,表面改性处理可以弥补玄武岩纤维生产工艺的不足,提高玄武岩单丝的拉伸性能.原因是:在玄武岩纤维的生产过程中,单丝会受到许多磨擦损伤,如单丝与单丝之间、单丝与空气之间、单丝与绕丝筒之间,这些损伤会在单丝的表面形成微裂纹.玄武岩纤维的生产工艺表明,浸润剂对提高玄武岩单丝的集束及保护单丝使其少受磨损起着重要作用.品种1是成都航天拓鑫科技有限公司的最早期产品,生产工艺还不太成熟,浸润剂的添加还处于探索阶段,单丝在集束的过程中受到较多磨损,单丝表面的微裂纹缺陷比较多.经过改性处理后,KH-550与玄武岩单丝表面形成共价键连接,并附着在其表面形成一层薄膜,这些膜状结构在一定程度上覆盖了单丝表面的微裂纹,降低了微裂纹对单丝拉伸性能的影响,从而使得品种1在改性处理后的拉伸性能提高较多.品种2和3都是成都航天拓鑫科技有限公司2008年的产品,其工艺成熟,浸润剂的配方相对2006年要科学合理得多,单丝在集束过程中受到的磨损降低,单丝表面的微裂纹缺陷相对也减少,故表面改性处理对品种2和3的拉伸性能影响很小.表2也反映出单丝直径对单丝拉伸性能的关系.对于玻璃纤维、玄武岩纤维这些高性能的无机纤维,单丝强度随直径的增大而减小[12],改性处理前的品种3的拉伸性能低于品种2的拉伸性能很好地说明了这一点.品种1和品种2的单丝直径相同,导致改性处理前的拉伸性能差别的关键在于生产工艺.2.3玄武岩单丝拉伸性能的统计分析利用统计分析的方法对试验结果进行检验,获得单丝经表面处理后本身力学性能如何变化的更详尽的信息.对试验数据进行统计分析的内容为:先检验单纤维的各个拉伸性能指标是否服从正态分布,若这些数据均满足正态分布,可以对数据进行各样本的方差齐次性检验和两均值是否相等的检验.单丝拉伸性能指标是否服从正态分布采用夏皮洛-威尔克(Shapiro-Wilk)检验方法[13].这种检验方法适合样本容量为8≤n≤50的正态分布检验,检验统计量w为:w=lk=1Σαk(w)·(x n+1-k-x kΣΣ)2nk=1Σ(x k-x軃)2(2)式中:当n为偶数时,l=n/2;n为奇数时,l=(n-1)/2.根据α和n查表可知w的临界值wα(α=0.05,n=20,wα=0.905),做出判断的依据:当w>wα,接受H0,即分布呈现正态分布.可以计算得到表面处理前后单丝拉伸性能指标的w统计量,计算结果见表3.从表3可以看出,经表面处理前后,单丝拉伸性能指标的统计量均大于临界值wα,即它们均服从正态分布,满足独立同分布的条件.处理前后的单丝拉伸性能指标的分布分别记为N1(μ1,σ1)和N2(μ2,σ2).要检验单丝拉伸性能是否发生明显变化,即要检验所得到的实验数据的平均值μ是否有显著变化.检验方法为,以未处理的拉伸性能数据的平均值μ1为基准,比较经改性后拉伸性能数据的平均值μ2是否有显表2表面处理前后的玄武岩单丝拉伸性能Tab.2Tensile properties of untreated and treated basalt single-filaments品种表面处理前表面处理后拉伸强度变化率/%伸长变化率/%拉伸强度/GPa伸长率/%拉伸强度/GPa伸长率/%1 2 31.28(18.09)2.49(25.62)1.19(26.17)1.51(35.58)2.07(23.34)1.86(20.02)1.70(28.02)2.52(27.24)1.06(27.87)1.99(21.76)2.13(27.87)1.70(19.48)↑32.80↑1.20↓10.92↑31.79↑2.90↓8.60注:括号外的数值代表单丝拉伸指标的均值,括号内的数据代表变异系数CV%值.宋秋霞,等:硅烷偶联剂处理对玄武岩单丝拉伸性能的影响表3正态分布检验统计量Tab.3Test statistics of normal distribution 21——天津工业大学学报第29卷著变化,即对μ1=μ2进行检验.数据满足方差齐次性和不满足方差齐次性两种条件下,两均值检验的方法不同,所以在均值检验之前要检验这些数据是否具有方差齐次性,即对σ1=σ2进行检验.方差齐次性和两均值相等的检验采用SPSS 统计软件的两独立样本的t 方法,检验统计量分别为F 统计量和t 统计量[14].做出判断的依据为:当F 统计量的概率p 值大于显著性水平α,则接受原假设σ1=σ2,即实验数据满足方差齐次性;当t 统计量的概率p 值大于显著性水平α,则接受原假设μ1=μ2,即单丝拉伸性能没有发生显著变化.各统计量的计算结果见表4.从表4可以看出,除了品种1表面处理前后的拉伸强度和处理后的断裂伸长率不服从方差齐次性,其余都服从方差齐次性.根据t 统计量的结果可知:在显著性水平α为0.05的条件下,表面处理前后,品种1的拉伸强度和断裂伸长率的均值有显著变化,品种2和3的拉伸性能指标均没有显著变化.经过KH-550处理后,品种2和3的玄武岩单丝拉伸性能发生了变化,但变化幅度较小,品种1的玄武岩单丝拉伸性能提高较多.3结论(1)经硅烷偶联剂表面处理后,KH-550与玄武岩单丝表面发生了偶联反应,并附着在其表面形成一层薄膜,玄武岩单丝表面变粗糙,这有利于改善玄武岩单丝和有机聚合物的界面粘结状况.(2)玄武岩单丝拉伸的宏观分析结果表明:品种1和2的拉伸性能指标均上升,品种3的拉伸性能指标均下降,其中品种1的拉伸性能变化最大,拉伸强度提高32.8%,断裂伸长率提高31.79%,品种2的拉伸性能变化最小.从各指标的CV %值看,品种2和3的变化相对较小.(3)玄武岩单丝拉伸的统计分析结果表明:在显著性水平α为0.05的条件下,表面处理前后,品种1的拉伸强度和断裂伸长率的均值有显著变化,品种2和3的拉伸性能指标均没有显著变化.数理统计分析得到的结果和玄武岩单丝拉伸性能宏观分析所得到的结果一致,这表明用硅烷偶联剂KH-550对玄武岩纤维进行表面改性处理,可以达到表面处理的目的且不损伤玄武岩单丝的强伸性能,一定程度上可以弥补玄武岩纤维生产工艺的不足.参考文献:[1]叶鼎诠.玄武岩纤维与玻璃纤维的比较[J].上海建材,2006,24(6):8-9.[2]王岚,陈阳,李振伟.连续玄武岩纤维及其复合材料的研究[J].玻璃钢/复合材料,2000,26(6):22-24.[3]黄根来,孙志杰,王明超,等.玄武岩纤维及其复合材料基本力学性能实验研究[J].玻璃钢/复合材料,2006,32(1):24-27.[4]张敏,吴刚,蒋语楣,等.连续玄武岩纤维增强复合材料力学性能试验研究[J].高科技纤维与应用,2007,31(2):15-21.[5]CZIGANY T.Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites :me -chanical properties and acoustic emission study[J].Composites Science and Technology ,2006,66(16):3210-3220.[6]宋秋霞,刘华武,钟智丽.玄武岩-苎麻混杂增强聚丙烯热塑板制备工艺的研究[J].陕西纺织,2009,21(1):12-15.[7]傅宏俊,马崇启,王瑞.玄武岩纤维表面处理及其复合材料界面改性研究[J].纤维复合材料,2007,35(3):11-13.[8]SONG Qiuxia ,LIU Huawu ,XU Ping ,et al.Effect of coupling agent treatment of basalt fiber on mechanical properties of BF reinforced PP thermoplastic panel[C].Shanghai :China Textile Publication ,2009:403-406.[9]KESZEI S ,MATKS S ,BERTALAN G ,et al.Progress in in -terface modifications :from compatibilization to adaptive and smart interphases[J].European Polymer Journal ,2005,41(4):697-705.[10]WANG G J ,LIU Y W ,GUOY J ,et al.Surface modification and characterizations of basalt fibers with non-thermal plas -ma[J].Surface and Coatings Technology ,2007,201(15):6565-6568.[11]鲁博,张林文.天然纤维复合材料[M].北京:化学工业出版社,2005:65-67.[12]孙义泰.玻璃纤维强度的影响因素[J].玻璃纤维,1992,20(3):13-15.[13]茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,2004:364-366.[14]薛薇.SPSS 统计分析方法及应用[M].北京:电子工业出版社,2006:129-137.表4F 统计量和t 统计量Tab.4Test statistics of F distribution and t distribution品种F 统计量t 统计量拉伸强度伸长率拉伸强度伸长率1238.599(0.006)0.037(0.849)0.070(0.793)0.470(0.497)1.179(0.284)0.721(0.401)-3.553(0.001)-0.176(0.861)1.354(0.184)-3.084(0.004)-0.385(0.702)1.381(0.175)注:表中括号外的数值是拉伸指标的统计量值,括号中的数值是对应统计量的概率p 值,取α为0.05.22——。
不同种类偶联剂对PVC木塑复合材料抗冲击性能的影响
不同种类偶联剂对PVC木塑复合材料抗冲击性能的影响王菲;王雀;邓亚楠;杨宝生;刘宏;沈萍【摘要】研究了不同种类偶联剂对PVC木塑复合材料抗冲击性能的影响.结果表明:硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂都具有改善作用,钛酸酯偶联剂效果最佳.三种偶联剂都存在最佳用量.硅烷偶联剂使冲击强度提升了47.7%,钛酸酯偶联剂使冲击强度提升了95.3%,铝酸酯偶联剂使冲击强度提升了40.9%.%This study aims to discover how the anti-impact strength of PVC wood plastic composite materials will be affected by different kinds of coupling agents.The results show that the anti-impact strength of such materials is increased by 47.7% due to the silane coupling agent,by 95.3% due to the titanate coupling agent,and by 40.9% due to the aluminate coupling agent,respectively.【期刊名称】《塑料助剂》【年(卷),期】2018(000)002【总页数】4页(P28-31)【关键词】聚氯乙烯;木塑;偶联剂;抗冲击性能【作者】王菲;王雀;邓亚楠;杨宝生;刘宏;沈萍【作者单位】沈阳橡胶设计研究院有限公司,沈阳,110000;沈阳防锈包装材料有限责任公司,沈阳,110000;沈阳防锈包装材料有限责任公司,沈阳,110000;沈阳新飞宇橡胶制品有限公司,沈阳,110000;沈阳防锈包装材料有限责任公司,沈阳,110000;沈阳防锈包装材料有限责任公司,沈阳,110000【正文语种】中文木材作为当今世界公认重要原材料之一,市场需求量巨大。
KH550改性SiO_(2)TPU复合材料的制备及性能研究
第49卷第4期2021年2月广㊀州㊀化㊀工Guangzhou Chemical IndustryVol.49No.4Feb.2021KH550改性SiO 2/TPU 复合材料的制备及性能研究∗张于弛1,2,江丽芳1(1闽江学院海洋学院,福建㊀福州㊀350108;2福建省中国漆新型材料工程研究中心,福建㊀福州㊀350108)摘㊀要:采用硅烷偶联剂(KH550)对SiO 2进行表面改性,采用溶液共混法制备了SiO 2/TPU 复合材料,探究了不同改性工艺条件对SiO 2的改性效果,以及SiO 2添加量对复合材料力学性能的影响㊂实验结果表明,反应时间4h㊁温度60ħ㊁KH550浓度40%时对SiO 2的改性效果最佳,并制备SiO 2/TPU 复合材料,通过力学性能比较,添加量为1%时复合材料的综合力学性能较好,同时能提高热稳定性㊂关键词:TPU;SiO 2;复合材料;力学性能㊀中图分类号:TQ327.6㊀文献标志码:A 文章编号:1001-9677(2021)04-0041-03㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀∗基金项目:福建省教育厅青年项目(JAT170454);闽江学院科研项目(MYK17019,MYK18028)㊂第一作者:张于弛(1980-),女,副教授,主要从事复合材料研究㊂Preparation and Properties of KH550Modified SiO 2/TPU Composites ∗ZHANG Yu -chi 1,2,JIANG Li -fang 1(1Ocean College,Minjiang University,Fujian Fuzhou 350108;2Fujian Engineering and Research Center of New Chinese Lacquer Materials,Fujian Fuzhou 350108,china)Abstract :SiO 2was grafted with silane coupling agent (KH550).SiO 2/TPU composites were prepared by solution blending method.The effects of different modification conditions on the modification of SiO 2and the effect of SiO 2addition on the mechanical properties of the composites were investigated.The experimental results showed that the best modification effect was obtained when the reaction time was 4h,the temperature was 60ħ,and the concentration of KH550was 40%.Through the comparison of mechanical properties,the composite with 1%addition had better comprehensive mechanical properties,at the same time,it could improve the thermal stability.Key words :TPU;SiO 2;composites;mechanical properties聚合物基纳米复合材料能够在低填充量下显著改善物理和工程性能[1-2]㊂由于商业上可买到的纳米颗粒通常是由于其高表面能而聚集的,因此在复合材料制造过程中,纳米颗粒团聚的破坏被证明是充分发挥纳米颗粒作用的关键问题[2]㊂将纳米粒子的表面特性由亲水性变为疏水性,对于增加填料/聚合物基体的相容性是至关重要的㊂通过改变接枝单体,可以有效地改进纳米复合材料中的界面相互作用㊂热塑性聚氨酯(TPU)是一类重要的塑料,具有弹性㊁透明性㊁耐油性㊁耐油性和耐磨性㊂TPU 有许多应用,包括汽车仪表板㊁脚轮㊁电动工具㊁体育用品㊁医疗器械㊁传动带㊁鞋类以及各种挤塑薄膜㊁片材和型材应用[3]㊂二氧化硅(SiO 2)是一类重要的无毒㊁稳定㊁耐高温的无机填料,广泛应用于橡胶㊁塑料㊁涂料㊁印刷品和化妆品等领域[4]㊂然而,由于SiO 2表面羟基的亲水性,使得其在聚合物基体中容易团聚,难以分散[5]㊂用硅烷偶联剂对SiO 2粒子进行表面改性,可以减少SiO 2表面羟基的数量,使粒子由亲水性变为疏水性㊂使其可在聚合物基体中获得更好的分散性和相容性㊂本论文采用硅烷偶联剂(KH550)对纳米SiO 2进行改性,研究最佳的改性工艺,以提高SiO 2在有机溶剂中的分散性,抑制其团聚,制备SiO 2/TPU 复合材料,并对SiO 2/TPU 复合材料的结构与性能进行测试与表征㊂1㊀实㊀验1.1㊀实验原料热塑性聚氨酯(TPU,聚酯型),东莞宏德;KH550,广州市中杰化工有限公司;SiO 2,江苏天行新材料有限公司;冰醋酸㊁N,N -二甲基甲酰胺(DMF)㊁无水乙醇试剂等由国药试剂提供,均为化学纯㊂1.2㊀实验方法(1)KH550改性SiO 2的制备称取0.8g KH550溶解在4g 去离子水中,并用冰醋酸调节至pH =3㊂称取2g 纳米SiO 2于250mL 圆底烧瓶中,加入200mL 的乙醇/水的混合溶液(乙醇 水=1 1),超声分散30min,后向SiO 2分散液中加入KH550溶液㊂60ħ下恒温磁力搅拌并回流一定时间,离心分离,无水乙醇洗涤3~4次,除去SiO 2表面反应的KH550,于80ħ烘箱中干燥24h,研磨备用㊂(2)KH550改性SiO 2/TPU 复合材料的制备42㊀广㊀州㊀化㊀工2021年2月将TPU 溶解在DMF 中(质量比1 5),称取0.03g SiO 2于DMF 中,超声分散30min,加入到TPU 溶液中,搅拌均匀并超声分散30min,后置于真空干燥箱中真空脱泡20min,倒一定量的溶液于平整的表面皿中,放入真空烘箱中50ħ成膜,分别制备含0.4%㊁1%㊁1.5%㊁2%不同添加比例的复合材料膜㊂后采用XCS -101-200型冲片机(承德精密试验机有限公司)裁样后得到试样㊂1.3㊀测试及表征红外表征在傅里叶红外光谱仪(is 5,美国赛默飞)上进行㊂扫描范围为500~4000cm -1,其中SiO 2㊁KH550改性的SiO 2粉末采用KBr 压片制样;微观形貌测试在扫描电子显微镜(SU8010,日本日立)进行,测试样品为SiO 2和KH550改性的SiO 2形貌,喷金时间为30s;分散稳定性:考虑DMF 是TPU的良溶剂,因此,分散稳定性主要考察改性前后SiO 2在DMF 中的分散状况,浓度为0.5mg /mL,观察试样的分散情况;拉伸性能在电子万能(拉力)试验机(CMT4104,美斯特工业系统有限公司)上进行㊂测试在室温下进行,拉伸速度为50.0mm/min㊂每个配比测试5~6个试样,并取平均值;热重分析在差热分析仪(STA449f3,德国耐驰)上进行,N 2气氛中,以10ħ/min 的速率从30ħ升温至600ħ㊂2㊀结果与讨论2.1㊀KH 550改性SiO 2的红外表征KH550对SiO 2表面改性后,在3425cm -1和1630cm -1归属于SiO 2表面的OH 伸缩振动吸收峰㊂1089cm -1和795cm -1归属于Si -O -Si 的反对称伸缩振动吸收峰和弯曲振动伸缩峰,比未改性的SiO 2有明显增强㊂对比红外谱图还可以发现改性后的SiO 2在2925㊁2970cm -1处出现了甲基和亚甲基的C -H 伸缩振动峰,该峰归属于KH550上的-CH 2的吸收峰㊂以上说明KH550成功接枝到SiO 2表面㊂图1㊀SiO 2㊁KH550-SiO 2的FTIR 图Fig.1㊀FTIR spectra of SiO 2and KH550-SiO 22.2㊀KH 550改性SiO 2的SEM 表征由图2改性前后SiO 2的SEM 对比可知,SiO 2由于表面含有大量的羟基,表面能较高,团聚在一起,KH550改性过的SiO 2,能较好地分散,这说明纳米SiO 2表面的羟基与偶联剂发生了作用,使得纳米SiO 2表面形成了较大的空间位阻,较为有效的阻止纳米SiO 2粒子的团聚,使得纳米SiO 2粉体的分散性得到有效的提高㊂图2㊀SiO 2(a)和KH550-SiO 2(b)的SEM 图Fig.2㊀SEM of SiO 2(a)and KH550-SiO 2(b)2.3㊀KH 550改性SiO 2工艺优化2.3.1㊀反应时间的影响控制反应温度为60ħ,KH550的质量分数为40%,反应时间为3㊁4㊁6h㊂反应时间对改性纳米SiO 2的红外光谱影响如图3所示㊂图3㊀反应时间对SiO 2分散相体积的影响Fig.3㊀Effect of reaction time on the volume of SiO 2dispersed phase观察改性后3d 的纳米SiO 2的沉降性,反应时间对纳米SiO 2分散相体积的影响如图3所示,由图3可知,反应3㊁4㊁6h 得到的纳米SiO 2在DMF 中的分散稳定性基本较好,静置3d 后分散相体积维持在20mL 左右,分散4h 效果优于3h 和6h㊂反应达到4h 时,两者之间的反应达到饱和,继续反应,KH550已经不能接枝在SiO 2表面㊂2.3.2㊀反应温度的影响反应时间为4h,KH550的质量分数为40%,反应温度分别为40㊁60㊁80ħ,反应温度对SiO 2分散相体积的影响见图4㊂图4㊀反应温度对SiO 2分散相体积的影响Fig.4㊀Effect of reaction temperature on the volume of SiO 2dispersed phase 由图4可知,三组改性的SiO 2在DMF 溶液中都表现了良好的分散性,反应温度为60ħ时,改性的SiO 2在DMF 中的沉降稳定性最好,对比未改性的SiO 2,反应温度为60ħ时,KH550对SiO 2的改性可以明显提高SiO 2在DMF 中的分散稳定性[6]㊂2.3.3㊀KH550用量的影响第49卷第4期张于弛,等:KH550改性SiO 2/TPU 复合材料的制备及性能研究43㊀反应温度60ħ,反应时间4h,KH550用量分别为30%㊁40%和50%,KH550对SiO 2沉降稳定性的影响如图5所示㊂图5㊀KH550用量对SiO 2分散相体积的影响Fig.5㊀Effect of KH550dosage on the volume of SiO 2dispersed phase 由图5可知,KH550用量为40%分散效果最佳,KH550继续增加到50%分散相体积略有所下降,这可能是由于纳米SiO 2表面包覆的KH550达到了一定的数量,继续增加KH550用量,反而不利于纳米SiO 2的改性,因此最佳偶联剂KH550浓度为40%㊂2.4㊀SiO 2的用量对TPU复合材料力学性能的影响图6㊀SiO 2添加量对力学性能的影响Fig.6㊀Effect of SiO 2addition on mechanical properties图6为纯TPU 及SiO 2/TPU 复合材料的应力应变曲线和力学性能㊂由图6可知,无论是纯TPU 还是SiO 2/TPU 复合材料,拉伸过程中没有明显的屈服现象㊂断裂拉伸强度较大,表现出良好的韧性㊂从图6中可知少量添加SiO 2,可以改善TPU 材料的断裂伸长率及拉伸强度,SiO 2最佳添加量为1%㊂当SiO 2添加量继续增加时,复合材料的拉伸强度呈现下降趋势㊂这是由于填料含量过多时,填料粒子分散不均,极易发生团聚,从而影响复合材料的力学性能㊂2.5㊀热重分析由图7中两个样品的热重对比观察到,纯TPU 的热分解温度为323ħ,并在483ħ质量损失达到最大值㊂当SiO 2添加量为1wt%时,SiO 2/TPU 复合材料膜的热分解温度提高,热分解温度为338ħ,提高了15ħ,热稳定性明显提高,这说明SiO 2的添加可提高TPU 的耐热性能㊂SiO 2在TPU 基体中的均匀分散及强的SiO 2与TPU 间的界面作用对TPU 热稳定性的改善也会起到重要作用㊂图7㊀TPU㊁SiO 2-TPU 热重对比Fig.7㊀Thermogravimetric comparison of TPU and SiO 2-TPU3㊀结㊀论采用KH550对SiO 2进行接枝改性,改性后的SiO 2在DMF能较好地分散;采用溶液法制备SiO 2/TPU 复合材料,SiO 2添加含量为1%时,能够改善TPU 的拉伸强度,且可以提高SiO 2/TPU 复合材料的热稳定性㊂参考文献[1]㊀Wang WZ,Liu T.Mechanical properties and morphologies ofpolypropylene composites synergistically filled by styrene -butadiene rubber and silica nanoparticles[J].Journal of Applied PolymerScice,2008,109:1654-1660.[2]㊀Garcia M,Vliet G,Jain S,et al.Polypropylene /SiO 2nanocompositeswith improved mechanical properties [J ].Reviews on Advanced Material Science 2004,6:169-175.[3]㊀刘厚钧.聚氨酯弹性体手册[M].北京:化学工业出版社,2012,526-531.[4]㊀公绪强,王雅祺,张利.改性纳米二氧化硅增强增韧聚对苯二甲酸丁二醇酯[J].材料导报B(研究篇),2016,30(2):52-57.[5]㊀Prasertsti S,Rattanasom N.Fumed and precipitated silica whitereinforced natural rubber composites prepared from latex system:Mechanical and dynamic properties [J ].Polymer Testing,2012,31(5):593-605.[6]㊀Jesionowski T,Krysztafkiewicz.Influence of solane coupling agents onsurface properties of precipitated silicas[J].Applied Surface Science,2001,172(1):18-32.。
KH-570改性后磁性Fe3O4纳米粒子的性能表征
KH-570改性后磁性Fe3O4纳米粒子的性能表征谷峪;白娣斯;石小阁;邓晓臣【摘要】将硅烷偶联剂KH-570对Fe3O4纳米粒子进行表面改性后,采用紫外光谱仪、红外光谱(FT-IR)、X射线光电子能谱(XPS),扫捕电子显微镜(SEM)等手段进行表征.结果表明硅烷偶联剂KH-570可有效地进行Fe3O4表面改性,改性后粒子平均粒径为50 nm,磁响应性良好,并在此基础上制得磁性高分子微球.【期刊名称】《广州化工》【年(卷),期】2013(041)002【总页数】3页(P50-52)【关键词】磁性Fe3O4纳米粒子;表面改性;硅烷偶联剂KH-570;磁性高分子微球【作者】谷峪;白娣斯;石小阁;邓晓臣【作者单位】河北联合大学迁安学院,河北迁安064400;河北联合大学迁安学院,河北迁安064400;河北联合大学迁安学院,河北迁安064400;河北联合大学迁安学院,河北迁安064400【正文语种】中文【中图分类】TQ316磁性Fe3O4纳米粒子表面带有大量的羟基,易在水中分散而不易在油相单体中分散,在磁性Fe3O4纳米粒子表面成功引入有机基团是进行改性的关键[1]。
硅烷偶联剂分子中含有水解和非水解两种基团,水解基团水解后可与磁性纳米粒子的表面牢固结合,同时硅烷本身的非水解基团可提高磁性纳米粒子的疏水性及耐热性[2],对磁性纳米粒子具有良好的改性作用。
硅烷偶联剂KH-570(γ-甲基丙烯酰氧基丙基三甲氧基硅烷),具有丙烯基和甲氧基两个不同化学性质的基团,它们可以作为媒介将无机磁性纳米粒子与有机物质相连结[3]。
本实验将硅烷偶联剂KH-570在一定条件下水解,生成硅醇基,再与Fe3O4纳米粒子表面上的Fe-OH产生牢固的化学键[4],最终Fe3O4纳米粒子表面被硅烷偶联剂覆盖,形成改性后的KH-570-Fe3O4粒子。
并通过FTIR、XPS、SEM等手段对改性效果进行表征。
进一步尝试了用改性后的Fe3O4纳米粒子作为内核,制备表面带有功能基团的磁性聚合微球。
硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响
等距离的 , 它们的化学反应活性也不是完全等价 的[1 ,2 ] 。总体来说 ,其表面上有三种羟基 :一是孤立 的 、未受干扰的自由羟基 ;二是连生的 、彼此形成氢 键的缔合羟基 ;三是双生的 ,即 2 个羟基连在 1 个硅 原子上的羟基 。孤立的和双生的羟基一般不形成氢 键 。当超细二氧化硅和湿空气接触时 ,表面上的硅 原子就会和水“反应”,以保持氧的四面体配位 ,满足 表面硅原子的化合价 ,水分子可以不可逆或可逆地 吸附在其表面上 。超细二氧化硅较大的比表面积和 表面羟基的存在而具有反应活性 ,使其在橡胶 、塑 料 、粘合剂 、涂料等领域有广泛的应用 。但超细二氧 化硅的强亲水性导致了其难以在有机相中润湿和分 散 ,限制了其超细效应的充分发挥 ,因此必须对其进 行表面改性 ,目的是改变超细二氧化硅表面的物化 性质 ,提高其与有机分子的相容性和结合力 ,改善加 工工艺 。
Received date :2003 07 02. Approved date :2003 11 14. Biography : WU Wei (1966 - ) , male , doctor , professor. E mail : wuwei @mail. buct . edu. cn Correspondent : QU Yixin. E mail : quyx @mail. buct . edu. cn
2 实验结果及讨论
2. 1 试样的 TEM 分析 图 1 为试样 1 、试样 2 和试样 3 的透射电镜照
片 。由图可见 ,改性后的超细二氧化硅的分散性有 较大的改善 ,由一个个颗粒联结成的立体网络结构 变为由聚合物分子间作用力联结的松散团聚体 。试
实验所用药品 :苯乙烯 ( St) , 分子式为 C6 H5 — CH == CH2 ,天津市化学试剂六厂生产 ,分析纯 ,用作 改性剂 ; KH858 ,分子式为 CH2 == CHSi ( OC2 H5) 3 ; KH570 ,分 子 式 为 CH2 == C ( CH3 ) —COOCH2 CH2 · CH2Si (OCH3) 3 ,南京强威化工有限公司生产 ,用作 改性偶联剂 ;过硫酸氨 ,北京北化精细化学品有限责 任公司生产 ,分析纯 ,用作引发剂 ;甲苯 ,北京益利精 细化学品有限公司生产 ,分析纯 ,用作抽提溶剂 。 1. 2 实验方法
KH570硅烷偶联剂提高聚己内酯复合材料力学性能
材料热处理学报
TRANSACTIONS OF MATERIALS AND HEAT TREATMENT
Vol . 3 1 No . 5
May
2010
KH570 硅烷偶联剂提高聚己内酯复合材料力学性能
邓 迟1,2 , 姚 宁2 , 杨晓兵2 , 王秀红2 , 翁 杰2
( c) KH560-modified HA composite
从图 2 材 料 物 理 性 质 变 化 结 果 可 见,改 性 前 后 HA / PCL 的熔融温度分别为 58. 8 ℃ 和 59. 0 ℃ ,结晶 温度分别为 31. 4 ℃ 和 35. 7 ℃ ,熔融温度和结晶温度 的变化说明 KH570 改性处理改变了复合材料的内部 结构,进 一 步 证 明 了 改 性 处 理 使 KH570 与 HA 发 生 作用。
1 实验材料及方法
1. 1 KH560 硅烷改性工艺 选 取 γ-甲 基 丙 烯 酰 氧 基 丙 基 三 甲 氧 基 硅 烷
( KH560,Q /320115XFH02-2004,) 硅 烷 偶 联 剂,以 相 对于 HA( 平均粒度 200 nm) 的 1. 5 wt % 、2 wt % 、5 wt % 不同的含量对进行表面改性。先配置比例为 9 ∶ 1的乙醇水溶液,用冰醋酸调节溶液的 pH 值至 4. 5, 加入不同含量硅烷 偶 联 剂,超 声 波 处 理 20 min,机 械 继 续搅拌 24 h。将改性的溶液在 80 ℃ 下烘干、研磨, 120 ℃ 真空继续干燥。 1. 2 硅烷改性复合材料制备和成型工艺
分析 KH570 硅 烷 偶 联 剂 与 HA 的 作 用,先 在 酸 性 条 件 下 发 生 水 解 如 下[11 ]:
表面改性处理对氧化铝_环氧树脂复合材料力学性能的影响_英文_
第36卷第9期2008年9月硅酸盐学报JOURNAL OF THE CHINESE CERAMIC SOCIETYVol. 36,No. 9September,2008表面改性处理对氧化铝/环氧树脂复合材料力学性能的影响邓永丽,樊慧庆,张洁(西北工业大学材料学院,凝固技术国家重点实验室,西安 710072)摘要:对未改性和表面偶联处理的氧化铝颗粒填充环氧树脂复合材料(颗粒体积分数为20%,35%和40%)的力学性能进行对比研究。
通过对改性前后复合材料结构的均匀性和抗拉伸性能的分析得出以下结论:添加了偶联处理后的氧化铝颗粒使复合材料的均匀性、断裂强度和弹性模量都有了较大程度的提高。
原因在于对颗粒的表面偶联改性处理使颗粒间存在的黏聚吸附力下降,增加了颗粒与树脂基体间的结合力,使氧化铝颗粒能够在树脂基体中达到很好的分散状态。
采用扫描电镜分析手段对样品断口形貌的分析说明材料内部界面间的结合状态以及颗粒在基体中的分布状况。
关键词:氧化铝/环氧树脂复合材料;力学性能;颗粒增韧;表面改性中图分类号:TB33 文献标识码:A 文章编号:0454–5648(2008)09–1251–05EFFECT OF SURFACE MODIFICATION ON MECHANICAL PERFORMANCES OFALUMINA-DISPERSED EPOXY COMPOSITESDENG Yongli,F AN Huiqing,ZHANG Jie(State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, NorthwesternPolytechnical University, Xi'an 710072, China)Abstract: The homogeneity and mechanical properties of alumina filled epoxy composites with particle volume fractions of 20%, 35% and 40% were investigated. The as-received particles and particles modified with silane coupling agent were used in the com-parison test. The results show that the surface modified particles lead to great improvement in homogeneity, tensile strength and elas-tic modulus. Moreover, the modification of the surface activity of particles reduces the filler–filler interaction and improves the adhe-sion of filler-epoxy resin, achieving high dispersion of the modified alumina in the resin matrix. Scanning electron microscope was employed to illustrate the interface bonding and particle distribution in epoxy resin.Key words: alumina/epoxy composites; mechanical properties; particle-reinforcement; surface modificationModern industry requires new polymeric material that has specific properties, especially the high strength, heat resistance, and low acoustic impedance for the high-vol- tage insulation applications.[1] In order to effectively im-prove such performance, the introduction of well-dis- persed inorganic particles into the polymer matrix has been widely investigated. Due to the excellent matching of the coefficient of thermal expansion (CTE) between alumina and epoxy resin, the alumina filled composites have attracted much attention in an attempt to improve the mechanical properties and reduce the residual stress of polymer composites.[2]However, the added alumina particles easily adhere to each other and form irregular agglomerations in the polymer matrix, which decreases the maximum filler loading and results in inferior mechanical performance.[3–4] Methods of mechanical mixing/dispersion methods such as high speed shearing or milling are not effective in breaking down the agglomeration. In such circumstances, the chemical treatment of particle surface has been de-veloped. The surface treatment removes the surface hy-droxyl groups of the particle and changes the hydrophilic particle surface into a hydrophobic surface.[5–7] Wang et al.[8] have studied the thermal and mechanical收稿日期:2007–12–07。
有机硅改性对环氧树脂固化物性能的影响研究
有机硅改性对环氧树脂固化物性能的影响研究刘钾培;曹建强【摘要】采用含有不同活性官能基团的硅烷偶联剂对双酚A环氧树脂E44进行物理或化学改性,并配以固化剂、促进剂及其他辅料制成有机硅改性单组分环氧胶粘剂.研究了不同种类、不同加入量的硅烷偶联剂对胶粘剂操作性和固化物的拉伸剪切强度、耐温性及抗冲击性的影响.结果表明,仲氨基化学改性环氧树脂所制得的单组分环氧在操作性、耐温性、韧性及拉伸剪切强度方面的综合性能最佳,当硅烷偶联剂加入量为15%时,改性单组分环氧树脂的综合性能最佳.【期刊名称】《粘接》【年(卷),期】2019(000)001【总页数】4页(P26-28,45)【关键词】环氧树脂;硅烷偶联剂;综合性能【作者】刘钾培;曹建强【作者单位】苏州金枪新材料股份有限公司,江苏苏州215100;苏州金枪新材料股份有限公司,江苏苏州215100【正文语种】中文【中图分类】TQ433.4+37单组分环氧胶粘剂粘接强度及内聚力高,电绝缘性能好,收缩率低,广泛应用于金属及非金属(玻璃、陶瓷、硬塑料、木材)等方面的粘接。
但液体环氧的脆性大、韧性差、耐温性差,不能满足更广泛领域应用。
有机硅中-Si-O-Si-的存在使其耐温性、韧性及耐候性好,若将有机硅引入到环氧中对环氧树脂进行改性,有望大大地改善环氧树脂的脆性及耐温性。
本文采用硅烷偶联剂与环氧树脂进行物理共混或化学共聚进行改性,既改善了2者相容性差的问题,又将2种体系胶粘剂的特性集于一体,制得一种韧性好、强度高、抗冲击性能好、耐温性和耐候性好的单组分有机硅改性环氧树脂胶粘剂。
1 实验部分1.1 主要原料双酚A环氧树脂E44,江苏三木集团有限公司;硅烷偶联剂KH550、KH560,杭州硅宝化工有限公司;硅烷偶联剂Y-9669,佛山市道宁化工有限公司;双氰胺、促进剂1202,广州固研电子技术有限公司;丁腈-40,兰州化工厂;氧化铝-3微米、气相二氧化硅,上海迪祥化工有限公司。
碳化硼改性聚苯硫醚短纤维的制备及抗氧化性研究
将前纺原丝经两级拉伸、上油、卷曲、热定形、
线密度:按照 GB / T 16256—2008 《 纺织纤维
度仪测试。
力学性能:按照 GB / T 14337—2008 《 化学纤
维 短纤维拉伸性能试验方法》 ,采用 XQ-1AN 纤
维强伸度仪测试纤维的强力。
抗氧化性:根据浓硫酸处理前后纤维的强力
计算酸处理后纤维的强力保持率,强力保持率高,
研究与开发
合 成 纤 维 工 业, 2024,47( 2 ) :49
CHINA SYNTHETIC FIBER INDUSTRY
碳化硼改性聚苯硫醚短纤维的制备及
抗氧化性研究
任冰涛
( 山东明化新材料有限公司,山东 济南 250204)
摘 要:以纤维级聚苯硫醚( PPS) 树脂和纳米级碳化硼为原料,采用硅烷偶联剂对纳米级碳化硼进行表面
通风橱中干燥,得到酸处理后的纤维试样。
限公司制;100 mL 三口烧瓶:烟台健硕化工有限
1. 5 分析与测试
1. 3 碳化硼改性 PPS 短纤维的制备
线密度试验方法 振动仪法》 ,采用 XD-1 型纤维细
公司制。
1. 3. 1 未改性 PPS 短纤维试样的制备
将 PPS 树脂在 120 ~ 160 ℃ 下真空干燥 8 ~
酸处理前
酸处理后
强力保持率 / %
10. 11
9. 57
94. 7
1#
10. 22
#
10. 23
3
范德华力相互作用结合在一起。 除了碳硼层以
表 2 改性 PPS 短纤维酸处理后的强力保持率
staple fibers after acid treatment
2#
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Membrane Science300(2007)224–231Effect of silane coupling agents on the performance of RO membranesNowon Kim b,Dong Ho Shin a,Yong Taek Lee a,∗a Department of Chemical Engineering&Advanced Materials Engineering,College of Environment and Applied Chemistry,Kyung Hee University,Gyeonggi-do,Republic of Koreab Department of Environmental Engineering,College of Engineering,Dong-Eui University,Busan,Republic of KoreaReceived19October2006;received in revised form23March2007;accepted29May2007Available online13June2007AbstractThis study investigates the effect of silane coupling agents on the performance of reverse osmosis(RO)membranes on the basis of sol–gel coating method.The surfaces of the RO membranes were chemically modified with four different alkoxysilanes in order to reduce their hydrophilicity. The objective of this study is to superpose hydrophobic polysiloxane layer on the surface of a polyamide TFC RO membrane and to increase the extent of salt rejection by the modified membranes.A commercial composite RO membrane(SWC1)was treated with silane coupling agents in ethanol at three different concentrations:1.0,1.5,and2.0%(w/v).The silane coupling agents contain one alkyl or phenyl and three alkoxy groups (e.g.,methyltriethoxysilane,octyltriethoxysilane,octadecyltrimethoxysilane and phenyltriethoxysilane).In addition,the effect of alkyl or phenyl group hydrophobicity on the permeability and salt rejection of the modified membrane was examined.The surfaces of the modified membranes were characterized by SEM,AFM,contact angle analyzer,and XPS in order to confirm successful sol–gel methods.The modified membranes showed significantly enhanced salt rejection without a decrease influx.From the surface analysis results,we can observe the changes in the surface roughness,elemental composition,electron energy,and hydrophilicity.©2007Elsevier B.V.All rights reserved.Keywords:Polyamide;Reverse osmosis membrane;Silane coupling agents;Surface modification;High rejection1.IntroductionReverse osmosis(RO)membrane processes are economical methods for converting feed water into a purified permeate. These processes exhibit various advantages such as high per-meate quality,ease of operation,minimal chemical addition, and low energy requirement[1,2].Conventional studies on RO membrane development focused on enhancing the permeabil-ity and selectivity of membranes.One of the most successful RO membranes is the aromatic polyamide thin-film-composite (TFC)membrane.Cadotte prepared an aromatic polyamide film—the interfacial reaction product of an aromatic polyamine having at least two primary amine groups as substituents and an aromatic acyl halide having at least three acyl halide groups as substituents[3].A number of studies have been conducted to improve the salt rejection ratio andflux of RO membranes based on the aromatic polyamide TFC membrane ∗Corresponding author.Tel.:+82312012577;fax:+82312021946.E-mail address:yongtlee@khu.ac.kr(Y.T.Lee).structure[3–8].Such improved RO membranes facilitate the reduction of the economic costs incurred in water treatment processes.In recent years,a new scheme of RO seawater desalination, referred to as the brine conversion two-stage process,has been introduced[9].In this process,pretreated seawater is fed to the first stage,and a permeate recovery of approximately40%is obtained;the concentrate from thefirst stage is introduced to the second stage,yielding more permeate.Consequently,the water recovery ratio increases from40to60%.This two-stage process permits a small plant size and low water production costs.How-ever,this process requires considerable improvement in the RO membrane performance because the feed water concentration at the second stage is up to60,000ppm and the operating pressure is almost60kg f/cm2.Generally,the seawater desalination process is requested the quality of water under350ppm after desalination treatment. When the feed water concentration is up to60,000ppm,the process becomes possible through the development of a new composite membrane,which has higher salt rejection than com-mercial seawater membranes.0376-7388/$–see front matter©2007Elsevier B.V.All rights reserved. doi:10.1016/j.memsci.2007.05.039N.Kim et al./Journal of Membrane Science300(2007)224–231225Fig.1.The general mechanism of sol–gel methods for surface modification with trialkoxyalkylsilane compounds.Most of RO membranes are prepared by the interfacial poly-merization of the active thinfilms on the microporous support layer.For the interfacial polymerization,diamines and acyl chlo-rides were used.A number of methods were reported to enhance theflux and salt rejection of membranes,using various diamines,acyl chlorides,amine salts and polar organic solvents.This study is concerned with the high rejection membranes based on the sol–gel condensation of silane coupling agents,which is not induced by the additives during interfacial polymerization but the silane coupling agents on the polyamide surface.We previously reported a method to improve salt rejection by treating polyamide TFC RO membrane through sol–gel reaction [10].Treatment of polyamide TFC RO membranes with MeTES (methyltriethoxysilane)or OcTES(octyltriethoxysilane)signif-icantly increased salt rejection.The essential step is the sol–gel methods of silane coupling reagents on the polyamide surface. The general mechanism of sol–gel methods with trialkoxyalkyl-silane compounds to form polysiloxane is shown in Fig.1[11].We have found trialkoxyalkylsilane chemicals are suitable for second coating on the polyamide surface.This paper focuses on the relationship between the structure of silane coupling agents and the properties of RO membranes.We select two silane coupling agents,OdTMS(octadecyltrimethoxysilane) and PhTES(phenyltriethoxysilane).OdTMS has a long-chain aliphatic functional group andflexible carbon chain structure. PhTES has a phenyl functional group and rigid structure.Both silanes are much more hydrophobic than MeTES or OcTES. In this study,OdTMS or PhTES treated membranes are com-pared their permeability and selectivity with those of MeTES or OcTES treated membranes.We examined the influence of the alkyl or aryl hydrophobic factor on water permeabilities and solute selectivities in modified membranes based on extensive surface characterization experiments.2.Experimental2.1.MaterialsCommercially available seawater RO membranes were obtained from Hydranautics Corporation.MeTES(Sigma–Aldrich,98%),OcTES(Sigma–Aldrich,96%),OdTMS (Sigma–Aldrich,98%)and PhTES(Sigma–Aldrich,98%) were used without further purification.Absolute ethanol (Sigma–Aldrich,99.9%)was used to prepare the silane cou-pling solution.Potassium metabisulfite(Sigma–Aldrich,99%)and potassium persulfate(Sigma–Aldrich,99%)were used to etch the polyamide surface of the RO membranes.Sodium chlo-ride(NaCl,Duksan Chemical Co.,98%)was used to test the performance of the RO membranes.Deionized water was used in all the membrane preparation processes and performance tests.2.2.Preparation of silane-coated TFC membranesCommercial membrane modules were subject to an autopsy, and their sheets were washed with deionized water.The mem-branes were immersed in an aqueous solution containing5% (w/v)of propyleneglycol for30min followed by draining of the excess solution.The wet membranes were dried at70◦C in a vacuum oven.Then,the membranes were taped on a glass plate,immersed in an aqueous solution containing0.01M potassium metabisulfite and0.01M potassium persulfate for 30min,and rinsed with deionized water to remove any residues. Each of the aqueous silane solutions containing a catalytic amount of nitric acid was coated on the membranes and cured at70◦C for10min.Four different silanes were used and the following abbreviations were used to denote each silane-coated membrane:MeTES n(methyltriethoxysilane),OcTES n (octyltriethoxysilane),OdTMS n(octadecyltrimethoxysilane) and PhTES n(phenyltriethoxysilane).The subscript n denotes the %(w/v)concentration of the prepared silane solution(Fig.2).2.3.Membrane characterizationRO membrane performance was tested using a laboratory-scale batch test unit with sixflat cells.The apparatus comprised a40l feed reservoir,three parallel stainless steel test cells with an effective membrane area of27.01cm2,and needle valves to control the hydraulic pressure.The feed solution was adjusted to 35g/l of the aqueous NaCl solution.The permeability test was conducted at an operating pressure of55kg f/cm2,feed solution flow rate of4.5l/min,and temperature of25◦C.The water per-meability and salt rejection of membranes were measured by collecting the permeate for30min after stabilization for30min. All membranes were tested in duplicate,and the results were averaged.The performance of the RO membranes is reported in terms of salt rejection and permeateflux.A digital conductivity meter (460CP,Istek electronics,Korea)was used for measuring the conductivities of the feed solution and permeate sample.The salt rejection(SR)and permeateflux are calculated by the following equations:SR(%)=1−permeate conductivityfeed conductivity×100(1)flux(MMD)=permeate volume(m3)membrane area(m2)×time(day)(2)It is extremely difficult to apply conventional analysis tech-niques to the structural characterization of silane-treated mem-branes.The silane condensation was carried out on a polyamide film layer.Polyamides have a crosslink structure;hence,it is insoluble in most polar solvents.Moreover,its polymerization226N.Kim et al./Journal of Membrane Science 300(2007)224–231Fig.2.Silane coupling agents:(a)MeTES,(b)OcTES,(c)OdTMS,and (d)PhTES.on the surface pores of the porous support was very thin and tight [12].It is almost impossible to separate polysilox-ane from a polyamide thin film for membrane characterization purposes.The images of the surface of the membranes were observed with an atomic forced microscope (AutoProbe CP,Thermo Microscope Inc.,USA)used in the non-contact mode and scan-ning electron microscope (SEM:Lica,stereoscan 440,USA).X-ray photospectroscopy (ESCA2000,VG Microtech,GB)was performed to obtain information on the composition of the mem-brane surface layer.An Al K ␣monochromated X-ray source (h =1486.6eV)was used to stimulate photoelectron emission.The measurements were conducted at a take-off angle of 90◦,power of 170W,and chamber pressure of 4.0×10−9Torr.The hydrophilicity of the membranes was observed with a contact angle analyzer (Phoenix300,First-ten Angstrom,USA).The contact angle measurements were carried out with a 6-l drop of deionized water.Images were captured 5s after introducing the drop and the contact angles were calculated.In order to remove siloxane oligomers,all the membranes subject to surface analy-sis were rinsed with deionized water using a test cell apparatus operated at a pressure of 4kg f /cm 2,flow rate of 4.5l/min,and temperature of 25◦C.3.Results and discussion 3.1.Membrane performanceSilane coupling agents can be used to modified membrane surfaces containing organic or inorganic materials [10,13,14].The silanes selected in this study contain one alkyl or aryl and three alkoxy functional groups.The alkoxy groups were con-sumed during the sol–gel reaction methods,and the resulting polysiloxane contained only one alkyl or aryl group.Four differ-ent silane coupling agents were used,which contained methyl,octyl,octadecyl or phenyl functional groups.Using a seawater desalination test procedure,the membrane performance for the commercial composite RO membranes (SWC1)and silane-treated membranes was evaluated and their results are summarized in Table 1.As the silane concentra-tion increased,the water flux decreased and salt rejection increased.The MeTES n membranes showed some decrease in the flux;however,the MeTES 2.0membrane showed increased salt rejection.The OdTMS n membranes also showed increased salt rejection up to 99.7%;however,they showed a consider-able decrease in the flux.The decrease in flux of the PhTES n and OcTES n membranes was less than that of the MeTES n or OdTMS n membranes.In particular,the PhTES 2.0membrane shows 99.6%salt rejection at a water flux of 0.673m 3/(m 2day),and the PhTES 1.5membrane shows 99.5%salt rejection at a water flux of 0.739m 3/(m 2day).3.2.Contact angle analysisThe membrane surfaces have been physically characterized using a contact angle analyzer.The contact angle measurement between solids and liquids is a commonly used technique to study hydrophobicity of the surface.Although changes in the contact angle do not provide direct evidence about the polysilox-ane structure,they provide a worthwhile explanation of the extent of polysiloxane modified on the membrane surface.Fig.3shows the images of the contact angles for the SWC1,MeTES n ,OcTES n ,OdTMS n and PhTES n membranes.Differences are observed in their hydrophobic properties based on their alkyl or aryl group structure and silane solution concentration.The rela-tionships between hydrophobicity and permeate performance of membranes are shown in Table 1.The MeTES 1.5and MeTES 2.0membranes showed almost similar contact angles,and even theN.Kim et al./Journal of Membrane Science 300(2007)224–231227Table 1Results of performance and contact angle measurement Membrane n (wt.%)Salt rejection a (%)Flux a (m 3/(m 2day))Contact angle b (◦)SWC1–99.20.84852.1MeTES n1.098.90.55040.51.599.00.55153.12.099.50.55055.8OcTES n1.099.50.795701.599.60.652942.099.50.509110OdTMS n1.099.30.420821.599.50.3061042.099.70.249128PhTES1.099.10.80966.51.599.50.739682.099.60.67368a All results were obtained with 35g/l NaCl feed solution at an operating pressure of 55kg f /cm 2,flow rate of 4.5l/min,and temperature of 25◦C.bMeasurements were performed 10s after introducing the water drop.MeTES 1.0membrane showed a decreased contact angle.All the MeTES n membranes showed similar permeate fluxes;how-ever,the salt rejection increased with the silane concentration.The contact angles of the OcTES n and OdTMS n membranes are remarkably proportional to the silane concentration.Both membranes contain flexible long-chain carbon groups and the hydrophobicity of the membranes depends on their carbon chain number.After surface modification,the fluxes of the OcTES n and OdTMS n membranes decreased.Although their fluxes decreased,all the silane-coated membranes showed improved salt rejection.In particular,the OcTES 1.0membrane shows high salt rejection with a small decrease in flux.The PhTES n membranes contain rigid and hydrophobic phenyl group so that the hydrophobicity of the membranes increased.But the PhTES n membranes show smaller increase in hydrophobicity than the OcTES n and OdTMS n membranes.As a result,the PhTES n membranes show small decreases in flux but significant increases in salt rejection.It is supposed that phenyl group of the PhTES n membranes not only acts as hydrophobic environment but also affords a small decrease influx.Fig.3.Images of contact angle with various silane coupling agent concentrations:(a)SWC1,(b)n =1.0,(c)n =1.5,and (d)n =2.0.228N.Kim et al./Journal of Membrane Science 300(2007)224–231Fig.4.SEM images of silane-coated membrane surface at 30,000×:(a)SWC1,(b)MeTES 2.0,(c)OcTES 2.0,(d)OdTMS 2.0,and (e)PhTES 2.0.3.3.Surface structure analysis by SEMSEM micrographs were used to compare the surface structure of SWC1with that of the silane-coated membranes (n =2.0),as shown in Fig.4.The image of SWC1shows a confused peak-and-valley and nodular structure.The peak-and-valley structure is a general feature of polyamide RO membranes and nodu-lar structure is observed in high salt rejection RO membranes [15].Meanwhile,the surfaces of the silane-coated membranes show well-developed peaks and valleys filled with polysiloxane.The image of MeTES 2.0shows a well-developed peak-and-valley structure,while the OcTES 2.0membrane shows a small and loose peak-and-valley structure.The OdTMS 2.0membrane shows a small and dense peak-and-valley structure.These obser-vations are in good agreement with the number of carbon chains substituted in the polysiloxane.Because the MeTES 2.0mem-brane has small methyl group,it is free from steric hindrance in polymerization.But the OcTES 2.0membrane or OdTMS 2.0membrane may be interrupted by their long-chain aliphaticcarbon in polymerization.The PhTES 2.0membrane shows a completely different surface structure to that of the OcTES 2.0or OdTMS n membranes.The PhTES 2.0membrane shows a surface structure similar to that of MeTES 2.0;however,the sharpness of the images is considerably less.In the MeTES 2.0and PhTES 2.0membrane,they contain a rigid methyl or phenyl group.Further-more,the stacking interaction between phenyl groups affords parallel array in sol–gel condensation,PhTES 2.0membrane shows a huge peak-and-valley structure.3.4.Surface structure analysis by AFMUsing AFM analysis,we can obtain the 3D images and height histograms from a specific projection area.In order to mini-mize the sample damage and maximize the resolution,AFM was operated in the non-contact mode.The 3D images of the four membranes are shown in Fig.5,and the statistical values of sur-face roughness and area of all membranes are listed in Table 2.The scales of the X -and Y -axes are 2m ×2m,while theN.Kim et al./Journal of Membrane Science300(2007)224–231229Fig.5.AFM images of silane-coated membrane surface at20,000×:(a)SWC1,(b)MeTES2.0,(c)OcTES2.0,(d)OdTMS2.0,and(e)PhTES2.0.Z-axis is automatically scaled by the instrument.The statistical parameters are peak-to-valley distance(R p–v),average rough-ness(R a),root-mean-square roughness(R rms),and surface area. From the statistical values listed in Table3,a similar surface morphology for all the samples except SWC1can be observed. It is assumed that the change in roughness is caused by an overlap of polysiloxane on the polyamide surface.The surface areas of all the silane-treated membranes decreased.The surface areas Table2Surface roughness and area values of modified RO membranesMembranes n Surface roughness(nm)Surface area(nm2)R a R rms R p–vSWC1–63.580.1887192MeTES n 1.068.687.57051311.557.772.96001262.054.668.6535124OcTES n 1.047.759.94711221.560.275.76041282.073.494.7805140OdTMS n 1.072.393.38981351.571.989.25731372.059.874.9533128PhTES n 1.081.51015851191.593.41137081592.092.9117847155of the MeTES n and OdTMS n membranes decreased with an increase in silane concentration.However,the surface area of the OcTES n and PhTES n membranes increased with the silane concentration.A similar tendency was observed in the rough-ness.The R a,R rms,and R p–v values of MeTES n and OdTMS n membranes decreased with an increase in the silane concentra-tion;however,the roughness values of the OcTES n and PhTES n membranes increased.In previous studies,there is a close cor-relation of the surface area and roughness with the permeation flux;theflux increases with the surface area and roughness[5]. The behavior of the OdTMS n membranes was in good agree-ment with this rule,and thefluxes of the MeTES n membranes were already saturated at1.0%(w/v)concentration.However, the OcTES n and PhTES n membranes showed a relatively lesser surface area and roughness,but greaterflux than the MeTES n membranes and particularly the OdTMS n membranes.Theflux behavior may be attributed to the differences in the polymer development between the silanes.It is considered that the car-bon chain number of the silanes is affected by the morphological changes during sol–gel methods for surface modification.3.5.Surface analysis by XPSThe SWC1membrane comprised a polyamide thinfilm, porous polysulfone support layer,and non-woven polyester.The silane solutions were deposited on the SWC1membrane,which was polymerized at70◦C;then,membranes were obtained with230N.Kim et al./Journal of Membrane Science300(2007)224–231Table3Elemental analysis of the membrane surface using XPSMembranes n Atomic contents(%)Atomic ratioC N O Si N/C O/C Si/C Si/O SWC1–69.110.520.4–0.1520.295––MeTES n 1.070.69.7416.7 2.960.1380.2400.0420.1771.565.98.5619.8 4.720.1290.3000.0700.2382.069.98.0317.83.470.1150.2550.0500.194 OcTES n 1.070.810.316.3 2.620.1450.2300.0370.1601.572.47.6316.1 2.640.1050.2200.0360.1642.073.64.3514.9 6.720.0610.2020.0910.452 OdTMS n 1.071.47.5317.8 3.310.1060.2490.0470.1861.578.6 5.2311.7 3.830.0660.1490.0490.3282.081.53.6111.0 3.530.0440.1340.0400.322 PhTES n 1.072.69.9116.50.990.3160.2270.0140.0601.572.58.9516.9 1.710.1230.2330.0240.1012.071.98.7717.0 2.270.1210.2360.0320.134an integrally skinned structure.Although the contact angles, SEM images,and AFM data provide substantial information regarding the surface,they cannot provide direct evidence regarding the successful occurrence of sol–gel method for surface modification.XPS analysis is a suitable method for investigating the skin layer in order to gain a more thorough understanding of the nature of the surface composition.The sur-face compositions of the SWC1,MeTES n,OcTES n,OdTMS n and PhTES n membranes are listed in Table3.Very little silicon was observed at the surface of the SWC1membrane.In con-trast,all the silane-treated membranes contained silicon.There is an obvious decrease in nitrogen content with an increase in the value of n.Furthermore,the structure of the silane agents also affects the nitrogen content;the OdTMS n membranes,which have a long-chain alkyl group,show a significant decrease in nitrogen content as compared to the MeTES n membranes.The decrease in nitrogen content of the PhTES n and MeTES n mem-branes was less than that of the OcTES n or OdTMS n membranes. With regard to the carbon concentration,the interpretation of the XPS results is considerably complex as compared to that of nitrogen or silicon because the carbon content is associated with both the polyamide and polysiloxane.The carbon content ratio of MeTES and PhTES are less than that of polyamide. This implies that the carbon content of MeTES n and PhTESn Fig.6.XPS spectra for the SWC1,MeTES2.0,OcTES2.0,OdTMS2.0and PhTES2.0membranes:(a)Si2p3/2,(b)C1s,(c)O1s,and(d)N1s.N.Kim et al./Journal of Membrane Science300(2007)224–231231decreased with an increase in the silane concentration.On the contrary,the carbon content ratios of OcTES and OdTMS are greater than that of polyamide.The carbon content of OcTES n showed a slight increase and that of OdTMS n showed a sig-nificant increase with the silane concentration.Especially,N contents of surface layer are a strong evidence of their rela-tionship between the membrane performance and the silane concentration.The silane compounds do not have N element but polyamide has.Therefore,the decrease of N contents by sol–gel condensation means that the polysiloxane layer shields polyamide layer and the shield effect is proportional to the silane concentration.From the results of XPS analysis,the carbon and nitrogen contents can be changed with the silane concentration and chemical structure of polysiloxane.Fig.6shows the C1s,O1s,N1s,and Si2p3/2spectra for the SWC1,MeTES2.0,OcTES2.0,OdTMS2.0and PhTES n membranes.The shapes of the C1s,O1s,N1s,and Si2p3/2 spectra were similar for all the membranes.In case of the MeTES2.0,OcTES2.0,and OdTMS2.0membranes,no differ-ences were observed in the binding energy of C1s,and N1s, Si2p3/2,except O1s.Although the MeTES2.0,OcTES2.0,and OdTMS2.0membranes have different substituted alkyl groups, the chemical structure and shielding effect do not change the binding energy of each atom.However,the binding energy of O1s showed a shift of0.5–1.0eV.The oxygen of the carboxyl group attached to the polyamide can be stabilized by electrostatic attraction with the silicon atom.The difference in the binding energy depends on the molar concentration of the silane solu-tion used in sol–gel method for surface modification.MeTES has the highest molar concentration of silicon at the same% (w/v)concentration.Furthermore,the methyl group of MeTES is rigid and has a shorter carbon chain as compared to the octyl group of OcTES and octadecyl group of OdTMS.This explains the small shift in the O1s binding energy in the MeTES2.0mem-brane.The PhTES2.0membrane shows a significant change in the binding energy of Si2p3/2.The increased binding energy of Si2p3/2is due to the chemical structure of PhTES2.0membrane, the stacking interaction between phenyl groups stabilizes the electron state of silicon atom,and then the binding energy of Si 2p3/2of the PhTES2.0membrane showed a shift of0.5–1.0eV.4.ConclusionIn this study,a novel method for the preparation of high salt rejection membranes was investigated using long-chain alkyl substituted silane agent and rigid phenyl substituted silane agent.Measurements for initial performance were carried out using a batch-scaled test cell unit.The relativeflux of the silane-coated membranes decreased,but their selectivity toward NaCl increased to99.6%.In particular,the PhTES2.0mem-brane showed99.6%salt rejection at a water permeability of0.673m3/(m2day).The characteristics of the silane-coated membranes were analyzed using FE-SEM,XPS,and contact angle analyzer.Although the results of the analyses did not exactly match the silane solution concentration,we found that the contents of coated polysiloxane were significantly propor-tional to the silane concentration.The main conclusion of this study is that the modified of hydrophobic polysiloxane on the surface of a polyamide TFC RO membrane can enhance NaCl salt rejection.AcknowledgementThis research was supported by a grant(4-4-2)from Sustain-able Water Resources Research Center of21st Century Frontier Research Program.References[1]R.J.Petersen,J.E.Cadotte,Thinfilm composite reverse osmosis mem-branes,in:M.E.Porter(Ed.),Handbook of Industrial Membrane Technology,Noyes Publication,Park Ridge,NJ,1990,p.307.[2]R.J.Petersen,Composite reverse osmosis and nanofiltration membranes,J.Membr.Sci.83(1993)81.[3]J.E.Cadotte,Interfacially synthesized reverse osmosis membrane,USPatent4,277,344(1981).[4]J.-Y.Koo,N.Kim,Composite polyamide reverse osmosis membrane andmethod of producing the same,US Patent6,015,495(1998).[5]M.Hirose,H.Ito,Y.Kamiyama,Effect of skin layer surface structures ontheflux behavior of RO membranes,J.Membr.Sci.121(1992)209. [6]J.E.Tomaschke,Interfacially synthesized reverse osmosis membrane con-taining an amine salt and processes for preparing the same,US Patent 4,872,984(1989).[7]N.N.Li,M.A.Kuehne,R.J.Petersen,Highflux reverse osmosis membrane,US Patent6,162,358(2000).[8]M.Hirose,H.Ito,M.Maeda,K.Tanaka,Highly permeable compositereverse osmosis membrane,method of producing the same,and method of using the same,US Patent5,614,099(1997).[9]M.Taniguchi,M.Kurihara,S.Kimura,Behavior of a reverse osmosis plantadopting a brine conversion two-stage process and its computer simulation, J.Membr.Sci.183(2001)249.[10]D.H.Shin,N.W.Kim,Y.T.Lee,Surface modification of reverse osmosismembrane skin layer by silane compound,Membr.J.16(2006)106. [11]T.Sano,M.Hasegawa,S.Ejiri,Y.Kawakami,H.Yanagishita,Improvementof the pervaporation performance of silicalite membranes by modification with a silane coupling reagent,Micropor.Mater.5(1995)179.[12]I.J.Roh,J.-J.Kim,S.Y.Park,Mechanical properties and reverse osmosisperformance of interfacially polymerized polyamide thinfilms,J.Membr.Sci.197(2002)199.[13]E.Ferjani,M.Mejdoub,M.S.Roudesli,M.M.Chehimi,D.Picard,M.Delamar,XPS characterization of poly(methylhydrosiloxane)-modified cellulose diacetate membranes,J.Membr.Sci.165(2000)125.[14]Y.K.Kim,N.W.Kim,Y.T.Lee,Silane–polyamide composite membraneand method there of,KR Patent10-0583136-0000(2006).[15]S.-Y.Kwak,D.W.Ihm,Use of atomic force microscopy and solid-stateNMR spectroscopy to characterize structure–property–performance corre-lation in high-flux reverse osmosis(RO)membranes,J.Membr.Sci.158 (1999)143.。