2014届高考理科理数学第一轮知识点总复习测试题12

合集下载

2014年新课标Ⅰ卷高考理科数学试卷真题及解析

2014年新课标Ⅰ卷高考理科数学试卷真题及解析

数f ( x), 则y f ( x)在[0, ]上的图像大致为( C )
y
y
1
1
NP
x 0 MA
0
πx 0
πx
A
B OM OP cos x cos x
y
y
f ( x) MN OM sin x
1
1
sin x cos x 1 sin 2 x
0
πx 0
πx
2
C
D
7.执行下图的程序框图, 若输入的a, b, k分别为1, 2, 3, 则
p3 : ( x, y) D, x 2 y 3, p4 : ( x, y) D, x 2 y 1.
其中真命题是( C )
y
A. p2 , p3
B. p1 , p4
C . p1 , p2
D. p1 , p3
作可行域如图所示, x y 1 直线OA的方程为x 2 y 0, 所以( x, y) D, x 2 y 0 O p1 , p2正确
输出M
n n1 b M a b M a 1 b
结束
8.设 (0, ), (0, ), 且 tan 1 sin , 则( B )
2
2
cos
A.3
2
C.3
2
B.2
2
D.2
2
tanα sinα 1 sin β , sinαcos β cos α cos αsin β cosα cos β
2i(1 i) 2i
1 i
D. 1 i
3.设函数f ( x), g( x)的定义域都为R, 且f ( x)是奇函数,
g( x)是偶函数, 则下列结论正确的是( )
A. f ( x)g( x)是偶函数

2014年普通高等学校招生全国统一考试(新课标Ⅰ)数学理

2014年普通高等学校招生全国统一考试(新课标Ⅰ)数学理

2014年普通高等学校招生全国统一考试(新课标Ⅰ)数学理一、选择题(共12小题,每小题5分)1.已知集合A={x|x2-2x-3≥0},B={x|-2≤x≤2},则A∩B=( )A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解析:A={x|x2-2x-3≥0}={x|x≥3或x≤-1},B={x|-2≤x≤2},则A∩B={x|-2≤x≤-1},答案:A2. =( )A. 1+iB. 1-iC. -1+iD. -1-i解析:==-(1+i)=-1-i,答案:D.3.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A. f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,答案:C.4.已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( ) A.B.3C.mD.3m解析:双曲线C:x2-my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.答案:A.5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.B.C.D.解析:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24-2=16-2=14种情况,∴所求概率为=.答案:D.6.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A.B.C.D.解析:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,答案:C.7.执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.解析:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.答案:D.8.设α∈(0,),β∈(0,),且tanα=,则( )A.3α-β=B.3α+β=C.2α-β=D.2α+β=解析:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α-β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关. 排除选项A,B后验证C,当时,sin(α-β)=sin()=cosα成立.答案:C.9.不等式组的解集记为D,有下列四个命题:p1: (x,y)∈D,x+2y≥-2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤-1其中真命题是( )A.p2,p3B. p1,p4C. p1,p2D. p1,p3解析:作出图形如下:由图知,区域D为直线x+y=1与x-2y=4相交的上部角型区域,显然,区域D在x+2y≥-2 区域的上方,故A:∀(x,y)∈D,x+2y≥-2成立;在直线x+2y=2的右上方区域,:∃ (x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤-1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤-1错误;综上所述,p1、p2正确.答案:C.10.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )A.B.3C.D.2解析:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴直线PF的斜率为-2,∵F(2,0),∴直线PF的方程为y=-2(x-2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,答案:B.11.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )A.(2,+∞)B. (1,+∞)C. (-∞,-2)D. (-∞,-1)解析:当a=0时,f(x)=-3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2-6x=3ax=0,解得x=0或x=>0,列表如下:∵x→+∞,f(x)→-∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2-6x=3ax=0,解得x=0或x=<0,列表如下:而f(0)=1>0,x→+∞时,f(x)→-∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<-2.综上可知:a的取值范围是(-∞,-2).答案:C.12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6B. 6C. 4D. 4解析:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.答案:B.二、填空题(共4小题,每小题5分)13. (x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)解析:(x+y)8的展开式中,含xy7的系数是:=8.含x2y6的系数是=28,∴(x-y)(x+y)8的展开式中x2y7的系数为:8-28=-20.答案:-2014.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.解析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.答案:A.15.已知A,B,C为圆O上的三点,若=(+),则与的夹角为.解析:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为临边的四边形是矩形,则⊥,即与的夹角为90°,答案:90°16.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为 .解析:△ABC中,∵a=2,且(2+b)(sinA-sinB)=(c-b)sinC,∴利用正弦定理可得 4-b2=(c-b)c,即 b2+c2-bc=4.再利用基本不等式可得4≥2bc-bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为==,答案:.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数. (Ⅰ)证明:a n+2-a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.解析:(Ⅰ)利用a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2-a n=(a n+2-a n+1)+(a n+1-a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.答案:(Ⅰ)∵a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,∴a n+1(a n+2-a n)=λa n+1∵a n+1≠0,∴a n+2-a n=λ.(Ⅱ)①当λ=0时,a n a n+1=-1,假设{a n}为等差数列,设公差为d.则a n+2-a n=0,∴2d=0,解得d=0,∴a n=a n+1=1,∴12=-1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2-a n=(a n+2-a n+1)+(a n+1-a n)=2d,∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n-1.因此存在λ=4,使得{a n}为等差数列.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组数据用区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z-N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.解析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.答案:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=15 0.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.解析:(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.答案:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(-1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,-,),∴cos<,>==,∴二面角A-A1B1-C1的余弦值为20.(12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.解析:(Ⅰ)设F(c,0),利用直线的斜率公式可得,可得c.又,b2=a2-c2,即可解得a,b;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx-2.与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出S△OPQ.通过换元再利用基本不等式的性质即可得出.答案:(Ⅰ)设F(c,0),∵直线AF的斜率为,∴,解得c=.又,b2=a2-c2,解得a=2,b=1.∴椭圆E的方程为;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx-2.联立,化为(1+4k2)x2-16kx+12=0,当△=16(4k2-3)>0时,即时,,.∴|PQ|===,点O到直线l的距离d=.∴S△OPQ==,设>0,则4k2=t2+3,∴==1,当且仅当t=2,即,解得时取等号.满足△>0,∴△OPQ的面积最大时直线l的方程为:.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.解析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;答案:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=-.设函数h(x)=,则h′(x)=e-x(1-x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f(x)>1.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.解析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.答案:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.答案:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x-2,代入②并整理得:2x+y-6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.解析:(Ⅰ)由条件利用基本不等式求得ab≥4,再利用基本不等式求得a3+b3的最小值. (Ⅱ)根据ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.答案:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)由(1)可知,2a+3b≥2=2≥4>6,故不存在a,b,使得2a+3b=6成立.。

2014届高考总复习理科数学试题

2014届高考总复习理科数学试题

2014届高考总复习理科数学试题(3)本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C U A B ⋃={}4,{}1B =,2,则 3. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项和10S =A.85B.135C.95D.234.对于平面α、β、γ和直线a 、b 、m 、n , 下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,,,a b αβαγβγ==I I 则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα5.某程序框图如图1所示,若该程序运行后输 出的值是95,则6.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解 析式是7.给出下列四个结论:①若命题2000:R,10p x x x ∃∈++<,则2:R,10p x x x ⌝∀∈++≥; ② “()()340x x --=”是“30x -=”的充分而不必要条件;③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”;④若0,0,4a b a b >>+=,则ba11+的最小值为1.其中正确结论的个数为8. 已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.设二项式61x x ⎛⎫- ⎪⎝⎭的展开式中常数项为A ,则=A .10.一物体在力5, 02,()34, 2x F x x x ≤≤⎧=⎨+>⎩(单位:N )的作用下沿与力F 相同的方向,从0x = 处运动到4x = (单位:m )处,则力()F x 做的功为 焦.11.设z kx y =+,其中实数,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则k = .12.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆的面积为3,则p = .13.在区间[]-33,上随机取一个数x ,使得125x x -++≤成立的概率为 . (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知极坐标的极点与平面直角坐标系的原点重合,极轴与x 轴的正半轴重合,且长度单位相同.圆C 的参数方程为13cos (13sin x y ααα=+⎧⎨=-+⎩为参数),点Q 的极坐标为(2,4π).若点P 是圆C 上的任意一点,,P Q 两点间距离的最小值为 .15.(几何证明选讲选做题)如图2,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C ,32=PC ,若︒=∠30CAP ,则⊙O 的直径=AB __________ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 向量()()()B A B A m --=→sin ,cos ,()B B n sin ,cos -=→,且53-=⋅→→n m .(1)求sin A 的值;(2)若42a =,5b =,求角B 的大小及向量BA −−→在BC −−→方向上的投影. 17.(本小题满分12分)为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图3是测量数据的茎叶图:规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品. (1)试用上述样本数据估计甲、乙两厂生产的优等品率;(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望()E ξ;(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率. 18.(本小题满分14分)如图4,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E 为PC 中点,底面ABCD 是直角梯形,//AB CD ,ADC ∠=︒90,1AB AD PD ===,2CD =.(1) 求证://BE 平面PAD ; (2) 求证:平面PBC ⊥平面PBD ;确定λ的值(3) 设Q 为棱PC 上一点,PQ PC λ=u u u r u u u r,试使得二面角Q BD P --为︒45.19.(本小题满分14分)若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-,记12log n n b a =.(1)求1a ,2a 的值;(2)求数列{}n b 的通项公式;(3)若11,0,n n n c c b c +-==求证:对任意*2311132,4n n n N c c c ≥∈+++<L 都有.20.(本小题满分14分)已知椭圆R :()222210x y a b a b +=>>的长轴长为4,且过点132⎛⎫⎪⎝⎭,. (1)求椭圆R 的方程;(2)设A 、B 、M 是椭圆上的三点,若3455OM OA OB −−→−−→−−→=+,点N 为线段AB 的中点,C 、D 两点的坐标分别为6,02⎛⎫- ⎪ ⎪⎝⎭、6,02⎛⎫⎪ ⎪⎝⎭,求证:22NC ND +=.21.(本小题满分14分) 已知函数)0,0(112)1ln()(>≥-+++=a x x ax x f . (1)若)(x f 在1=x 处取得极值,求a 的值; (2)求)(x f 的单调区间;(3)若1=a 且0<b ,函数bx bx x g -=331)(,若对于)1,0(1∈∀x ,总存在)1,0(2∈x 使得)()(21x g x f =,求实数b 的取值范围.理科数学参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2. 对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号12345678答案C A C B A D CA二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2014年高考新课标1理科数学真题及答案详解

2014年高考新课标1理科数学真题及答案详解

2014年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B AA.]1,2[--B.]1,1[-C.)2,1[-D.)2,1[(2)=-+23)1()1(i i A.1+i B.-1+i C.1-i D.-1-i (3)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A.)()(x g x f 是偶函数B.|)(|)(x g x f 是奇函数C.)(|)(|x g x f 是奇函数D.|)()(|x g x f 是奇函数 (4)已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为A.3B.m 3C.3D.m 3 (5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.81 B.85 C.83 D.87(6)如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为(7)执行右面的程序框图,若输入的k b a ,,分别为1,2,3,则输出的M=A.320 B.516 C.27 D.815 (8)设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 A.32παβ-=B.22παβ-= C.32παβ+=D.22παβ+=(9)不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D ,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是A.23,p pB.14,p pC.12,p pD.13,p p (10)已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QFA.27B.25 C.3 D.2 (11)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.(),2-∞-C.()1,+∞D.(),1-∞- (12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A.B.第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)(14)甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________ (15)已知C B A ,,为圆O 上的三点,若()+=21,则AB 与的夹角为_______.(16)已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则A B C ∆面积的最大值为____________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{}n a 为等差数列?并说明理由.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .12.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=。

2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷试卷及参考答案与试题解析

2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷试卷及参考答案与试题解析

2014年全国统一高考数学试卷高考理科数学全国Ⅰ卷全国1卷试卷及参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[1,2)B.[-1,1]C.[-1,2)D.[-2,-1]2.(5分)=( )A.1+iB.1-iC.-1+iD.-1-i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A. B. C. D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A. B. C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B. C. D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则( )A.3α-β=B.3α+β=C.2α-β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p 1:∀(x,y)∈D,x+2y≥-2 p2:∃(x,y)∈D,x+2y≥2p 3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤-1其中真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )A. B.3 C. D.211.(5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)D.(-∞,-2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(Ⅰ)证明:an+2-an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.20.(12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB =CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[1,2)B.[-1,1]C.[-1,2)D.[-2,-1]【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x-3)(x+1)≥0,解得:x≥3或x≤-1,即A=(-∞,-1]∪[3,+∞),∵B=[-2,2),∴A∩B=[-2,-1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=( )A.1+iB.1-iC.-1+iD.-1-i【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==-(1+i)=-1-i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(-x)=-f(x),g(-x)=g(x),f(-x)•g(-x)=-f(x)•g(x),故函数是奇函数,故A错误,|f(-x)|•g(-x)=|f(x)|•g(x)为偶函数,故B错误,f(-x)•|g(-x)|=-f(x)•|g(x)|是奇函数,故C正确.|f(-x)•g(-x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )A. B.3 C.m D.3m【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2-my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A. B. C. D.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况, 周六、周日都有同学参加公益活动,共有24-2=16-2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A. B. C.D.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B. C. D.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则( )A.3α-β=B.3α+β=C.2α-β=D.2α+β=【分析】化切为弦,整理后得到sin(α-β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α-β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α-β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α-β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p 1:∀(x,y)∈D,x+2y≥-2 p2:∃(x,y)∈D,x+2y≥2p 3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤-1其中真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p3【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可. 【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x-2y=4相交的上部角型区域,p1:区域D在x+2y≥-2 区域的上方,故:∀(x,y)∈D,x+2y≥-2成立;p 2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p 3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y≤3错误;p 4:x+2y≤-1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤-1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )A. B.3 C. D.2【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为-=-2,∵F(2,0),∴直线PF的方程为y=-2(x-2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)D.(-∞,-2)【分析】由题意可得f′(x)=3ax2-6x=3x(ax-2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3-3x2+1,∴f′(x)=3ax2-6x=3x(ax-2),f(0)=1;①当a=0时,f(x)=-3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3-3x2+1在(-∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3-3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3-3x2+1在(-∞,0)上没有零点;而当x=时,f(x)=ax3-3x2+1在(-∞,0)上取得最小值;故f()=-3•+1>0;故a<-2;综上所述,实数a的取值范围是(-∞,-2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6B.6C.4D.4【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x-y)(x+y)8的展开式中x2y7的系数为-20 .(用数字填写答案)【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x-y)(x+y)8的展开式中x2y7的系数为:8-28=-20.故答案为:-20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°. 【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.【分析】由正弦定理化简已知可得2a-b2=c2-bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA-sinB)=(c-b)sinC⇒(2+b)(a-b)=(c-b)c⇒2a-b2=c2-bc,又因为:a=2,所以:,△ABC面积,而b2+c2-a2=bc⇒b2+c2-bc=a2⇒b2+c2-bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{an }的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(Ⅰ)证明:an+2-an=λ(Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.【分析】(Ⅰ)利用an an+1=λSn-1,an+1an+2=λSn+1-1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{an}为等差数列,设公差为d.可得λ=an+2-an=(an+2-an+1)+(an+1-an)=2d,.得到λSn=,根据{an}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵an an+1=λSn-1,an+1an+2=λSn+1-1,∴an+1(an+2-an)=λan+1∵an+1≠0,∴an+2-an=λ.(Ⅱ)解:①当λ=0时,an an+1=-1,假设{an}为等差数列,设公差为d.则an+2-an=0,∴2d=0,解得d=0,∴an =an+1=1,∴12=-1,矛盾,因此λ=0时{an}不为等差数列.②当λ≠0时,假设存在λ,使得{an}为等差数列,设公差为d.则λ=an+2-an=(an+2-an+1)+(an+1-an)=2d,∴.∴,,∴λSn=1+=,根据{an}为等差数列的充要条件是,解得λ=4.此时可得,an=2n-1.因此存在λ=4,使得{an}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544. 【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y 轴的正方向,的方向为z 轴的正方向建立空间直角坐标系,∵∠CBB 1=60°,∴△CBB 1为正三角形,又AB =BC, ∴A(0,0,),B(1,0,0,),B 1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(-1,,0),设向量=(x,y,z)是平面AA 1B 1的法向量,则,可取=(1,,), 同理可得平面A 1B 1C 1的一个法向量=(1,-,),∴cos <,>==,∴二面角A -A 1B 1-C 1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,-2),椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的右焦点,直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P,Q 两点,当△OPQ 的面积最大时,求l 的方程. 【分析】(Ⅰ)通过离心率得到a 、c 关系,通过A 求出a,即可求E 的方程; (Ⅱ)设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2)将y =kx -2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ 的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ) 设F(c,0),由条件知,得又,所以a =,b 2=a 2-c 2=1,故E 的方程.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx -2,设P(x 1,y 1),Q(x 2,y 2)将y=kx-2代入,得(1+4k2)x2-16kx+12=0,当△=16(4k2-3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x-2或y=-x-2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x-1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min >h(x)max,利用导数可分别求得g(x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>-,∴f(x)>1等价于xlnx>xe-x-,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=-.设函数h(x)=xe-x-,则h′(x)=e-x(1-x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB =CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x-2,代入②并整理得:2x+y-6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值. (Ⅱ)根据 ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年高考理科数学总复习试卷第12卷

2014年高考理科数学总复习试卷第12卷

2014年高考理科数学总复习试卷第12卷本试卷共3页,共21题,满分150分.考试用时120分钟.注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填 写在答题卡上,并用2B 铅笔在答题卡上的相应位置填涂考生号。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂的答案无效。

一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数25-i 的共轭复数是 ( ) A .i --2 B .i +-2 C .i +2 D .i -22.函数11)(-=xx f 的定义域为 ( ) A .)1,(-∞ B .]1,(-∞ C .)1,0( D .]1,0(3.如图是某城市100位居民去年的 ( )月均用水量 (单位:t )的频率分布直方图,月均用水量在区间 )5.2,5.1[的居民大约有: A .37位 B .40位 C .47位 D .52位 4.若变量x y ,满足24025000x y x y x y ⎧+⎪+⎪⎨⎪⎪⎩≤≤≥≥ ,则32z x y =+的最大值是 ( )A .90B .80C .70D .405.一个几何体的三视图如图所示,则这个几何体的体积等于 ( )A .331cm B . 31cm C .23cm D .23cm 10.0 20.0 30.040.0 50.0月均用水量t /频率/组距o 5.01 5.12 5.23 5.34 5.4正视图 侧视图 俯视图 cm 2 cm 1 cm 26.平面直角坐标系中)2,1(=a ,5=⋅b a ,23||=+b a ,则||b 等于 ( )A .3B .3C .2D .27.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,如果a 、b 、c 成等差数列,30=B , ABC ∆的面积为23,则b 等于 ( ) A .31+ B .32+ C .231+ D .232+ 8.若函数(1)4a x y e x -=+(x ∈R )有大于零的极值点,则实数a 范围是 ( ) A .3a >- B .3a <- C .13a >- D .13a <-二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.数列{}n a 的前n 项和为n S ,若)2,(2*1≥∈++=-n N n n S S n n ,11a =,则5S = .10.过抛物线241x y =焦点的直线与此抛物线交于A 、B 两点,A 、B 中点的纵坐标为2,则弦AB 的长度为 .11.设)(x f 是定义在R 上的奇函数,若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .12.命题m x f R x p ≥∈∀)(,:,则命题p 的否定p ⌝是 . 13.若关于x 的不等式2010|2|||<+-++a x a x 的解集为非空集合,则实数a 的取值范围是 .(二)选做题(考生在14~15题小题中选做一题,两题全答的只计算前一题的得分) 14.(《几何证明选讲》选做题) 如图:已知PA 是圆O 的切线,切点为A ,3PA =.AC 是圆O 的直径,PC 与圆O 交于B 点,2BC =, 则圆O 的半径R = .15.(《坐标系与参数方程》选做题) 已知曲线1C 的参数方程为]2,2[(sin cos 2ππθθθ-∈⎩⎨⎧==y x );以x 轴的正半轴为极轴建立极PACB O坐标系,曲线2C 的极坐标方程为(cos sin )m ρθθ+=,若曲线1C 与2C 有两个不同的交点,则m 的取值范围是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 已知函数)22sin(cos sin 2)(π++=x x x x f .(1)若R x ∈,求)(x f 的最小正周期和单调递增区间; (2)设]3,0[π∈x ,求)(x f 的值域.17.(本小题共13分)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率; (3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和ξE 的值. 18.(本小题共13分)如图,在四棱锥ABCD S -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD ,E 、F 分别是AB 、SC 的中点. (1)求证:EF ∥平面SAD ;(2)设CD SD 2=,求二面角D EF A --的余弦值. 19.(本小题满分14分)ABEFCSD已知椭圆)0(1:2222>>=+b a by a x C 的长半轴是短半轴的3倍,直线20x y -+=经过椭圆C 的一个焦点. (1)求椭圆C 的方程;(2) 设一条直线 l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23, 求AOB ∆面积的最大值.20.(本小题满分14分)已知}{n a 是各项为正数的等比数列, 且1002534231=++a a a a a a ,4是2a 和4a 的一个等比中项.(1)求数列}{n a 的通项公式;(2)若}{n a 的公比)1,0(∈q ,设n n n a a b 2log ⋅=,求数列}{n b 的前n 项和n S . 21.(本小题满分14分)设函数22()21f x tx t x t =++-(]1,1[-∈x ). (1)若0>t ,求()f x 的最小值()h t ;(2)对于(1)中的()h t ,若(0,2]t ∈时,2()24h t t m m <-++恒成立,求实数m 的 取值范围.参考答案一、选择题:1. B 2.D 3.C 4.C 5.D 6.A 7.A 8.B 二、填空题:9. 23 10. 6 11. ),1()0,1(∞+- 12. R x ∈∃0,使m x f <)(0 13. )1004,(-∞∈a 14.2615. )5,1[ 三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤. 16.解: )22sin(cos sin 2)(π++=x x x x fx x 2cos 2sin +=)42sin(2π+=x……………………3分 (1))(x f 的最小正周期为ππ=22;……………………4分令: 224222πππππ+≤+≤-k x k解得: 883ππππ+≤≤-k x k ∴)(x f 的单调递增区间为 )(]8,83[Z k k k ∈+-ππππ ……… ……7分(3)若30π≤≤x ,则 1211424πππ≤+≤x ,4sin 426)64sin(12sin 1211sinπππππ<-=-== ∴1)42sin(426≤+≤-πx ,2)42sin(2213≤+≤-πx 即)(x f 的值域为]2,213[-……………12分17.解:(1)记甲、乙两人同时到A 社区为事件A E ,那么2223431()18A A P E C A ==,即甲、乙两人同时到A 社区的概率是118. ………………3分 (2)记甲、乙两人在同一社区为事件E ,那么3323431()6A P E C A ==,所以,甲、乙两人不在同一社区的概率是5()1()6P E P E =-=. ………………7分 (3)随机变量ξ可能取的值为1,2.事件“(1,2)i i ξ==”是指有i 个同学到A 社区,则224223431(2)3C A P C A ξ===. 所以2(1)1(2)3P P ξξ==-==,ξ的分布列是34312321=⨯+⨯=ξE . ………………13分18.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,, 又CD AB∥,E 为AB 的中点, 故,GF AE AEFG∥为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD .所以EF ∥平面SAD . ………………6分 (2)不妨设2DC =,则4,2,SD DG ADG ==△为等腰直角三角形, 取AG 中点H ,连结DH , 则DH AG ⊥, EF DH ⊥, 2=DH .取EF 中点M ,连结MH ,则HM AE∥,∴HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角 ……………10分2tan 21DH DMH HM ∠===, 33cos =∠DMH 所以二面角A EF D --的余弦值为33. ………………13分 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,, ξ1 2P23 13ABEFCSD02b EF a ⎛⎫=- ⎪⎝⎭ ,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,. EF 中点)21,21,21(M ,111,,,(1,0,1)2220MD EF MD EF MD EF⎛⎫=---=- ⎪⎝⎭⋅=⇒⊥ 又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF ⋅=⇒⊥,所以向量MD 和EA的夹角等于二面角A EF D --的平面角.3cos ,3MD EA MD EA MD EA⋅<>==⋅. 所以二面角A EF D --的余弦值为33. 19.解:(1) 20x y -+=与x 轴的交点为)0,2(:-F ,∴ 2=c又 b a 3=,2222=-=b a c ∴3=a ,1=b椭圆C 的方程为:2213x y +=. ………………5分 (2)设11()A x y ,,22()B x y ,. ① 当AB x ⊥轴时,23:±=x l ,)23,23(A 、)23,23(-B 或)23,23(-A 、)23,23(--B则: 3AB =………………6分② 当AB 与x 轴不垂直时, 设直线AB 的方程为y kx m =+.由已知2321m k =+,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,………8分)19(3)1)(13(12)6(2222>+=-+-=∆k m k km122631kmx x k -+=+,21223(1)31m x x k -=+. ∴ 22221(1)()AB k x x =+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++44)1132(22≤+-+-=k . …………12分当且仅当011322=-+k ,即33k =±时等号成立. 由①、②可知:max 2AB =.∴ 当AB 最大时,AOB △面积取最大值max 133222S AB =⨯⨯=.……14分 20. 解:(1)}{n a 是各项为正数的等比数列,且1002534231=++a a a a a a∴ 1002244222=++a a a a ,100)(242=+a a 即:1042=+a a由 ⇒⎩⎨⎧===+1641024242a a a a ⎩⎨⎧==8242a a 或⎩⎨⎧==2842a a ………………5分 ① 当 ⎩⎨⎧==8242a a 时,2(24242-==⇒==q q a a q 舍去), 1222--==n n n q a a② 当 ⎩⎨⎧==2842a a 时,21(2141242-==⇒==q q a a q 舍去),n n n q a a --==5222………………7分 (2)若10<<q ,则: n n n q a a --==5222 n a n -=5log 2==n n n a a b 2log n n -⋅-52)5( ………………9分∴ 424⋅=n S +n n -⋅-++⋅+⋅5232)5(2223 =-n S 12 324⋅+n n -⋅-++⋅+⋅4122)5(2223两式相减得:=-n S 12424⋅)2222(5123n -++++- nn -⋅--42)5(n n n ---⋅-----=41132)5(21)21(264 n n n S -⋅-+=52)3(96 ………………14分21. 解:(1)23()()1f x t x t t t =+-+- ,① 若1-<-t ,即1>t 时,)(x f 在]1,1[-上单调递增,)(x f 的最小值为122)1(2-+-=-t t f ;② 若01<-≤-t ,即10≤<t 时,则)(x f 在]1,1[-上的最小值为1)(3-+-=-t t t f ;∴⎩⎨⎧-+--+-=1221)(23t t t t t h ),1(]1,0(+∞∈∈t t . ……………6分 (2)令=+=t t h t g 2)()(⎩⎨⎧-+--+-1421323t t t t ]2,1(]1,0(∈∈t t . ……………7分 ①10≤<t 时,由2()330g t t '=-+≥,∴)(t g 在]1,0(单调递增;……9分②21≤<t 时,1)1(2142)(22+--=-+-=t t t t g)(t g 在]2,1(上单调递减,由①、②可知,()g t 在区间]2,0(上的最大值为1)1(=g .…………11分所以2()24h t t m m <-++在(0,2]内恒成立,等价于2()4g t m m <+在(0,2]内 恒成立,即只要214m m <+,解2410m m +->得:52--<m 或52+->m所以m 的取值范围为),52()52,(∞++----∞ . ……………14分。

2014年全国一卷高考理科数学试卷及答案

2014年全国一卷高考理科数学试卷及答案

2014年普通高等学校招生全国统一考试全国课标I 理科数学第Ⅰ卷 (选择题 共60分)一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[—2,—1]B 。

[-1,2)C .[-1,1]D .[1,2) 2.32(1)(1)i i +-= A .1i + B .1i - C 。

1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B 。

|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B 。

3C 。

3mD 。

3m5。

4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C 。

58D 。

786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7。

执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A 。

203 B 。

165 C .72D 。

1588。

设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C 。

32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D 。

人教A版高考理科数学一轮总复习课后习题 第12章 概率 课时规范练60 随机事件的概率

人教A版高考理科数学一轮总复习课后习题 第12章 概率 课时规范练60 随机事件的概率

课时规范练60 随机事件的概率基础巩固组1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡2.(安徽芜湖期末)抛掷一枚质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( ) A.A 与B 互斥 B.A 与B 对立 C.P(A+B)=23D.P(A+B)=133.抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( ) A.至多有2件次品 B.至多有1件次品 C.至多有2件正品D.至少有2件正品4.如果事件A 与B 是互斥事件,且事件A ∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为( )A.0.64B.0.36C.0.16D.0.845.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为( )A.17B.1235C.1735D.16.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是.7.已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B 发生,则此人猜测正确的概率为.8.根据以往统计资料,某地车主购买甲种保险的概率是0.5,购买乙种保险但不购买甲种保险的概率是0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中一种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率.9.从A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下.(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.综合提升组A.事件A发生的概率P(A)等于事件A发生的频率f n(A)B.一枚质地均匀的骰子掷一次得到3点的概率是1,说明这个骰子掷6次一6定会出现一次3点C.掷两枚质地均匀的硬币,事件A为“一枚正面朝上,一枚反面朝上”,事件B为“两枚都是正面朝上”,则P(A)=2P(B)D.对于两个事件A,B,若P(A∪B)=P(A)+P(B),则事件A与事件B互斥11.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中,则这班参加聚会的同学随机挑选一人表演节目.若选到女同学的概率为23的人数为.12.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命(单位:小时),现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:甲品牌乙品牌(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.创新应用组13.把一枚骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,2),则向量m与向量n不共线的概率是( )A.16B.1112C.112D.11814.下面是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).(1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论,不要求证明)(2)求此人到达该市当日空气质量优良的概率;(3)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.答案:课时规范练1.A2.C 解析:事件A与B不互斥,当向上点数为1时,两者同时发生,故事件A与B也不对立.事件A+B表示向上点数为1,3,4,5之一,所以P(A+B)=46=23.故选C.3.B4.C 解析:设P(A)=x,则P(B)=3x,因为事件A与B是互斥事件,所以P(A ∪B)=P(A)+P(B)=x+3x=0.64,解得x=0.16.故选C.5.C 解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A 与B 互斥.所以P(C)=P(A)+P(B)=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.故选C.6.54,43解析:由题意可知{0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,则{0<2-a <1,0<4a -5<1,3a -3≤1,解得{1<a <2,54<a <32,a ≤43,故54<a ≤43. 7.14解析:因为事件A ∩B 与事件A ∪B 是对立事件,所以P(A ∩B )=1-P(A ∪B)=1-34=14.8.解: 记A 表示事件“该车主购买甲种保险”,B 表示事件“该车主购买乙种保险但不购买甲种保险”,C 表示事件“该车主至少购买甲、乙两种保险中的一种”,D 表示事件“该车主甲、乙两种保险都不购买”. (1)由题意得P(A)=0.5,P(B)=0.3,又C=A ∪B, 所以P(C)=P(A ∪B)=P(A)+P(B)=0.5+0.3=0.8.(2)因为D 与C 是对立事件,所以P(D)=1-P(C)=1-0.8=0.2. 9.解: (1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),用频率估计概率,可得所求概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率分布如下表: 所用时10~20~30~40~50~(3)记事件A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.用频率估计概率及由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),故乙应选择L2.10.C 解析:频率与试验次数有关,总在概率附近摆动,故选项A错误;概率是指这件事发生的可能性,故选项B错误;P(A)=24=12,P(B)=12×12=14,所以P(A)=2P(B),故选项C正确;在几何概型中选项D中的结论不成立.故选C.11.18 解析:设该班到会的女同学有x人,则该班到会的共有(2x-6)人,所以x2x-6=23,解得x=12,故该班参加聚会的同学有18人.12.解: (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,可得甲品牌产品寿命小于200小时的概率为14.(2)根据频数分布图可得寿命不低于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200小时的产品是甲品牌的频率是75145=1529.据此估计已使用了200小时的该产品是甲品牌的概率为1529.13.B 解析:若m与n共线,则2a-b=0,而(a,b)的可能情况有6×6=36(种).符合2a=b的有(1,2),(2,4),(3,6),共3种.故共线的概率是336=112,从而不共线的概率是1-112=1112.14.解: (1)从2月5日开始连续三天的空气质量指数方差最大.(2)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=⌀(i≠j,j=1,2,…,13).设B为事件“此人到达当日空气优良”,则B=A1∪A2∪A3∪A7∪A12∪A13.所以P(B)=P(A1∪A2∪A3∪A7∪A12∪A13)=613.(3)设“此人出差期间空气质量至少有一天为中度或重度污染”为事件A,即“此人出差期间空气质量指数至少有一天大于150,且小于300”,由题意可知P(A)=P(A4∪A5∪A6∪A7∪A8∪A9∪A10∪A11)=P(A4)+P(A5)+P(A6)+P(A7)+P(A8)+P(A9)+P(A10)+P(A11)=813.。

2014年高考全国Ⅰ理科数学试题及答案(word解析版)

2014年高考全国Ⅰ理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年全国Ⅰ,理1,5分】已知集合{}2230A x x x =--≥,{}22B x x =-≤<,则A B =( )(A )[]2,1-- (B )[)1,2- (C )[]1,1- (D )[)1,2 【答案】A【解析】∵{}{}223013A x x x x x x =--≥=≤-≥或,{}22B x x =-≤<,∴{}21AB x x =-≤≤-,故选A .(2)【2014年全国Ⅰ,理2,5分】()()321i 1i +=-( )(A )1i + (B )1i - (C )1i -+ (D )1i -- 【答案】D【解析】∵32(1i)2i(1i)1i (1i)2i++==----,故选D . (3)【2014年全国Ⅰ,理3,5分】设函数()f x ,()g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函 数,则下列结论中正确的是( )(A )()()f x g x 是偶函数 (B )()()f x g x 是奇函数 (C )()|()|f x g x 是奇函数 (D )|()()|f x g x 是奇函数 【答案】C【解析】∵()f x 是奇函数,()g x 是偶函数,∴()f x 为偶函数,()g x 为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得()|()|f x g x 为奇函数,故选C .(4)【2014年全国Ⅰ,理4,5分】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )(A (B )3 (C (D )3m 【答案】A【解析】由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+)F ,一条渐近线y =,即0x =,则点F 到C 的一条渐近线的距离d =,故选A .(5)【2014年全国Ⅰ,理5,5分】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )(A )18 (B )38 (C )58(D )78【答案】D【解析】由题知()1F ,)2F 且220012x y -=,所以())120000,,MF MF x y x y ⋅=-⋅-2220003310x y y =+-=-<,解得0y <<,故选D . (6)【2014年全国Ⅰ,理6,5分】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( )(A ) (B ) (C ) (D )【答案】B【解析】如图:过M 作MD OP ⊥于D ,则sin PM x =,cos OM x =,在Rt OMP ∆中,cos sin 1cos sin sin 212x x OM PM MD x x x OP ⋅⋅===⋅=,∴()1sin 2(0)2f x x x π=≤≤,故选B . (7)【2014年全国Ⅰ,理7,5分】执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )(A )203(B )165 (C )72 (D )158【答案】D【解析】输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===;2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M =,故选D .(8)【2014年全国Ⅰ,理8,5分】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )(A )32παβ-= (B )22παβ-=(C )32παβ+=(D )22παβ+=【答案】B 【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+,()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<,∴2παβα-=-,即22παβ-=,故选B .(9)【2014年全国Ⅰ,理9,5分】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )(A )2p ,3p (B )1p ,4p (C )1p ,2p (D )1p ,3p 【答案】C【解析】作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,故选C . (10)【2014年全国Ⅰ,理10,5分】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )(A )72 (B )52(C )3 (D )2【答案】C【解析】过Q 作QM l ⊥于M ,∵4FP FQ =,∴34PQ PF =,又344QM PQ PF ==,∴3QM =, 由抛物线定义知3QF QM ==,故选C .(11)【2014年全国Ⅰ,理11,5分】已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >, 则a 的取值范围为( )(A )()2,+∞ (B )(),2-∞- (C )()1,+∞ (D )(),1-∞-【答案】B【解析】解法一:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭;且(0)10f =>,()f x 有小于零的零点,不符合题意.当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭要使()f x 有唯一的零点0x 且00x >,只需2()0f a>,即24a >,2a <-,故选B .解法二:由已知0a ≠,()3231f x ax x =-+有唯一的正零点,等价于3113a x x =⋅-有唯一的正零根,令1t x=,则问题又等价于33a t t =-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->, ()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,故选B .(12)【2014年全国Ⅰ,理12,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )(A ) (B ) (C )6 (D )4 【答案】C【解析】如图所示,原几何体为三棱锥D ABC -,其中4,AB BC AC DB DC =====6DA ==,故最长的棱的长度为6DA =,故选C .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分 (13)【2014年全国Ⅰ,理13,5分】8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) 【答案】20-【解析】8()x y +展开式的通项为818(0,1,,8)r r r r T C x y r -+==,∴777888T C xy xy ==,626267828T C x y x y ==, ∴8()()x y x y -+的展开式中27x y 的项为7262782820x xy y x y x y ⋅-⋅=-,故系数为20-.(14)【2014年全国Ⅰ,理14,5分】甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 . 【答案】A【解析】由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A .(15)【2014年全国Ⅰ,理15,5分】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【答案】090【解析】∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径,∴090BAC ∠=,∴AB 与AC 的夹角为090.(16)【2014年全国Ⅰ,理16,5分】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【解析】由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221c o s 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2014年全国Ⅰ,理17,12分】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(1)证明:2n n a a λ+-=;(2)是否存在λ,使得{}n a 为等差数列?并说明理由.解:(1)由题设11n n n a a S λ+=-,1211n n n a a S λ+++=-,两式相减()121n n n n a a a a λ+++-=,由于0n a ≠,所以2n n a a λ+-=.……6分(2)由题设11a =,1211a a S λ=-,可得211a λ=-,由(1)知31a λ=+假设{}n a 为等差数列,则123,,a a a 成等差数列,∴1322a a a +=,解得4λ=;证明4λ=时,{}n a 为等差数列:由24n n a a +-=知:数列奇数项构成的数列{}21m a -是首项为1,公差为 4的等差数列2143m a m -=-,令21,n m =-则12n m +=,∴21n a n =-(21)n m =- 数列偶数项构成的数列{}2m a 是首项为3,公差为4的等差数列241m a m =-,令2,n m =则2n m =, ∴21n a n =-(2)n m =,∴21n a n =-(*n N ∈),12n n a a +-=因此,存在存在4λ=,使得{}n a 为等差数列. ……12分(18)【2014年全国Ⅰ,理18,12分】从某企业的某种产品中抽取500件,测 量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(2)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<; (ii )某用户从该企业购买了100件这种产品,记X 表示100件产品中质量指标值为区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若2(,)ZN μδ,则()0.6826P Z μδμδ-<<+=,(22)P Z μδμδ-<<+=0.9544.解:(1)抽取产品质量指标值的样本平均数x 和样本方差2s 分别为:()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=.……6分 (2)(ⅰ)由(1)知(200,150)Z N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+=. ……9分 (ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知(100,0.6826)X B ,所以1000.682668.26EX =⨯=. ……12分 (19)【2014年全国Ⅰ,理19,12分】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (1)证明:1AC AB =;(2)若1AC AB ⊥,o 160CBB ∠=,AB BC =,求二面角111A A B C --的余弦值. 解:(1)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO⊥又 1B O CO =,故1AC AB =. ……6分 (2)因为1AC AB ⊥且O 为1B C 的中点,所以AO CO =,又因为AB BC =,所以BOA BOC ∆≅∆,故OA OB ⊥,从而OA ,OB ,1OB 两两互相垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz -. 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB BC =,则0,0,A ⎛ ⎝⎭,()1,0,0B ,1B ⎛⎫⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭,1AB ⎛= ⎝⎭,111,0,A B AB ⎛== ⎝⎭,111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭,设(),,n x y z =是平面的法向量,则11100nAB nA B ⎧=⎪⎨=⎪⎩,即00y x -=⎨⎪-=⎪⎩所以可取(1,3,n =,设m 是平面的法向量,则11110m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m =,则1cos ,7n m n m n m ==,所以二面角111A A B C --的余弦值为17. ……12分(20)【2014年全国Ⅰ,理20,12分】已知点()0,2A -,椭圆E :22221(0)x y a b a b+=>>,F 是椭圆的焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.解:(1)设(),0F c,由条件知2c=,得c c a =, 所以2a =,2221b a c =-=,故E 的方程2214x y +=. ……6分(2)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y ,将2y kx =-代入2214x y +=, 得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,1,2x = 从而21221434k PQ x k -=-=,又点O到直线PQ的距离d =,所以OPQ ∆的 面积12OPQ S d PQ ∆==,设243k t -,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,k =等号成立,且满足0∆>,所以当OPQ ∆的面积最大时,l 的方程为:2y x - 或2y =-..……12分 (21)【2014年全国Ⅰ,理21,12分】设函数()1ln x xbe f x ae x x-=+,曲线()y f x =在点()()1,1f 处的切线为(1)2y e x =-+. (1)求,a b ;(2)证明:()1f x >.解:(1)函数()f x 的定义域为()0,+∞,112()ln x x x x a b bf x ae x e e e x x x--'=+-+由题意可得(1)2,(1)f f e '==,故1,2a b ==. ……6分 (2)由(1)知,12()ln x xe f x e x x -=+,从而()1f x >等价于2ln x x x xe e ->-,设函数()ln g x x x =,则()ln g x x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫⎪⎝⎭单调减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g e e =-. (8)分设函数2()x h x xe e-=-,则()()1xh x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值为1(1)h e=-.综上:当0x >时,()()g x h x >,即()1f x > .……12分请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)【2014年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =. (1)证明:D E ∠=∠;(2)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ABC ∆为等边三角形. 解:(1)由题设得,A ,B ,C ,D 四点共圆,所以,D CBE ∠=∠又CB CE =,CBE E ∴∠=∠,所以D E ∠=∠ ……5分(2)设BC 的中点为N ,连结MN ,则由MB MC =知MN BC ⊥,故O 在直线MN 上,又AD 不是O 的直径,M 为AD 的中点,故OM AD ⊥,即MN AD ⊥, 所以//AD BC ,故A CBE ∠=∠,又CBE E ∠=∠,故A E ∠=∠,由(1)知,D E ∠=∠,所以ADE ∆为等边三角形. ……10分(23)【2014年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线22:149x y C +=,直线2:22x tl y t =+⎧⎨=-⎩(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 解:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=.……5分(2)曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为4cos 3sin 6|d θθ=+-,则||5sin()6|sin30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA当sin()1θα+=时,||PA . ……10分(24)【2014年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)若0a >,0b >且 11a b+=.(1)求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.解:(111a b +,得2ab ≥,且当a b ==时等号成立.故33a b +≥,且当a b ==时等号成立,所以33a b +的最小值为 ……5分(2)由(1)知,23a b +≥,由于6,从而不存在,a b ,使得236a b +=. ……10分。

2014届高考理科理数学第一轮知识点总复习测试题11

2014届高考理科理数学第一轮知识点总复习测试题11

第节空间向量在立体几何中的应用【选题明细表】一、选择题1.(2012大同月考)若直线l的方向向量为a,平面α的法向量为n,有可能使l∥α的是( D)(A)a=(1,0,0),n=(-2,0,0)(B)a=(1,3,5),n=(1,0,1)(C)a=(0,2,1),n=(-1,0,-1)(D)a=(1,-1,3),n=(0,3,1)解析:若l∥α,则a·n=0.而选项A中a·n=-2.选项B中a·n=1+5=6.选项C中a·n=-1,选项D中a·n=-3+3=0,故选D.2.(2012广东六校联合高三质量调研)在棱长为1的正方体ABCD A1B1C1D1中,M、N分别是A1B1和BB1的中点,则直线AM与CN所成角α的余弦值为( A)(A)(B)(C)(D)解析:以点D为坐标原点,分别以DA,DC,DD1所在的直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则A(1,0,0),M,C(0,1,0),N,∴=,=.故·=0×1+×0+1×=,||==,||==,∴cos α===,即直线AM与CN所成角α的余弦值为.故选A.3.如图所示,正方体ABCD A1B1C1D1中,E、F分别在A1D、AC上,且A1E=A1D,AF=AC,则( B)(A)EF至多与A1D,AC之一垂直(B)EF⊥A1D,EF⊥AC(C)EF与BD1相交(D)EF与BD1异面解析:以D点为坐标原点,以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E,F,B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=,=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.4.如图所示,ABCD A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC 上的动点,且AE=BF.当A1、E、F、C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为( B)(A)(B)(C)(D)解析:以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,易知当E(6,3,0)、F(3,6,0)时,A1、E、F、C1共面,设平面A1DE的法向量为n1=(a,b,c),依题意得可取n1=(-1,2,1),同理可得平面C1DF的一个法向量为n2=(2,-1,1),故平面A1DE与平面C1DF所成二面角的余弦值为=.故选B.5. (2013成都高三模拟)如图所示,在三棱柱ABC A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角为( A)(A)(B)(C)(D)解析:取AB中点O为原点,建立如图所示空间直角坐标系,则A(1,0,0),B(-1,0,0),B 1(-1,0,3),C1(0,,3),=(0,0,3),=(-2,0,3),=(-1,,3).设n=(x,y,z)为平面AB1C1的法向量,则即令x=3,则n=(3,-,2).设BB1与平面AB1C1所成的角为θ,则sin θ=|cos<n,>|= ||==.∴θ=.故选A.二、填空题6.已知在长方体ABCD A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到平面AB1D1的距离是.解析:如图所示建立空间直角坐标系Dxyz,则A1(2,0,4),A(2,0,0),B1(2,2,4),D1(0,0,4),=(-2,0,4),=(0,2,4),=(0,0,4),设平面AB1D1的法向量为n=(x,y,z),则即解得x=2z且y=-2z,不妨设n=(2,-2,1),设点A1到平面AB1D1的距离为d,则d==.答案:7.(2012合肥月考)等边三角形ABC与正方形ABDE有一公共边AB,二面角C AB D的余弦值为,M、N分别是AC、BC的中点,则EM、AN所成角的余弦值等于.解析:过C点作CO⊥平面ABDE,垂足为O,取AB中点F,连接CF、OF,则∠CFO为二面角C AB D的平面角,设AB=1,则CF=,OF=CF·cos∠CFO=,OC=,则O为正方形ABDE的中心,如图所示建立直角坐标系Oxyz,则E,M,A,N,=,=,cos<,>==.答案:三、解答题8. (2013成都市高三模拟)在四棱锥P ABCD中,AB∥CD,AB⊥AD, AB=4,AD=2,CD=2,PA⊥平面ABCD,PA=4.(1)设平面PAB∩平面PCD=m,求证:CD∥m;(2)求证:BD⊥平面PAC.证明:(1)因为AB∥CD,CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.因为CD⊂平面PCD,平面PAB∩平面PCD=m,所以CD∥m.(2)因为AP⊥平面ABCD,AB⊥AD,所以以A为坐标原点,AB、AD、AP所在的直线分别为x轴、y轴、z 轴建立空间直角坐标系,则B(4,0,0),P(0,0,4),D(0,2,0),C(2,2,0),所以=(-4,2,0),=(2,2,0),=(0,0,4),所以·=(-4)×2+2×2+0×0=0,·=(-4)×0+2×0+0×4=0,所以BD⊥AC,BD⊥AP.因为AP∩AC=A,AC⊂平面PAC,PA⊂平面PAC,所以BD⊥平面PAC.9.如图所示,已知四棱锥P ABCD的底面为等腰梯形,AB∥CD,AC⊥BD垂足为H,PH是四棱锥的高,E为AD的中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值. (1)证明:以H为原点,HA、HB、HP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系如图所示,设HA=1,则A(1,0,0),B(0,1,0).设C(m,0,0),P(0,0,n)(m<0,n>0),则D(0,m,0),E.可得=,=(m,-1,0).因为·=-+0=0,所以PE⊥BC.(2)解:由已知条件及(1)可得m=-,n=1,则P(0,0,1).=,=(-1,0,1).易知为平面PEH的一个法向量.∴|cos<,>|==,因此直线PA与平面PEH所成角的正弦值为.10.(2013成都市双流中学高三月考)如图所示,在直三棱柱ABC A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)求二面角C1AD C的余弦值;(3)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.(1)证明:连接A1C,交AC1于点O,连接OD.由ABC A1B1C1是直三棱柱得四边形ACC1A1为矩形,O为A1C的中点.又D为BC的中点,所以OD为△A1BC的中位线,所以A1B∥OD.因为OD⊂平面ADC1,A1B⊄平面ADC1,所以A1B∥平面ADC1.(2)解:由于ABC A1B1C1是直三棱柱,且∠ABC=90°,故BA、BC、BB1两两垂直.如图所示建立空间直角坐标系.设BA=2,则B(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,1),D(0,1,0).所以=(-2,1,0),=(-2,2,1).设平面ADC1的法向量为n=(x,y,z),则有所以取y=1,得n=(,1,-1).易知平面ADC的一个法向量为v=(0,0,1).由于二面角C1AD C是锐角且cos<n,v>==-.所以二面角C1AD C的余弦值为.(3)解:假设存在满足条件的点E.因为E在线段A1B1上,A1(2,0,1),B1(0,0,1),故可设E(λ,0,1),其中0≤λ≤2.所以=(λ-2,0,1),=(0,1,1).因为AE与DC1成60°角,所以=.即=,解得λ=1或λ=3(舍去).所以当点E为线段A1B1的中点时,AE与DC1成60°角.11.如图所示,在直三棱柱ABC A1B1C1中,∠BAC=90°,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(1)求证:CD=C1D;(2)求二面角A A1D B的平面角的余弦值;(3)求点C到平面B1DP的距离.(1)证明:连接AB1与A1B交于点F,则F为AB1的中点,再连接DF.∵PB1∥平面BDA1,PB1⊂平面PB1A,平面PB1A∩平面BDA1=DF,∴PB1∥DF,∴D为AP的中点.在△PAA1中,DC1∥AA1,∴C1为A1P的中点,易得△ACD≌△PC1D,∴CD=C1D.(2)解:以A1为原点,分别以A1B1、A1C1、A1A所在直线为x轴、y轴、z 轴建立空间直角坐标系.∵AB=AC=AA1=1,∴B1(1,0,0),P(0,2,0),D,B(1,0,1),C(0,1,1),由于A1B1⊥平面AA1D,∴平面AA1D的一个法向量n1=(1,0,0).设平面BA1D的法向量为n2=(x,y,z).∵=(1,0,1),=,∴取z=2,∴∴n2=(-2,-1,2).∴cos<n 1,n2>==-.由图形可得,二面角A A1D B的平面角的余弦值为.(3)解:设平面B1DP的法向量为n3=(x',y',z'),∵=(-1,2,0),=,∴取z'=2,则y'=1,x'=2,∴n3=(2,1,2),又=,∴点C到平面B1DP的距离d===.。

2014年高考全国Ⅰ卷理科数学试题(含答案解析)

2014年高考全国Ⅰ卷理科数学试题(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至6页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后.将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A ={x |2230x x --≥},B ={x |−2≤x <2},则A∩B =(A )[−2, −1](B )[−1, 2)(C )[−1, 1](D )[1, 2)(2)32(1)(1)i i +-= (A )1i +(B )1i -(C )1i -+(D )1i --(3)设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是(A )()f x ()g x 是偶函数 (B )|()f x |()g x 是奇函数 (C )()f x |()g x |是奇函数(D )|()f x ()g x |是奇函数(4)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为(A (B )3 (C (D )3m(5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率(A )18(B )38(C )58(D )78(6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线, 垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为(A ) (B )(C ) (D )(7)执行下图的程序框图,若输入的,,a b k 分别为1, 2, 3,则输出的M = (A )203(B )165 (C )72(D )158(8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则(A )32παβ-= (B )32παβ+= (C )22παβ-=(D )22παβ+=(9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-. 其中真命题是(A )2p ,p 3 (B )1p ,4p (C )1p ,2p(D )1p ,p 310.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = (A )72(B )52(C )3 (D )211.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为(A )(2,+∞) (B )(−∞,−2) (C )(1,+∞)(D )(−∞,−1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 (A )62 (B )42 (C )6 (D )4第Ⅱ卷本卷包括必考题和选考题两个部分。

2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第12课时)知识过关检测 理 新人教A版

2014届高考数学一轮复习 第2章《基本初等函数、导数及其应用》(第12课时)知识过关检测 理 新人教A版

2014届高考数学(理)一轮复习知识过关检测:第2章《基本初等函数、导数及其应用》(第12课时)(新人教A 版)一、选择题1.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1C .-1<a <1D .0<a <12解析:选B.∵y ′=3x 2-3a ,令y ′=0,可得:a =x 2. 又∵x ∈(0,1),∴0<a <1.故选B.2.(2013·威海调研)函数y =4xx 2+1( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,有最小值-2D .无最值解析:选C.∵y ′=x 2+-4x ·2x x +=-4x 2+4x +.令y ′=0,得x =1或-1,f (-1)=-42=-2,f (1)=2.结合图象故选C.3.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对解析:选A.f ′(x )=6x (x -2),∴f (x )在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f (0)=m 最大,∴m =3,而f (-2)=-37,f (2)=-5,∴f (x )min =-37.4.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4解析:选C.∵f ′(x )=2x +2+a x,f (x )在(0,1)上单调,∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立,所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.5.(2011·高考湖南卷)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12C.52D.22解析:选D.由题意|MN |=t 2-ln t (t >0),不妨令h (t )=t 2-ln t ,则h ′(t )=2t -1t,令h ′(t )=0,解得t =22,因为t ∈⎝ ⎛⎭⎪⎫0,22时,h ′(t )<0,当t ∈⎝ ⎛⎭⎪⎫22,+∞时,h ′(t )>0,所以当t =22时,|MN |达到最小. 二、填空题6.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:f ′(x )=m -2x ,令f ′(x )=0,则x =m 2,由题设得m2∈[-2,-1],故m ∈[-4,-2].答案:[-4,-2]7.函数y =sin2x -x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大值是________,最小值是________. 解析:∵y ′=2cos2x -1=0,∴x =±π6.而f ⎝ ⎛⎭⎪⎫-π6=-32+π6,f ⎝ ⎛⎭⎪⎫π6=32-π6,端点f ⎝ ⎛⎭⎪⎫-π2=π2,f ⎝ ⎛⎭⎪⎫π2=-π2,所以y 的最大值是π2,最小值是-π2.答案:π2 -π28.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨产品的价格P (元/吨)之间的函数关系为P =24200-15x 2,且生产x 吨的成本为R =50000+200x (元).则该厂每月生产________吨该产品才能使利润达到最大,最大利润是________万元.(利润=收入-成本)解析:每月生产x 吨时的利润为f (x )=(24200-15x 2)x -(50000+200x )=-15x 3+24000x -50000(x ≥0).由f ′(x )=-35x 2+24000=0,解得x 1=200,x 2=-200(舍去).因f (x )在[0,+∞)内只有一个极值点x =200使f ′(x )=0,故它就是最大值点,且最大值为f (200)=-15×2003+24000×200-50000=3150000(元).所以每月生产200吨产品时的利润达到最大,最大利润为315万元. 答案:200 315 三、解答题9.(2011·高考北京卷)已知函数f (x )=(x -k )e x. (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与↘ ↗所以,f (2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.10.(2011·高考江苏卷)请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0, 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.一、选择题1.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 x ≤480000 x >,则总利润最大时,每年生产的产品是( )A .100B .150C .200D .300 解析:选D.由题意得,总成本函数为 C =C (x )=20000+100x ,所以总利润函数为P =P (x )=R (x )-C (x )=⎩⎪⎨⎪⎧300x -x 22-20000 x 60000-100xx >,而P ′(x )=⎩⎪⎨⎪⎧300-x x ,-100 x >,令P ′(x )=0,得x =300,易知x =300时,P 最大.2.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,给出以下结论:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]; ②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于0. 其中正确的结论有( ) A .0个 B .1个 C .2个 D .3个 解析:选C.∵f (0)=0,∴c =0,∵f ′(x )=3x 2+2ax +b . ∴⎩⎪⎨⎪⎧ f =-1f -=-1,即⎩⎪⎨⎪⎧3+2a +b =-13-2a +b =-1. 解得a =0,b =-4,∴f (x )=x 3-4x ,∴f ′(x )=3x 2-4.令f ′(x )=0,得x =±233∈[-2,2],∴极值点有两个.∵f (x )为奇函数,∴f (x )max +f (x )min =0. ∴①③正确,故选C. 二、填空题3.(2013·嘉兴质检)不等式ln(1+x )-14x 2≤M 恒成立,则M 的最小值是________.解析:设f (x )=ln(1+x )-14x 2,则f ′(x )=[ln(1+x )-14x 2]′=11+x -12x =-x +x -+x, ∵函数f (x )的定义域需满足1+x >0,即x ∈(-1,+∞). 令f ′(x )=0得x =1,当x >1时,f ′(x )<0,当-1<x <1时,f ′(x )>0,∴函数f (x )在x =1处取得最大值f (1)=ln2-14.∴要使ln(1+x )-14x 2≤M 恒成立,∴M ≥ln2-14,即M 的最小值为ln2-14.答案:ln2-144.将边长为1 m 的正三角形薄铁片,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =梯形的周长2梯形的面积,则s 的最小值是________.解析:设剪成的小正三角形的边长为x ,则梯形的周长为3-x ,梯形的面积为12·(x +1)·32·(1-x ),所以s =-x212x +32-x=43·-x21-x 2(0<x <1). 由s (x )=43·-x21-x 2,得 s ′(x )=43·x --x 2--x2-2x-x 22=43·-x -x --x 22. 令s ′(x )=0,且0<x <1,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′(x )>0. 故当x =13时,s 取最小值3233.答案:3233三、解答题5.(2013·大同调研)已知函数f (x )=ax 3+x 2+bx (a 、b 为常数,g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值、最小值.解:(1)∵f ′(x )=3ax 2+2x +b ,∴g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . ∵g (x )为奇函数,∴g (-x )=-g (x ),∴⎩⎪⎨⎪⎧3a +1=0b =0,解得:⎩⎪⎨⎪⎧a =-13b =0.∴f (x )的解析式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2,∴当x ∈(-∞,-2),(2,+∞)时,g (x )单调递减, 当x ∈(-2,2)时,g (x )单调递增,又g (1)=53,g (2)=423,g (2)=43,∴g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.。

2014届高考理科理数学第一轮知识点总复习测试题2-推荐下载

2014届高考理科理数学第一轮知识点总复习测试题2-推荐下载
【选题明细表】
一、选择题
第 节 命题及其关系、充要条件
知识点、方法
四种命题
充分必要条件的判断
充分必要条件的探求
充分必要条件的应用
1.“若 b2-4ac<0,则 ax2+bx+c=0 没有实根”,其否命题是( C )
(A)若 b2-4ac>0,则 ax2+bx+c=0 没有实根
(B)若 b2-4ac>0,则 ax2+bx+c=0 有实根
(C)若 b2-4ac≥0,则 ax2+bx+c=0 有实根
(D)若 b2-4ac≥0,则 ax2+bx+c=0 没有实根
解析:由原命题与否命题的关系知选 C. 2.(2012 年高考山东卷)设 a>0 且 a≠1,则“函数 f(x)=ax 在 R 上是
减函数”是“函数 g(x)=(2-a)x3 在 R 上是增函数”的( A )
3
3
8.(2012 长沙模拟)若方程 x2-mx+2m=0 有两根,其中一根大于 3 一根 小于 3 的充要条件是 . 解析:方程 x2-mx+2m=0 对应二次函数 f(x)=x2-mx+2m,∵方程 x2mx+2m=0 有两根,其中一根大于 3 一根小于 3,∴f(3)<0,解得 m>9, 即:方程 x2-mx+2m=0 有两根,其中一根大于 3 一根小于 3 的充要条 件是 m>9. 答案:m>9 9.已知 α:x≥a,β:|x-1|<1.若 α 是 β 的必要不充分条件,则实数 a 的取值范围为 . 解析:α:x≥a,可看作集合 A={x|x≥a}, β:|x-1|<1, ∴0<x<2, ∴β 可看作集合 B={x|0<x<2}. 又∵α 是 β 的必要不充分条件,

2014届高三理科数学知识点复习试题(附答案)

2014届高三理科数学知识点复习试题(附答案)

2014届高三理科数学知识点复习试题(附答案)第节等差数列【选题明细表】知识点、方法题号等差数列的基本运算1、3等差数列的性质2、4、5、9等差数列的判定8、11等差数列的最值问题6、7综合应用问题10、12一、选择题1.(2012年高考重庆卷)在等差数列{an}中,a2=1,a4=5,则{an}的前5项和S5等于(B)(A)7(B)15(C)20(D)25解析:∵{an}是等差数列,∴⇒∴S5=5a1+d=5×(-1)+10×2=15,故选B.2.(2012年高考福建卷)等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为(B)(A)1(B)2(C)3(D)4解析:∵a1+a5=2a3=10,∴a3=5,又∵a4=7,∴d=2,故选B.3.(2013天津市新华中学月考)设Sn是等差数列{an}的前n项和,S5=3(a2+a8),则的值为(D)(A)(B)(C)(D)解析:由S5=3(a2+a8)得,=3×2a5,即5a3=6a5,所以=,故选D.4.(2012金华一中月考)已知Sn是等差数列{an}的前n项和,S5=3(a2+a8),则等于(A)(A)(B)(C)(D)解析:由等差数列的性质可知,S5=5a3,a2+a8=2a5,因为S5=3(a2+a8),所以5a3=3×2a5,=,故选A.5.(2012厦门市高三上学期期末质量检查)在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5•a6的最大值等于(C)(A)3(B)6(C)9(D)36解析:∵a1+a2+…+a10=30,即=30,a1+a10=6,∴a5+a6=6,∴a5•a6≤=9,故选C.6.(2012北京海淀)若数列{an}满足:a1=19,an+1=an-3(n∈N*),则数列{an}的前n项和数值最大时,n的值为(B)(A)6(B)7(C)8(D)9解析:∵an+1-an=-3(n∈N*),∴数列{an}是以19为首项,-3为公差的等差数列,∴an=19+(n-1)×(-3)=22-3n.设前k项和最大,则有∴∴≤k≤,∵k∈N*,∴k=7.故满足条件的n的值为7.故选B.二、填空题7.(2012西安八校联考)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为米.解析:设树苗放在第i个树坑旁边(如图),那么各个树坑到第i个树坑距离的和是s=(i-1)×10+(i-2)×10+…+(i-i)×10+(i+1)-i]×10+…+(20-i)×10=10×i×i--i×(20-i)+]= 10(i2-21i+210),所以当i=10或11时,s的值最小,最小值是1000,所以往返路程的最小值是2000米.答案:20008.已知数列{an}中,a1=1且=+(n∈N*),则a10=.解析:由=+知,数列为等差数列,则=1+(n-1),即an=.∴a10==.答案:9.(2012烟台高三质检)由正数组成的等差数列{an}和{bn}的前n项和分别为Sn和Tn,且=,则=.解析:由==,∴取n=3,则有==.答案:三、解答题10.已知等差数列{an}的前n项和为Sn,且满足a2+a4=14,S7=70.(1)求数列{an}的通项公式;(2)设bn=,则数列{bn}的最小项是第几项?并求出该项的值.解:(1)设公差为d,则有即解得所以an=3n-2.(2)数列{bn}的最小项是第4项,Sn=1+(3n-2)]=,所以bn==3n+-1≥2-1=23.当且仅当3n=,即n=4时取等号,故数列{bn}的最小项是第4项,该项的值为23.11.已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=+n-4(n∈N*).(1)求证:数列{an}为等差数列;(2)求数列{an}的通项公式.(1)证明:当n=1时,有2a1=+1-4,即-2a1-3=0,解得a1=3(a1=-1舍去).当n≥2时,有2Sn-1=+n-5,又2Sn=+n-4,两式相减得2an=-+1,即-2an+1=,也即(an-1)2=,因此an-1=an-1或an-1=-an-1.若an-1=-an-1,则an+an-1=1.而a1=3,所以a2=-2,这与数列{an}的各项均为正数相矛盾,所以an-1=an-1,即an-an-1=1,因此数列{an}为等差数列.(2)解:由(1)知a1=3,d=1,所以数列{an}的通项公式an=3+(n-1)×1=n+2,即an=n+2.12.(2013南充市第一次适应性考试)设数列{an}的各项都为正数,其前n 项和为Sn,已知对任意n∈N*,Sn是和an的等差中项.(1)证明数列{an}为等差数列,并求数列{an}的通项公式;(2)证明:++…+(1)解:由已知,2Sn=+an,且an>0.当n=1时,2a1=+a1,解得a1=1.当n≥2时,有2Sn-1=+an-1.于是2Sn-2Sn-1=-+an-an-1,即2an=-+an-an-1,于是-=an+an-1,即(an+an-1)(an-an-1)=an+an-1.因为an+an-1>0,所以an-an-1=1(n≥2).故数列{an}是首项为1,公差为1的等差数列,且an=n.(2)证明:因为an=n,则Sn=,==2.所以++…+=2++…+=2。

2014版高考数学一轮总复习 第12讲 函数与方程课件 理 新人教A版

2014版高考数学一轮总复习 第12讲 函数与方程课件 理 新人教A版

1 B.(0,1),f(2) 1 1 D.(0,2),f(4)
1 1 【解析】因为 f(0)<0,f(2)>0,所以 f(0)· 2)<0, f( 1 0+2 1 1 则 x0∈(0,2),第二次计算 f( 2 )=f(4),故选 D.
3.方程 0.9x-x=0 的实数解的个数是( A.0 C.2 B.1 D.3
【解析】 (2)函数 f(x)的零点个数, 即为方程 f(x)=0 的根的 个数.
x>0 x≤0 由 2 或 , -2+lnx=0 x +2x-3=0
得 x=-3(x=1 舍去)或 x=e2,有两根, 故函数 f(x)的零点个数为 2,选 B.


二分法
【例 2】 用二分法求函数 f(x)=x3-x-1 在区间[1,1.5]内 的一个零点(精确度为 0.1).
【解析】 由于 f(1)=1-1-1=-1<0,f(1.5)=3.375-1.5-1=0.875>0, 所以 f(x)在区间[1,1.5]内存在零点,取区间[1,1.5]作为计算的初始区间. 用二分法逐次计算列表如下: 端(中)点 中点函数值 零点所在区间 |an-bn| 坐标 符号 [1,1.5] 1.25 1.375 1.3125 f(1.25)<0 f(1.375)>0 [1.25,1.5] [1.25,1.375] 0.5 0.25 0.125
f(1.3125)<0 [1.3125,1.375] 0.0625
因为|1.375-1.3125|=0.0625<0.1, 所 以 函 数 的 零 点 落 在 区 间 长 度 小 于 0.1 的 区 间 [1.3125,1.375]内, 故函数零点的近似值为 1.3125.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三篇检测试题(时间:120分钟满分:150分)【选题明细表】一、选择题(每小题5分,共60分)1.(2012衡水模拟)若角α的终边过点(sin 30°,-cos 30°),则sin α等于( C)(A)(B)-(C)-(D)-解析:点(sin 30°,-cos 30°),即点(,-),∴r=1,∴sin α==-.故选C.2.已知角α的终边上有一点M(3,-5),则sin α等于( B)(A)-(B)-(C)-(D)-解析:因为r==,所以sin α===-.故选B.3.(2013乐山市第一次调研考试)函数f(x)=满足f(1)+f(a)=2,则a的所有可能值为( D)(A)1或(B)-(C)1 (D)1或-解析:若a≥0时,则e a-1+1=2,a=1,若-1<a<0时,则1+2sin πa2=2,sin πa2=,所以πa2=2kπ+(k∈Z),所以a2=2k+(k∈Z),令k=0,则a=±,所以a=-,综上,a=1或a=-.故选D.4.(2012年东北四校联考)已知函数f(x)=-2sin(2x+ϕ)(|ϕ|<π),若f=-2,则f(x)的一个单调递增区间可以是( D)(A)(B)(C)(D)解析:由题f=-2,即-2sin=-2,得sin=1,∵| |<π,故φ=.由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,即x∈,k∈Z为f(x)的增区间.故选D.5.已知=,0<x<π,则tan x等于( A)(A)-(B)-(C)2 (D)-2解析:===cos x+sin x=.∴1+2sin xcos x=,即2sin xcos x=-,必有x∈,从而1-2sin xcos x=,即(sin x-cos x)2=,又当x∈时,sin x>cos x,∴sin x-cos x=.故sin x=,cos x=-,于是tan x=-.故选A.6.函数f(x)=cos x-sin x取得最大值时,x的可能取值是( C)(A)-π(B)-(C)-(D)2π解析:因为f(x)=cos x-sin x=2=2cos(x+),所以当x+=2kπ(k∈Z)时,f(x)取最大值,即x=2kπ-(k∈Z)时,f(x)有最大值2,所以结合各选项知x的可能取值是-.故选C.7. 在锐角△ABC中设x=(1+sin A)(1+sin B),y=(1+cos A)(1+cosB),则x,y的大小关系为( D)(A)x≤y (B)x<y (C)x≥y (D)x>y解析:由于三角形为锐角三角形,故有A+B>⇒A>-B,又由y=sin x和y=cos x在上的单调性可得sin A>sin=cos B,cos A<cos=sin B,故1+sin A>1+cos B>0,0<1+cos A<1+sin B,即x=(1+sin A)(1+sin B)>y=(1+cos A)(1+cos B).故选D.8.(2012大同模拟)已知函数f(x)=3sin(ω>0)和g(x)=3cos(2x+φ)的图象的对称中心完全相同,若x∈,则f(x)的取值范围是( A)(A)(B)(C)(D)解析:函数f(x)=3sin(ω>0)和g(x)=3cos(2x+φ)的图象的对称中心完全相同,所以ω=2,f(x)=3sin,因为x∈,所以2x-∈,所以f(x)=3sin∈.故选A.9.已知角α的终边经过点P(sin 2θ,sin 4θ),且cos θ=,则α的正切值为( B)(A)-(B)-1 (C)(D)1解析:tan α===2cos 2θ=2(2cos2θ-1)=2=-1.故选B.10.(2012厦门模拟)在不等边三角形ABC中,角A、B、C所对的边分别为a、b、c,其中a为最大边,如果sin2(B+C)<sin2B+sin2C,则角A 的取值范围为( D)(A)(B)(C)(D)解析:由题意得,sin2 A<sin2 B+sin2 C,再由正弦定理得a2<b2+c2,即b2+c2-a2>0.则cos A=>0,∵0<A<π,∴0<A<.又a为最大边,∴A>.因此得角A的取值范围是.故选D.11.已知函数①y=sin x+cos x,②y=2sin xcos x,则下列结论正确的是( C)(A)两个函数的图象均关于点成中心对称图形(B)两个函数的图象均关于直线x=-成轴对称图形(C)两个函数在区间上都是单调递增函数(D)两个函数的最小正周期相同解析:由于y=sin x+cos x=sin,y=2sin xcos x=sin 2x,当x=-时,y=sin=0,y=sin 2x=-,因此函数y=sin x+cos x的图象关于点成中心对称图形,不关于直线x=-成轴对称图形,函数y=2sin xcos x的图象不关于点成中心对称图形,关于直线x=-成轴对称图形,故选项A、B均不正确;结合图象(图略)可知,这两个函数在区间上都是单调递增函数,因此选项C正确;函数y=sin的最小正周期是2π,y=sin 2x的最小正周期是π,因此选项D不正确.综上所述,故选C.12.若AB=2,AC=BC,则S △ABC的最大值为( A)(A)2(B)(C)(D)3解析:设BC=x,则AC=x,x>0,根据三角形面积公式得S△ABC=×AB×BCsin B=x①根据余弦定理得cos B===②将②代入①得,S△ABC=x=,由三角形的三边关系得解得2-2<x<2+2.故当x=2时,S △ABC取得最大值2.故选A.二、填空题(每小题4分,共16分)13.(2012山东泰安期末)已知α∈,sin α=,则tan=.解析:在△ABC中,由α∈且sin α=得cos α=-=-,故tan α=-,因此tan==.答案:14.(2012年高考重庆卷)设△ABC的内角A,B,C的对边分别为a,b,c,cos A=,cos B=,b=3,则c=.解析:在△ABC中,∵cos A=,∴sin A=,∵cos B=,∴sin B=,∴sin C=sin(A+B)=sin Acos B+cos Asin B=×+×=.由正弦定理得,c===.答案:.15.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为m.解析:如图所示,设电视塔AB高为x m,则在Rt△ABC中,由∠ACB=45°得BC=x.在Rt△ADB中∠ADB=30°,∴BD=x,在△BDC中,由余弦定理得,BD2=BC2+CD2-2BC·CD·cos 120°,即(x)2=x2+402-2·x·40·cos 120°,解得x=40,∴电视塔高为40 m.答案:4016. 若函数f(x)=|sin x|(x≥0)的图象与过原点的直线有且只有三个交点,设交点中横坐标的最大值为α,则=.解析:依题意,画出示意图如图所示.于是,α∈,且A(α,-sin α)为直线y=kx与函数y=-sin x(x∈(π,))图象的切点.在A点处的切线斜率为-cos α=,故α=tan α.所以===2.答案:2三、解答题(共74分)17.(本小题满分12分)(2012广州综合测试)已知sin α=,α∈,tan β=.(1)求tan α的值;(2)求tan(α+2β)的值.解:(1)∵sin α=,α∈,∴cos α===.∴tan α===.(2)法一∵tan β=,∴tan 2β===,∴tan(α+2β)===2.法二∵tan β=,∴tan(α+β)===1,∴tan(α+2β)===2.18.(本小题满分12分)(2013内江市第一次模拟考试)在△ABC中,角A、B、C所对的边分别为a、b、c,a=2,b=2,cos A=-.(1)求角B的大小;(2)若f(x)=cos 2x+bsin 2(x+B),求函数f(x)的最小正周期和单调递增区间.解:(1)∵cos A=-(0<A<π),∴A为钝角,sin A=.由=得sin B=,∴B=.(2)由(1)知f(x)=cos 2x+2sin2=cos 2x-cos+1=cos 2x-cos 2x+sin 2x+1=sin+1所以,函数f(x)的最小正周期为π,由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以函数f(x)的单调递增区间为,k∈Z.19.(本小题满分12分)(2013成都市高三一诊模拟)已知O为坐标原点,=(2sin2x,1),=(1,-2sin xcos x+1),f(x)=·+m.(1)求y=f(x)的单调递增区间;(2)若f(x)的定义域为,值域为[2,5],求m的值.解:(1) f(x)=2sin2x-2sin xcos x+1+m=1-cos 2x-sin 2x+1+m=-2sin+2+m,由+2kπ≤2x+≤+2kπ(k∈Z),得kπ+≤x≤kπ+(k∈Z),故y=f(x)的单调递增区间为(k∈Z).(2)当≤x≤π时,≤2x+≤,∴-1≤sin(2x+)≤,∴1+m≤f(x)≤4+m,∴⇒m=1.20.(本小题满分12分)(2012宜春模拟)已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,| ϕ|<)的部分图象如图所示:(1)求函数f(x)的解析式并写出其对称中心;(2)若g(x)的图象与f(x)的图象关于点P(4,0)对称,求g(x)的单调递增区间.解:(1)由题图可知,A=,=4,∴T=16,∴ω==,∴f(x)=sin,由题图知f(2)=,∴sin=.即sin=1,∴+φ=+2kπ(k∈Z),∴φ=+2kπ(k∈Z),又|ϕ|<,∴ϕ=,∴f(x)=sin.令x+=kπ(k∈Z),可得x=8k-2,所以函数f(x)的对称中心为(8k-2,0)(k∈Z).(2)设g(x)上任一点为A(x,y),其关于点P(4,0)的对称点A'(x',y'),则A'在f(x)上.∴x'=8-x,y'=-y,代入f(x)得,-y=sin,∴y=-sin.即g(x)=-sin.由+2kπ≤x-≤+2kπ(k∈Z),得16k+6≤x≤16k+14(k∈Z).所以函数g(x)的单调递增区间为[16k+6,16k+14](k∈Z).21.(本小题满分12分)如图所示,一人在C地看到建筑物A在正北方向,另一建筑物B在北偏西45°方向,此人向北偏西75°方向前进 km到达D,看到A在他的北偏东45°方向,B在他的北偏东75°方向,试求这两座建筑物之间的距离.解:依题意得,DC=(km),∠ADB=∠BCD=30°=∠BDC,∠DBC=120°,∠ADC=60°,∠DAC=45°.在△BDC中,由正弦定理可得,BC===(km).在△ADC中,由正弦定理可得,AC===3(km).在△ABC中,由余弦定理可得,AB2=AC2+BC2-2AC·BCcos∠ACB=(3)2+()2-2×3××cos 45°=25,∴AB=5(km).即这两座建筑物之间的距离为5 km.22.(本小题满分14分)已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若向量m=,n=,a=2,且m·n=.(1)若△ABC的面积S,求b+c的值;(2)求b+c的取值范围.解:(1)因为m=,n=,且m·n=,所以-cos 2+sin 2=,即-cos A=,又A∈(0,π),所以A=.又由S △ABC=bcsin A=,得bc=4,由余弦定理得a2=b2+c2-2bccos=b2+c2+bc,所以16=(b+c)2,故b+c=4.(2)由正弦定理得====4,又B+C=π-A=,所以b+c=4sin B+4sin C=4sin B+4sin=4sin,因为0<B<,所以<B+<,所以<sin≤1,即b+c的取值范围是(2,4].。

相关文档
最新文档