金属的塑性加工
什么是金属塑性加工
1.什么是金属塑性加工?其特点是什么?答:金属塑性加工:是金属材料在一定的外力作用下,利用其塑性而使其成形并获得具有一定几何形状、尺寸和精度,以及服役性能的材料、毛坯或零件的加工方法。
特点:材料利用率高;组织、性能好;生产效率高,适用于大批量生产;尺寸精度高,表面质量高;但是设备较庞大,能耗高,投资较大。
2.材料的使用性能、工艺性能包括哪些?答:使用性能:高强、高韧、耐蚀等;工艺性能:轧、挤、拉、锻、焊等:3.按加工时工件的受力和变形方式,金属塑性加工有哪些方法?各有什么特点?答:锻造:改善金属的内部组织,提高金属的力学性能;较高的生产劳动力;适应范围广。
轧制:可以生产断面复杂的型材,生产效率高,产品质量好挤压:挤压法可加工各种复杂断面实心型材、棒材、空心型材和管材拉拔:拉拔一般在冷态下进行,可拉拔断面尺寸很小的线材和管材;拉拔制品的尺寸精度高;表面光洁度极高;金属的强度高(因冷加工硬化强烈)可生产各种断面的线材、管材和型材异型截面。
拉伸:一般在室温下进行,其产品主要用于各种壳体零件,如飞机蒙皮、汽车覆盖件、子弹壳、仪表零件及日用器皿等。
弯曲:在弯矩作用下,使板料发生弯曲变形或使板料或管、棒材得到矫直的一种加工方法。
剪切:坯料在剪切力的作用下产生剪切。
使板材冲裁,以及板料和型材切断的一种常用加工方法4.金属塑性加工的目的是什么?答:使金属材料成形并获得具有一定几何形状、尺寸和精度,以及服役性能的材料、毛坯或零件。
5.什么是轧制、纵轧、横轧、斜轧?答:轧制:金属通过旋转的轧辊受到压缩,横断面积减小,长度增加的过程(可实现连续轧制)。
可分为纵轧、横轧、斜轧。
纵轧:两轧辊旋转方向相反,轧件的纵轴线与轧辊轴线垂直,主要生产板、带、箔材,以及断面复杂的型材。
生产效率高,加工材料长度大和产品质量较高。
横轧::两轧辊旋转方向相同,轧件的纵轴线与轧辊轴线平衡,轧件绕纵轴旋转。
可加工旋转体工件,如变断面轴、丝杆、周期断面型材以及钢球等。
金属塑性加工
单日志页面显示设置网易首页网易博客金属塑性加工默认分类 2008-07-07 18:27 阅读620 评论0字号:大中小绪论一、金属塑性加工及其分类金属塑性加工是使金属在外力(通常是压力)作用下,产生塑性变形,获得所需形状、尺寸和组织、性能的制品的一种基本的金属加工技术,以往常称压力加工。
金属塑性加工的种类很多,根据加工时工件的受力和变形方式,基本的塑性加工方法有锻造、轧制、挤压、拉拔、拉深、弯曲、剪切等几类(见表0-1)。
其中锻造、轧制和挤压是依靠压力作用使金属发生塑性变形;拉拔和拉深是依靠拉力作用发生塑性变形;弯曲是依靠弯矩作用使金属发生弯曲变形;剪切是依靠剪切力作用产生剪切变形或剪断。
锻造、挤压和一部分轧制多半在热态下进行加工;拉拔、拉深和一部分轧制,以及弯曲和剪切是在室温下进行的。
1.锻造靠锻压机的锻锤锤击工件产生压缩变形的一种加工方法,有自由锻和模锻两种方式。
自由锻不需专用模具,靠平锤和平砧间工件的压缩变形,使工件镦粗或拔长,其加工精度低,生产率也不高,主要用于轴类、曲柄和连杆等单件的小批生产。
模锻通过上、下锻模模腔拉制工作的变形,可加工形状复杂和尺寸精度较高的零件,适于大批量的生产,生产率也较高,是机械零件制造上实现少切削或无切削加工的重要途径。
2.轧制使通过两个或两个以上旋转轧辊间的轧件产生压缩变形,使其横断面面积减小与形状改变,而纵向长度增加的一种加工方法。
根据轧辊与轧件的运动关系,轧制有纵轧、横轧和斜轧三种方式。
(1)纵孔两轧辊旋转方向相反,轧件的纵轴线与轧辊轴线垂直,金属不论在热态或冷态都可以进行纵轧,是生产矩形断面的板、带、箔材,以及断面复杂的型材常用的金属材料加工方法,具有很高的生产率,能加工长度很大和质量较高的产品,是钢铁和有色金属板、带、箔材以及型钢的主要加工方法。
(2)横轧两轧辊旋转方向相同,轧件的纵轴线与轧辊轴线平衡,轧件获得绕纵轴的旋转运动。
可加工加转体工件,如变断面轴、丝杆、周期断面型材以及钢球等。
第三篇(塑性加工)
纤维组织的稳定性很高,不能用热处理或其它方法加以消 除,只有经过锻压使金属变形,才能改变其方向和形状。 合理利用纤维组织
应使零件在工作中所受的最大正应力方向与纤维方向重合;
最大切应力方向与纤维方向垂直; 并使纤维分布与零件的轮廓相符合,尽量不被切断。
§1-3
金属的可锻性
金属材料通过塑性加工获得优质零件的难易程度。 (经塑性加工而不断裂) 塑性
三拐曲轴的锻造过程
§2-1 锻造方法
自由锻特点
●
坯料表面变形自由;
● 设备及工具简单,锻件重量不受限制; ● ● ●
锻件的精度低; 生产率低,适用于单件小批生产; 是大型锻件的唯一锻造方法。
§2-1 锻造方法
模锻
使加热后的金属在模膛内
受压变形以获得所需锻件 的方法。 应用: 大批量生产中小锻件。 <150Kg,如曲轴、连 杆、齿轮。
在冷加工时,形变强化使金属塑性降低,进
一步加工困难,应安排中间退火工艺。 实质:塑性变形时位错运动受阻,使交叉滑移中位错运动范围缩小,因 此,金属性能随之改变。
一、金属材料产生加工硬化
金属材料 强度和硬 度提高, 塑性和韧 性下降。
有利:加工硬化可提高产品性能! 不利:进一步的塑性变形带来困难! 加热可消除硬化现象!
压力使金属成型为各种型材和锻件等。
a)自由锻 b)模锻 c)胎模锻 胎模锻:自由锻设备上,采用不与上、下砧相连接的活动模具 成形锻件的方法。是介于自由锻和模锻之间的锻造工艺方法。 2)冲压 利用冲模将金 属板料切离或变形 为各种冲压件。
3)轧制 使金属坯料通过两个旋转轧辊之间的间隙而产生塑性变形的 加工方法。 用于生产各种型材、管材、板材等。
模锻
模锻是利用锻模使坯 料变形而获得锻件的 锻造方法。
金属的塑性变形
滑移
滑移:在切应力作用下,晶体的一部分相对于另一部分沿着一
定的晶面(滑移面)和晶向(滑移方向)产生相对位移, 且不破坏晶体内部原子排列规律性的塑变方式。
τ
τ
a)未变形
bτ )弹性变形
τc)弹塑性变形
单晶体滑移变形示意图
d)塑性变形
孪生
孪生:晶体内的一部分原子(红色)相对另一部分原子沿某个
晶面转动,使未转动部分与转动部分的原子排列成镜面对称关系。
一、金属的可锻性(塑性加工性能)
定义:在锻造过程中,金属通过塑性加工而不开裂, 并获得合格零件的能力。 衡量指标:金属的塑性和变形抗力 塑性越高、变形抗力越低,可锻性越好。
二、影响金属可锻性的因素:
三个主要因素:金属的本质、加工条件、应力状态 1、金属的本质(内在因素): ①化学成分
➢ 碳钢:钢的含碳量越低,可锻性越好; ➢ 合金钢:合金元素含量越高,可锻性越差; ➢ 纯金属的可锻性优于合金。 ②金属组织
冷变形过程缺点:
①冷变形过程的加工硬化使金属的塑性变差,给进一步塑性变 形带来困难。 ②对加工坯料要求其表面干净、无氧化皮、平整。 ③加工硬化使金属变形处电阻升高,耐蚀性降低。
五、纤维组织及其利用
纤维组织(热加工流线):
塑性加工中,金属的晶粒形状和晶界分布的杂质沿变形方 向被拉长,呈纤维状。纤维组织不能热处理消除,只能通过锻 压改变其形状和方向。
纯金属或单相固溶体(奥氏体)的可锻性优于多相组织; 均匀细晶的可锻性优于粗晶组织和铸态柱状晶; 钢中存在网状二次渗碳体时可锻性下降。
影响金属可锻性的因素:
2、加工条件:
①变形温度 温度越高,金属塑性提高,
变形抗力降低,可锻性提高。
加热温度过高,产生缺陷: 过热:晶粒长大,使综合机械性能下降; 过烧:晶粒边界氧化或熔化 ,一击即碎; 脱碳:碳与环境气体反应,使表层含碳量减少; 严重氧化:表层与 氧反应,生成氧化物。
金属塑型加工名词解释
名词解释1.金属塑性加工:金属在外力的作用下,产生塑性变形而获得所需形状,尺寸,组织和性能的制品的一种基本金属加工技术2.点的应力状态:指通过变形体内某点的所有截面上应力的有无,大小及方向等情况3.点的应变状态:过某一点任意方向上的正应变和切应变有无的情况4.全量应变:单元体在某一变形过程终了时的变形大小,其度量基准是变形前的原始尺寸5.增量应变:指变形过程中某一极短阶段的无限小应变,其度量基准是变形过程中某一瞬间的尺寸6.屈服准则:又称塑性条件或屈服条件,它是描述不同应力状态下变形体某点进入塑性状态并使塑性变形继续进行所必须满足的力学条件7.π平面:与主应力轴成等倾角且平均应力为零的平面,平均应力为零8.变形力学图:一点的主应力与主应变图结合,反应该点主应力,主应变有无,及方向9.简单加载:只有加载而无卸载,应力与应变主轴重合,应力分量间按一定比例加载10.增量理论:对于一般复杂加载,不能离开加载路径建立应力与全量塑性应变之间的关系,而只能根据具体加载路径,建立加载过程的应力与塑性应变增量之间的关系,也称流动理论。
11.最小阻力定律:在变形过程中,物体各质点将向着阻力最小的方向移动,即做最少的功,走最短的路12.外端:临界变形区而未变形的金属,能阻碍变形区金属流动,进而产生或加剧附加应力和应变。
即轧制过程中某一时可不直接承受轧辊作用而处于塑性变形区以外的部分13.塑性(状态)图:表示金属塑性指标与变形温度及加载方式的关系曲线图形14.本构关系方程(应力-应变关系方程):答案1:塑性变形时,应力与应变之间的关系答案2:本构方程,反映物质宏观性质的数学模型,共9个方程,需确定的未知数共15个:u i,σij=σji,εij=εji;还需要根据材料的物理性质来建立应力与应变的关系:σij=σji=f ij(εkl)15.轧机的刚度系数:在一定条件下,使辊缝增加1mm所需的力,是轧机抵抗弹性变形的能力16.轧制的弹塑性曲线:轧件的塑性曲线与轧机的弹性曲线的总称。
金属的塑性加工
金属的塑性加工2.1塑性变形和回复、再结晶对金属材料组织和性能的影响一、金属材料的塑性变形1、单晶体的塑性变形——滑移和孪生(1)滑移:在外加切应力作用下,晶体的一部分相对于另一部分沿一定晶面(滑移面)的一定方向(滑移方向)发生相对的滑动如拉伸时,滑移面上的外力P分解为正应力σ和切应力τ。
正应力作用使晶格发生弹性伸长;σ↓伸长量↓,σ→O,变形恢复;σ↑伸长量↑,σ>原子间结合力时,拉断。
正应力σ只能使晶体产生弹性变形和断裂,不能使晶体产生塑性变形。
切应力作用使晶格发生弹性歪扭;τ<τc(临界切应力),τ↓变形量↓,τ→O,变形恢复;τ>τc,发生滑移,产生永久塑性变形。
a.滑移与位错·滑移的实现→借助于位错运动。
(刚性滑移模型计算出的临界切应力值>>实测值)位错密度→滑移→塑性变形·位错在外加切应力的作用下移动至晶体表面→一个原子间距的滑移台阶→塑性变形·滑移线(晶体表面的滑移台阶)→滑移带(大量滑移线)·滑移系(滑移面和该面上的一个滑移方向),滑移系数目↑,材料塑性↑;滑移方向↑,材料塑性↑。
如FCC和BCC的滑移系为12个,HCP为3个,FCC的滑移方向多于BCC,金属塑性如Cu(FCC)>Fe(BCC)>Zn(HCP)。
b.滑移时晶体的转动①外力错动→力偶使滑移面转动→滑移面∥拉伸轴。
②以滑移面的法线为转轴的转动→滑移方向∥最大切应力方向。
⑵孪生晶体的一切分相对于另一部分沿一定晶面(孪生面)和晶向(孪生方向)发生切变。
→金属晶体中变形部分与未变形部分在孪生面两侧形成镜面对称关系。
→发生孪生的部分(切变部分)称为孪生带或孪晶。
孪生带的晶格位向发生变化,发生孪生时各原子移动的距离是不相等的。
⑶滑移和孪生:1.滑移和孪生均在切应力作用下,沿一定晶面的一定晶向进行,产生塑性变形。
2.孪生借助于切变进行,所需切应力大,速度快,在滑移较难进行时发生FCC金属一般不发生孪生,少数在极低温度下发生。
金属塑性加工工艺
金属塑性加工工艺20103606 材料加工1班魏绪1.材料加工:金属坯料在外力作用下产生塑性变形,从而获得具有一定几何形状,尺寸和精度,以及服役性能的材料、毛坯或零件的加工方法。
2.适用范围:钢、铝、铜、钛等及其合金。
3.主要加工方法:(1) 轧制:金属通过旋转的轧辊受到压缩,横断面积减小,长度增加的过程。
(可实现连续轧制)纵轧、横轧、斜轧。
举例:汽车车身板、烟箔等;其它:多辊轧制(24辊)、孔型轧制等。
(2) 挤压:金属在挤压筒中受推力作用从模孔中流出而制取各种断面金属材料的加工方法。
定义:金属材料在挤压模内受压被挤出模孔而变形的加工方法。
挤压法非常适合于生产品种、规格、批数繁多的有色金属管、棒、型材及线坯。
正挤压—— 坯料流动方向与凸模运动方向一致。
反挤压—— 坯料流动方向与凸模运动方向相反。
举例:管、棒、型;其它:异型截面。
特点: ① 具有比轧制更为强烈的三向压应力状态图,金属可以发挥其最大的塑性,获得大变形量。
可加工用轧制或锻造加工有困难甚至无法加工的金属材料。
② 可生产断面极其复杂的,变断面的管材和型材。
卧式挤压机 正挤反挤③灵活性很大,只需更换模具,即可生产出很多产品。
④产品尺寸精确,表面质量好。
(3) 锻造:锻锤锤击工件产生压缩变形•定义:借助锻锤、压力机等设备对坯料施加压力,使其产生塑性变形,获得所需形状、尺寸和一定组织性能的锻件。
垂直方向(Z向)受力,水平方向(X、Y向)自由变形。
A.自由锻:金属在上下铁锤及铁砧间受到冲击力或压力而产生塑性变形的加工我国自行研制的万吨级水压机B.模锻:金属在具有一定形状的锻模膛内受冲击力或压力而产生塑性变形的加工。
举例:飞机大梁,火箭捆挷环等。
万吨级水压机模锻的飞机大梁、火箭捆挷环特点:在塑性变形中,能使坯料的粗晶粒破碎、疏松、孔隙被压实、焊合,锻件的内部组织和性能得到较大改善。
应用:锻造应用十分的广泛,可以生产几克重到200t以上各种形状的锻件,如各种轴类、曲柄和连杆。
金属塑性成形的概念
金属塑性成形的概念金属塑性成形是指通过在金属材料中施加外力、应用热力或化学反应等手段,使金属材料发生塑性变形的一种金属加工工艺。
与传统的金属加工方式相比,金属塑性成形具有高效性、精确性和经济性的特点。
它广泛应用于汽车、航空航天、冶金等行业。
金属塑性成形的基本原理是利用金属材料的塑性变形特性,通过施加外力使金属材料由原有的形态发生塑性变形,从而得到所需的形状和尺寸。
金属塑性成形可以分为几种不同的形式,主要包括锤击成形、挤压成形、拉伸成形、压力成形和转轧成形等。
锤击成形是一种传统的金属塑性成形方法,它通常通过将金属材料置于锻造设备中,然后利用锤击力量使金属材料发生塑性变形。
锤击成形具有成本低、生产周期短的优点,但是需要大量的人力和物力投入。
挤压成形是指将金属材料置于挤压机中,通过挤压头施加压力使金属材料发生塑性变形。
挤压成形可以分为直接挤压和间接挤压两种形式。
直接挤压是指将金属材料直接放入挤压腔内,然后施加压力使金属材料发生压缩变形。
间接挤压是指将金属材料包裹在特殊形状的模具中,然后施加压力使金属材料逐渐挤出模具,从而达到所需的形状和尺寸。
拉伸成形是通过在金属材料表面施加拉力,使其发生塑性变形。
拉伸成形通常用于制备薄壁结构,如汽车车身、空调管道等。
拉伸成形由于受到法向拉力和剪切力的作用,易造成材料表面的应力集中和变形不均匀,因此在拉伸成形过程中需要注意控制应力分布和变形。
压力成形是一种利用液压或气压对金属材料施加压力的金属塑性成形方法。
压力成形通常具有成形精度高、产品质量好的优点,并且可以实现批量生产。
压力成形主要包括冲压成形、压铸成形和锻压成形等。
转轧成形是一种将金属材料置于转轧机中进行塑性变形的金属加工方法。
转轧成形通常用于制备薄板材料,如钢板、铝板等。
转轧成形具有高效、节省原材料和简便的优点,且可以保证成形件的尺寸精度和表面质量。
总之,金属塑性成形是一种广泛应用于金属加工领域的重要技术,通过施加力量和热力等手段,对金属材料进行塑性变形,从而得到所需的形状和尺寸。
金属塑性加工方法——旋压(一)
金属塑性加工方法——旋压(一)
金属塑性加工是一种通过施加力和应变来改变金属形状和结构
的方法。
旋压是金属塑性加工的一种常见方法,它使用旋压机将金
属材料塑性变形成所需的形状。
旋压原理
旋压的原理是通过旋转金属材料来施加力和应变。
旋压机由一
个圆筒形的工件和一个将工件固定在轴上并施加旋转力的夹具组成。
在旋转的同时,夹具还会向工件施加一定的径向力。
这样,金属材
料就会在旋转和径向力的作用下发生塑性变形。
旋压过程
旋压过程可以分为以下几个步骤:
1. 原料准备:选择适合旋压的金属材料,并根据所需形状和尺
寸切割成合适的工件。
2. 夹具调整:将工件固定在旋压机的夹具上,并根据需要调整夹具的径向力。
3. 旋压加工:启动旋压机,使工件开始旋转。
同时,夹具会施加一定的径向力,使金属材料开始塑性变形。
4. 修整和检验:完成旋压加工后,对成品进行修整和检验,确保其达到质量要求。
旋压应用
旋压方法适用于许多金属材料,如铝、铜、不锈钢等。
它常用于制造圆形或柱状的工件,如轴承套、奖杯底座等。
旋压有许多优点,包括:
- 简单而高效的加工过程。
- 较低的材料浪费。
- 产生的工件表面质量高。
结论
旋压是一种常见的金属塑性加工方法,适用于制造圆形或柱状的工件。
它通过旋转金属材料和施加径向力来改变其形状和结构。
旋压具有简单高效、材料浪费少和工件表面质量高的优点。
在实际应用中,我们可以根据需要选择合适的金属材料和夹具参数来进行旋压加工。
工程材料—金属的塑性加工
1. 回复
回复是指在加热温度较低时,由于金属中的点缺 陷及位错近距离迁移而引起的晶内某些变化。如空 位与其他缺陷合并、同一滑移面上的异号位错相遇 合并而使缺陷数量减少等。
由于位错运动使其由冷 塑性变形时的无序状态 变为垂直分布,形成亚 晶界,这一过程称多边 形化。
1. 回复
在回复阶段,金属组织变化 不明显,其强度、硬度略有 下降,塑性略有提高,但内 应力、电阻率等显著下降。 工业上,常利用回复现象将 冷变形金属低温加热,既稳 定组织又保留加工硬化,这 种热处理方法称去应力退火。
2.3.1 金属的塑性变形
1.单晶体金属的塑性变形 2.多晶体金属的塑性变形 3.塑性变形对金属组织与性能的影响
2.多晶体金属的塑性变形
(1)不均匀的塑性变形过程 单个晶粒变形与单晶体相似,多晶体变形比单晶体复杂。
2.多晶体金属的塑性变形
(2)晶粒位向的影响
由于各相邻晶粒的位向不同,晶粒间的这种相互 约束,使得多晶体金属的塑性变形抗力提高。
铜拉伸试样表面滑移带
1.单晶体金属的塑性变形 (2) 孪生
孪生是指晶体的一部分沿 一定晶面和晶向相对于另
一部分所发生的切变。
• 发生切变的部分称孪生带或孪晶,沿其发生孪生的 晶面称孪生面。 • 孪生的结果使孪生面两侧的晶体呈镜面对称。
1.单晶体金属的塑性变形
与滑移相比:
孪生使晶格位向发生改变; 所需切应力比滑移大得多, 变形速度极快, 接近声速; 孪生时相邻原子面的相对位移量小于一个原子间距 .
2.3.1 金属塑性变形
2.3.2 金属的回复和再结晶
2.3.3 塑性变形和再结晶在工程应用
2.3.2 金属回复和再结晶
材料成型工艺学 金属塑性加工
二、模锻件的结构工艺性
1. 模锻件上必须具有一个合理的分模面 2. 零件上只有与其它机件配合的表面才需进行机械加工,
其它表面均应设计为非加工表面 (模锻斜度、圆角) 3. 模锻件外形应力求简单、平直和对称。避免截面间差别
过大, 薄壁、高筋、高台等结构 (充满模膛、减少工序) 4. 尽量避免深孔和多孔设计 5. 采用锻- 焊组合结构
自由锻设备:锻锤 — 中、小型锻件 液压机 — 大型锻件
在重型机械中,自由锻是生产大型和特大型锻件的 惟一成形方法。
1.自由锻工序 自由锻工序:基本工序 辅助工序 精整工序
(1) 基本工序 使金属坯料实现主要的变形要求, 达
到或基本达到锻件所需形状和尺寸的工序。 有:镦粗、拔长、冲孔、弯曲、
扭转、错移、切割 (2) 辅助工序
金属的力学性能的变化:
变形程度增大时, 金属的强度及硬度升高, 而塑 性和韧性下降。
原因:由于滑移面上的碎晶块和附近晶格的强烈 扭曲, 增大了滑移阻力, 使继续滑移难于进行所致。
几个现象:
▲ 加工硬化
(冷变形强化): 随变形程度增大, 强度和硬度上升而塑性下降的现象。
▲回复:使原子得以回复正常排列, 消除了晶格扭曲, 致使
§3 金属的可锻性
金属的可锻性:材料在锻造过程中经受塑性变形 而不开裂的能力。
金属的可锻性好,表明该金属适合于采用压力加工 成形; 可锻性差,表明该金属不宜于选用压力加工方法 成形。
衡量指标:金属的塑性(ψ、δ ); 变形抗力(σb、HB)。
塑性越好,变形抗力越小,则金属的可锻性好。
金属的可锻性取决于金属的本质和加工条件。
弹复:
金属塑性变形基本规律:
体积不变定律: 金属塑变后的体积与变形前的体积相等。
金属塑性加工工艺
金属塑性加工工艺金属塑性加工工艺是一种将金属材料通过塑性变形而制成的工艺。
塑性加工是工程领域中较为常见的一种加工方式,可以生产出各种不同形状和尺寸的金属制品,比如机床、船舶、汽车、飞机、电子、家具等等。
本文将从几个方面介绍金属塑性加工工艺的一些基本知识。
1. 塑性加工的分类塑性加工可以大致分为两类:热加工和冷加工。
热加工又分为锻造和轧制两种,冷加工又分为拉伸、压缩、弯曲、挤压等几种。
不同的加工方式适用于不同的金属材料和加工要求,其中最常用的是轧制和拉伸。
2. 加工流程每一种塑性加工方式都有其独特的加工流程,但是每一种流程都包含了几个基本步骤,如下:1) 选材:选择适合加工的材料。
2) 制备:对材料进行清理、切割和热处理(如有必要)。
3) 加工:进行塑性加工,通常包括粗加工和精加工两个阶段。
4) 检测:对加工后的制品进行外观检测、尺寸检查、化学成分检测等。
5) 打磨:对制品进行表面加工,包括研磨、抛光等。
6) 包装:对制品进行包装,以防止损坏。
与锻造等传统加工方式相比,塑性加工有以下优点:1) 可以在较低的温度下进行加工,不会破坏材料的金属结构。
2) 通过加工可以获得更精确、更复杂的形状,可实现高度自动化生产。
3) 相比于锻造等加工方式,塑性加工可以轻松进行大批量生产,并且成本更低。
4. 材料的选择在进行塑性加工之前,需要选择适合加工的材料。
不同金属材料的物理和化学性质都有所区别,对于不同加工工艺的要求也不同。
使用不同材料的加工流程也不同。
如下是常用的几种材料:1) 铝:适合进行拉伸、挤压等冷加工流程。
总之,对于不同的加工工艺都需要选择不同的材料,以便在加工过程中获得最佳效果。
5. 结论。
金属塑性加工原理
金属塑性加工原理
金属塑性加工原理是指在适当的工艺条件下,通过施加外力使金属材料发生塑性变形的过程。
金属塑性加工原理的基础是金属的塑性特性,即金属材料在受力作用下能够发生可逆的形状变化。
金属塑性加工原理涉及到金属材料的结晶学、力学性能和变形机制等方面的知识。
在金属塑性加工中,通过外力的作用,原材料的形状和尺寸可发生变化,实现所需的加工目标。
金属塑性加工原理主要可以归纳为以下几个方面:
1. 金属材料的结晶学:金属材料由多个晶粒组成,晶粒内部有晶界,而晶界是塑性变形的主要路径。
在金属的塑性加工过程中,晶粒的滑移和再结晶是主要的塑性变形机制。
2. 应力和变形:金属在受力作用下,原子间的键合力会发生改变,使得晶体发生滑移。
滑移可以使晶体的形状发生变化,从而完成金属的塑性加工。
在金属的塑性加工过程中,需要合理控制应力和变形,以使材料达到所需的形状和尺寸。
3. 材料的加工硬化:金属经过塑性变形后,晶粒内部会发生位错的堆积,使材料的晶界和晶内的位错密度增加,从而增加材料的硬度和强度。
这种加工硬化现象可以通过热处理来消除或减轻。
4. 金属材料的可塑性和加工性:金属材料的可塑性是指金属在
塑性变形过程中的变形能力。
不同种类的金属材料具有不同的可塑性和加工性能,需要根据实际情况选择合适的金属材料进行塑性加工。
综上所述,金属塑性加工原理是通过施加外力使金属材料发生塑性变形,实现所需形状和尺寸的改变。
金属材料的结晶学、力学性能、变形机制和加工硬化等方面的知识对于金属塑性加工具有重要意义。
在实际加工过程中,需要综合考虑材料的可塑性和加工性能,以确保加工过程的稳定性和质量。
金属塑性加工
第三篇金属塑性加工
1、金属塑性加工包括:锻
造、冲压、挤压、轧制、
拉拔。
2、塑性变形:当外力增大
到使金属的内应力超过
该金属的屈服点后,而
产生一部分永久变形,
称为塑性变形。
3、金属塑性变形的实质是
滑移
4、金属在常温下经过塑性
变形,内部组织发生变
化:(1)晶粒沿最大变
形的方向伸长2)晶格
与晶粒均发生扭曲,产
生内应力3)晶粒间产生
碎晶
5、金属本质受1)化学成
分影响2)金属组织影
响
6、压应力的数目越多,则
金属的塑性越好,拉应
力数目越多,则金属的
塑性越差。
7、自由锻工序分为基本工
序、辅助工序和精整工
序三大类
8、基本工序包括:镦粗、
拔长、冲孔、扭转、错
移、切割
9、锻件图是根据零件图绘
制的,还考虑途块加工
余量和锻造公差,分模
面、模段斜率,横锻圆
角半径,连皮厚度。
10、冲压产生的基本
工序有分离工序和变形
工序两大类
11、冲横的工作中心
必然有磨损,落料尺寸
回随凹模刃口的磨损而
增大。
而冲孔件尺寸则
随凹模刃口的磨损而增大,而冲孔件尺寸则随凸模的磨损而减小。
为了保证冲裁件的尺寸要求,并提高模具的使用寿命,落料时,凹模刃口尺寸应靠近落料公差范围内的最小尺寸,冲孔时选取凸模刃口的尺寸靠近孔德公差范围内的最大尺寸。
塑性加工
钳口、压肩、倒棱等
(3)修整工序——为减少锻件表面缺陷(不平、歪扭等)进行的
工序。如校正、滚圆、平整等
SUST
金属工艺学
一、自由锻
基本工序
SUST
金属工艺学
一、自由锻
基本工序
圆截面拔长
SUST
金属工艺学
一、自由锻
基本工序
矩形截面拔长
SUST
金属工艺学
一、自由锻
基本工序
SUST
金属工艺学
一、自由锻
SUST
金属工艺学
二、变形工序(拉深)
拉深:使坯料在凸模的作用下压入凹模, 获得空心体零件的冲压工序。
SUST
金属工艺学
二、变形工序(拉深)
变形过程
SUST
金属工艺学
二、变形工序(拉深)
拉深中的废品
拉裂(拉穿)
起皱
SUST
金属工艺学
二、变形工序(拉深)
防止皱折:加压边圈 压边力不宜过 大能压住工件不致 起皱即可。
(2)应变速率:也称变形速度,是应变相对于时间的变化率。
SUST
金属工艺学
三、金属的可锻性
(3)应力状态:通过受力物体内一点的各个截面上的应力状况
简称为物体内一点处的应力状态,常用主应力图来定性地说明。
压应力数量越多,数值越大,金属的塑性就越好。
SUST
金属工艺学
利用冲击力或压力使金属在抵铁间或锻模中变形, 从而获得所需形状和尺寸的锻件的工艺方法称为锻造。
一、分离工序(冲裁)
冲裁变形过程
a圆角带 b光亮带 c断裂带 d毛刺
SUST
金属工艺学
一、分离工序(冲裁)
凸凹模间隙 考虑到模具制造 中的偏差及使用 中的磨损,生产 中通常是选择一 个适当的范围作 为合理间隙,这 个范围的最小值 称为最小合理间 隙,最大值称为 最大合理间隙。
《材料工程基础》课件——第五章 金属的塑性加工(第5、6、7节)
3.5.4 拉拔工具
拉拔工具主要包括拉拔模和芯头。此二者的结构、 形状尺寸、表面质量与材质对制品的质量、产量、 成本等具有重要影响。
拉拔模
拉拔模
旋转模
辊式模 普通模(应用最多 )
弧线模:只用于细线的拉拔
锥形模:管、棒、型材和较粗的 线材拉拔
图 普通拉拔模的基本结构 (a)锥形模 (b)弧线模
空拉时壁厚增加或减少,主要取决于两个因素:
①圆周方向压应力:促使金属沿径向流动,导致管材壁厚增 加
②轴向拉应力:促使金属产生轴向延伸,并导致壁厚减薄。
这两个因素作用的强弱取决于各种变形条件。
③固定短芯头拉拔变形
变形分三部分:
AB C D
AB段:空拉区,主要是减径 变形,壁厚一般有所增加, 又称减径区。应力应变特点 与空拉时一样。 BC段:减壁区,此阶段外径 减小,内径不变,壁厚减薄。 应力应变特点与棒材拉拔时 一样。 CD段:定径区,为弹性变形 区。
②空拉时的应力与变形
应力状态:与圆棒拉拔时类似,即:周向、径向为
压,轴向为拉,但 ,且有
。
径向压应力的数值由管材外表面至内表面逐渐减小, 在内表面上为零。
周向应力由外表面向内逐渐增大。
轴向应力由变形区入口为零逐渐增加,在变形区出
口(模孔出口)处达到最大。
变形
按目的不同有: 减径空拉:目的是减径,主要用于中间道次,一般 认为拉拔后壁厚不变; 整径空拉:目的是精确控制制品的尺寸,减径量不 大(0.5~1),一般在最后道次进行; 定型空拉:目的是控制形状,主要用于异型管材拉 拔,即用于圆截面向异型截面过渡拉拔。
拉拔加工的特点
①拉拔制品的尺寸精度高,表面粗糙度低 ②工具与设备简单,维护方便,一机多用 ③适用于连续高速生产断面尺寸小的长尺产品(Al、
金属材料的塑性加工与成形方法
金属材料的塑性加工与成形方法金属材料的塑性加工是指通过外力作用,改变金属材料的形状和尺寸,从而获得所需的零件和产品。
在工业生产中,金属材料的塑性加工具有重要的地位和作用。
本文将针对金属材料的塑性加工与成形方法展开讨论。
一、金属材料的塑性加工方法1. 锻造锻造是将金属材料加热到一定温度,然后施加压力使其在模具中产生塑性变形的加工方法。
锻造可以分为自由锻造和模锻造两种,可用于加工各种金属材料,广泛应用于航空航天、汽车制造等行业。
2. 拉伸拉伸是利用拉伸力使金属材料产生塑性变形,并最终延伸其长度的一种加工方法。
拉伸适用于薄板、线材等材料的加工,常用于金属制品的生产中。
3. 压缩压缩是将金属材料置于模具中,通过施加压力使其在垂直方向上发生塑性变形的一种加工方法。
压缩可用于加工各种形状的金属材料,特别适用于生产大型零件和产品。
4. 轧制轧制是将金属材料置于辊子之间进行连续压制,使其发生塑性变形的加工方法。
轧制广泛应用于金属片材、线材等薄型材料的加工,可实现尺寸精度高、表面光洁度好的要求。
5. 剪切剪切是将金属材料置于剪切机中,通过施加剪切力使其在剪切刃上发生塑性变形而分离的一种加工方法。
剪切广泛应用于金属板材、线材等材料的加工,可实现快速高效的生产。
二、金属材料的成形方法1. 冷冲压冷冲压是利用冲压设备将金属板材置于模具中,通过施加压力使其在常温下进行塑性变形和分离的成形方法。
冷冲压广泛应用于制造汽车零部件、家电产品等。
2. 热冲压热冲压是通过将金属材料加热到一定温度后进行塑性变形和分离的成形方法。
热冲压一般适用于高硬度、高强度的金属材料的加工,可获得较高精度和表面质量。
3. 旋压旋压是将金属材料置于旋压机床上,通过旋转和压制力使其在模具中进行塑性变形的成形方法。
旋压适用于加工圆柱形、锥形等形状的零件和产品。
4. 拉伸成形拉伸成形是将金属材料置于模具中,通过拉伸力使其在径向和轴向上同时发生塑性变形的成形方法。
金属的塑性加工教学PPT
在无模具或少模具情况下,对坯料施加外力,使其产生塑性变形,获得所需形状和性能的锻件。
自由锻
在模具腔内对坯料施加压力,使其产生塑性变形,获得所需形状和性能的锻件。
模锻
通过旋转轧辊对金属坯料施加压力,使其产生塑性变形,获得所需形状和性能的轧制产品。
轧制
通过挤压模具对金属坯料施加压力,使其产生塑性变形,获得所需形状和性能的挤压产品。
高强度材料
精密成形技术如激光成形和等离子喷涂等,在金属塑性加工中得到广泛应用,提高了加工精度和表面质量。
精密成形技术
数值模拟技术用于预测金属塑性加工过程中的变形行为、流动规律和工艺参数优化,有助于提高产品质量和降低成本。
数值模拟与优化
新材料与新技术的发展
随着智能化和自动化技术的不断发展,金属塑性加工将更加高效、精确和可控,实现自动化生产线和智能制造。
采取措施确保金属各部位受热均匀,以减小变形不均匀和开裂的风险。
加热均匀性
加热与温度控制
塑性变形过程
模具设计
根据产品形状和尺寸要求设计合理的模具结构。
变形方式选择
根据金属特性和产品需求选择合适的塑性变形方式,如轧制、锻造、挤压等。
变形程度控制
在保证产品质量的前提下,合理控制变形程度,以提高生产效率和降低能耗。
总结词
拉拔技术主要用于生产各种细线、丝材等制品,如钢丝、铁丝等。在拉拔过程中,金属坯料通过模具孔逐渐被拉长和变细,同时发生塑性变形。
详细描述
根据拉拔时金属坯料温度的不同,拉拔可分为热拉拔和冷拉拔两种。
总结词
热拉拔是将金属坯料加热至高温后进行拉拔,具有加工效率高、材料利用率高等优点,但产品精度相对较低。冷拉拔则是在常温下进行拉拔,产品精度高、表面质量好,但加工难度较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再结晶过程再结晶 使内应力全部消除, 强度降低,塑性增加。
再结晶的最低温度称为再结晶温度。
一般纯金属地再结晶温度为:
T再 0.4T熔
再结晶处理: 利用金属再结晶过程消除低温
变形后的冷变形强化,恢复金属的良好塑性,以利 于后继的冷变形加工。
塑性变形
再结晶温度
热变形 冷变形
冷变形
指金属在其再结晶温度以下进行塑性变形。 冷冲压、冷弯、冷挤、冷镦、冷轧和冷拔。 能获得较高的硬度及表面质量。
摩擦压力机
2、锤上模锻工艺
(一) 模锻的变形工步和模锻模膛
弯曲连杆的多模膛锻模
制坯工步,制坯模膛 (锻件初步成形) 模锻工步,模锻模膛(锻 件最终成形)
(二) 模锻工艺规程
1) 模锻件图制定
选定分模面 确定加工余量和锻造公差(加工表面) 模锻斜度 圆角半径 冲孔连皮
齿轮坯模锻件图
1、 模锻的分类
模锻设备
模锻设备 模锻锤 曲柄压力机 平锻机 摩擦压力机 锻造力性质 冲击力 压力 压力 冲击力-压力 锻件精度 较低 较高 较高 较高 生产率 较低 较高 较高 较低
模锻锤 模锻 压力机
锤上模锻 胎模锻 曲柄压力机上模锻 摩擦压力机上模锻 平锻机上模锻
模锻锤
长 轴 类 锻 件 短 轴 类 锻 件
温度过高
缺陷
控制锻造 温度范围
锻造温度范围 指始锻温度与终锻温度间的温度范围,以合金 状态图为依据。
对始锻温度,碳钢在AE线下150~250℃。
终锻温度即停止锻造的温度,对于锻件质量 有很大影响。
变形速度 指金属在锻压加工过程中单位时间内的相对 变形量。
变形时的应力状态
不同压力加工方法,金属内部的应力状态是 不同的。
尺寸精度高; 锻件形状复杂; 操作简单,生产效率高; 流线完整、性能好。 所需设备吨位大,设备费用高; 锻模加工工艺复杂,制造周期长,费用高。
模锻的缺点:
适用于中小型锻件的成批或大批生产
模锻广泛应用于国防工业和机械制造业,按 质量计算模锻件在飞机上占85%,坦克占70%,汽 车占80%,机车占60%。
第三篇
金属塑性加工
本章内容
塑性成形理论基础 塑性成形方法 塑性成形工艺设计 塑性加工方法的结构工艺性
塑性成形新发展
第一节 塑性成形工艺基础知识
塑性成形
指固态金属在外力作用下产生塑性变形,获
得所需形状、尺寸及力学性能的毛坯或零件的加
工方法。具有较好塑性的材料如钢和有色金属及 其合金均可在冷态或热态下进行塑性成形加工。
纤维组织的机械性能 使金属的机械性能具有明显的各向异性,纵向 的强度.塑性和韧性显著大于其横向。
2、锻造比 是锻造生产中代表金属变形大小的一个参数, 一般用锻造过程中的典型工序的变形程度来表示。
镦粗工序,锻造比为:
H0 y镦 H
拔长工序,锻造比:
变形前的高度 变形后的高度
S0 y拔 S
变形前的面积 变形后的面积
板料冲压的特点:
在常温下加工,金属板料必须具有足够的塑性和较低 的变形抗力。 金属板料经冷变形强化,并获得一定的几何形状后, 结构轻巧,强度和刚度较高。 冲压件尺寸精度高,质量稳定,互换性好,一般不需 机械加工即可作零件使用。 冲压生产操作简单,生产率高,便于实现机械化和自 动化。 可以冲压形状复杂的零件,废料少。 冲压模具结构复杂,精度要求高,制造费用高,只适 用于大批量生产。
必须综合考虑塑性和变形抗力
第二节
一、自由锻
自由锻指将金属 坯料放在锻造设备的 上下抵铁之间,施加 冲击力或压力,使之 产生自由变形而获得 所需形状的成形方法。
锻造
主要用于单件、小批生产,也是生产 大型锻件的唯一方法。
1、自由锻设备:锻锤和压力机
空气锤 吨位小 适用于小型锻件 蒸汽—空气锤 适用于中小型锻件 水压机 吨位较大 适用于大型锻件
热变形
指金属在其再结晶温度以上进行塑性变形。 锻造、热挤和轧制等 能消除冷变形强化的痕迹,保持较低的塑性变 形抗力和良好的塑性。
三、纤维组织
1、纤维组织 通过热加工,可使铸态金属中的枝晶偏析和非金 属夹杂的分布发生改变,使它们沿着变形的方向细碎 拉长,形成所谓热加工“纤维组织”(在宏观检验时 常把它叫做“流线”)。
5、自由锻零件的结构工艺性
• 尽量避免锥面或斜面
• 避免圆柱与圆柱面相交
• 避免椭圆形、工字型或其它非规则形 状截面及非规则外形 • 避免肋板和凸台
比较下列锻件的结构工艺性
二、模膛锻造(模锻)
是将加热好的坯料放在锻模模膛内,在锻压力的 作用下迫使坯料变形而获得锻件的一种加工方法。 模锻的优点(与自由锻相比)
冷变形强化(加工硬化):
指金属在低温下进行塑性变形时, 金属的强度和硬度升高,塑性和韧性下 降的现象。
指当温度升高时,金 属原子获得热能,使冷变形 时处于高位能的原子回复到 正常排列,消除由于变形而 产生的晶格扭曲的过程。
冷变形强化的原因 在塑性变形过程中,在滑移面上产生了许多晶格 方向混乱的微小碎晶,滑移面附近的晶格也产生了畸 变,增加了继续滑移的阻力,使继续变形困难。 提高金属强度、硬度
(3) 确定变形工步
齿轮坯自由锻工艺过程:
锻件图 下料 镦粗 垫环局 部镦粗 冲 孔
冲子冲孔
修整
半轴自由锻工艺 锻出头部
拔长
拔长及修 整台阶 锻件图 材料: 18CrMnTi 坯料尺寸:Ф130×240 坯料重量:25kg 锻造设备:0.5T自由锻锤 拔长并留 出台阶 锻出凹挡 及拔长端 部并修整
常用塑性成形加工方法
自由锻 模锻
板 料 冲 压
挤压
拉拔
轧锻
应用
自由锻、模锻 — 承受重载的机械零件; 板料冲压 — 汽车制造、电器、仪表及日用品。
轧制、挤压、拉拔 — 型材、板材、钢材、线材等;
第二节
塑性成形理论基础
一、金属塑性变形的实质
具有一定塑性的金属坯料在外力作用下,当内应力达到 一定的条件,就会发生塑性变形。
由于多晶体存在 晶界和各晶粒的位向差别 , 其变形抗力要远高于同种金属的单晶体。
二、塑性变形对金属组织与性能的影响
金属塑性变形时,在不同的温度下,对金属组织和性 能产生不同的影响。
指当温度升高到一定程度时,金属原子 获得更高的热能,通过金属原子的扩散,使 冷变形强化的结晶构造进行改变,成长出许 多正常晶格的新晶粒,新晶粒代替原变形晶 粒的过程即为再结晶。
实质:是金属晶体的晶内变形和晶粒间的相对 移动、晶粒的转动等综合作用的结果。
1、单晶体的塑性变形
晶体内的一部分相对另一部分,沿原子排列紧密的晶面作 相对滑动。
晶体在晶面上的滑移,是通过位错的不断运动来实现的。
2、多晶体的塑性变形
多晶体是由大量的大小、形状、晶格排列位向各不相 同的晶粒所组成。
晶内变形和晶间变形
冷变形强化
回复:
后续加工困难
不改变晶粒的形状及晶粒变形时所构成的方向性, 也不能使晶粒内部的破坏现象及晶界间物质的破坏现 象得到恢复,只是逐渐消除晶格的扭曲程度。故回复 作用可以降低内应力,但机械性能变化不大,强度稍 降低,塑性稍提高。
再结晶
再结晶过程
成核
长大
1—内应力曲线 2—晶粒度曲线 3—强度曲线(变形抗力) 4—延伸率曲线
2、自由锻工序
根据作用与变形要求的不同,可分为
基本工序、辅助工序和精整工序 基本工序 :改变坯料的形状和尺寸以达到锻件
基本成形的工序;包括镦粗、拔长、冲孔、弯曲、切 割、扭转、错移等。最常用的是镦粗、拔长、冲孔。
辅助工序 :为了方便基本工序的操作,而使坯
料预先产生某些局部变形的工序。如压钳口、倒棱和 切肩。
塑性成形加工的特点 优点
改善金属的组织,提高金属的力学性能; 节约金属材料和切削加工工时,提高金属材料 的利用率和经济效益; 具有较高的劳动生产率。 适应性广。
缺点
锻件的结构工艺性要求较高,内腔复杂零件难以锻造; 锻造毛坯的尺寸精度不高,一般需切削加工; 需重型机器设备和较复杂模具,设备费用与周期长; 生产现场劳动条件较差。
3、锻造比对金属的组织和性能的影响
锻造比 组织细密化 力学性能
锻造比过大
组织的紧密程度 晶粒细化程度
力学性能
4、纤维组织应用 锻造流线的稳定性很高,而且用热处理不能消除。
锻造流线的方向,使最大正应力与流线方向一致, 切应力或冲击应力与流线方向垂直。
使锻造流线的分布与零件的外形轮廓相符合,而 不被切断。
可以镦粗、拔长、滚挤、弯 曲、成形、预锻、终锻
曲柄压力机
可锻造较低塑形合金;
便于实现机械化和自动 化,具有很高生产率;
滑块运动精度高;
振动和噪音较小,劳动 条件改善。
平锻机
平锻机上模锻的锻件
摩擦压锻机
螺杆与滑块非刚性连接, 承受偏心能力差; 滑块行程、打击能量可自 动调节。
适应性好,广泛应用在中 小锻件的小批或中批生产。例 如:铆钉、螺栓、螺母
选定分模面的原则
能从模膛中顺利取出; 金属易于充满模膛; 简化模具制造;
能及时发现错模; 减少余块节约金属。
2) 变形工步的确定
盘类模锻件: 镦粗制坯和终锻成形 长轴类锻件: 拔长、滚挤、弯曲制坯和预断、终锻成形。
3) 坯料计算
坯料的质量:
G坯料 = G锻件 + G烧损+ G飞边 + G连皮+ G料头
精整工序 :修整锻件的最后尺寸和形状,消除
表面的不平和歪扭,使锻件达到图纸要求的工序。如 修整鼓形,平整端面、校直弯曲。