泵特性曲线实验

合集下载

实验2 离心泵性能特性曲线测定实验

实验2 离心泵性能特性曲线测定实验

1.2离心泵性能特性曲线测定实验 1.2.1实验目的1).了解离心泵结构与特性,学会离心泵的操作。

2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。

6).学会轴功率的两种测量方法:马达天平法和扭矩法。

7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。

8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。

1.2.2基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。

由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。

1 ) 流量V 的测定与计算采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。

2) 扬程H 的测定与计算在泵进、出口取截面列柏努利方程:gu u Z Z g p p H 221221212-+-+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: gp p H ρ12-=(1—10)由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。

本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。

离心泵特性曲线数据处理

离心泵特性曲线数据处理

这是化工原理——离心泵特性曲线的测定前面的实验目的实验原理实验步骤大同小异。

不写了。

我们学校是手写实验报告,数据用电脑协助处理。

打印粘贴在实验报告纸后面即可。

五.实验数据与处理
装置号:001-3 流体温度:24℃ H=Z2-Z1=0.10m水温ρ=997.0kg/m3;原始记录数据如下:
据公式He=h0+(P2-P1)/ρg Ne=QHgρη=Ne/N*100% 计算处理。

据原理公式,按部分比例定律校核后得下表:(离心泵额定转速:2900rpm)并以校准后的参数做H-Q N-Q η -Q图作讨论。

校准公式:
2
1
1
)
(
n
n
He
H
e
=3
1
1
)
(
n
n
N
N=
1
1
1
1N
g
H
Q
e
ρ
η=
校准后的参数:
分析实验结果,判断泵最佳工作范围:由泵的效率与流量关系图可得,在流量1.0-5.0m3/h 范围内,泵的效率逐渐升高,但在4.0-5.0 区间内,泵的效率趋于平缓(效率最高点);而在电机功率与流量关系图中,电机的效率随着流量的升高而升高。

由此在实验范围内我们可判定泵的最佳工作范围为流量控制在4.5-5.0m3/h。

实验四离心泵特性曲线的测定

实验四离心泵特性曲线的测定

实验四 离心泵特性曲线的测定一. 实验目的1.熟悉离心泵的构造和操作;2.掌握离心泵在一定转速下特性曲线的测定方法。

二. 基本原理离心泵的主要性能参数有流量Q 、压头H 、效率η和轴功率N 。

在一定转速下,离心泵的输液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。

而且,当其流量变化时,泵的压头、功率及效率也随之变化。

因此,要正确选择和使用离心泵,就必须掌握流量变化时,其压头、效率和功率的变化规律,即查明离心泵的特性曲线。

用实验方法测出某离心泵在一定转速下的Q 、H 、N 、η,并做出H-Q 、N-Q 、η-Q 曲线,称为该离心泵的特性曲线。

1. 流量Q 的测定泵的流量可以用容积法或标准流量计测量。

本实验采用涡轮流量计测量离心泵的流量。

涡轮流量计显示表显示的是瞬时流量值,单位是升/秒。

2. 泵的压头H 的测定离心泵的压头是指泵对单位重量流体所提供的有效能量,单位为m 。

在进口真空表和出口压力表两测压点截面间列伯努利方程,忽略阻力损失,两测压点处管径一致时,有:)(H 1212Z Z gp g p -+-=ρρ m若两侧压表头在同一水平处,上式变为:gp p H ρ12-=m (4—1)式中:p2---离心泵的出口压力表示值,Pa ; -p1--离心泵的入口真空表示值,Pa ; ρ---离心泵输送液体的密度,kg/m3。

3. 轴功率N 的测定离心泵的轴功率是泵轴所需的功率,也是电机传给泵轴的功率。

本实验装置采用马达-天平测功器测定此轴功率。

马达-天平测功器是水泵实验常用的测功方法之一,其有准确和使用可靠的优点。

它是在拖动泵的交流电动机外壳(定子)两端加装轴承,使外壳能自由转动。

外壳连有测功臂和平衡锤,后者用以调整零位。

当电动机带动水泵运转时,由于反作用力的作用会使外壳反方向旋转;此反向力矩相同。

如果在测功臂上加上适当的砝码,即可保持外壳不转动。

此时所加砝码重量乘以测功臂长度,就是电动机输出的转矩,即电动机输出的功率为:7.97310006081.92N PLn PLn =⨯⨯=π kW (4-2)式中:P---测功臂上所加砝码的数量,kg ; L---测功臂长度,m ;本装置L=0.4869m; n---转速,转/分。

泵的特性曲线实验报告

泵的特性曲线实验报告

实验二:离心泵性能实验实验时间:2014年11月20 日星期四报告人:李睿健同组人:李泓睿李振宇杨敬王摘要:本实验采用WB 70/055 型号的离心泵装置,实验测定在一定转速下泵的特性曲线和管路特性曲线。

通过实验了解离心系的正常的操作过程,掌握离心泵各项主要特性及其相互关系,进而加深对离心泵的性能和操作原理的理解。

一、实验目的及任务⑴了解离心泵的构造,掌握其操作和调节方法。

⑵测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

⑶熟悉孔板流量计的构造,性能和安装方法。

⑷测定孔板流量计的孔流系数。

⑸测定管路特性曲线。

二、基本理论1. 离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图(1 )中的曲线。

由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。

另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据1) 泵的扬程 HeHe= H 压力表H 真空表 H 0式中 H 压力表 ——泵出口处的压力, m H2O;H 真空表——泵入口处的真空度, m H2O ; H 0——压力表和真空表测压口之间的垂直距离,2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失, 使泵的实际压头和流量较理论值为 低,而输入泵的功率又比理论值为高,所以泵的总效率为NeN轴Q ——流量, m 3/s ; He ——扬程, m ;ρ——流体密度, kg/ m由泵轴输入离心泵的功率 N 轴为式中 N 电——电机的输入功率, kW ; η电——电机效率,取 0.9 ; η轴——传动装置的传动效率,一般取 1.0 2、孔板流量计孔流系数的测定H 0=0.85m 。

式中 Ne ——泵的有效功率,Ne QHeρkW ;102N轴N 电η电η转在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端相连。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告
马达—天平测功仪测定轴功率P计算公式为:
P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。

离心泵特性曲线测定实验

离心泵特性曲线测定实验

实验7 离心泵特性曲线测定实验一、实验目的1. 熟悉离心泵的结构、性能、操作和调节方法,掌握离心泵的工作原理。

2. 掌握离心泵特性曲线的测定方法。

测定单级离心泵在恒定转速下的特性曲线,绘制H e-q V、N a-q V、η-q V曲线,分析离心泵的额定工作点。

3. 掌握离心泵流量调节的方法。

4. 掌握离心泵特性曲线的影响因素。

5. 了解常用的测压仪表。

二、实验原理离心泵是一种液体输送机械,主要构件为旋转的叶轮、固定的泵壳和轴封装置。

离心泵泵体内的叶轮固定在泵轴上,叶轮上有若干弯曲的叶片,泵轴在外力带动下旋转,叶轮同时旋转,泵壳中央的吸入口与吸入管路相连接,侧旁的排出口和排出管路相连接。

启动前,须灌液排出泵壳内的气体,防止出现气缚现象。

启动电机后,泵轴带动叶轮一起高速旋转,充满叶片之间的液体也随着旋转,在惯性离心力的作用下液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了动能。

液体离开叶轮进入壳体,部分动能变成静压能,进一步提高了静压能。

流体获得能量的多少,不仅取决于离心泵的结构和转速,而且和流体的密度有关。

当离心泵内存在空气,空气的密度远比液体小,相应获得的能量不足以形成所需的压强差,液体无法输送,该现象称为“气缚”。

为了保证离心泵的正常操作,在启动前必须在离心泵和吸入管路内充满液体,并确保运转过程中尽量不使空气漏入。

离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H e、轴功率P a及效率η与液体流量q V之间的关系曲线,如图6-10所示,它是流体在泵内流动规律的宏观表现形式。

离心泵的特性曲线与离心泵的设计、加工情况有关,而泵内部流动情况复杂,难以用数学方法计算,只能依靠实验测定。

图6-10 离心泵的特性曲线1. 流量的测定本实验用涡轮流量计测量液体的流量。

测量时,从仪表显示仪上读取的数据是涡轮的频率f ,液体的体积流量为:Cfq V =(6-20) 式中:f 为涡轮流量计的脉冲频率,Hz ;C 为涡轮流量计的流量系数,脉冲数/升。

离心泵特性曲线的测定实验

离心泵特性曲线的测定实验

离心泵特性曲线的测定实验一、实验内容测定一定转速下离心泵的特性曲线。

二、实验目的1、了解离心泵的结构特点,熟悉并掌握离心泵的工作原理和操作方法。

2、掌握离心泵特性曲线的测定方法。

三、基本原理泵是输送液体的机械。

工业选泵时,一般根据生产工艺要求的扬程和流量,考虑输送液体的性质和蹦的结构特点及工作特性,来决定绷得类型和型号。

对一定的类型的泵而言,蹦的特性主要是指泵在一定转速下,其扬程、功率和效率与流量的关系。

离心泵的特性,通常与泵的结构、泵的转速以及输送液体的性质有关,影响因素很多。

因此,离心泵的特性只能采用饰演的方法实际测定。

如果在泵的进口管和出口管处分别安装上真空表和压力表,则可根据柏努 利方程得到扬程的计算公式:gu u h g P P H e 22122012-++-=ρ ①式①中,h 0—两测压点截面之间的垂直距离,m ; P 1——真空表所处截面的绝对压力,MPa ; P 2——压力表所处截面的绝对压力,MPa ; u 1—泵进口管流速,m/s ; u 2—泵出口管流速,m/s ;H e —泵的实际扬程,m 。

由于压力表和真空表的读数均是表示两测压点处的表压,因此,式①可表示为:gu u h H H H e 221220-+++=真压 ②其中, gP H ρ2=压 ③ gP H ρ1=真 ○4 式③、 ○4中的 P 2 和 P 1 分别是压力表和真空表的显示值。

离心泵的效率为泵的有效功率与轴功率之比值,轴N N e=η ○5 式○5中,η—离心泵的效率;Ne —离心泵的有效功率,kW ; N 轴—离心泵的轴功率,kW 。

有效功率可用下式计算][W g Q H N e e ρ= ○6 或][102KW Q H N e e ρ=○7 泵的轴功率是由泵配置的电机提供的,而输入电机的电能在转变成机械能时亦存在一定的损失,因此,工程上有意义的是测定离心泵的总效率(包括电机效率和传动效率)。

电总N N e=η ○8 实验时,使泵在一定转速下运转,测出对应于不同流量的扬程、电机输入功 率、效率等参数值,将所得数据整理后用曲线表示,即得到泵的特性曲线。

离心泵特性曲线的测定数据处理

离心泵特性曲线的测定数据处理
3.70
0.40
34
4.60
6
5.68
-0.40
2.90
0.32
30
3.60
7
4.88
-0.30
2.20
0.25
26
2.80
8
4.11
-0.10
1.70
0.20
22
2.10
9
3.33
0.00
1.20
0.16
18
1.50
10
2.53
0.10
0.90
0.12
14
1.10
离心泵特性曲线测定离心泵特性曲线离心泵的特性曲线幅频特性曲线二极管特性曲线离心泵性能的测定伏安特性曲线中放幅频特性曲线泵的特性曲线万有特性曲线
图1、流体阻力-离心泵联合实验流程
1.水箱 2.离心泵 3.涡轮流量计 4.层流水槽 5.层流管 6.截止阀 7.球阀
8.光滑管 9.粗糙管 10.突扩管 11.孔板流量计 12.流量调节阀
0.84
11.50
0.846
0.35164
4
7.85
-1.00
11.30
0.81
12.60
0.828
0.35180
5
7.36
-0.80
12.40
0.79
13.50
0.801
0.34296
6
6.79
-0.70
13.40
0.78
14.40
0.792
0.32629
7
6.25
-0.60
14.50
0.76
15.40
0.783
0.31761
8

离心泵实验报告

离心泵实验报告

一、实验目的1. 了解离心泵的结构和性能,掌握其工作原理。

2. 通过实验测定离心泵在一定转速下的特性曲线,包括流量与扬程、功率与流量的关系。

3. 分析离心泵的效率与流量的关系,并了解泵在不同工况下的性能变化。

二、实验原理离心泵是一种常见的流体输送设备,其工作原理是利用旋转叶轮对流体做功,使流体获得能量。

在实验中,我们主要关注以下参数:1. 流量(Q):单位时间内流体通过泵的体积。

2. 扬程(H):流体在泵内获得的能量,通常以米(m)为单位。

3. 功率(N):泵在输送流体过程中消耗的功率,通常以千瓦(kW)为单位。

4. 效率(η):泵的输出功率与输入功率的比值。

离心泵的特性曲线是描述泵在不同工况下性能变化的重要依据。

实验中,我们将通过改变泵的转速和管路阻力,测定泵的特性曲线。

三、实验仪器与设备1. 离心泵一台2. 转速表一台3. 流量计一台4. 压力表两台5. 计时器一台6. 电机调速器一台7. 实验台架一套四、实验步骤1. 准备工作:将离心泵安装到实验台上,连接好流量计、压力表和转速表,并确保各仪表正常工作。

2. 实验数据采集:a. 将泵的转速设定为一定值,记录此时的转速。

b. 调节泵的出口阀门,改变管路阻力,记录不同流量下的扬程、功率和效率。

c. 重复步骤b,改变泵的转速,记录不同转速下的扬程、功率和效率。

3. 数据处理:a. 将实验数据整理成表格。

b. 绘制流量与扬程、功率与流量的关系曲线。

c. 分析离心泵的效率与流量的关系,并确定泵的最佳工作范围。

五、实验结果与分析1. 流量与扬程的关系:实验结果表明,离心泵的流量与扬程呈非线性关系。

在低流量区域,流量增加时扬程显著增加;而在高流量区域,流量增加时扬程增加幅度逐渐减小。

2. 功率与流量的关系:实验结果表明,离心泵的功率与流量呈非线性关系。

在低流量区域,功率随流量的增加而增加;而在高流量区域,功率增加幅度逐渐减小。

3. 效率与流量的关系:实验结果表明,离心泵的效率与流量呈非线性关系。

实验四 离心泵特性曲线测定实验

实验四 离心泵特性曲线测定实验

实验四 离心泵特性曲线测定实验一、实验目的:1、熟悉离心泵的结构与操作方法,了解压力、流量的测量方法。

2、掌握离心泵特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

二、实验内容:1、熟悉离心泵的结构与操作。

2、手动(或计算机自动采集数据和过程控制)测定某型号离心泵在一定转速下,Q (流量)与H (扬程)、N (轴功率)、η(效率)之间的特性曲线。

一、 实验原理:A 、离心泵性能的测定:离心泵是最常见的液体输送设备。

对于一定型号的泵在一定的转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 的改变而改变。

通常通过实验测出Q-H 、Q-N 及Q-η关系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

本实验中使用的即为测定离心泵特性曲线的装置,具体测定方法如下:1、H 的测定:在泵的吸入口和压出口之间以1N 流体为基准列柏努利方程出入入出入出入出出入出出出入入入)--+-+-+-=+++=+++f f H gu u g P P Z Z H H gu g P Z H g u g P Z 2(222222ρρρ (4-1)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:gu u g P P Z Z H 2(22入出入出入出)-+-+-=ρ (4-2)将测得的高差)入出Z Z -(和入出PP -的值以及计算所得的u 入,u 出代入式4-2即可求得H 的值。

2、 N 的测定:功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1.0,所以电动机的输出功率等于泵的轴功率。

即: 泵的轴功率N =电动机的输出功率,kw电动机的输出功率=电动机的输入功率×电动机的效率。

泵的轴功率=功率表的读数×电动机效率,kw 。

化工原理实验(二)离心泵特性曲线测定

化工原理实验(二)离心泵特性曲线测定

化工原理实验(二)离心泵特性曲线测定一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法; 3.了解电动调节阀的工作原理和使用方法。

二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:fh gug p z H g u g p z ∑+++=+++2222222111ρρ(1-1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(1-2)式中: 120z z H -=,表示泵出口和进口间的位差,m ;和ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ;z 1、z 2——分别为真空表、压力表的安装高度,m 。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.轴功率N 的测量与计算kN N ⨯=电 (W )(1-3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne 可用下式计算:g HQ Ne ρ=(1-4)故泵效率为 %100⨯=NgHQ ρη (1-5)4.转速改变时的换算泵的特性曲线是在定转速下的实验测定所得。

实验二 离心泵特性曲线的测定实验

实验二     离心泵特性曲线的测定实验

实验二离心泵特性曲线的测定实验一实验内容测定一定转速下离心泵特性曲线二实验目的1 了解离心泵的结构特点, 熟悉并掌握离心泵的工作原理和操作方法。

2 掌握离心泵特性曲线的测定方法三基本原理离心泵特性, 通常与泵的结构、泵的转数以及所输送的液体有关, 影响因素很多, 只能采用实验的方法实际测定。

根据伯努利方程得到扬程的计算公式He=P2gρ−P1gρ+h0+u22−u122g式中,h-二测压点截面之间的垂直距离, m 此次实验中h=0P1-真空表处截面的绝对压力, Mpa;P2-压力表处截面的绝对压力, Mpa U1-泵进口管流速, m/s;U2-出口管流速, m/s;He-泵的实际扬程离心泵的效率为泵的有效功率与轴功率之比值: ŋ=NeN轴式中ŋ-离心泵的效率;Ne-离心泵的有效功率, kw;N轴-离心泵的轴功率, kw。

有效功率可按下式计算:Ne= HeQρg[W]输入电机的电能在转变为机械能时存在一定的损失, 因此工程上有意义的是测定离心泵的总效率:ŋ总=ŋ轴ŋ电在此次实验中ŋ总≈1实验时, 使泵在一定转速下运转, 测出对应于不同流量的扬程、电机输入功率、效率等参数值, 将所得数据整理后用曲线表示, 即得到泵的特性曲线。

四实验设计流量用涡轮流量计测定, 计算式为: Q=f/ξ其中- Q流量, L/s;f-流量计的转子频率;ξ-涡轮流量计的仪表系数电机功率采用数字仪表测量:N电=15*显示读数(kw)水的温度由温度计测定, 温度及安装在泵出口管路的上方五实验装置及流程主要设备: 离心泵, 循环水箱, 涡轮流量计, 流量调节阀, 压力表, 真空表, 温度计1-水槽 2-真空表 3-压力表 4-离心泵 5-功率表 6-温度计 7-涡轮流量计 8-控制阀设备及流程说明实验装置及流程如上图所示, 由离心泵和进出口管路、压力表、真空表、涡轮流量计、和调节控制阀组成测试系统。

试验物料为自来水, 为节约起见, 配置水箱循环使用, 由这次试验的装置可以看到实验开始时不需要灌泵, 流量通过控制阀调节, 通过涡轮流量计测量其大小。

流体力学综合实验装置——离心泵特性曲线---实验报告

流体力学综合实验装置——离心泵特性曲线---实验报告

流体力学综合实验一、实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作;二、装置图:图1 实验装置流程示意图1-离心泵;2-进口压力变送器;3-铂热电阻(测量水温);4-出口压力变送器;5-电气仪表控制箱;6-均压环;7-粗糙管;8-光滑管(离心泵实验中充当离心泵管路);9-局部阻力管;10-管路选择球阀;11-涡轮流量计;12-局部阻力管上的闸阀;13-电动调节阀;14-差压变送器;15-水箱离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1. 扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:22112212+++=+++22f p u u z H z h g g g gρρρ∑由于两截面间的管子较短,通常可忽略阻力项fh Σ,速度平方差也很小,故也可忽略,则有2121012-=(z -z )+=H +H ()+H p p H g ρ表值式中: 021=z -z H ,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

离心泵特性曲线的测定实验

离心泵特性曲线的测定实验

离心泵特性曲线的测定实验一、实验内容测定一定转速下离心泵的特性曲线。

二、实验目的(1)了解离心泵的结构特点,熟悉并掌握离心泵的工作原理和操作方法。

(2)掌握离心泵特性曲线的测定方法。

(3)学习并掌握用误差分析理论来确定曲线标绘的坐标比例。

三、基本原理泵是输送液体的机械。

工业上选用泵时,一般根据生产工艺要求的扬程和流量,考虑所输送液体的性质和泵的结构特点及工作特性,来决定泵的类型和型号。

对一定类型的泵而言,泵的特性主要是指泵在一定转速下,其扬程、功率和效率与流量的关系。

离心泵是工业上最常用的液体输送机械之一,其结构特点可参阅《化工原理》教材第二章。

离心泵的特性,通常与泵的结构(如叶轮直径的大小,叶片数目及弯曲程度),泵的转速以及所输送液体的性质有关,影响因素很多。

在理论上,为了导出扬程的计算公式,假定液体为理想流体(无粘性),叶片无限多。

对于后弯叶片的泵,理论上导出的流量q V和扬程H e之间的关系如图6-1中a线所示。

实际上,任何液体都是有粘性的,且泵的叶片数也是有限的。

因此,液体在通过泵的过程中会产生一定的机械能损失,使离心泵的实际扬程与理论扬程差别很大。

如图6-1所示,由于离心泵叶片数并非无限多,液体在泵内叶片间会产生涡流,导致机械能损失,此损失只与叶片数,液体粘度,叶片表面的粗糙度等因素有关,考虑这些因素后的扬程为图6-1中的b线。

实际流体从泵的入口到出口存在阻力损失,其大小约与流速的平方成正比,亦即约与流量的平方成正比,考虑到这项损失后的扬程为图6-1中的c线。

此外,进入泵中的液体在突然离开叶轮周边冲入沿泵蜗壳流动的液流中,也会产生冲击,也造成机械能的部分损失,该部分损失在泵的设计点处达到最小(图6-1中点P所示)泵的实际流量偏离设计点愈大,冲击损失便愈大。

在考虑到这项损失后,离心泵的实际扬程应为图6-1中的曲线d 。

显然,以上讨论的机械能损失在理论上是难以计算的。

因此离心泵的特性只能采用实验的方法实际测定,如果在泵的进口管和出口管处分别安装上真空表和压力表,则可根据伯努利方程得到扬程的计算公式①式①中,ℎ0——二测压点截面之间的垂直距离,m ;p 1——真空表所处截面的绝对压力,MPa ; p 2——压力表所处截面的绝对压力,MPa ; u 1——泵进口管流速,m/s ; u 2——泵出口管流速,m/s ; H e ——泵的实际扬程,m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泵特性曲线实验
实验人:徐俊卿、郑仁春、韩超、刘强
一、实验目的要求
1.掌握水泵的基本测试技术,了解实验设备及仪器仪表的性能和操作方法;
2.测定P-100自吸泵的工作特性,画出特性曲线;
二、实验装置
仪器装置简图如下图所示。

1功率表;2电机电源插座;3光电转速仪;4电动机;5稳水压力灌;6功率表开关;7输水管道;8 P-100自吸泵;9流量调节阀;10压力表;11压力传感器;12文丘里流量计;13储水箱;14进水阀;15压力真空表;16压差电测仪;17电测仪稳压筒;18压力表;19稳压筒;
三、实验原理
对应某一额定转速n,泵的实际扬程H,轴功率N,总效率η与泵的出水流量Q之间的系以曲线表示,称为泵的特征曲线。

它反映出泵的工作性能,可以作为选择泵的依据。

泵的特征曲线可用下列三个函数关系表示
H=f1(Q)N=f2(Q)η=f3(Q)
这些函数关系均可由实验测定,其测定方法如下:
1、流量Q(10-6m3/s)
用文丘里流量计12,压差电测仪16测量,并根据下式确定Q值
Q=A(△h)B (1)
式中:A、B——预先经过标定得出的系数,随仪器提供;
△h——文丘里流量计的测压管水头差,由压差电测仪16读出(单位cm水柱);
Q——流量(10-6m3/s);
2、实际扬程H(m水柱)
泵的实际扬程是指水泵出口断面与进口断面之间总能头差,是在测定泵进、出口压强,
流速和测压表表位差后,经计算求得。

由于本实验装置内各点流速较小,流速水头可以忽略不计,故有:
H=102(hd —hs ) (2)
式中:H ——扬程(m 水柱);
hd ——水泵出口压强(Mpa );
hs ——水泵进口压强(Mpa ),真空值用“-”表示; 3、轴功率(泵的输入功率)N (W )
N=P0×η电 (3) P0=K ×P (4) /100
d 100c 100b 100P a 02
030⎥⎥⎦⎤⎢⎢⎣⎡+++⎪⎭⎫ ⎝⎛=)()(电
P P η (5)
式中:K ——功率表表头值转换成实际功率瓦特数的转换系数;
P ——功率表读数值(W );
η电——电动机效率;
a 、
b 、
c 、
d ——电机效率拟合公式系数,预先标定提供。

4、总效率η
%
100g ⨯=
N
HQ
ρη (6)
式中:ρ——水的容重1000kg/m3;
g ——重量加速度(g=9.8m/s2); 5、实验结果按额定转速的换算
如果泵实验转速n 与额定转速nsp 不同,且转速满足|(n-nsp )/nsp ×100%|<20%,则应将实验结果按下面各式进行换算:
⎪⎪⎭⎫
⎝⎛=n n Q sp 0Q (7)
2
H ⎪
⎪⎭⎫ ⎝⎛=n
n H sp
(8) 3
N ⎪
⎪⎭⎫ ⎝
⎛=n
n N sp
(9)
η
η=0 (10)
式中:带下标“0”的各参数都指额定转速下的值。

三、实验方法与步骤 准备:对照实验图,熟悉实验装置各部分名称与作用,检查水系统和电系统的连接是否正确,蓄水箱的水量是否达到规定要求,记录有关常数。

排气:全开阀门9和14,接通电源开启水泵(泵启动前,功率表开关6一定要置于“关”的位置)。

待供水管7中气体排尽后,关闭阀门9,然后开启传感器11上的两只螺丝,对传感器和连接管排气,排气完成后将螺丝拧紧。

电测仪16调零:在阀门9控制泵的出水流量。

此时打开功率表开关6测定并记录功率表1,同时测定记录电测仪16和压力表10与15的读数。

测记转速:将光电测速仪射出
的光束对准贴在电机转轴端黑纸板上的反光纸,即可读出轴的转速。

转速需对应每一工况进行测量记录。

调节不同的流量,测量7~13次。

在阀门9半开(压力表10读数值为0.05~0.15Mpa)情况下,调节进水阀14,在不同开度下,按照上述步骤4、5、测量2~3次,其中一次应使得真空压力表15的表值达到-0.08Mpa左右。

实验结束,先切断电动机电源,检查电测仪是否为零,如不为零应进行修正。

最后切断电测仪电源。

实验结果与要求
1.记录、计算有关常数
流量换算公式系数:A= 33.45 B= 0.507
电动机效率换算公式系数:a= 3.017 b= -36.95 c= 147.49 d= -136.5
功率表换算系数K= 0.95 泵额定转速= 2900 (r/min)
2.记录与计算表格
项目序号转速(r/min)
功率表读数P
(w)
流量计读数
△h(cmH2O)
真空表读数h s
(Mpa)×10-2
压力表读数h d
(Mpa)×10-2
1 2884.655-22-7.40
2 2869.4594-7.20
3 2871.85997-70
4 2881.15657-60
5 2881.656129-4.50
6 2877.855.9137-4.10
7 2891.353.5167-2.10
8 2893.152.5179-1.20
9 2897.351.1188-0.40
10 2885.355152-2 2.2
11 287058132-1.8 4.2
12 2863.360117-1.2 6.5
13 2843.764.591-19.5
14 2830.66777-111.4
15 27947551-0.615.2然后根据实验原理用给的公式计算流量、总扬程等,列表如下:
项目序号
转速
(r/min)
流量Q
()
总扬程
H(m)
泵输入
功率
N(W)
流量
Q0
总扬程
(m)H0
泵输入
功率
(W)N0
泵效率
(%)
1 2884.6160.23037.54836.1014
5
161.0857
3
7.58829
6
36.2941
9
32.8305
3
2 2869.467.511977.34436.3813
9
68.23193
6
7.42231
8
36.7693
8
13.3555
3 2871.8339.96147.1436.3813
9
343.2997
2
7.21011
2
36.7386
5
65.3844
7
4 2881.1259.636 6.1236.1966
4
261.3392
2
6.16014
7
36.4340
9
43.0203
8
5 2881.6392.830
6 4.5936.1966
4
395.339
4.61930
9
36.42776
48.8175
4
6 2877.8 404.9988 4.182 36.18788 408.1230
2 4.214261 36.46704 45.8670
3 7 2891.3 447.7686 2.142 35.92665 449.1159
4 2.14844
5 36.03475 26.1627 8 2893.1 463.8023 1.224 35.78852 464.90842 1.226919 35.87387 15.54521 9 2897.3 475.4824 0.408 35.56578 475.9254
6 0.40838 35.59892 5.3455 10 2885.3 426.9048 4.284 36.10145 429.0798
3 4.305826 36.28538 49.64573 11 2870
397.4361
6.12 36.33645 401.5905
3 6.183972 36.71627 65.59978 12 2863.3 373.8579 7.85
4 36.40991 378.6498
2 7.954668 36.87659 79.03219 1
3 2843.7 329.1322
10.71
36.33898 335.6484 10.92204
37.05842
95.06337 14 2830.6 302.4038 12.648 36.16228 309.8180
2 12.9581 37.0489 103.6524 15
2794
245.3999 16.116
34.96951
254.7100
3
16.72742
36.2962
110.8328
3.根据实验值在同一图上绘制H0~Q0、N0~Q0、η0~Q0曲线。

100
200
300
400
500
020
40
60
80
100
120
实验分析与讨论
1.对本实验装置而言,泵的实际扬程(总扬程)即为进出口压强差,如式(2)所示,为什么?
答:由于本实验装置内各点流速较小,流速水头可以忽略不计。

2.本实验P-100自吸泵与离心泵的特征曲线相比较有何异同?它们在启动操作和运行过程中应分别注意什么?
答:启动前功率表应置于“关”。

Q 0(m 3/s*10-6

η0—Q 0
N 0—Q 0
H 0—Q 0。

相关文档
最新文档