GRM31CR71A106K中文资料
BLM31PG601SN1磁珠规格书
EG
For GHz Band General Use (Low DC Resistance Type)
HB
HD
For GHz Band High-speed Signal Lines
HE
GA
For High-GHz Band High-speed Signal Lines
GG
For High-GHz Band General Use
Chip Ferrite Bead for Automotive Part Numbering
(Part Number)
BL M 18 AG 102 S Z 1 D q w e r t y u io
qProduct ID Product ID BL
Chip Ferrite Beads
wType Code E M
iNumber of Circuits Code 1
Number of Circuits 1 Circuit
rCharacteristics/Applications
Code *1
Characteristics/Applications
AG For General Use
AX
BA
BB
BC
For High-speed Signal Lines
Chip Ferrite Bead for Automotive Part Numbering
oPackaging
Code
Packaging
K
Embossed Taping (ø330mm Reel)
L
Embossed Taping (ø180mm Reel)
B
Bulk
配电电器 NWK1-GR 系列中英文液晶低压无功功率自动补偿控制器说明书
NWK1-GR 系列中英文液晶低压无功功率自动补偿控制器(新产品)NWK1-GR系列中文低压无功功率自动补偿控制器( 简称控制器 )采用手机菜单操作模式,实现人机交换,适用于电网的配电监测和共补、分补兼顾的无功补偿。
它采用ASIC处理芯片,通过FFT(快速傅立叶计算)对采集的三相电压和三相电流进行计算和分析,故在电网有较大的谐波分量下,能够正常以无功功率作为投切电容器的依据,并结合功率因数进行投切。
电容容量可按循环、编码或任意值组合,进行对单相或三相电容的匹配或投切,实现最优的补偿效果 ,它完全覆盖三相220V、380V、440V、690V等世界不同地区的低压电网系统,频率50Hz与60Hz通用,抗谐波能力更强,具有中英文版本,可定制光伏专用产品,是我公司推出的新一代智能型低压无功功率自动补偿控制器。
它内置集成了数字化的电网测量与记录储存功能于一身,采用大屏幕点阵液晶屏,中文或图形化实时显示几十种电量,并提供电能质量分析,谐波环境下电量测量精度高,具有谐波超值保护和RS485通讯传输功能。
符合标准:JB/T9663-2013;DL/T597-1996NWK 1 - G □- □ GB□信号控制方式:默认为继电器输出,D表示+12VDC补偿方式:GB 共补,FB 混补最大输出回路:12路、18路功能可选项:R表示RS485通讯+宽电压信号检测G表示功率因数,点阵液晶屏显示设计序号低压无功功率自动补偿控制器3.1 环境温度:-25℃~+40℃。
3.2 空气湿度:在40℃时不超过50%,20℃时不超过90%。
3.3 海拔高度:不超过2000米。
3.4 周围环境:无腐蚀性气体,无导电尘埃,无易燃易爆的介质存在。
3.5 安装地点无剧烈震动。
4.1 可实现全三相共补补偿,全单相分补补偿,三相与单相混合补偿。
四象限显示功率因数,以基波功率因数和基波无功功率为控制物理量,控制精度高,无投切震荡,并在有谐波的场合下能正确的显示电网功率因数和谐波含量。
进口高真空微调阀参数
进口高真空微调阀参数一、前言进口高真空微调阀是一种常见的高精度控制流量的仪器。
在实验室、工业生产等领域广泛应用。
本文将详细介绍进口高真空微调阀的参数。
二、仪器参数1. 阀体材质:不锈钢(SUS316L)2. 连接方式:法兰连接3. 最大工作压力:10^-8 Pa4. 流量范围:0-1000 SCCM5. 精度等级:±1% F.S.6. 工作温度范围:-20℃~+80℃7. 适用介质:气体(不适用于液体)8. 电源电压:24VDC9. 信号输出方式:模拟信号输出(0-5V或4-20mA)10. 响应时间:≤1s三、参数解析1. 阀体材质:进口高真空微调阀的阀体材质采用不锈钢(SUS316L),具有优良的耐腐蚀性和耐高温性,能够在恶劣环境下长期运行。
2. 连接方式:该微调阀采用法兰连接方式,可以方便地与其他设备连接,安装简单方便。
3. 最大工作压力:进口高真空微调阀的最大工作压力为10^-8 Pa,可以满足高真空环境下的使用需求。
4. 流量范围:该微调阀的流量范围为0-1000 SCCM,可以满足不同领域的流量控制需求。
5. 精度等级:进口高真空微调阀的精度等级为±1% F.S.,具有高精度控制流量的能力。
6. 工作温度范围:该微调阀的工作温度范围为-20℃~+80℃,可适用于不同温度环境下的使用。
7. 适用介质:进口高真空微调阀适用于气体介质,不适用于液体介质。
8. 电源电压:该微调阀的电源电压为24VDC,可以满足现代化实验室和生产设备对电源要求。
9. 信号输出方式:进口高真空微调阀采用模拟信号输出方式(0-5V或4-20mA),可以方便地与其他设备连接并进行数据采集和处理。
10. 响应时间:该微调阀的响应时间小于1s,具有快速响应的特点,可以实现精确的流量控制。
四、总结进口高真空微调阀是一种高精度控制流量的仪器,具有多项优秀的参数。
通过对其参数的解析,可以更好地了解该微调阀的性能和适用范围,为实验室和工业生产提供更加可靠和高效的流量控制方案。
DC2535A 应用手册
1Rev. 0DESCRIPTIONLT8653SDual Channel 2A, 42V, Synchronous Step-DownSilent Switcher with 6.2μA Quiescent CurrentDemonstration circuit 2535A is a 42V, dual channel, 2A synchronous step-down regulator featuring the L T ®8653S . The LT8653S is a compact, high efficiency, high speed syn-chronous monolithic step-down switching regulator which features the second generation Silent Switcher ® technology that minimizes EMI and reduces PCB layout sensitivity. The demo board is designed for two outputs: 5V and 3.3V from a 5.5V to 42V input. Each output can source up to 2A continuous current at the same time. The wide input range allows a variety of input sources, such as automo-tive batteries and industrial supplies. The integrated power switches and other necessary circuitry reduce the external component count and simplify design. Selectable spread spectrum mode of operation can further improve EMI/EMC performance. Ultralow quiescent current in Burst Mode ® operation achieves high efficiency at very light loads.The DC2535A demo board is 3" by 3" in size and has four layers with 2oz copper on the outer layers and 1oz cop-per on the inner layers. The DC2535A operates at 2MHz switching frequency by default to minimize solution size. The LT8653S is assembled in a small thermally enhanced 4mm × 3mm LQFN package. The IC temperature rises about 50°C when both channels operate at full load, 2A each, with the default switching frequency of 2MHz.The jumper JP2 on the demo board determines the con-figuration of the SYNC pin of the LT8653S. By default, the SYNC pin on the demo board is grounded for lowAll registered trademarks and trademarks are the property of their respective owners.PERFORMANCE SUMMARYripple Burst Mode operation. Moving JP2 to FCM W/SSM enables the spread spectrum mode of operation by tying the SYNC pin to VCC pin. To synchronize to an external clock, move JP2 to FCM W/O SSM OR SYNC position and apply the external clock on the SYNC turret.The jumpers JP3 and JP4 on the demo board determine the configuration of the output voltage select bit pins D0 and D1. On the DC2535A, the D0 and D1 pins are by default floating. This combination connects internal feed-back resistor divider between the FB1/FB2 pins and the error amplifier which means that FB1 and FB2 pins are regulated to 5V and 3.3V respectively. On the DC2535A, FB1/FB2 pins are by default connected through 0Ω resis-tors to the output nodes. Refer to the LT8653S data sheet for more information on the D0 and D1 pin settings.The demo board has an EMI filter installed. The EMI per-formance of the demo board (with EMI filter) is shown in Figure 1 and Figure 2. The black lines in Figure 2 are CISPR 25 class 5 limits. To achieve EMI/EMC performance as shown in Figure 2, the input EMI filter is required and the input voltage should be applied at VEMI terminal.The LT8653S data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this manual for demo circuit 2535A.Design files for this circuit board are available .Specifications are at T A = 25°CSYMBOL PARAMETER CONDITIONSMIN TYPMAX UNITSV IN Input Supply Range 5.542V V OUT1Output1 Voltage4.855.2V I OUT1Maximum Output1 Current 2A V OUT2Output2 Voltage3.168 3.33.432V I OUT2Maximum Output2 Current 2A f SW Switching Frequency 1.852 2.15MHz EFEEfficiency at DCV IN = 12V, I OUT1 = 1A, I OUT2 = 1A93.1%Figure 2. Radiated EMI Performance (CISPR 25 Radiated Emission Test with Class 5 Peak Limits)2Rev. 03Rev. 0QUICK START PROCEDUREFigure 3. Proper Measurement Equipment SetupFigure 4. Measure Output RippleDemonstration circuit 2535A is easy to set up to evalu-ate the performance of the LT8653S. Refer to Figure 3 for proper measurement equipment setup and follow the procedure below:NOTE: When measuring the input or output voltage rip-ple, care must be taken to avoid long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip directly across the VOUT and GND terminals. See Figure 4 for the proper measurement technique.1. Check that JP3 and JP4 are placed on the FLOAT position.2. Check that JP2 are placed on BURST position.3. With power off, connect the input power supply to VEMI and GND. If the EMI/EMC performance is not important, connect the input power supply to VIN and GND.4. With power off, connect the loads from VOUT1 to GND, and VOUT2 to GND.5. Turn on the power at the input.NOTE: make sure that the input voltage never exceeds 42V.6. Check for proper output voltages: V OUT1 = 5V, V OUT2 = 3.3V. NOTE: If there is no output, temporarily disconnect the load to make sure that the load is not set too high.7. Once the proper output voltages are established, adjust the load within the operating ranges and observe the output voltage regulation, ripple voltage, efficiency and other parameters.8. An external clock can be added to the SYNC terminal when SYNC function is used (JP2 on the FCM W/O SSM OR SYNC position). Please make sure that R12 resistor should be chosen to set the LT8653S switching frequency equal to or below the lowest synchronization frequency. JP2 can also set the LT8653S in spread spectrum mode (JP2 on the FCM W/SSM position).OUTPARTS LISTITEM QTY REFERENCE PART DESCRIPTION MANUFACTURER/PART NUMBERRequired Circuit Components11C2CAP., 4.7µF, X7R, 50V, 10%, 1206MURATA, GRM31CR71H475KA12L24C5, C9, C17, C23CAP., 1µF, X7R, 10V, 10%, 0603MURATA, GRM188R71A105KA61D32C6, C12CAP., 10µF, X5R, 10V, 10%, 0603TDK, C1608X5R1A106K080AC41C10CAP., 47µF, X5R, 10V, 10%, 1210MURATA, GRM32ER61A476KE20K51C11CAP., 100µF, X5R, 10V, 20%, 1210MURATA, GRM32ER61A107ME20L62C15, C16CAP., 10nF, X7R, 25V, 10%, 0603MURATA, GRM188R71E103KA01D72L1, L2INDUCTOR, 2.2µH, XFL4020COILCRAFT, XFL4020-222ME81R1RES., 1M, 1/10W, 1%, 0603VISHAY, CRCW06031M00FKEA94R4, R5, R13, R14RES., 0Ω, 1/10W, 0603VISHAY, CRCW06030000Z0EA102R10, R11RES., 100k, 1/10W, 1%, 0603VISHAY, CRCW0603100KFKEA111R12RES., 15k, 1/10W, 1%, 0603VISHAY, CRCW060315K0FKEA121U1I.C., STEP-DOWN SWITCHER, LQFN ANALOG DEVICES, LT8653SEV#PBF Additional Demo Board Circuit Components11C1CAP., ALUM, 22µF, 63V, 20%SUN ELECT., 63CE22BS20C7, C8CAP., OPTION, 060332C3, C4 (OPT)CAP., 0.1µF, X7R, 50V, 10%, 0402MURATA, GRM155R71H104KE14J40C13, C14, C21, C22 (OPT)CAP., OPTION, 060353C18, C25, C26CAP., 1µF, X5R, 50V, 10% 0603MURATA, GRM188R61H105KAALD62C19, C20CAP., 10µF, X7R, 50V, 10% 1210MURATA, GRM32ER71H106KA12L71FB1CHIP BEAD, 0805TDK, MPZ2012S101A81L3INDUCTOR, 220nH VISHAY, IHLP1616ABERR22M0191R2RES., 0Ω, 1/10W, 0603VISHAY, CRCW06030000Z0EA100R3, R6, R7, R8, R9 (OPT)RES, OPTION, 0603Hardware: For Demo Board Only116E1-E16TESTPOINT, TURRET, 0.094"MILL-MAX, 2501-2-00-80-00-00-07-0 21JP1HEADER 3 PIN 0.079 SINGLE ROW WURTH ELEKTRONIK, 6200031112133JP2, JP3, JP4HEADER 3 PIN 0.079 DOUBLE ROW WURTH ELEKTRONIK, 6200062112144xJP1, xJP2, xJP3, xJP4SHUNT, 0.079" CENTER WURTH ELEKTRONIK, 6080021342154MH1-MH4STAND-OFF, NYLON, 9.5mm WURTH ELEKTRONIK, 7029330004Rev. 05Rev. 0Information furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.SCHEMATIC DIAGRAM1. A L L R E S I S T O R S A R E 0603. A L L C A P A C I T O R S A R E 0603.N O T E : U N L E S S O T H E R W I S E S P E C I F I E DS Y N CG N DP G 2V C CP G 1V O U T 23.3V / 2AV I N5.3V - 42VE NJ P 3D 0V E M I 5.3V - 42VC L K O U TV B I A SS S 1V O U T 15V / 2AG N S S 2G N D6Rev. 0ANALOG DEVICES, INC. 201912/19ESD CautionESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.Legal Terms and ConditionsBy using the evaluation board discussed herein (together with any tools, components documentation or support materials, the “Evaluation Board”), you are agreeing to be bound by the terms and conditions set forth below (“Agreement”) unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you (“Customer”) and Analog Devices, Inc. (“ADI”), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONL Y. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer , assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term “Third Party” includes any entity other than ADI, Customer , their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer . Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED “AS IS” AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT . ADI SPECIFICALL Y DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT , OR CONSEQUENTIAL DAMAGES RESUL TING FROM CUSTOMER’S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI’S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($100.00). EXPORT . Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW . This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.。
MURATA 全系列产品
CDBLB455KCAY28-B0
CES302G01BCB000RB2
CES321G95ECB000RB3
CES40881MDCB000RB2
CFUKG455KE4A-R0
CFULB455KG1A-B0
CFWKA455KFFA-R0
GRM1885C1HR50BZ01D GRM1885C2A200JA01D GRM1887U1H181JZ01D
GRM188B11C104KA01D GRM188B11E222KA01D GRM188B11E473KA01D
GRM188B11H102KA01D GRM188B11H103KA01D GRM188B11H152KA01D
GRM1555C1H271JA01D GRM1555C1H2R0BZ01D GRM1555C1H2R0CZ01D
GRM1555C1H2R2CZ01D GRM1555C1H2R7CZ01D GRM1555C1H300JZ01D
GRM1555C1H301JA01D GRM1555C1H330JZ01D GRM1555C1H331JA01D
GRM0335C1E120JD01D GRM0335C1E180JD01D GRM0335C1E1R8CD01D
GRM0335C1E220JD01D GRM0335C1E330JD01D GRM0335C1E390JD01D
GRM0335C1E470JD01D GRM0335C1E8R0DD01D GRM0335C1H101JD01D
GRM155R71C223KA01D GRM155R71C393KA01D GRM155R71C473KA01D
GRM155R71C823KA88D GRM155R71E103KA01D GRM155R71E183KA61D
BLM31PG601SN1中文资料
-
Continued on the following page.
!Note •PPleleaasseerreeaaddrraattininggaanndd!!CCAAUUTTIIOONN((ffoorrssttoorraaggee,,ooppeerraattiningg,,rraattiningg,,ssooldldeerriningg,,mmoouunnttininggaannddhhaannddlilningg))inintthhisisPcDatFalcoagtatolopgretovepnret vsemnot ksimngokaindg/oarnbdu/orrnibnugr,neintcg., etc.
!Impedance Map
2700
2500
2250
2200 2200
1800 1800 1800
1500 1500
1000
1000 1000 1000 1000 1000 1000 1000 1000
750
600 600 600 600 600 600 600 600
470 470 470 470 470 470 470
For Standard BLMppA/T
For High Speed For Digital
Signal
Interface
BLMppB BLMppR
10 (1A)
1005 0402
22 (6A)
1608
2012
3216
0603
0805
1206
For Large Current BLMppP
( )=Rated Current
-
1800±25%
-
村田电容大全
村田排容:在一个介质体内由多个电容元件组合而成的独石电容器,特点:小型且大电容量与单个电容元件相比可获得更大的静电电容量,可实现高密度贴装,从而能缩小贴装面积和节约贴装成本
GNM314R71E104MA11D
GNM314R71C104MA01L
GNM2145C1H221KD01D
LLL317R71H473MA01L
LLL215R71A154MA11L
LLL185R71C473MA01L
LLL317R71H223MA01L
LLL315R71E473MA11L
LLL216R71H223MA01L
LLL31MR70J475MA01L
LLL315R71C224MA11L
GJM0336C1E180JB01D
GJM1555C1HR20BB01D
GJM1555C1H9R8WB01D
GJM1555C1H6R1BB01D
GJM1555C1H110GB01D
GJM0335C1ER50BB01D
GJM1555C1H1R6WB01D
GJM1555C1HR80WB01D
MA292R0CAN
MA29100JAN
MA29150JAN
MA297R5CAN
MA29820JAN
MA298R2CAN
MA29270JAN
MA29220JAN
MA291R5CAN
MA291R0CAN
MA29560JAN
MA29102JAN
MA19330JAN
村田低ESR电容器:ESR是Equivalent Series Resistance的缩写,即“等效串联电阻”。理想的电容自身不会有任何能量损失,但实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗。这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就称为“等效串联电阻”。有的电容还会标出ESR值(等效串联电阻),ESR越低,损耗越小,输出电流就越大,电容器的品质越高
STM32F105xx 107xx 数据手册
STM32F107xx
参照2011年8月 STM32F105xx 107xx数据手册 英文第6版 (本译文仅供参考,如有翻译错误,请以英文原稿为准)
STM32F105xx 107xx数据手册
目录
1 2 介绍 ............................................................................................................................................................ 4 规格说明 ..................................................................................................................................................... 5 2.1 2.2 2.3 器件一览 ......................................................................................................................................... 5 系列之间的全兼容性 ...........................................................
RA60H1317M1A中文资料
ORDERING INFORMATION: ORDER NUMBER
RA60H1317M1A-101
SUPPLY FORM
Antistatic tray, 10 modules/tray
RA60H1317M1A
VDD=10.0-15.2V, Pin=25-70mW, Pout<70W (VGG control), Load VSWR=3:1
—
Load VSWR Tolerance
VDD=15.2V, Pin=50mW, Pout=60W (VGG control), Load VSWR=20:1
136
174
MAXIMUM RATINGS (Tcase=+25°C, unless otherwise specified)
SYMBOL PARAMETER
CONDITIONS
VDD Drain Voltage
VGG<5V
VGG Gate Voltage
VDD<12.5V, Pin=0mW
Pin Input Power Pout Output Power
MITSUBISHI ELECTRIC 1/9
2 Aug 2007
元器件交易网
ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS
MITSUBISHI RF POWER MODULE
RoHS COMPLIANCE RA60H1317M1A
60
45
-50
3:1
1
No parasitic oscillation
各国模具钢牌号的成分、特性及用途Gina nbs
各国模具钢牌号的成分、特性及用途Gina nbs各国模具钢牌号的成分、特性及用途2011年04月27日各国模具钢牌号的成分、特性及用途各国模具钢牌号的成分、特性及用途各国模具钢牌号美国:A2、M3、M42、M35、M2、MH55、MH51、KM-2、D3、D2、D6、W1、KM2日本:HPS41、DH71、YXM4、SKD1、PD613、HPM31、PAK90、S-STAR、DC11、KD11S、SKD2、SKD12、GOA SGT、ACD37、SKS3、YK30、Y3C、SKS93、AKS3、GO4、DHA1、FDAC、DAC、TDAC、DAC55、DH31、DAC10、DH21、DAC4、HPM38、STAR、HPM50、P21、KAP88、HPM1、PX4、PX5、PX88、PXZ、KAP30、sstar、skd11、skd61、skh9、dc53日本“HITACHI日立,DAIDO大同”:SKD61(DAC),SKD11(SLD,DC11),DC53,NAK80,SKH-9,SKS3(SGT),SKH-51,SK3,SK5等。
德国撒斯特,布德鲁斯:365、 1.2363、1.3343、1.3243、1.3247、GS388、1.2080、GD821、2379、2436、DF-3、2437、GS323、2038、2083、2312、2711、MUP、2328、PX88、SKT5、638、PDS3、2311、DF3、gs-638、gs638瑞典一胜百:”ASSAB”ASP23、ASP60、ASP20、CPM115、CPMM4、CPMM10V、ASSAB88、8402、df2、xw41、xw42、xw5、718, 718H, S136, S136H, 8407, DF2, DF3, S-7等。
奥地利“BOHLER百禄”:M201, M202, M238, M310, M300, M333,M461, K460, K110, W302, S600等。
MAX13487EEVKIT#;中文规格书,Datasheet资料
General DescriptionThe MAX13487E evaluation kit (EV kit) is a fully assem-bled and tested PCB that contains a half-duplex RS-485/RS-422 AutoDirection-controlled transceiver with ESD protection. The EV kit circuit features a differential driver and receiver. The circuit’s receiver is a 1/4-unit load for the RS-485 bus and can communicate up to 500kbps. The MAX13487E AutoDirection and reduced-driver slew-rate features are demonstrated on the EV kit circuit. The E V kit can also be used to evaluate the MAX13488E IC, which can communicate up to 16Mbps.Power for the transceiver circuit is provided by a MAX256H-bridge DC/DC converter, which powers the isolated section of the MAX13487E RS-485/RS-422 circuit. Input-ripple current and radiated noise are minimized by using an H-bridge design. The isolated H-bridge DC-DC con-verter operates at 420kHz. Input power to the E V kit circuit can be supplied by a +5V DC source.The DC-DC converter circuit uses a surface-mount transformer to provide galvanic isolation and a full-wave rectifier, and provides a regulated +5V to the MAX13487E. A MAX1659 linear low dropout (LDO) reg-ulator provides the regulated output and up to 300mA of current. The output current limit and thermal shut-down provide for a robust isolated RS-485/RS-422transceiver circuit and power supply. The transceiver and power circuits and PCB are designed for 2500V RMS isolation.Featureso Demonstrates MAX13487E AutoDirection Featureo Designed for 2500V RMS Isolation o 1/4 RS-485 Unit Loadingo 500kbps Half-Duplex RS-485/RS-422Communication o +5V DC Input Range o Isolated +5V Outputo Center-Tapped Full-Wave Rectifier Output o 420kHz Switching Frequencyo Output Current Limit and Thermal Shutdown o Low-Cost Integrated-FET H-Bridge Design o Also Evaluates MAX13488E (After IC Replacement)o Fully Assembled and TestedEvaluates: MAX13487E/MAX13488EMAX13487E Evaluation KitMaxim Integrated Products 119-3204; Rev 1; 11/08Component ListFor pricing, delivery, and ordering information,please contact Maxim Direct 1-888-629-4642,or visit Maxim’s website at .Ordering Information#Denotes RoHS compliant.E v a l u a t e s : M A X 13487E /M A X 13488EQuick StartRequired EquipmentBefore beginning, the following equipment is needed:•One +5V 550mA current-limited power supply witha built-in current meter •One voltmeter•One logic signal generator•One oscilloscope with a differential probeProcedureThe MAX13487E E V kit is fully assembled and tested.Follow the steps below to verify board operation.Caution: Do not turn on the power supply until all connections are completed.1)Connect a voltmeter to the VOUT and GND PC pads.2)Verify that a shunt is not installed across the pins ofjumper JU1 (U2 enabled).3)Verify that a shunt is installed across pins 1-2 ofjumper JU2 (U1 enabled).4)Verify that a shunt is installed across the pins ofjumpers JU3 (AutoDirection enabled), JU4 (pull-down), JU6 (pullup), and JU5 (bus terminated).5)Connect the +5V power supply to the VIN pad.Connect the power supply’s ground to the PGND pad.6)Turn on the power supply and verify that the volt-meter at VOUT reads +5V.7)Using the logic signal generator, apply a +5V logicsignal to the TXD PCB pad and PGND.8)Using the oscilloscope and differential probes, verifythe signal at the A-B pads (isolated side).Note: The +5V supply powering the MAX13487E EV kit must be current-limited at 550mA and the output load current for the output should be limited to less than 300mA.Detailed Description of HardwareThe EV kit features a MAX13487E IC in an 8-pin SO sur-face-mount package and demonstrates the E SD-protected MAX13487E RS-485/RS-422 AutoDirection transceiver. The differential driver and receiver are con-figured for half-duplex operation and communicate up to 500kbps. The transceiver circuit is a 1/4-unit load on the receiver’s bus.The E V kit features PCB pads to ease interfacing with the driver/receiver logic signals on the non-isolated side using the TXD, RXD, and PGND pads, respectively.The MAX13487E IC is powered from the isolated VOUT supply. Photocoupler U4 provides isolation for the receiver’s RO signal (RXD pad) and U5 provides isola-tion for the data-in DI signal (TXD pad).The E V kit demonstrates the MAX13487E slew-rate limited driver, which minimizes E MI radiation.Photocouplers U4 and U5 are rated for up to 15Mbps.The MAX13487E receiver signal is provided at the RO pin. The RO pin will give a logic-high if A-B > +200mV.A logic-low is given if A-B < -200mV. Refer to the Transmitting and Receiving sections in the Function Tables in the MAX13487E /MAX13488E IC data sheet for additional information on the AutoDirection circuitry operation. Also see the AutoDirection and Receiver Enable Selection section in this document for configur-ing the AutoDirection and receiver operation.MAX13487E Evaluation Kit 2_______________________________________________________________________________________Component SuppliersThe EV kit input power is typically a +5V DC source that provides at least 450mA of current to the MAX256 inte-grated primary-side controller and H-bridge driver cir-cuit. The MAX256 contains an on-board oscillator, pro-tection circuitry, and internal H-bridge FE Ts to provide power to the primary of the transformer T1. The MAX256prevents cross conduction of the H-bridge MOSFETs by implementing break-before-make switching.The MAX256 programmable oscillator is programmed to 420kHz by resistor R1. The switching-frequency duty cycle is fixed at 50% to control energy transfer to trans-former T1 isolated output.The MAX256 IC includes UVLO for controlled startup and provides controlled turn-on during power-up and during brownouts. If the input voltage at VIN falls below 1.9V (typ), the MAX256 IC will shut down.Surface-mount transformer T1 provides galvanic isola-tion and the VOUT output is powered from a center-tapped full-wave rectifier circuit (D1 or D2) to reduce output-voltage ripple. It feeds a MAX1659 LDO regula-tor configured for +5V output. The LDO output is current limited and features thermal shutdown to pro-vide for a robust isolated supply at VOUT, which can provide up to 300mA of current.The two-layer PCB is designed for 2500V RMS isolation,with 300 mils spacing between the PGND and GND planes. The bottom PCB PGND plane under U2 is uti-lized as a thermal heat sink for power dissipation of theMAX256 thermally enhanced SO package. Test points TP1 (PGND) and TP2 (GND) are provided on the PCB for probing the respective ground plane or to connect the PGND to GND planes for nonisolated evaluation of the circuit.Jumper SelectionThe MAX13487E E V kit features several jumpers to reconfigure the receiver/driver enable circuits, and shut-down for the MAX256 and MAX13487E ICs. Additionally,PCB pads are provided for connecting an external load to the isolated +5V output at VOUT and GND.Shutdown ControlThe MAX13487E EV kit features two jumpers that con-figure the shutdown mode of the circuit. Jumper JU1configures the MAX256 DC-DC converter and JU2 con-figures the MAX13487E IC for shutdown mode. See Table 1 for placing the EV kit circuit or the desired IC in shutdown mode.AutoDirection and Receiver Enable SelectionThe MAX13487E EV kit features a 2-pin jumper (JU3) to set the MAX13487E receiver mode of operation,AutoDirection, or receiver output enabled. Refer to the AutoDirection Circuitry section in the MAX13487E /MAX13488E IC data sheet for more information on the MAX13487E RE pin modes of operation. See Table 2for configuring the receiver mode of operation using jumper JU3.Evaluates: MAX13487E/MAX13488EMAX13487E Evaluation Kit_______________________________________________________________________________________3Table 1. JU1 and JU2 Shutdown Mode Control*To avoid bus contention, ensure that only one driver has control of the bus at a time.Table 2. Driver and Receiver JU3 FunctionsE v a l u a t e s : M A X 13487E /M A X 13488ERS-485 Bus Pullup/Pulldown and Termination Resistors ConfigurationJumpers JU6 and JU4 are provided for connecting the mandatory pullup and pulldown resistors onto the RS-485bus A and B lines, respectively. Pullup resistor R8 and pulldown resistor R6 define the voltage on the A and B lines in conjunction with R7 when the driver input (DI) is high. See Table 3 for configuring the pullup and pulldown resistors. R6 and R8 can be higher valued if the differential terminal resistor (R7) is not used.Jumper JU5 is provided for terminating the A and B bus lines when the MAX13487E E V kit is connected at the end of an RS-485 bus. Resistor R7 provides 120Ωof ter-mination when jumper JU5 is used. See Table 4 for con-figuring the termination mode.MAX13487E Evaluation Kit 4_______________________________________________________________________________________Table 3. JU6, JU4 Functions, Pullup, Pulldown ResistorsEvaluating the MAX13488E IC andOther Transformer Configurations/DesignsMAX13488E EvaluationThe MAX13487E E V kit can also evaluate the MAX13488E IC. To evaluate the MAX13488E , replace IC U1 with the MAX13488E. Note that the MAX13488E driver slew rate is not limited and allows transmission speeds of up to 16Mbps. Refer to the MAX13487E /MAX13488E IC data sheet for additional information.Smaller Transformer and 2000V RMSIsolation DesignThe E V kit’s two-layer PCB is designed for 2500V RMS isolation, with 300 mils spacing between the PGND and GND planes. Additionally, transformer T1 is rated for 3000V RMS and is an integral part of the dielectric with-stand voltage of the E V kit circuit. Photocouplers U4and U5 are guaranteed to withstand 3750V RMS .However, the circuit uses the isolated transformer to transfer power from the primary side to the secondary side and the withstand voltage of the transformer, as well as photocouplers U4 and U5, so the PCB must be considered when designing and testing the E V kit cir-cuit. For example, if less than 2500V RMS isolation is needed, a smaller 2000V RMS transformer may be used to save board area, but then the entire circuit will have only 2000V RMS of isolation.Evaluates: MAX13487E/MAX13488E MAX13487E Evaluation Kit Figure 1. MAX13487E EV Kit Schematic_______________________________________________________________________________________5E v a l u a t e s : M A X 13487E /M A X 13488EMAX13487E Evaluation Kit 6_______________________________________________________________________________________Figure 2. MAX13487E EV Kit Component Placement Guide—Component SideFigure 3. MAX13487E EV Kit PCB Layout—Component SideEvaluates: MAX13487E/MAX13488EMAX13487E Evaluation Kit_______________________________________________________________________________________7Figure 4. MAX13487E EV Kit PCB Layout—Solder SideMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.E v a l u a t e s : M A X 13487E /M A X 13488EMAX13487E Evaluation Kit分销商库存信息: MAXIMMAX13487EEVKIT#。
特种材料知识简介--哈氏合金-蒙乃尔-超级不锈钢
特种材料知识简介:哈氏合金-蒙乃尔-超级不锈钢哈氏合金(Hastelloy alloy)一、引言哈氏合金是镍基合金的一种,目前主要分为B、C、G三个系列,它主要用于铁基Cr-Ni或Cr-Ni-Mo不锈钢、非金属材料等无法使用的强腐蚀性介质场合,在国外已广泛应用于石油、化工、环保等诸多领域。
其牌号和典型使用场合如下表所示。
哈氏合金牌号为改善哈氏合金的耐蚀性能和冷、热加工性能,哈氏合金先后进行了三次重大改进,其发展过程如下:B系列:B → B-2(00Ni70Mo28) → B-3C系列:C →C-276(00Cr16Mo16W4) →C-4(00Cr16Mo16) →C-22 (00Cr22Mo13W3) → C-2000(00Cr20Mo16)G系列:G → G-3(00Cr22Ni48Mo7Cu)→ G-30(00Cr30Ni48Mo7Cu)目前使用最广泛的是第二代材料N10665(B-2)、N10276(C-276)、N06022(C-22)、N06455(C-4)和N06985(G-3)。
第三代材料N10675(B-3)、N10629(B-4)、N06059(C-59)处于推广阶段。
由于冶金技术的进步,近年来出现了多个牌号的含~6%Mo的所谓“超级不锈钢”,替代了G系列合金,使得G系列合金的生产和使用迅速下降。
二、典型哈氏合金化学成分三、力学性能哈氏合金的力学性能非常突出,它具有高强度、高韧性的特点,所以在机加工方面有一定的难度,而且其应变硬化倾向极强,当变形率达到15%时,约为18-8不锈钢的两倍。
哈氏合金还存在中温敏化区,其敏化倾向随变形率的增加而增大。
当温度较高时,哈氏合金易吸收有害元素使它的力学性能和耐腐蚀性能下降。
材料的力学性能四、常用哈氏合金1:Hastelloy B-2 alloy(哈氏B-2合金)一、耐蚀性能哈氏B-2合金是一种有极低含碳量和含硅量的Ni-Mo合金,它减少了在焊缝及热影响区碳化物和其他相的析出,从而确保即使在焊接状态下也有良好的耐蚀性能。
GRM32DR71E106KA12L中文资料
物料编号:GRM32DR71E106KA12L的详细参数_易容网
MLCC即是多层陶瓷电容片式,是电子信息产品不可或缺的基本组件之一。
我国MLCC的生产起步在80年代初,行业早期主要是在外资企业的带动下发展起来的,近年来国内企业在技术上实现突破,行业国产化成效显著,并推动了MLCC产量迅速增长。
目前,MLCC的应用领域已从手机、电脑、电视机等消费电子领域,逐步拓展到新能源发电、新能源汽车、节能灯具、轨道交通、直流输变电、三网融合、高清电视、机顶盒、手机电视等多个行业。
对于这个悄悄活跃在人们生活中的元件你又知道多少呢.
本次易容网为大家推荐比较常用的MLCC村田 | Murata品牌的料号GRM32DR71E106KA12L的相关参数
易容网是深圳市易容信息技术有限公司独自研发的全球最大的MLCC搜索采购服务网站,2014年创立于深圳市南山区,全国首家电子元器件行业电容元件的搜索引擎及o2o商务服务平台。
易容网()现已建成全球最大的MLCC电容搜索引擎数据库,包含全球25家电容生产厂商超过28万组MLCC产品数据,用户可根据行业应用、物料编号、规格参数等信息快速的找到所有相关的MLCC电容数据。
易容网在搜索服务的前提下还提供村田、TDK、国巨、太阳诱电、风华高科等常见品牌产品的o2o商务服务,让企业客户实现询价、报价、在线订单、出库、实时物流、签收、账期服务等在线一站式商务服务体验。
MEMORY存储芯片MT48LC32M16A2P-75L中文规格书
PRECHARGEThe PRECHARGE command is used to deactivate the open row in a particular bank orthe open row in all banks. The bank(s) will be available for a subsequent row activationa specified time (t RP) after the PRECHARGE command is issued, except in the case ofconcurrent auto precharge, where a READ or WRITE command to a different bank is al-lowed as long as it does not interrupt the data transfer in the current bank and does notviolate any other timing parameters. After a bank has been precharged, it is in the idlestate and must be activated prior to any READ or WRITE commands being issued tothat bank. A PRECHARGE command is allowed if there is no open row in that bank (idlestate) or if the previously open row is already in the process of precharging. However,the precharge period will be determined by the last PRECHARGE command issued tothe bank.REFRESHREFRESH is used during normal operation of the DDR2 SDRAM and is analogous toCAS#-before-RAS# (CBR) REFRESH. All banks must be in the idle mode prior to issuinga REFRESH command. This command is nonpersistent, so it must be issued each timea refresh is required. The addressing is generated by the internal refresh controller. Thismakes the address bits a “Don’t Care” during a REFRESH command.SELF REFRESHThe SELF REFRESH command can be used to retain data in the DDR2 SDRAM, even ifthe rest of the system is powered down. When in the self refresh mode, the DDR2SDRAM retains data without external clocking. All power supply inputs (including Vref)must be maintained at valid levels upon entry/exit and during SELF REFRESH opera-tion.The SELF REFRESH command is initiated like a REFRESH command except CKE isLOW. The DLL is automatically disabled upon entering self refresh and is automaticallyenabled upon exiting self refresh.Mode Register (MR)The mode register is used to define the specific mode of operation of the DDR2 SDRAM.This definition includes the selection of a burst length, burst type, CAS latency, operat-ing mode, DLL RESET, write recovery, and power-down mode, as shown in Figure 36(page 79). Contents of the mode register can be altered by re-executing the LOADMODE (LM) command. If the user chooses to modify only a subset of the MR variables,all variables must be programmed when the command is issued.The MR is programmed via the LM command and will retain the stored information un-til it is programmed again or until the device loses power (except for bit M8, which isself-clearing). Reprogramming the mode register will not alter the contents of the mem-ory array, provided it is performed correctly.The LM command can only be issued (or reissued) when all banks are in the prechargedstate (idle state) and no bursts are in progress. The controller must wait the specifiedtime t MRD before initiating any subsequent operations such as an ACTIVATE com-mand. Violating either of these requirements will result in an unspecified operation.READ with auto precharge enabled/ WRITE with auto precharge enabled:The READ with auto precharge enabled or WRITE with auto pre-charge enabled states can each be broken into two parts: the ac-cess period and the precharge period. For READ with auto pre-charge, the precharge period is defined as if the same burst was executed with auto precharge disabled and then followed with the earliest possible PRECHARGE command that still accesses all of the data in the burst. For WRITE with auto precharge, the pre-charge period begins when t WR ends, with t WR measured as if auto precharge was disabled. The access period starts with regis-tration of the command and ends where the precharge period (or t RP) begins. This device supports concurrent auto precharge such that when a READ with auto precharge is enabled or a WRITE with auto precharge is enabled, any command to other banks is allowed, as long as that command does not interrupt the read or write data transfer already in process. In either case, all other related limitations apply (contention between read da-ta and write data must be avoided).The minimum delay from a READ or WRITE command with auto precharge enabled toa command to a different bank is summarized in Table 40 (page 76).4.REFRESH and LOAD MODE commands may only be issued when all banks are idle.5.Not used.6.All states and sequences not shown are illegal or reserved.7.READs or WRITEs listed in the Command/Action column include READs or WRITEs withauto precharge enabled and READs or WRITEs with auto precharge disabled.8. A WRITE command may be applied after the completion of the READ burst.9.Requires appropriate DM.10.The number of clock cycles required to meet t WTR is either two or t WTR/t CK, whicheveris greater.Table 40: Minimum Delay with Auto Precharge EnabledDESELECTThe DESELECT function (CS# HIGH) prevents new commands from being executed bythe DDR2 SDRAM. The DDR2 SDRAM is effectively deselected. Operations already inprogress are not affected. DESELECT is also referred to as COMMAND INHIBIT.。
mstar tcon规格书
mstar tcon规格书TCON,全称为TFT LCD控制器,是液晶电视显示器中的重要组件之一。
在TFT LCD面板中,TCON负责接收来自主板的图像数据和控制信号,并将其转换为面板可识别的信号,使液晶显示成像。
MStar TCON规格书是关于MStar TCON 产品的详细技术规格和性能参数的文档。
MStar TCON是MStar公司专为液晶电视和显示器设计的一系列TCON芯片。
它们具有高集成度、高性能和低功耗的特点,适用于各种尺寸和分辨率的液晶显示面板。
MStar TCON通过其先进的显示引擎和图像处理技术,提供了优秀的图像质量和显示效果,使用户能够享受到逼真清晰的视觉体验。
在MStar TCON规格书中,主要包含以下几个方面的内容:1. 输入和输出接口规格:规格书中详细说明了MStar TCON的输入和输出接口类型、数目和参数。
输入接口包括主板连接接口、调试接口和其他控制接口,而输出接口包括面板连接接口和其他相关输出接口。
这些接口规格对于系统设计和TCON与其他组件的连接至关重要。
2. 分辨率和刷新率:规格书中列出了MStar TCON所支持的各种分辨率和刷新率参数。
不同的液晶面板有不同的分辨率和刷新率要求,TCON需要根据面板的特性来调整输出信号以实现最佳显示效果。
规格书中的这些参数能够帮助系统设计人员选择合适的TCON芯片。
3. 色彩处理和图像增强技术:规格书中详细介绍了MStar TCON所支持的色彩处理和图像增强技术。
这些技术包括对比度增强、色彩校正、动态对比度调整等,能够优化图像质量和显示效果。
规格书中的这些信息帮助系统设计人员了解TCON 芯片的功能,以满足用户对高质量图像的需求。
4. 电源管理和功耗控制:规格书中详细描述了MStar TCON的电源管理和功耗控制特性。
这些特性包括低功耗待机模式、动态功耗调整等,可以有效延长液晶显示器的电池续航时间。
这对于移动设备和电池供电的设备尤为重要。
HP TFT7600机架式一体化键盘显示器用户指南
简介 ........................................................................................................................................................ 5 TFT7600 RKM 的功能 ................................................................................................................................ 5 组件 ........................................................................................................................................................ 6 背面组件.................................................................................................................................................. 7
MEMORY存储芯片MT48LC32M16A2TG-75IT中文规格书
V REF TolerancesThe DC tolerance limits and AC noise limits for the reference voltages V REFCA and V REFDQ are illustrated below. This figure shows a valid reference voltage V REF (t) as a function of time. V DD is used in place of V DDCA for V REFCA , and V DDQ for V REFDQ . V REF(DC)is the linear average of V REF (t) over a very long period of time (for example, 1 second)and is specified as a fraction of the linear average of V DDQ or V DDCA , also over a very long period of time (for example, 1 second). This average must meet the MIN/MAX require-ments in Table 63 (page 100). Additionally, V REF (t) can temporarily deviate from V REF(DC)by no more than ±1% V DD . V REF (t) cannot track noise on V DDQ or V DDCA if doing so would force V REF outside these specifications.Figure 65: V REF DC Tolerance and V REF AC Noise LimitsThe voltage levels for setup and hold time measurements V IH(AC), V IH(DC), V IL(AC), and V IL(DC) are dependent on V REF .V REF DC variations affect the absolute voltage a signal must reach to achieve a validHIGH or LOW, as well as the time from which setup and hold times are measured. When V REF is outside the specified levels, devices will function correctly with appropriate tim-ing deratings as long as:•V REF is maintained between 0.44 x V DDQ (or V DDCA ) and 0.56 x V DDQ (or V DDCA ), and •the controller achieves the required single-ended AC and DC input levels from instan-taneous V REF (see Table 63 (page 100)).System timing and voltage budgets must account for V REF deviations outside this range.The setup/hold specification and derating values must include time and voltage associ-ated with V REF AC noise. Timing and voltage effects due to AC noise on V REF up to the specified limit (±1% V DD ) are included in LPDDR2 timings and their associated derat-ings.Preliminary1Gb: x16, x32 Automotive Mobile LPDDR2 SDRAM AC and DC Logic Input Measurement Levels for Single-Ended SignalsMODE REGISTER WRITE CommandThe MODE REGISTER WRITE (MRW) command is used to write configuration data to the mode registers. The MRW command is initiated with CS# LOW, CA0 LOW, CA1 LOW,CA2 LOW, and CA3 LOW at the rising edge of the clock. The mode register is selected by CA1f–CA0f, CA9r–CA4r. The data to be written to the mode register is contained in CA9f–CA2f. The MRW command period is defined by t MRW. MRWs to read-only regis-ters have no impact on the functionality of the device.MRW can only be issued when all banks are in the idle precharge state. One method of ensuring that the banks are in this state is to issue a PRECHARGE ALL command.Figure 49: MODE REGISTER WRITE Timing – RL = 3, t MRW = 51Notes:1.At time Ty, the device is in the idle state.2.Only the NOP command is supported during t MRW.Table 48: Truth Table for MRR and MRWMRW RESET CommandThe MRW RESET command brings the device to the device auto initialization (reset-ting) state in the power-on initialization sequence (see 2. RESET Command under Pow-er-Up (page 21)). The MRW RESET command can be issued from the idle state. This command resets all mode registers to their default values. Only the NOP command is supported during t INIT4. After MRW RESET, boot timings must be observed until the device initialization sequence is complete and the device is in the idle state. Array data is undefined after the MRW RESET command has completed.For MRW RESET timing, see Figure 9 (page 23).Preliminary1Gb: x16, x32 Automotive Mobile LPDDR2 SDRAM MODE REGISTER WRITE Command。