工程光学第七章习题及答案
工程光学课后答案-第二版-郁道银
工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学-李湘宁-习题解析
r ? 30mm y n?1
n?? 1.52
? y?
r ? 30mm
? l ? 180mm
l?
? ? y?? ? 8.49 ? ? 0.47
y 18
y?? ? 8.49mm
缩小、倒立、实像
2020/7/30
第七章 光度学基础
3
2 ? 2. 一个球面半径 r ? 30mm,物像方的折射率 n ? 1,n?? 1.5,平行光的 入射高度为10mm。(1)求实际出射光线的像 方截距;(2)求近轴 光线的像距,并比较之 。
? ? I ? I?? U ?
U ?? ? ? I?? 19.47 ? 12.84 ? 6.63?
L??
r
(1?
ssiinnUI ??)
?
30 ?
??1? ?
sin 12.84? sin 6.63?
?? ?
?
87.74
(2) 近轴光线的像距
n?? n ? n?? n l? l r
1.5 ? 1 ? 1.5 ? 1 l? ? ? 30
9
2 ? 8. 在汽车驾驶员的侧面有 一个凸面反射镜,有一 个人身高1.75m,在 凸面镜前的1.75m处,被球面镜成像在镜 后0.1m处,求此人的像高 和凸面镜的半径。
1? 1? 2 l1? l1 r
1 ? 1 ? 2 ? r ? ?120mm ? 100 ? 150 r
f=f ?= r ? ? 120 ? ?60mm f ?? 0
22
1? 1?2 l2? l2 r
1 ?1? 2 ? 150 l2 ? 120
l2 ? ?42.857mm
凹面镜
2020/7/30
第七章 光度学基础
工程光学课后答案完整版_机械工业出版社_第二版_郁道银
第一章习题1 、已知真空中的光速c =3 m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、 火石玻璃(n=1.65)、加拿大树胶( n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333 时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99 m/s, 当光在火石玻璃中,n =1.65 时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97 m/s , 当光在金刚石中,n=2.417 时,v=1.24 m/s 。
2 、一物体经针孔相机在 屏上成一 60mm 大小的像,若将屏拉远 50mm ,则像的 大小变为 70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不 变,令屏到针孔的初始距离为 x ,则可以根据三角形相似得出:所以 x=300mm即屏到针孔的初始距离为 300mm 。
3 、一厚度为200mm 的平行平板玻璃(设 n=1.5),下面放一直径为 1mm 的金 属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为 x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到 金属片。
而全反射临界角求取方法为:(1)其中 n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界 角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径 x=179.385mm , 所以纸片最 小直径为 358.77mm 。
4 、光纤芯的折射率为n纤的数值孔径(即 n1、包层的折射率为n2,光纤所在介质的折射率为n 0,求光 I 0sinI1,其中1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
工程光学习题解答
60 70
A
O
A
A
n0 sin I1 n1 sin I 2 6、解: I 2 900 I m n1 sin I m n2 sin 900 sin I m n2 n1
2 2 n2 n2 2 cos I m 1 2 n0 sin I1 n1 1 2 n12 n2 n1 n1
lr
lp
7-1
或:近视眼的远点距离为 lr 0.5m,其戴上眼睛能看清的远 点距离为物距 l,通过眼镜后成像在眼睛的远点距离 lr 上: 即:由 1 1 2D, 1 1 1 1D 得: l 1m 1000 mm
l lr f 1m l
(5)由于 A R P 8D lr l p 得: l 1 0.11m
H
F2 F1
lH
f
F
d
(lk ) lF
L
第二章 理想光学系统
9、已知一透镜 r1 200mm, r2 300mm, d 50mm, n 1.5 , 求其焦距、光焦度、基点位置。 nr1r2 解: f 1440mm 1.44m (n 1)[ n(r2 r1 ) (n 1)] 1 0.69 D f n 1 n 1 f lH d1 120mm, lH f d 2 80mm n n lH f 1560mm, lF l H f 1360mm lF
tan y / 250 y h P 250 h y 而:y D P 2 250 h 500 h 500 9 2y 10(mm ) 所以: P P 9 50
y
l 200 mm 250 mm
工程光学第二版习题答案(李湘宁_贾志宏)
丝,问其通过球面的共轭像在何处?当入射高度
h=10mm,实际光线的像方截距为多少?与高斯像面的距离
为多少?
解:
8、一球面镜半径 r=-100mm, 求 = 0 , -0.1 , -0.2 , -1 ,1 , 5, 10,∝时的物距像距。
第 4 页 共 29 页
解:( 1)
东北石油大学测控 09 级工程光学期末复习资料
解:
100mm,则所得像与物
6.希望得到一个对无限远成像的长焦距物镜,焦距 系统最后一面到像平面的距离 (工作距) 为 并画出光路图。
解:
=1200mm,由物镜顶点到像面的距离 L=700 mm,由 ,按最简单结构的薄透镜系统考虑, 求系统结构,
7.一短焦距物镜,已知其焦距为 系统结构。
35 mm,筒长 L=65 mm,工作距 , 按最简单结构的薄透镜系统考虑,求
3.一光学系统由一透镜和平面镜组成,如图
3-29 所示,平面镜 MM与透镜光轴垂直交于 D 点,透镜前方
离平面镜 600 mm有一物体 AB,经透镜和平面镜后,所成虚像
至平面镜的距离为 150 mm,且像高为
物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
解:平面镜成 β =1 的像,且分别在镜子两侧,物像虚实相反 级工程光学期末复习资料
第六章习题
1.如果一个光学系统的初级子午彗差等于焦宽(),则
应等于多少?
解:
2.如果一个光学系统的初级球差等于焦深
(),则
应为多少? 解:
3. 设计一双胶合消色差望远物镜,
和火石玻璃 F2(
,
面的曲率半径。
解:
,采用冕牌玻璃 K9 (
解:设一个气泡在中心处,另一个在第二面和中心之间。
工程光学习题参考答案第七章 典型光学系统
第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。
解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。
工程光学习题参考答案第七章 典型光学系统
第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。
解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。
后六章工程光学习题及解答
I1]) / 1.471 相同,故前光线的光程差为 OPD ([ AO] [ A1
后光线:以 M 面作为起始面,后光线的初始数据为:
X 1 DEP /2,Y1 L tan U, Z1 0 K1 0, L1 n1 sin U , M1 n1 cosU
[AO]=[AB]+[BC]+[CD]+[DE]+[EF]+[FG]+[GH]-[HO]; 计算可得每一段的光程为: [AB]=0.311mm,[BC]=8.119mm,[CD]=8.380mm, [DE]=2.689mm,[EF]=7.121mm,[FG]=4.341mm, [GH]=69.847mm,[HO]=80.533mm. 故主光线的光程为:[AO]=20.274mm. 上光线:同样以 M 面作为起始面开始光线追迹,依次经过每个折射面,到达高斯像面后反 向追迹到参考波前,可得到上光线的光程. 上光线的光程为:
OPD
子午面
H1 H
M
I1
A1
A1'
出瞳
F1
D1
E1
上光
G1
G
线
B1
C1
D
B
E
F
主光
线Leabharlann 高 斯 像 面AT
C
O
线 下光
参考波前 实际波前
提示:主光线和其它光线分别从垂直于主光线并过T点的切平 面进行光线追迹至参考球,再求它们间的光程差
图 7.1 解: (1)确定照相物镜的入瞳位置 L :由于系统没有专门设置的光孔,这里假设第四面为孔 径光阑.于是先根据 ynu 光线追迹方法计算入瞳的位置(逆光线计算).设轴上点发出的光线 在 第 一 面 上 的 高 度 为 y1 10mm , 物 距 此 时 等 于 间 隔 t1 1.6mm , 所 以 ,
工程光学课程的部分习题和答案
第一章习题1、已知真空中的光速c=3×108 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
工程光学习题答案
工程光学习题答案第一章习题及答案1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中, n=1.333 时,v=2.25*108m/s,当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s,当光在火石玻璃中,n=1.65 时,v=1.82*108m/s,当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s,当光在金刚石中,n=2.417 时,v=1.24*108m/s。
2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm 即屏到针孔的初始距离为300mm。
3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
工程光学习题解答--第七章-典型光学系统
工程光学习题解答--第七章-典型光学系统第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。
解: ① 21-==rl R )/1(m∴ ml r5.0-=②PR A -= D A 8= D R 2-=∴D A R P 1082-=--=-=m P l p1.01011-=-== ③f D '=1 ∴m f 1-=' ④D D R R 1-=-=' m l R1-='⑤P R A '-'= DA 8=D R 1-='DA R P 9-=-'='m l P11.091-=-='2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
已知:放大镜 mm f 25=' mmD 18=放mm P 50='mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①f D P '-'-=Γ125501252501250-+=''-+'=f P feye92110=-+=②由%50=K 可得:18.050*2182=='='P D tg 放ωωωtg tg '=Γ ∴02.0918.0==ωtg D y tg =ω ∴mmDtg y 502.0*250===ω∴mm y 102= 方法二:18.0='ωtg Θmmtg y 45*250='='ωmml 200-='mmfe 250='mm l 2.22-=yy l l X'==='=92.22200βΘmm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='l l =-'1125112001=--lmml 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e25='。
工程光学习题解答第七章_典型光学系统
第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。
解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg Θ mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200βΘ mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。
工程光学习题答案(附试题样本)
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学第二版习题答案李湘宁贾志宏
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学习题解答--第七章-典型光学系统
灯丝到物面的距离100mm临界照明
求: 和通光孔径.
解:
∴
∴
6.为看清4km处相隔150mm的两个点(设 ),若用开普勒望远镜观察,则:
(1)求开普勒望远镜的工作放大倍率;
(2)若筒长 ,求物镜和目镜的焦距;
(3)物镜框是孔径光阑,求出射光瞳距离;
(4)为满足工作放大率的要求,求物镜的通光孔径;
④
15.一透镜焦距 ,如在其前边放置一个 的开普勒望远镜,求组合后系统的像方基点位置和焦距,并画出光路图。)
解: ,求得:
答:组合后的焦距是-180mm。基点位置如图所示。
其光路图如下所示:
16.已知, 的双凸透镜,置于空气中。物A位于第一球面前 处,第二面镀反射膜。该物镜所成实像B位于第一球面前 ,如图所示。若按薄透镜处理,求该透镜的折射率n。()
解:
14.开普勒望远镜的筒长255mm, , , ,无渐晕,
(1)求物镜和目镜的焦距;
(2)目镜的通光孔径和出瞳距;
(3)在物镜焦面处放一场镜,其焦距为 ,求新的出瞳距和目镜的通光孔径;
(4)目镜的视度调节在 (屈光度),求目镜的移动量。
① 解得
②
由三角形相似得:
有大三角形相似得:
③
物镜经场镜成像
经目镜成像
(5)
(6)
(7)望远系统光路图如下:
18.思考题
1、用一具已正常调节的望远镜,用来观察地面上的建筑物,怎样调节镜筒的长
度?
答:一具已正常调节的望远镜是用来观察极远的问题的。对物镜而言,物距
接近无穷远,其像距就是物镜的焦距;而对于目镜而言,目镜的物距就是它的焦
距,目镜的像距为无穷远。所以此时筒长等于两透镜的焦距之和。当用它观察地
工程光学习题解答
6.希望得到一个对无限远成像的长焦距物镜,焦距 =1200mm,由物镜顶点到像面的距离L=700 mm,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。
解:
7.一短焦距物镜,已知其焦距为35 mm,筒长L=65 mm,工作距 ,按最简单结构的薄透镜系统考虑,求系统结构。
(1) 其远点距离;
(2) 其近点距离;
(3) 配带100度的近视镜,求该镜的焦距;
(4) 戴上该近视镜后,求看清的远点距离;
(5) 戴上该近视镜后,求看清的近点距离。
解:远点距离的倒数表示近视程度
2.一放大镜焦距 ,通光孔径 ,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。
4.用焦距=450mm的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm的玻璃平板,若拍摄倍率 ,试求物镜后主面到平板玻璃第一面的距离。
解:
此为平板平移后的像。
5.棱镜折射角 ,C光的最小偏向角 ,试求棱镜光学材料的折射率。
解:
6.白光经过顶角 的色散棱镜,n=1.51的色光处于最小偏向角,试求其最小偏向角值及n=1.52的色光相对于n=1.51的色光间的交角。
解:该题可以应用单个折射面的高斯公式来解决,
设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:
会聚点位于第二面后15mm处。
(2) 将第一面镀膜,就相当于凸面镜
像位于第一面的右侧,只是延长线的交点,因此是虚像。
还可以用β正负判断:
(3)光线经过第一面折射: , 虚像
工程光学第七章习题及答案
第七章习题及答案1.一个人近视程度是-2D(屈光度),调节范围是8D,求:(1)其远点距离;(2)其近点距离;(3)配带100度的近视镜,求该镜的焦距;(4)戴上该近视镜后,求看清的远点距离;(5)戴上该近视镜后,求看清的近点距离。
解:这点距离的倒数表示近视程度2.一放大镜焦距,通光孔径,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。
解:3.一显微物镜的垂轴放大倍率,数值孔径NA=0.1,共轭距L=180mm,物镜框是孔径光阑,目镜焦距。
(1)求显微镜的视觉放大率;(2)求出射光瞳直径;(3)求出射光瞳距离(镜目距);(4)斜入射照明时,,求显微镜分辨率;(5)求物镜通光孔径;(6)设物高2y=6mm,渐晕系数K=50%,求目镜的通光孔径。
解:4.欲分辨0.000725mm的微小物体,使用波长,斜入射照明,问:(1)显微镜的视觉放大率最小应多大?(2)数值孔径应取多少适合?解:此题需与人眼配合考虑5.有一生物显微镜,物镜数值孔径NA=0.5,物体大小2y=0.4mm,照明灯丝面积,灯丝到物面的距离100mm,采用临界照明,求聚光镜焦距和通光孔径。
解:视场光阑决定了物面大小,而物面又决定了照明的大小6.为看清4km处相隔150mm的两个点(设),若用开普勒望远镜观察,则:(1)求开普勒望远镜的工作放大倍率;(2)若筒长L=100mm,求物镜和目镜的焦距;(3)物镜框是孔径光阑,求出设光瞳距离;(4)为满足工作放大率要求,求物镜的通光孔径;(5)视度调节在(屈光度),求目镜的移动量;(6)若物方视场角,求像方视场角;(7)渐晕系数K=50%,求目镜的通光孔径;解:因为:应与人眼匹配7.用电视摄相机监视天空中的目标,设目标的光亮度为2500,光学系统的透过率为0.6,摄象管靶面要求照度为20lx,求摄影物镜应用多大的光圈。
工程光学习题解答
工程光学习题解答 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第一章习题1、已知真空中的光速c=3m/s,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。
?解:则当光在水中,n=时,v=m/s,当光在冕牌玻璃中,n=时,v=m/s,当光在火石玻璃中,n=时,v=m/s,当光在加拿大树胶中,n=时,v=m/s,当光在金刚石中,n=时,v=m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
?解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm?即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1,n1=,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=的玻璃球上,求其会聚点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章习题及答案
1.一个人近视程度是-2D(屈光度),调节范围是8D,求:(1)其远点距离;
(2)其近点距离;
(3)配带100度的近视镜,求该镜的焦距;
(4)戴上该近视镜后,求看清的远点距离;
(5)戴上该近视镜后,求看清的近点距离。
解:这点距离的倒数表示近视程度
2.一放大镜焦距,通光孔径,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。
解:
3.一显微物镜的垂轴放大倍率,数值孔径NA=0.1,共轭距L=180mm,物镜框是孔径光阑,目镜焦距。
(1)求显微镜的视觉放大率;
(2)求出射光瞳直径;
(3)求出射光瞳距离(镜目距);
(4)斜入射照明时,,求显微镜分辨率;
(5)求物镜通光孔径;
(6)设物高2y=6mm,渐晕系数K=50%,求目镜的通光孔径。
解:
4.欲分辨0.000725mm的微小物体,使用波长,斜入射照明,问:
(1)显微镜的视觉放大率最小应多大?
(2)数值孔径应取多少适合?
解:此题需与人眼配合考虑
5.有一生物显微镜,物镜数值孔径NA=0.5,物体大小2y=0.4mm,照明灯丝面积,灯丝到物面的距离100mm,采用临界照明,求聚光镜焦距和通光孔径。
解:
视场光阑决定了物面大小,而物面又决定了照明的大小
6.为看清4km处相隔150mm的两个点(设),若用开普勒望远镜观察,则:
(1)求开普勒望远镜的工作放大倍率;
(2)若筒长L=100mm,求物镜和目镜的焦距;
(3)物镜框是孔径光阑,求出设光瞳距离;
(4)为满足工作放大率要求,求物镜的通光孔径;
(5)视度调节在(屈光度),求目镜的移动量;
(6)若物方视场角,求像方视场角;
(7)渐晕系数K=50%,求目镜的通光孔径;
解:
因为:应与人眼匹配
7.用电视摄相机监视天空中的目标,设目标的光亮度为2500,光学系统的透过率为0.6,摄象管靶面要求照度为20lx,求摄影物镜应用多大的光圈。
解:。