钢管水力计算
管道水力计算-公式汇总
壁厚(mm)
计算内 径(mm) 80
流速 (m/s) 1.99
0.013
8
3.达西—魏斯巴赫(Darrcy—Weisbach)公式及雷诺(Reynolds)公式
公称直径 (mm)
外径 (mm)
壁厚(mm)
计算内 径(mm)
流速 (m/s)
50 32 1002
2.88 1.67 1.03
4.哈森-威廉方程Hazen Williams:
1.舍维列夫公式
公称直径 (mm) 800
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 250
流速 (m/s) 0.71
8
2.曼宁(Mannins)公式C=1/n×R1/6和谢才(Chezy)公式v=C√Ri
粗糙系数
公称直径 (mm) 100
外径 (mm) 100
摩阻系数 公称直径 C (mm) 150 900
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 600
流速 (m/s) 0.68
8
5.常年运行费用(能耗)差额△E=0.994QC△hf/(η K)
Q—计算平均流量(m /d) C—电价(元/KWh) △hf—水头损失差值(mH2O)
3
52500 0.6 -2.63
流量 (m3/h) 687.50
管长
水头损失 (m) 系数f 10000
0.0006
沿程水头 损失 总水头损失(m) Hf(m) 5.58
备注
注:适用于夹
6.70 砂玻璃钢管
沿程水头损 失(m) 0.12 0.05 0.12 0.15 总水头损 失(m) 0.13 0.06 0.13 0.16 备注
管道水力计算(给排水)
第十六篇%管道水力计算第一章%钢管和铸铁管水力计算一!计算公式!&按水力坡降计算水头损失水管的水力计算#一般采用以下公式&Q H ,!+lE 22-$!$#!#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(E...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h2%!应用公式$!$#!#!%时#必须先确定求取系数,值的依据!对于旧的钢管和铸铁管&当F E#3&2W !"/!(时$E...液体的运动粘滞度#(2*h %#,H "&"2!"+l"&)($!$#!#2%当F E<3&2W !"/!(时,H !+l"&)!&/W !"#1I E ()F "&)($!$#!#)%或采用E H !&)W !"#$(2*h $水温为!"?%时#则,H "&"!43+l"&)!I "&1$4()F "&)($!$#!#0%管壁如发生锈蚀或沉垢#管壁的粗糙度就增加#从而使系数,值增大#公式$!$#!#2%和公式$!$#!#)%适合于旧钢管和铸铁管这类管材的自然粗糙度!将公式$!$#!#2%和公式$!$#!#0%中求得的,值代入公式$!$#!#!%中#得出的旧钢管和铸铁管的计算公式&当F #!&2(*h 时#Q H "&""!"4F2+l!&)$!$#!#/%当F <!&2(*h 时#’4!0!’第一章%钢管和铸铁管水力计算Q H "&"""3!2F 2+l!&)!I"&1$4()F "&)$!$#!#$%钢管和铸铁管水力计算表即按公式$!$#!#/%和$!$#!#$%制成!2&按比阻计算水头损失由公式$!$#!#0%求得比阻公式如下&DH Q ;2H "&""!4)$+l/&)$!$#!#4%钢管和铸铁管的D 值#列于表!$#!#0!二!水力计算表编制表和使用说明!&钢管及铸铁管水力计算表采用管子计算内径+l 的尺寸#见表!$#!#!!在确定计算内径+l 时#直径小于)""((的钢管及铸铁管#考虑锈蚀和沉垢的影响#其内径应减去!((计算!对于直径等于)""((和)""((以上的管子#这种直径的减小没有实际意义#可不必考虑!编制钢管和铸铁管水力计算表时所用的计算内径尺寸表!$#!#!钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M 内%径+计算内径+l 铸铁管$((%内%径+计算内径+l 1!)&/"3&""1&""!2/!0$!2$!2//"03!"!4&""!2&/"!!&/"!/"!$1!01!044/40!/2!&2/!/&4/!0&4/!4/!30!40!4)!""332"2$&4/2!&2/2"&2/2""2!3!33!31!2/!202/))&/"24&""2$&""22/20/22/220!/"!03)202&2/)/&4/)0&4/2/"24)2/)2/22""!330"01&""0!&""0"&""24/2332432412/"203/"$"&""/)&""/2&"")"")2/)"/)"/)"")""4"4/&/"$1&""$3&"")2/)/!))!))!)/")$"1"11&/"1"&/"43&/")/")44)/4)/4!""!!0&""!"$&""!"/&""’1!0!’第十六篇%管道水力计算钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M内%径+计算内径+l铸铁管$((%内%径+计算内径+l!2/!0"&""!)!&""!)"&""!/"!$/&""!/$&""!//&""2&表!$#!#2"表!$#!#)$中等管径钢管水力计算表%管壁厚均采用!"((#使用中如需精确计算#应根据所选用的管子壁厚的不同#分别对表!$#!#2"表!$#!#)中的!"""Q 和F 值或对表!$#!#0中的D 值加以修正!!"""Q 值和D 值的修正系数i !采用下式计算&i !H +l+l()m/&)$!$#!#1%式中%+l...壁厚!"((时管子的计算内径$(%#+l m...选用管子的计算内径$(%!修正系数i !值#见表!$#!#2!平均水流速度F 的修正系数i 2#采用下式计算&i 2H +l+l()m2$!$#!#3%修正系数i 2值#见表!$#!#)!)&按比阻计算水头损失时#公式$!$#!#4%只适用于平均水流速度F #!&2(*h 的情况!当F <!&2(*h 时#表!$#!#0中的比阻D 值#应乘以修正系数i )!i )可按下式计算&中等管径的钢管!"""Q 值和D 值的修正系数i !表!$#!#2公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&$!"&$$"&4""&4)"&4$"&41"&1""&1!"&1)"&10"&$$"&4""&40"&44"&43"&1!"&1)"&10"&1/"&1$"&42"&4$"&43"&1!"&1)"&1$"&1$"&14"&11"&13"&41"&1!"&1)"&1/"&14"&11"&13"&3""&3!"&32"&1/"&11"&13"&3""&3!"&32"&3)"&3)"&30"&3/"&32"&3)"&30"&3/"&3/"&3$"&3$"&34"&34"&34!!!!!!!!!!!&"3!&"1!&"$!&"$!&"/!&"0!&"0!&")!&")!&")!&!1!&!$!&!)!&!2!&!"!&"3!&"1!&"4!&"4!&"$’3!0!’第一章%钢管和铸铁管水力计算中等管径钢管F 值的修正系数i 2表!$#!#)公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&1)"&1/"&14"&13"&3""&3!"&32"&3)"&3)"&30"&1$"&11"&13"&3!"&32"&3)"&3)"&30"&30"&3/"&11"&3""&3!"&32"&3)"&30"&30"&3/"&3/"&3$"&3!"&32"&3)"&30"&3/"&3/"&3$"&3$"&3$"&34"&30"&3/"&3$"&34"&34"&34"&34"&34"&31"&31"&34"&34"&31"&31"&31"&31"&33"&33"&33"&33!!!!!!!!!!!&")!&")!&"2!&"2!&"2!&"2!&"!!&"!!&"!!&"!!&"4!&"/!&"/!&"0!&"0!&")!&")!&")!&"2!&"2钢管和铸铁管的比阻D 值表!$#!#0水煤气钢管中等管径钢管铸铁管公称直径M 8$((%D $;()*h %D $;7*h %公称直径M 8$((%D $;()*h %内径$((%D $;()*h %1!"!/2"2/)20"/"4"1"!""!2/!/"22//""""")23/""""11"3"""!$0)"""0)$4""3)1$"00/)"!!"1"213)!!$12$4&01$&2)))&3/22/&/)2&3/1&1"3!&$0)"&0)$4"&"3)1$"&"00/)"&"!!"1"&""213)"&""!!$1"&"""2$40"&""""1$2)"&""""))3/!2/!/"!4/2""22/2/"24/)"")2/)/"!"$&200&3/!1&3$3&24)0&1222&/1)!&/)/"&3)32"&$"11"&0"41/"4/!""!2/!/"2""2/")"")/"!/!3"!4"3)$/&)!!"&10!&1/3&"232&4/2!&"2/"&0/23i )H "&1/2!I "&1$4()F"&)$!$#!#!"%修正系数i )值#见表!$#!#/!’"20!’第十六篇%管道水力计算钢管和铸铁管D 值的修正系数i )表!$#!#/F $(*h %"&2"&2/"&)"&)/"&0"&0/"&/"&//"&$i )!&0!!&))!&2"!&20!&2"!&!4/!&!/!&!)!&!/F $(*h %"&$/"&4"&4/"&1"&1/"&3!&"!&!!&2i )!&!"!&"1/!&"4!&"$!&"/!&"0!&")!&"!/!&""0&钢管$水煤气管%的!"""Q 和F 值见表!$#!#$#钢管M8H !2/>)/"((的!"""Q 和F 值见表!$#!#4(铸铁管M 8H /">)/"((的!"""Q 和F 值见表!$#!#1#表中F 值为平均水流速度(*h!计算示例&3例!4%当流量;H !0.*h H "&"!0()*h 时#求管长.H )/""(#外径W 壁厚H !30W$((的钢管的水头损失!3解4%由表!$#!#!中查得外径MH !30((的钢管公称直径为M 8H !4/((#又由表!$#!#4中M 8H !4/((一栏内查得!"""Q H 0&!/#F H "&$(*h !因为管壁厚度不等于!"(($为$((%#故需对!"""Q 值加以修正!由表!$#!#2中查得修正系数i !H"&43!故水头损失为&,H Q i !.H 0&!/!"""W "&43W )/""H !!&04(按着比阻求水头损失时#由表!$#!#0中查得DH !1&3$$;以()*h 计%#因为平均水流速度F "&$(*h $小于!&2(*h %#故需对D 值加以修正!由表!$#!#/查得修正系数i )H !&!!/!修正系数i !仍等于"&43!故水头损失为&,H D i !i ).;2H !1&3$W "&43W !&!!/W )/""W "&"!02H !!&0$(同样#因为管壁厚度不等于!"((#也应对平均水流速度F 值加以修正#由表!$#!#)查得修正系数i 2H"&3!!则求得&FH "&$"W "&3!H "&//(*h 3例24%当流量;H 4.*h H "&""4()*h 时#求M 8H !/"((#管长.H 2"""(的铸铁管的水头损失!3解4%由表!$#!#1中查到&!"""Q H 2&0$(F H "&0"(*h #故,H Q .H 2&0$!"""W 2"""H 0&32(!按比阻D 值求水头损失时#由表!$#!#0中查得DH 0!&1/$;以()*h 计%!因为平均流速小于!&2(*h #故必须计入修正系数i )#当F H "&0"(*h 时#由表!$#!#/中查得i )H !&2"!故水头损失为&,H D i ).;2H 0!&1/W !&2"W2"""W"&""42H 0&32(’!20!’第一章%钢管和铸铁管水力计算钢管和铸铁管水力计算见表!$#!#$#!$#!#4#!$#!#1!’220!’第十六篇%管道水力计算’)20!’第一章%钢管和铸铁管水力计算’020!’第十六篇%管道水力计算’/20!’第一章%钢管和铸铁管水力计算’$20!’’420!’’120!’’320!’’")0!’’!)0!’’2)0!’’))0!’’0)0!’’/)0!’’$)0!’第十六篇%管道水力计算’4)0!’第一章%钢管和铸铁管水力计算’1)0!’第十六篇%管道水力计算’3)0!’第一章%钢管和铸铁管水力计算’"00!’第十六篇%管道水力计算’!00!’第一章%钢管和铸铁管水力计算’200!’第十六篇%管道水力计算第二章%塑料给水管水力计算一!计算公式Q H ,!+l F 22-$!$#2#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(F...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h 2%!应用公式$!$#2#!%时#应先确定系数,值!对于各种材质的塑料管$硬聚氯乙烯管"聚丙烯管"聚乙烯等%#摩阻系数定为&,H "&2/X f "&22$$!$#2#2%式中%X f ...雷诺数(X f HF +l E$!$#2#)%其中%E ...液体的运动粘滞系数$(2*h %!当E H !&)W !"#$(2*h $水温为!"?%时#将公式$!$#2#2%和式$!$#2#)%中求得的,值代入公式$!$#2#!%中#进行整理后得到&Q H "&"""3!/;!&440+l0&440$!$#2#0%式中%;...计算流量$()*h %(+l...管子的计算内径$(%!塑料给水管水力计算表即按公式$!$#2#0%制成!二!水力计算表的编制和使用说明$!%为计算方便#水力计算表是按标准管的计算内径编制的!对于公称管径M 8H 1>!/((的塑料管#采用,轻工业部部标准5P 41>1".4/-中B 8H!&"F B 9$!"J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!对于公称管径M 8H 2">)/"((的塑料’)00!’第二章%塑料给水管水力计算管#采用,轻工业部部标准5P 41>1".4/-中B 8H"&$F B 9$$J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!$2%各种不同材质"不同规格的塑料管#由于计算内径互有差异#所以在进行水力计算时#应将查水力计算表所得的!"""Q 值和F 值#分别乘以阻力修正系数i !和流速修正系数i 2进行修正!i !H +l+l()m0&440$!$#2#/%i 2H +l+l()m 2$!$#2#$%式中%+l...标准管计算内径$(%(+l m...计算管计算内径$(%!$)%国产各种材质规格塑料管的i !"i 2数据见表!$#2#!"表!$#2#2和表!$#2#)!在表!$#2#!中#硬聚氯乙烯管和聚乙烯管规格取自,轻工业部部标准5P 41>1".4/-!在表!$#2#2中#聚丙烯管规格取自轻工业部聚丙烯管材标准起草小组!341年1月编制的,聚丙烯管材料暂行技术条件-!在表!$#2#)中#硬聚氯乙烯管和聚乙烯管规格取自,化工部部标准@P .$).$/-!其它材质"规格塑料管的i !"i 2可分别用公式$!$#2#/%和式$!$#2#$%自行计算!轻工业部部标准硬聚氯乙烯管及聚乙烯管i !!i 2值表!$#2#!材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 21!2W !&/3!!!2W !&/3!!!"!$W 2!2!!!$W 2!2!!!/2"W 2!$!!2"W 2!$!!2"2/W !&/22!!2/W 2&/2"!&/4$!&2!"2/W 22!!&203!&"312/)2W !&/23!!)2W 2&/24!&0"4!&!/0)2W 2&/24!&0"4!&!/0)20"W 2&")$!!0"W ))0!&)!0!&!2!0"W ))0!&)!0!&!2!0"/"W 2&"0$!!/"W )&/0)!&)1"!&!00/"W 002!&/00!&2""/"$)W 2&//1!!$)W 0//!&213!&!!2$)W //)!&/)1!&!314"4/W 2&/4"!!4/W 0$4!&2)2!&"321"3"W )10!!3"W 0&/1!!&!3"!&"4/!""!!"W )&/!")!!!!"W /&/33!&2"1!&"12’000!’第十六篇%管道水力计算材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2!!"!2/W 0!!4!!!2/W $!!)!&!1!!&"42!!2/!0"W 0&/!)!!!!0"W 4!2$!&2"0!&"1!!/"!$"W /!/"!!!$"W 1!00!&2!/!&"1/!4/!1"W /&/!$3!!!1"W 3!$2!&220!&"112""2""W $!11!!2""W !"!1"!&2)!!&"3!22/22/W 42!!!!2/"2/"W 4&/2)/!!24/21"W 1&/2$)!!)"")!/W 3&/23$!!)/")//W !"&3))0!!0""0""W !2)4$!!计算示例&)例*%已知流量;H !0.*h H "&"!0()*h #求管长.H )/""(#管径M 2""W $#轻工业部部标准B 8H!&"F B 9$!"J -*c (2%硬聚氯乙烯管的水头损失及平均水流速度!)解*%由表!$#2#!中查得外径M 2""((的塑料公称直径为M 82""((#又由表!$#2#0中查得M 82""((#当;H !0.*h 时#!"""Q H !&)0(#F H "&/(*h!因选用非标准管#故须对已求得的!"""Q 值加以修正!由表!$#2#!查得阻力修正系数i !H!&2)!#故实际水头损失为&,H Q i !.H !&)0!"""W !&2)!W)/""H /&44(同法查得流速修正值i 2H !&"3!#将由表!$#2#0中查得的流速F H "&/"(*h 加以修正!求得管内实际流速为FH "&/"W !&"3!H "&/0$(*h $0%工程中#塑料管一律用外径W 壁厚表示其规格!本计算表中公称管径是指外径而言#单位为毫米!三!水力计算塑料给水管水力计算见表!$#2#0!’/00!’第二章%塑料给水管水力计算’$00!’’400!’’100!’’300!’’"/0!’’!/0!’’2/0!’’)/0!’’0/0!’’//0!’’$/0!’第十六篇%管道水力计算’4/0!’第二章%塑料给水管水力计算’1/0!’第十六篇%管道水力计算’3/0!’第二章%塑料给水管水力计算’"$0!’第十六篇%管道水力计算第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算一!计算公式;H FD $!$#)#!%图!$#)#!%,<M 2%%%%%F H !RX 2*)Q !*2$!$#)#2%式中%;...流量$()*h %(F...流速$(*h %(R...粗糙系数(X ...水力半径$(%(Q ...水力坡降(D ...水流断面$(%!当,<M 2时#DH $;#h Q R ;c a h ;%^2$!$#)#)%图!$#)#2%,<M2%%%%%3H 2;^$!$#)#0%3...湿周$(%!XH ;#h Q R ;c a h ;2;^$!$#)#/%当,[M 2时#DH $1#;I h Q R ;c a h ;%^2$!$#)#$%3H 2$1#;%^$!$#)#4%3...湿周$(%!XH 1#;I h Q R ;c a h ;2$1#;%^$!$#)#1%二!水力计算钢筋混凝土圆管MH !/">1""(($非满流#R H "&"!0%水力计算见表!$#)#!!表中;为流量$.*h %#F 为流速$(*h %!’!$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’2$0!’第十六篇%管道水力计算’)$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’0$0!’第十六篇%管道水力计算’/$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算。
钢管水力计算
钢管和铸铁管水力计算1 计算公式钢管和铸铁管水力计算沿用甫·阿·舍维列夫著水力计算表。
表中所采用的两种计算水头公式如下:(1)按水力坡降计算水头损失:水管的水力计算,一般采用公式(1-1):(1-1)式中i ――水力坡降;λ ――摩阻系数;d j ――管子的计算内径(m);υ――平均水流速度(m/s);g ――重力加速度,为9.81(m/s2)应用公式(1-1)时,必须先确定求取系数λ值的依据。
对于旧的钢管和铸铁管:当ν/v≥9.2×105/m时,ν――液体的运动粘滞度,(m2/s),则(1-2)当ν/v<9.2×105/m时,则(1-3)或采用ν=1.3×10-6m2/s(水温为10℃)时,则(1-4)管壁如发生锈蚀或沉垢,管壁的粗糙度就增加,从而使系数λ值增大。
公式(1-2)和公式(1-3)适合于旧钢将公式(1-2)和公式(1-4)中求得的λ值,代入(1-1)中,得出的旧钢管和铸铁管的计算公式为:当v≥1.2m/s 时,(1-5)当v<1.2m/s 时,(1-6)钢管和铸铁管水力计算表即按公式(1-5)和公式(1-6)制成。
(2)按比阻计算水头损失:由公式(1-5)求得比阻公式(1-7)为:(1-7)钢管和铸铁管的A 值,按公式(1-7),列表于1-4、5。
由于钢管和铸铁管的计算内径d j 不同,如公称直径DN=50mm 时,钢管的计算内径dj=52mm;铸铁管的计算内径dj=49mm。
因此同一公称直径,钢管2 水力计算表制表和使用说明(1)钢管及铸铁管水力计算表采用管子计算内径内的尺寸,见表2-1。
在确定计算内径d j 时,直径小于300m公称直径外径内径计算内径公称直径外径计算内径公称直径外径DN D d dj DN D dj DN D 813.598125146125400426101712.511.51501681474504781521.2515.7514.751751941735005292026.7521.2420.252002191986006302533.527262252452247007203242.2535.7534.752502732528008204048414027529927990092050605352300325305100010207075.56867325351331120012208088.580.579.5350377357130013201001141061051400142012514013113015001520150165156155160016201800182020002020220022202400242026002620①为壁厚10mm 的管子。
钢管和铸铁管水力计算表
钢管(水煤气管)的1000i和v值 表7
Q (L/s) (m3/h) 0.025 0.09 0.03 0.108 0.035 0.126 0.04 0.144 0.045 0.162
8
v
1000i
0.5
162
0.6
226
0.7
300
0.8
384
0.9
476
水煤气管
中等管径
大管径
公称直径
公称直径
公称直径
DN A(Q米3/ A(Q升/ DN A(Q米3/ DN A(Q米3/
(毫米) 秒) 秒) (毫米) 秒) (毫米) 秒)
8 2.26E+08 225.5 125 106.2 400 0.2062
10 32950000 32.95 150 44.95 450 0.1089
米) 秒)
50
15190
75
1709
100 365.3
125 110.8
150 41.85
200 9.029
250 2.752
300 1.025
350 0.4529
内径(毫 A(Q米3/ 米) 秒)
400 0.2232 450 0.1195 500 0.06839 600 0.02602 700 0.0115 800 0.005665 900 0.003034 1000 0.001736 1100 0.001048 1200 0.000661 1300 0.000432 1400 0.000292 1500 0.000202
0.44 0.47 0.5 0.53 0.56
0.58 0.64 0.7 0.76 0.82
0.88 0.94 0.99 1.05 1.11
水力公式
长距离输水管道水力计算公式的选用1. 常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10dC lQ h h f ***= (3) 式中h f ------------沿程损失,mλ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降;R ―――水力半径,mQ ―――管道流量m/s 2 v----流速 m/sC n ----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2. 规范中水力计算公式的规定3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式4. 公式的适用范围: 3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果表明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不仅包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用.布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采用)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式本身而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包括反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包括流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m ≤R ≤3m;0.011≤n ≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与不同管材的管壁表面粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106.通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采用谢才公式外,其它管材大多推荐采用达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采用达西公式,但未明确要求计算λ值采用的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采用的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁表面均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采用舍维列夫公式显然也就会产生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采用柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE 等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采用适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此, 《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》并不矛盾. 海澄-威廉公式可以适用于各种不同材质管道得水力计算,其中海澄-威廉系数Ch 得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采用达西公式,谢才公式或者海澄-威廉公式计算,不同管材得差异均表现在 管内壁表面当量粗糙程度得不同上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采用不同得加工工艺,其内表面得粗糙度也可能有所差异,这一因素在设计过程种也应重视(常用管材得粗糙度系数参考值见表2) 表2 常见管材粗糙度相关系数参考值5.管径对选择计算公式得影响 根据雷诺数计算公式vVdRe ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得不同设计条件应对所使用计算公式得适用范围进行复核.保证计算得准确性.大多说供水工程得设计按照水温10℃,运动粘度1.3*10-5 m 2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采用布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采用布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采用《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏安全,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采用塑料内衬管不宜采用布拉修斯公式计算,而更宜于采用如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采用谢才公式计算时,如果管道内径大于2m 时则不采用曼宁公式计算谢才系数.如果采用巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS 和HAZEN 在大量工业管道现场或试验测量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外不少管道水力计算软件均采用该公式编制.由此可见,对于口径大于2m 得管道应尽量避免采用海澄-威廉公式计算以策安全.6.值得提出得是,上述所有水力计算公式中采用得管径均为计算内径,各种管道均应采用管道净内空直径计算,对于采用水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量避免采用海澄-威廉公式,建议采用柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才能得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
管道水力损失计算
-
-
粗糙系数 n 0.011~0.012 0.0105~0.0115 0.014~0.018 0.012~0.013 0.011~0.0125 0.012~0.014
-
海曾-威廉 系数 Ch 120~130 130~140 90~100
110~130
120~140
--- 海曾-威廉系数
(4)各种管道沿程水头损失水力计算参数值
各种管道沿程水头损失水力计算参数(n、Ch、△)值
管道种类
钢管、铸铁管
混凝土管
矩形混凝土管 DP (渠)道(现浇) 化学管材(聚乙烯管、 聚氯乙烯管、玻璃纤维 增强树脂夹砂管等)、 内衬与内涂塑料的钢管
水泥砂浆内衬 涂料内衬
旧钢管、旧铸铁 管(未做内衬) 预应力混凝土管
-
140~150
当量粗糙度 △(mm)
-
-
-
-
0.010~0.030
3. 管道(渠)局部水力损失宜按下式计算:
hj =
v2 2g
式中 ς
--- 管道(渠)局部水力损失系数
工程在可研阶段,根据管线的敷设情况,管道局部水头损失可按沿程水头损
失的 5%~10%计算。
配水管网水力平差计算,一般不考虑局部水头损失。
水在不同温度是的 µ 值(×10-6)
水温(℃) 0
5
10 15 20 25 30 40
µ(m3/s) 1.78 1.52 1.31 1.14 1.00 0.89 0.80 0.66
(2)混凝土管(渠)及采用水泥砂浆内衬的金属管道:
1 R y n
y=2.5 n − 0.13 − 0.75 R( n − 0.1)
输水管道水力计算公式
输水管道水力计算公式1.常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:g d v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,mλ----------沿程阻力系数l -----------管段长度,md-----------管道计算内径,mg-----------重力加速度,m/s 2C-----------谢才系数i------------水力坡降;R-----------水力半径,mQ-----------管道流量m/s 2v------------流速 m/sC n -----------海澄―威廉系数其中达西公式、谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广.柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108。
钢管水力计算
(1-2) (1-3) (1-4)
管壁如发 生锈蚀或 沉垢,管 壁的粗糙 度就增 加,从而 使系数λ 值增大。 公式(12)和公式 (1-3)适 合于旧钢 管和铸铁 管这类管 材的自然 粗糙度。 将公式 (1-2)和 公式(14)中求得 的λ值, 代入(11)中,得 出的旧钢 管和铸铁 管的计算 公式为: 当v ≥ 1.2m/s 时,
1600
0.0001438
1800
0.00007702
2000
0.00004406
0.00002659
0.00001677
0.00001097
铸铁管的比阻A 值
表2-5
(2-3)
内径(mm) 50 75 100 125 150 200 250 300 350 400 450
A(Qm 3/s) 15190 1709 365.3 110.8 41.85 9.029 2.752 1.025 0.4529 0.2232 0.1195
175
0.7
200
0.73
225
0.76
250
0.78
275
0.8
300
0.81
325
0.83
350
0.84
400
-
450
-
500
-
600
-
700
-
800
-
900Βιβλιοθήκη -1000-
1200
-
1300
-
1400
-
1500
-
1600
-
1800
-
2000
-
2200
-
2400
-
2600
钢管水力计算
0.99
1
600
-
0.97
0.97
0.98
0.99
0.99
1
700
-
-
-
-
-
0.99
1
800
-
-
-
-
-
1
1
900
-
-
-
-
-
1
1
1000
-
-
-
-
-
1
1
1200
-
-
-
-
-
-
1
1300
-
-
-
-
-
-
1
1400
-
-
-
-
-
-
1
1500
-
-
-
-
-
-
1
1600
-
-
-
-
-
-
1
1800
-
-
-
-
-
-
1
2000
-
-
-
-
-
-
600
0.02602
100
365.3
700
0.0115
125
110.8
800
0.005665
150
41.85
900
0.003034
200
9.029
1000
0.001736
250
2.752
1100
0.001048
300
1.025
1200
0.0006605
350
0.4529
完整版流量及管径、压力、流速之间关系计算公式
流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常有为 0.1--0.6MPa ,水在水管中流速在 1--3 米/ 秒,常取 1.5 米/ 秒。
流量 = 管截面积 X 流速 =0.002827X 管内径的平方 X 流速 (立方米 / 小时 )。
其中,管内径单位: mm ,流速单位:米 / 秒,饱和蒸汽的公式与水相同,可是流速一般取 20--40 米/ 秒。
水头损失计算 Chezy公式这里:Q——断面水流量(m3/s)C——Chezy糙率系数(m1/2/s)A——断面面积(m2)R——水力半径(m)S——水力坡度(m/m)依照需要也可以变换为其他表示方法 :Darcy-Weisbach公式由于这里:h f——沿程水头损失(mm3/s)f——Darcy-Weisbach水头损失系数(无量纲)l——管道长度(m)d——管道内径(mm)v——管道流速(m/s)g——重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,经过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的 5~10% ,因此本文主要研究、商议管道沿程水头损失的计算方法。
管道常用沿程水头损失计算公式及合用条件管道沿程水头损失是水流摩阻做功耗资的能量,不一样的水流流态,依照不一样的规律,计算方法也不一样样。
输配水管道.态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。
紊流又依照阻力特色划分为水力圆滑区、过渡区、粗糙区。
管道沿程水头损失计算公式都有合用范围和条件,一般都以水流阻力特色区划分。
水流阻力特色区的鉴识方法,工程设计宜采用数值做为鉴识式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,依照水流阻力特色区划分如表 1。
沿程水头损失水力计算公式和摩阻系数阻力特色合用条件水力公式、摩阻系数区水力圆滑>10区(1)紊流过渡 10<区<500(2)表 1符号意义雷诺数h:管道沿程水头损失v:平均流速d:管道内径γ:水的运动粘滞系数λ:沿程摩阻系数:管道当量粗糙度q:管道流量紊流粗糙>500Ch:海曾 -威廉系数区C:谢才系数R:水力半径n:粗糙系数i:水力坡降l:管道计算长度达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它合用于流态的不一样区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,合用范围宽泛,被认为紊流区λ的综合计算公式。
管道水力计算-公式汇总
壁厚(mm)
计算内 径(mm) 80
流速 (m/s) 1.99
0.013
8
3.达西—魏斯巴赫(Darrcy—Weisbach)公式及雷诺(Reynolds)公式
公称直径 (mm)
外径 (mm)
壁厚(mm)
计算内 径(mm)
流速 (m/s)
50 32 1002
2.88 1.67 1.03
4.哈森-威廉方程Hazen Williams:
摩阻系数 公称直径 C (mm) 150 900
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 600
流.常年运行费用(能耗)差额△E=0.994QC△hf/(η K)
Q—计算平均流量(m3/d) C—电价(元/KWh) △hf—水头损失差值(mH2O)
52500 0.6 -2.63
20.35 4.83 2919.00
流量 (m3/h) 687.50
管长
水头损失 (m) 系数f 10000
0.0006
沿程水头 损失 总水头损失(m) Hf(m) 5.58 6.70
备注
注:适用于夹 砂玻璃钢管
沿程水头损 失(m) 0.12 0.05 0.12 0.15 总水头损 失(m) 0.13 0.06 0.13 0.16 备注
流量 (m3/h) 125.00
管长
沿程水头 沿程水头 (m) 损失系数 总水头损失(m) 损失(m) i 617 0.0035 2.1701
备注
使用于旧钢管
2.60 和球墨铸铁管
√Ri
流量 (m3/h) 36.00
管长
沿程水头 沿程水头 (m) 损失系数 总水头损失(m) 备注 损失(m) 注:适用钢筋 i 30 0.1232 3.70 4.07
热镀锌钢管管道水力计算
1 2
1 ~ 2 2 ~ 3
1.5 1.5
1.50 3.00
0.20 0.76
20 32
20.25 34.75
0.62 0.80
31 25
22.0 5.0
0.89 0.16
0.89 1.05
JJL-2
序号 管 段 本层 当 量N 累计当 量∑N 流量 Q (L/s) 公称直 径DN (mm) 计算管 径(mm) 流速V (m/s) 1000i (mm) 管长 L(m) 损失H (m) 累计损 失Σ (m)
19 32 46 59 37
4.0 4.0 .31 1.35
0.10 0.27 0.51 0.82 2.17
南湖办公商业加压干管中水-泵房至8层不利
ZJL-6开始
序号 管 段 本层 当 量N 累计当 量∑N 流量 Q (L/s) 公称直 径DN (mm) 计算管 径(mm) 流速V (m/s) 1000i (mm) 管长 L(m) 损失H (m) 累计损 失Σ (m)
1 ~ 2 2 ~ 3 3 ~ 4 4 ~ 5 5 ~ 6
3.5 3.5 3.5 3.5 3.5
3.50 7.00 10.50 14.00 17.50
0.82 1.16 1.43 1.65 1.84
32 40 40 40 40
34.75 40.00 40.00 40.00 40.00
0.86 0.92 1.14 1.31 1.46
0.82 1.16 1.43 1.65 1.84 2.02 3.77 4.28 4.66 4.80 4.90 5.94
32 40 40 40 50 50 65 65 80 80 80 80
34.75 40.00 40.00 40.00 52.00 52.00 67.00 67.00 79.50 79.50 79.50 79.50
水力计算表
液压计算图简单,清晰,易于查阅。
有关水力计算是根据新标准编制的。
适用于给排水工程,环境工程,房屋建设,水利水电工程,污水处理,市政管道,暖通空调等领域的规划设计,施工,管理和决策人员。
也可以作为工厂,矿业企业及相关高等学校的师生参考。
执行摘要水力计算图是给水排水工程设计中常用的水力计算图的集合。
内容包括供水工程用钢管,铸铁管和塑料管的水力计算表,圆形截面钢筋混凝土输水管的水力计算表,圆形,矩形,马蹄形和蛋形截面排水管道的水力计算图,梯形明渠水力计算图,热水管,钢塑复合管,蒸汽和压缩空气管的流量和压力损失计算表等。
为了充分发挥实用的设计功能并配合应用在计算机辅助设计方面,“液压计算表”配备了上述所有液压计算表的电子软件,可以通过计算机准确,方便,快速地检索,查询和计算。
目录1,给水管道水力计算1.钢管和铸铁管1.1计算公式1.2表格和说明1.3水力计算2.钢筋混凝土供水管2.1计算公式2.2水力计算3.塑料给水管3.1计算公式3.2准备和说明3.3水力计算2,排水道水力计算4.钢筋混凝土圆形排水管(全流量,n = 0.013)4.1计算公式4.2水力计算5.钢筋混凝土圆形排水管(非全流量,n = 0.014)5.1计算公式5.2水力计算图及说明6.矩形横截面沟槽(全流量,n = 0.013)6.1计算公式6.2水力计算7.矩形横截面沟槽(非全流量,n = 0.013)7.1计算公式7.2水力计算8.梯形截面明渠(n = 0.025,M = 1.5)8.1计算公式8.2水力计算图及说明9.马蹄形断面沟9.1马蹄形(I型)涵洞9.2马蹄形(II型)涵洞10.蛋形截面管10.1计算公式10.2蛋形管道水力计算图及其应用3,建筑给排水水力计算11.水煤气管和热水管11.1水煤气管11.2热水管12.建筑给水用钢塑复合管12.1计算公式12.2准备和使用说明12.3水力计算13.局部头部损失14.蒸汽和压缩空气管道的压力损失计算14.1计算公式14.2与压降计算有关的参数给排水工程快速设计手册水力计算图电子软件说明书。
水力计算及实例讲解
2、管道水力计算中,设备阻力降要考虑,尤其是低压供 气的情况。 日常工作中需要考虑的设备阻力降包括:流量计、过滤 器、电磁阀及其他一些管径或流向发生巨大变化的管道 设备。这部分阻力降在低压管道中所占比例很大,如忽 略,可能会造成用气设备前的压力、流量满足不了设备 正常燃烧的要求。 3、设备选型计算要重视。 设备选型不光要考虑压力、流量、计量精度满足,同时 还要考虑价格因素,有些人不重视设备选型计算,其实 调压计量设备在整个管网系统中是很重要的环节,且对 工程造价有很大的影响。
目
录
水力计算基本步骤 水力计算基本公式 水力计算注意事项
水力计算实例讲解
水力计算基本步骤
1、与用户协商确定用气地点பைடு நூலகம்设备型号、适用气种、负荷、 用气压力等技术参数(需要书面确认,避免基础数据出问 题); 2、制定供气方案及路线图,并与用户沟通确认(初步进行设 备选型); 3、根据管线布置图编号; 4、计算各管段计算流量; 5、初选管径,计算各管段实际阻力损失△P; 6、根据允许阻力降△Pd来调整管段管径; 7、设备选型计算。
式中 Re—雷诺数; △P—燃气管道摩擦阻力损失(Pa); λ—燃气管道摩擦阻力系数; l—燃气管道的计算长度(m); Q—燃气管道的计算流量(m3/h); d—管道内径(mm); ρ—燃气的密度(kg/m3); T—设计中所采用的燃气温度(K); T0—标准状态的温度(K);
ν—标准状态时燃气的运动粘度(m2/s); K—管壁内表面的当量绝对粗糙度。
管道允许阻力降△Pd=0.75Pn+150 Pn-低压灶具的额定用气压力(Pa),要根据不同气种、 不同灶具来确定。 天然气灶具一般为2000Pa,故△Pd=1650Pa,旧燃规里 根据经验把1650划分成庭院+户内各分别占多少帕,新 规范里没有明确提出,只是要求分配时要根据情况,经 技术经济比较后确定。 对于高层民用户采用二次调压供气时,应根据低低压调 压器的进口压力范围来确定一二级调压间管道的允许阻 力降。 高差大时,水力计算中应考虑附加压力的影响。