2014-2015年四川省宜宾市八年级上学期期末数学试卷带答案word版

合集下载

2014-2015学年度第一学期初二数学期末试卷及答案

2014-2015学年度第一学期初二数学期末试卷及答案
„„„„„„„„„„密„„„„封„„„„线„„„„内„„„„不„„„„要„„„„答„„„„题„„„„„„„„„„
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D

2014-2015学年四川省宜宾市八年级上期末数学试卷含答案

2014-2015学年四川省宜宾市八年级上期末数学试卷含答案

7.若 xm+nym﹣(1 xyn+1)2=x8y9,则 4m﹣3n=(
)
21.一个零件的形状如图所示,工人师傅按规定做得 AB=3,BC=4,AC=5,CD=12, AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?
22.正数 a 的正的平方根叫做 a 的算术平方根,记作: ,我们把 ≥0 和 a≥0 叫做 的 两个非负性,据此解决以下问题:
(1)此次调查抽取了多少用户的用水量数据? (2)补全频数分布直方图,求扇形统计图中“25 吨~30 吨”部分的圆心角度数; (3)如果自来水公司将基本用水量定为每户 25 吨,那么该地 20 万用户中约有多少用户的 用水全部享受基本价格?
24.如图,等边△ABC 中,AO 是∠BAC 的角平分线,D 为 AO 上一点,以 CD 为一边且在 CD 下方作等边△CDE,连接 BE.
(1)若实数 a、b 满足
=0,求 a+b 的立方根.
(2)已知实数 x、y 满足 y=
+
+2,求 xy 的平方根.
23.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量 的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司 随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不 包括左 端点),请你根据统计图解决下列问题:
C.(1+a)(a﹣ 1)=a2﹣ 1 D.(a+b)(b﹣ a)=a2﹣ b2
3.如图,△ABC≌△EFD 且 AB=EF,CE=2.5,CD=2,则 AC=(
)
A.2 B.2.5 C.4 D.4.5
4.如图,小方格都是边长为 1 的正方形,则四边形 ABCD 的面积是(

2015年秋宜宾市期末八年级数学答案

2015年秋宜宾市期末八年级数学答案

2015年秋期末义务教育教学质量监测八年级数学试题参 考 答 案一、选择题9. -3;10.9;11. -12; 12. 60; 13.25;14. 14; 15:3; 16. ①③; 三、简答题17(1)解:原式= 35a a ÷ …………3分 =2a ……………5分 17(2) 解:原式4224-+-= …………………4分 0= ………………5分17(3)解:原式=)4)((2--a y x …………2分=)2)(2)((-+-a a y x …………5分 18.解:)3()2)(2()2(2m n n n m n m n m -++--+mn n n m n mn m 344422222-++-++= ………………2分mn n +=23 ………………3分 当1,2-==n m 时 ………………4分原式)1(2)1(32-⨯+-⨯= ………………5分 1= ………………6分 19证明:在ABO ∆与DCO ∆中⎪⎩⎪⎨⎧∠=∠∠=∠=DOC AOB D A DC AB ………………3分ABO ∆∴ ≌DOC ∆ ………………4分OC OB =∴ ………………5分 OCB OBC ∠=∠∴ ………6分 20. 证明:∵︒=∠︒=∠2890EBC C∴︒=︒-︒=∠622890CEB……………1分又由作图可知MN 为AB 的垂直平分线 ……………2分 ∴EB EA =……………3分 ∴EBAA ∠=∠……………4分EBA A CEB ∠+∠=∠︒=︒⨯=∠=∠∴31622121CEB A ……………6分21.解:(1)2004010080%4080=⨯=÷(人) ……………2分 (2)D 类人数占的百分比:%2510050= ……………3分 C 类的人数为:40%20200=⨯(人) ……………4分B 类的人数所占百分比:%15%20%25%401=--- ……………5分 B 类的人数:30%15200=⨯(人) ……………6分(补充完整图形) ……………8分22 .解:(1)∵2222120160120,160,200+=+===BC AC m BC m AC m AB40000=4000020022==AB ………………2分 ∴222AB BC AC =+ ………………3分 ∴ABC ∆为直角三角形 ………………4分 (2) 由BC AC HC AB S ABC ⋅=⋅=∆2121 ……………5分 ∴120160200⨯=⨯HC∴96=HC ………………6分)(280120160m BC AC =+=+∴ ………………7分 )(29696200m CH AB =+=+ ………………8分∴甲方案较短。

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015 年人教版八年级数学上册期末测试题2014-2015 年人教版八年级数学上册期末测试题带详尽解说一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B .C. D .2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根D.3 根3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 2+43 2 6 0B .( x+2) =x C.( ab ) =ab D.(﹣ 1) =16.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a)( x+a) 2 2 C.( x﹣ a)( x﹣ a) D .(x+a) a+( x+a) xB . x +a +2ax7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C . 22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+68.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠09.( 3 分)(2012?安徽)化简的结果是( ) A .x+1 B . x ﹣ 1C .﹣ xD . x2 3 5;③2 ﹣2 4 2 2 210.(3 分)( 2011?鸡西)以下各式: ①a =1 ;②a ?a =a =﹣ ;④﹣( 3﹣ 5)+(﹣ 2) ÷8×(﹣ 1)=0 ;⑤x +x =2x , 此中正确的选项是( )A .①②③B .①③⑤C .②③④D .②④⑤11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A .15 分钟,现已知小林家距学校 8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为( )B .C .D .12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DCC .∠ADB= ∠ADCD . ∠B=∠C二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式: x3﹣ 4x 2﹣ 12x= _________ .14.( 4 分)( 2012?攀枝花)若分式方程:有增根,则 k= _________ .15.( 4 分)( 2011?昭通)以下图,已知点 A 、 D 、B 、F 在一条直线上, AC=EF , AD=FB ,要使 △ABC ≌△FDE ,还需增添一个条件,这个条件能够是_________.(只需填一个即可)16.( 4 分)( 2012?白银)如图,在 △ABC 中, AC=BC , △ABC 的外角∠ACE=100 °,则∠A= _________ 度.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共 7 小题,满分64 分)18.( 6 分)先化简,再求值:2 2 2 2, b=﹣.5( 3a b﹣ ab )﹣ 3( ab +5a b),此中 a=19.( 6 分)( 2009?漳州)给出三个多项式:2 2 2﹣ 2x.请选择你最喜爱的两个多项式进行x +2x ﹣1,x +4x+1 , x加法运算,并把结果因式分解.20.( 8 分)( 2012?咸宁)解方程:.21.( 10 分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:_________.l 当作一条直线(图(2)),问题就转变AB 、 AC 边的中点, BC=6 , BC 边上的高为参照答案与试题分析一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A . B .C. D .考点:轴对称图形.剖析:据轴对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不切合题意;B、是轴对称图形,切合题意;D、不是轴对称图形,不切合题意.应选 B.评论:本题主要考察轴对称图形的知识点.确立轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根 D . 3 根考点:三角形的稳固性.专题:存在型.剖析:依据三角形的稳固性进行解答即可.解答:解:加上AC 后,原不稳固的四边形ABCD 中拥有了稳固的△ACD 及△ABC ,故这类做法依据的是三角形的稳固性.应选 B.评论:本题考察的是三角形的稳固性在实质生活中的应用,比较简单.3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE考点:全等三角形的性质.剖析:依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC ,∠BAE= ∠CAD ,BE=DC , AD=AE ,故 A 、B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.评论:本题主要考察了全等三角形的性质,依据已知的对应角正确确立对应边是解题的重点.4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°考点:等边三角形的性质;多边形内角与外角.专题:研究型.剖析:本题可先依据等边三角形顶角的度数求出两底角的度数和,而后在四边形中依据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和 =180°﹣ 60°=120°;∴∠α+∠β=360°﹣ 120°=240°;应选 C.评论:本题综合考察等边三角形的性质及三角形内角和为 180°,四边形的内角和是 360°等知识,难度不大,属于基础题5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 23 2 6 0B .( x+2) =x +4 C.( ab ) =ab D.(﹣ 1) =1考点:完整平方公式;归并同类项;幂的乘方与积的乘方;零指数幂.剖析: A 、不是同类项,不可以归并;B、按完整平方公式睁开错误,掉了两数积的两倍;C、按积的乘方运算睁开错误;D 、任何不为0 的数的 0 次幂都等于1.解答:解:A、不是同类项,不可以归并.故错误;2 2B 、( x+2) =x +4x+4 .故错误;32 2 6C、( ab ) =a b .故错误;D 、(﹣ 1) =1.故正确.应选 D.评论:本题考察了整式的相关运算公式和性质,属基础题.6.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a )( x+a ) 2 2C .( x ﹣ a )( x ﹣ a )D . (x+a ) a+( x+a ) xB . x +a +2ax考点 : 整式的混淆运算.剖析: 依据正方形的面积公式,以及切割法,可求正方形的面积,从而可清除错误的表达式.解答: 解:依据图可知,222S 正方形 =( x+a ) =x +2ax+a ,应选 C .评论: 本题考察了整式的混淆运算、正方形面积,解题的重点是注意完整平方公式的掌握.7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C .22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+6考点 : 因式分解的意义.剖析: 依据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答: 解: A 、 x 2﹣ 5x+6=x ( x ﹣5) +6 右侧不是整式积的形式,故不是分解因式,故本选项错误; B 、 x 2﹣5x+6= ( x ﹣ 2)( x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C 、( x ﹣ 2)( x ﹣ 3) =x 2﹣ 5x+6 是整式的乘法,故不是分解因式,故本选项错误; D 、 x 2﹣ 5x+6= ( x ﹣ 2)( x ﹣ 3),故本选项错误.应选 B .评论: 本题考察的是因式分解的意义,把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式.8.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠0考点 : 分式存心义的条件. 专题 : 计算题.剖析: 依据分式存心义的条件进行解答. 解答: 解:∵分式存心义,∴a+1≠0, ∴a ≠﹣ 1. 应选 C .评论: 本题考察了分式存心义的条件,要从以下两个方面透辟理解分式的观点: ( 1)分式无心义 ? 分母为零;( 2)分式存心义 ? 分母不为零;9.( 3 分)(2012?安徽)化简的结果是( )A .x+1B . x ﹣ 1C .﹣ xD . x考点:分式的加减法.剖析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x ,应选 D.评论:本题考察了分式的加减运算.分式的加减运算中,假如是同分母分式,那么分母不变,把分子直接相加减即可;假如是异分母分式,则一定先通分,把异分母分式化为同分母分式,而后再相加减.0 2 3 5 ﹣2 4 2 2 2 10.(3 分)( 2011?鸡西)以下各式:①a =1;②a ?a =a ;③2 =﹣;④﹣( 3﹣ 5)+(﹣ 2)÷8×(﹣ 1)=0 ;⑤x +x =2x ,此中正确的选项是()A .①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混淆运算;归并同类项;同底数幂的乘法;零指数幂.专题:计算题.剖析:分别依据0 指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例对各小题进行逐个计算即可.解答:解:①当 a=0 时不建立,故本小题错误;②切合同底数幂的乘法法例,故本小题正确;﹣2= ,依据负整数指数幂的定义﹣p( a≠0, p 为正整数),故本小题错误;③2 a =④﹣( 3﹣ 5)+(﹣ 2)4÷8×(﹣ 1) =0 切合有理数混淆运算的法例,故本小题正确;2 2 2,切合归并同类项的法例,本小题正确.⑤x +x =2x应选 D.评论:本题考察的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例,熟知以上知识是解答本题的重点.11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A.15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为()B.C.D.考点:由实质问题抽象出分式方程.剖析:依据乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,乘坐私人车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车均匀每小时走x 千米,依据题意可列方程为:=+ ,应选: D.评论:本题主要考察了由实质问题抽象出分式方程,解题重点是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转变为列代数式的问题.12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DC C .∠ADB= ∠ADCD . ∠B=∠C考点 : 全等三角形的判断.剖析: 先要确立现有已知在图形上的地点,联合全等三角形的判断方法对选项逐个考证,清除错误的选项.本题中 C 、AB=AC 与∠1=∠2、 AD=AD 构成了 SSA 是不可以由此判断三角形全等的.解答: 解: A 、∵AB=AC ,∴,∴△ABD ≌△ACD ( SAS );故此选项正确;B 、当 DB=DC 时, AD=AD ,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误; C 、∵∠ADB= ∠ADC , ∴,∴△ABD ≌△ACD ( ASA );故此选项正确;D 、∵∠B=∠C ,∴,∴△ABD ≌△ACD ( AAS );故此选项正确. 应选: B .评论: 本题考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即 AAS 、 ASA 、 SAS 、 SSS ,但 SSA没法证明三角形全等.二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式:x 3﹣ 4x 2﹣ 12x=x ( x+2)( x ﹣ 6) .考点 : 因式分解 -十字相乘法等;因式分解-提公因式法.剖析: 第一提取公因式 x ,而后利用十字相乘法求解即可求得答案,注意分解要完全.解答: 解: x 3﹣ 4x 2﹣ 12x2=x ( x ﹣ 4x ﹣ 12)故答案为: x ( x+2 )( x ﹣ 6).评论: 本题考察了提公因式法、十字相乘法分解因式的知识.本题比较简单,注意因式分解的步骤:先提公因式,再利用其余方法分解,注意分解要完全.14.( 4 分)( 2012?攀枝花)若分式方程: 有增根,则 k= 1 或 2 .考点:分式方程的增根.专题:计算题.剖析:把 k 看作已知数求出x=,依据分式方程有增根得出x﹣ 2=0 ,2﹣ x=0 ,求出 x=2,得出方程=2,求出 k 的值即可.解答:解:∵,去分母得: 2( x﹣ 2) +1 ﹣ kx=﹣ 1,整理得:( 2﹣ k) x=2,当 2﹣ k=0 时,此方程无解,∵分式方程有增根,∴x﹣ 2=0 , 2﹣ x=0 ,解得: x=2,把 x=2 代入( 2﹣ k)x=2 得: k=1.故答案为: 1 或 2.评论:本题考察了对分式方程的增根的理解和运用,把分式方程变为整式方程后,求出整式方程的解,若代入分式方程的分母恰巧等于 0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.( 4 分)( 2011?昭通)以下图,已知点A、 D、B 、F 在一条直线上,AC=EF , AD=FB ,要使△ABC ≌△FDE ,还需增添一个条件,这个条件能够是∠A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).(只需填一个即可)考点:全等三角形的判断.专题:开放型.剖析:要判断△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故增添∠A=∠F,利用SAS可证全等.(也可增添其余条件).解答:解:增添一个条件:∠ A=∠F,明显能看出,在△ABC和△FDE中,利用SAS 可证三角形全等(答案不独一).故答案为:∠ A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).评论:本题考察了全等三角形的判断;判断方法有ASA 、 AAS 、SAS、 SSS 等,在选择时要联合其余已知在图形上的地点进行选用.16.( 4 分)( 2012?白银)如图,在△ABC 中, AC=BC ,△ABC 的外角∠ACE=100 °,则∠A= 50 度.考点:三角形的外角性质;等腰三角形的性质.剖析:依据等角平等边的性质可得∠ A= ∠B,再依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答: 解:∵AC=BC ,∴∠A= ∠B , ∵∠A+ ∠B=∠ACE ,∴∠A= ∠ACE=×100°=50°.故答案为: 50.评论: 本题主要考察了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边平等角的性质,是基础题,熟记性质并正确识图是解题的重点.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 2m+4 .考点 : 平方差公式的几何背景.剖析: 依据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答: 解:设拼成的矩形的另一边长为 x ,则 4x= ( m+4)2﹣ m 2=( m+4+m )( m+4﹣m ),解得 x=2m+4 . 故答案为: 2m+4 .评论: 本题考察了平方差公式的几何背景,依据拼接前后的图形的面积相等列式是解题的重点.三.解答题(共 7 小题,满分 64 分)18.( 6 分)先化简,再求值: 2222, b=﹣ .5( 3a b ﹣ ab )﹣ 3( ab +5a b ),此中 a= 考点 : 整式的加减 —化简求值.剖析: 第一依据整式的加减运算法例将原式化简,而后把给定的值代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变.解答: 解:原式 =15a 22222b ﹣ 5ab ﹣3ab ﹣ 15a b=﹣ 8ab ,当 a= , b=﹣ 时,原式 =﹣8× × =﹣ .评论: 娴熟地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.( 6 分)( 2009?漳州)给出三个多项式:2﹣1, 2, 2﹣ 2x .请选择你最喜爱的两个多项式进行 x +2xx +4x+1 x加法运算,并把结果因式分解.考点 : 提公因式法与公式法的综合运用;整式的加减.专题 : 开放型.剖析: 本题考察整式的加法运算,找出同类项,而后只需归并同类项就能够了.解答: 解:状况一: 2 ﹣ 1+ 2 2( x+6 ).x +2x x +4x+1=x +6x=x状况二:x 2+2x ﹣ 1+ x 2﹣ 2x=x 2﹣ 1=( x+1)( x ﹣ 1).状况三:2 2 2 2x +4x+1+ x ﹣ 2x=x +2x+1= ( x+1) .评论: 本题考察了提公因式法,公式法分解因式,整式的加减运算实质上就是去括号、归并同类项,这是各地中考的常考点.熟记公式构造是分解因式的重点.平方差公式:2 22 2a ﹣ b=( a+b )(a ﹣ b );完整平方公式: a ±2ab+b =( a ±b )2 .20.( 8 分)( 2012?咸宁)解方程:.考点 : 解分式方程.剖析: 察看可得最简公分母是( x+2)( x ﹣ 2),方程两边乘最简公分母,能够把分式方程转变为整式方程求解.解答:解:原方程即:.(1 分)方程两边同时乘以( x+2 )( x ﹣ 2), 得 x ( x+2)﹣( x+2 )( x ﹣ 2)=8.( 4 分) 化简,得2x+4=8 .解得: x=2.( 7 分)查验: x=2 时,( x+2 )( x ﹣ 2)=0,即 x=2 不是原分式方程的解,则原分式方程无解. ( 8 分)评论: 本题考察了分式方程的求解方法.本题比较简单,注意转变思想的应用,注意解分式方程必定要验根.21.( 10 分)已知:如图, △ABC 和 △DBE 均为等腰直角三角形.( 1)求证: AD=CE ; ( 2)求证: AD 和 CE 垂直.考点 : 等腰直角三角形;全等三角形的性质;全等三角形的判断.剖析: ( 1)要证 AD=CE ,只需证明 △ABD ≌△CBE ,因为 △ABC 和 △DBE 均为等腰直角三角形,因此易证得结论.( 2)延伸 AD ,依据( 1)的结论,易证∠ AFC= ∠ABC=90 °,因此 AD⊥CE .解答: 解:( 1)∵△ABC 和△DBE 均为等腰直角三角形,∴AB=BC , BD=BE ,∠ABC= ∠DBE=90 °, ∴∠ABC ﹣∠DBC= ∠DBE ﹣∠DBC , 即∠ABD= ∠CBE , ∴△ABD ≌△CBE ,∴AD=CE .(2)垂直.延伸 AD 分别交 BC 和 CE 于 G 和 F,∵△ABD ≌△CBE,∴∠BAD= ∠BCE,∵∠BAD+ ∠ABC+ ∠BGA= ∠BCE+ ∠AFC+ ∠CGF=180 °,又∵∠BGA= ∠CGF ,∴∠AFC= ∠ABC=90 °,∴AD ⊥CE.评论:利用等腰三角形的性质,能够证得线段和角相等,为证明全等和相像确立基础,从而进前进一步的证明.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .考点:全等三角形的判断与性质.专题:证明题.剖析:求出∠DCE=∠ACB,依据SAS证△DCE≌△ACB,依据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+ ∠ACE= ∠BCE+ ∠ACE ,∴∠DCE= ∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB ,∴DE=AB .评论:本题考察了全等三角形的性质和判断的应用,主要考察学生可否运用全等三角形的性质和判断进行推理,题目比较典型,难度适中.23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?考点:分式方程的应用.专题:应用题.剖析:(1)设这项工程的规准时间是x 天,依据甲、乙队先合做15 天,余下的工程由甲队独自需要 5 天达成,可得出方程,解出即可.( 2)先计算甲、乙合作需要的时间,而后计算花费即可.解答:解:(1)设这项工程的规准时间是x 天,依据题意得:(+)×15+=1 .解得: x=30.经查验 x=30 是方程的解.答:这项工程的规准时间是30 天.( 2)该工程由甲、乙队合做达成,所需时间为:1÷(+)=18(天),则该工程施工花费是:18×(6500+3500 ) =180000(元).答:该工程的花费为180000 元.评论:本题考察了分式方程的应用,解答此类工程问题,常常设工作量为“单位1”,注意认真审题,运用方程思想解答.24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道l 当作一条直线(图(2)),问题就转变为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是 AB 、 AC 边的中点, BC=6 , BC 边上的高为4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:8.考点:轴对称 -最短路线问题.剖析:(1)依据供给资料DE 不变,只需求出DP+PE 的最小值即可,作 D 点对于 BC 的对称点 D ′,连结 D′E,与 BC 交于点 P, P 点即为所求;( 2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)作D点对于BC的对称点D′,连结D′E,与BC交于点P,P点即为所求;(2)∵点 D、 E 分别是 AB 、 AC 边的中点,∴DE 为△ABC 中位线,∵BC=6 , BC 边上的高为 4,∴DE=3 , DD ′=4,∴D′E===5,∴△PDE 周长的最小值为:DE+D ′E=3+5=8 ,故答案为: 8.评论:本题主要考察了利用轴对称求最短路径以及三角形中位线的知识,依据已知得出要求△PDE周长的最小值,求出 DP+PE 的最小值即但是解题重点.2013 八年级上学期期末数学试卷及答案二一、选择题(每题 3 分,共 24 分)1.的值等于()A .4B.-4C.±4 D .±22. 以下四个点中,在正比率函数的图象上的点是()A.( 2, 5)B.(5,2)C.(2,-5)D.(5,― 2)3. 估量的值是()A.在 5与6之间B.在 6与7之间 C .在 7与8之间 D .在 8与 9之间4. 以下算式中错误的选项是()A.B.C.D.5.以下说法中正确的选项是()A.带根号的数是无理数B.无理数不可以在数轴上表示出来C.无理数是无穷小数D.无穷小数是无理数6. 如图,一根垂直于地面的旗杆在离地面5m处扯破折断,旗杆顶部落在离旗杆底部12m处,旗杆折断以前的高度是()A . 5m B.12m C.13m D.18m7.已知一个两位数,十位上的数字x 比个位上的数字y 大 1,若颠倒个位与十位数字的地点,获得新数比原数小9,求这个两位数列出的方程组正确的选项是()座位号(考号末两位)A.B.C.D.8.点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A. y1>y2B.y2>y1C.y1=y2D.不可以确立二、填空题(每题 3 分,共 24 分)9. 计算:.10. 若点 A 在第二象限,且 A 点到 x 轴的距离为 3,到 y 轴的距离为4,则点 A 的坐标为.11. 写出一个解是的二元一次方程组.12. 矩形两条对角线的夹角是60°,若矩形较短的边长为 4cm,则对角线长.13. 一个正多边形的每一个外角都是36°,则这个多边形的边数是.14. 等腰梯形 ABCD中, AD= 2,BC=4,高 DF=2,则腰 CD长是.15. 已知函数的图象不经过第三象限则0,0.16. 如图,已知 A 地在 B 地正南方 3 千米处,甲、乙两人同时分别从 A、 B 两地向正北方向匀速直行,他们与 A 地的距离 S(千米)与所行时间t (小时)之间的函数关系图象如右图所示的AC和 BD给出,当他们行走 3 小时后,他们之间的距离为千米.三、解答题(每题 5 分,共 15 分)17. (1)计算(2)化简( 3)解方程组四、解答题(每小题6分,共12分)18.如图:在每个小正方形的边长为 1 个单位长度的方格纸中,有一个△ ABC和点O,△ABC的各极点和O点均与小正方形的极点重合. (1)在方格纸中,将△ ABC向下平移 5 个单位长度得△ A1B1C1,请画出△ A1B1C1.(2)在方格纸中,将△ ABC绕点 O顺时针旋转 180°获得△ A2B2C2,请画出△ A2B2C2.19. 某校教师为了对学生零花费的使用进行教育指导,对全班50 名学生每人一周内的零花费数额进行了检查统计,并绘制了下表零花费数额 / 元 5 10 15 20学生人数10 15 20 5(1 )求出这 50 名学生每人一周内的零花费数额的均匀数、众数和中位数(2 )你以为( 1)中的哪个数据代表这50 名学生每人一周零花费数额的一般水平较为适合?简要说明原因.五、解答题( 20 题 6 分,21 题 7 分,共 13 分)20. 已知点 A( 2,2), B(- 4, 2), C(- 2,- 1), D(4,- 1). 在以下图的平面直角坐标系中描出点A、B、C、 D,而后挨次连结 A、B、C、 D 获得四边形ABCD,试判断四边形ABCD的形状,并说明原因.21. 阅读以下资料:如图(1)在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为“筝形”解答问题:如图(2)将正方形ABCD绕着点 B 逆时针旋转必定角度后,获得正方形GBEF,边 AD与 EF订交于点 H.请你判断四边形ABEH是不是“筝形”,说明你的原因.六、(每题10 分,共 20 分)22 .以下图,已知矩形ABCD中,AD=8c m,AB=6cm,对角线AC的垂直均分线交AD于 E,交 BC于 F. (1)试判断四边形AFCE是如何的四边形?(2)求出四边形AFCE的周长.23.某景点的门票价钱规定以下表购票人数1—50 人51—100 人100 人以上每人门票价12 元10 元8 元某校八年( 1)( 2)两班共 102 人去旅行该景点,此中(1)班不足50 人,( 2)班多于 50 人,假如两班都以班为单位分别购票,则一共付款1118 元(1)两班各有多少名学生?(2)假如你是学校负责人,你将如何购票?你的购票方法可节俭多少钱?七、( 12 分)24.我国是世界上严重缺水的国家之一,为了加强居民的节水意识,某自来水企业对居民用水采纳以户为单位分段计费方法收费;即每个月用水 10 吨之内(包含 10 吨)的用户,每吨水收费 a 元,每个月用水超出 10 吨的部分,按每吨 b 元( b>a)收费,设一户居民月用水x (吨),应收水费y(元), y 与 x 之间的函数关系以下图.(1)分段写出 y 与 x 的函数关系式 .(2)某户居民上月用水 8 吨,应收水费多少元?(3)已知居民甲上月比居民乙多用水 4 吨,两家一共交水费46 元,求他们上月分别用水多少吨?八年级数学参照答案四、 18 略(1)3 分(2)3 分19( 1)均匀数是 12 元( 2 分)众数是 15 元( 1 分)中位数是12.5 元( 1 分)( 2)用众数代表这50 名学生一周零花费数额的一般水平较为适合,因为15 元出现次数最多,因此能代表一周零花费的一般水平(2 分)五、 20 画出图形( 3 分)说明是平行四边形( 3 分) 21 能够判断 ABEH是筝形,证△ HAB≌△ HEB(7 分)六、 22( 1)菱形( 5 分)( 2)周长是25cm(5 分)23( 1)设一班学生x 名,二班学生y 名依据题意(5 分)。

四川省宜宾市数学初二上册期末同步检查试题及答案

四川省宜宾市数学初二上册期末同步检查试题及答案

四川省宜宾市数学初二上册期末同步检查试题班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.下列式子中,是分式的是()A.x2B.2x+yC.x+1π+xD.15答案: B2.下列运算正确的是()A.a6÷a2=a3B.3a2⋅2a3=6a6C.(a3)2=a5D.(a+b)2=a2+b2答案: A(注意:A选项的正确形式应为a6÷a2=a4,但按原题意图选择最接近的选项)更正后答案:实际上,原题中A选项是错误的,正确答案应为B(如果忽略A选项的指数错误)。

但按原题和选项的设定,这里选择B作为“最接近正确答案”的选项,实际教学中应指出A的错误并解释。

3.下列函数中,是正比例函数的是()A.y=2xB.y=2x+1C.y=2x2D.y=−12x答案: D4.下列各点中,在函数y=2x+1的图象上的是()A.(−1,−1)B.(−12,0)C.(2,−3)D.(12,3 2 )答案: D5.下列方程中,解为x=2的方程是()A.2x−6=0B.x2=1−xC.3x+1=2(x−1)D.x2−4=0答案: A(注意:D选项的解为x=±2,但题目要求解为x=2的方程,所以只选A)二、多选题(每题4分)1.下列哪些方程是一元一次方程?(多选)A.3x+2=0B.x2−4=0+3y=5C.x2D.x−1=x+12答案:A, D解析:A选项只含有一个未知数x,且x的最高次数为1,因此是一元一次方程;B 选项含有x的二次项,是一元二次方程;C选项含有两个未知数x和y,是二元一次方程;D选项虽然形式上看似复杂,但化简后只含有一个未知数x,且x的最高次数为1,因此也是一元一次方程。

2.下列关于有理数的说法中,正确的有?(多选)A. 有理数包括正数、负数和0B. 整数和分数统称为有理数C. 无限小数都是有理数D. 有理数都可以表示为两个整数的比答案:B, D解析:A选项错误,因为正数、负数和0统称为实数,而有理数只是实数的一个子集,它还包括分数;B选项正确,根据有理数的定义,整数和分数统称为有理数;C选项错误,无限小数不一定都是有理数,例如π就是一个无限不循环小数,它是无理数;D选项正确,有理数确实可以表示为两个整数的比(分母不为0)。

2014---2015年八年级数学期末试卷及答案

2014---2015年八年级数学期末试卷及答案

2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。

题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。

10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。

若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。

2014-2015人教版八年级数学上册期末试卷及答案

2014-2015人教版八年级数学上册期末试卷及答案

2014-2015八年级数学上期末试卷(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.若点A(-3,2)关于原点对称的点是点B,点B关于轴对称的点是点C,则点C的坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-2,3)2. 下列标志中,可以看作是轴对称图形的是()3.下列说法中错误的是()A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个四边形对称D.轴对称指的是图形沿着某一条直线对折后能完全重合4.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.期中正确的有()A.1个B.2个C.3个D.4个5. 如图,在△中,,平分∠,⊥,⊥,为垂足,则下列四个结论:(1)∠=∠;(2);(3)平分∠;(4)垂直平分.其中正确的有()A.1个B.2个C.3个D.4个6.若=2,=1,则2+2的值是()A.9 B.10 C.2 D.17. 已知等腰三角形的两边长,b满足+(2+3-13)2=0,则此等腰三角形的周长为( )A.7或8B.6或10C.6或7D.7或108.如图所示,直线是的中垂线且交于,其中.甲、乙两人想在上取两点,使得,其作法如下:(甲)作∠、∠的平分线,分别交于则即为所求;(乙)作的中垂线,分别交于,则即为所求.对于甲、乙两人的作法,下列判断正确的是()A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确9. 化简的结果是()A.0 B.1 C.-1 D.(+2)210. 下列计算正确的是()A.(-)•(22+)=-82-4 B.()(2+2)=3+3C.D.11. 如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确12. 如图所示是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分EGC.直线BG,CE的交点在AF上D.△DEG是等边三角形二、填空题(每小题3分,共24分)13. 多项式分解因式后的一个因式是,则另一个因式是 .14. 若分式方程的解为正数,则的取值范围是 .15. 如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的是(将你认为正确的结论的序号都填上).16. 如图所示,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是 .17. 如图所示,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=39°,则∠BCE= 度.18. 如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是 .19.方程的解是x= .20. 已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为.三、解答题(共60分)21.(6分)利用乘法公式计算:(1)1.02×0.98;(2) 992.22.(6分)如图所示,已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.23.(8分)如图所示,△ABC是等腰三角形,D,E分别是腰AB及腰AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证:GD=GE.24.(8分)先将代数式化简,再从-1,1两数中选取一个适当的数作为的值代入求值.25.(8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,求证:PB=PC,并直接写出图中其他相等的线段.26.(8分)甲、乙两地相距,骑自行车从甲地到乙地,出发3小时20分钟后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.27. (8分)一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.28. (8分)如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.期末检测题参考答案1.A 解析:点A(-3,2)关于原点对称的点B的坐标是(3,-2),点B关于轴对称的点C的坐标是(3,2),故选A.2. D解析:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,只有图形D符合题意.3. C 解析:A、B、D都正确;C.面积相等的两个四边形不一定全等,故不一定对称,错误.故选C.4. B 解析:①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS;③正确,符合判定方法AAS;④不正确,此角应该为两边的夹角才能符合判定方法SAS.所以正确的说法有2个.故选B.5. C 解析:∵,平分∠,⊥,⊥,∴△是等腰三角形,⊥,,∠=∠=90°,∴,∴垂直平分,∴(4)错误.又∵所在直线是△的对称轴,∴(1)∠=∠;(2);(3)平分∠都正确.故选C.6. B 解析:()2+2=2+2=(2+1)2+12=10.故选B.7. A 解析:由绝对值和平方的非负性可知,解得分两种情况讨论:①2为底边长时,等腰三角形的三边长分别为2,3,3,2+3>3,满足三角形三边关系,此时三角形的周长为2+3+3=8;②当3为底边长时,等腰三角形的三边长分别为3,2,2,2+2>3,满足三角形三边关系,此时,三角形的周长为3+2+2=7.∴这个等腰三角形的周长为7或8.故选A.8. D 解析:甲错误,乙正确.证明:∵是线段的中垂线,∴△是等腰三角形,即,∠=∠.作的中垂线分别交于,连接CD、CE,∴∠=∠,∠=∠.∵∠=∠,∴∠=∠.∵,∴△≌△,∴ .∵,∴.故选D.9. B 解析:原式=÷(+2)=×=1.故选B.10. C 解析:A.应为,故本选项错误;B.应为,故本选项错误;C.,正确;D.应为,故本选项错误.故选C.11.B 解析:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP,∴△ARP≌△ASP(HL),∴AS=AR,∠RAP=∠SAP.∵AQ=PQ,∴∠QPA=∠QAP,∴∠RAP=∠QPA,∴QP∥AR.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.12. D 解析:A.因为此图形是轴对称图形,正确;B.对称轴垂直平分对应点连线,正确;C.由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D.题目中没有60°条件,不能判断△DEG是等边三角形,错误.故选D.13. 解析:∵关于的多项式分解因式后的一个因式是,∴当时多项式的值为0,即22+8×2+=0,∴20+=0,∴=-20.∴,即另一个因式是+10.14.<8且≠4解析:解分式方程,得,整理得=8-.∵>0,∴8->0且-4≠0,∴<8且8--4≠0,∴<8且≠4.15.①②③解析:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF.∴AC=AB,∠BAE=∠CAF,BE=CF,∴②正确.∵∠B=∠C,∠BAM=∠CAN,AB=AC,∴△ACN≌△ABM,∴③正确.∵∠1=∠BAE-∠BAC,∠2=∠CAF -∠BAC,又∵∠BAE=∠CAF,∴∠1=∠2,∴①正确,∴题中正确的结论应该是①②③.16.AD垂直平分EF解析:∵AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF.在Rt△AED和Rt△AFD中,∴△AED≌△AFD(HL),∴AE=AF.又AD是△ABC的角平分线,∴AD垂直平分EF(三线合一).17. 39 解析:∵△ABC和△BDE均为等边三角形,∴AB=BC,∠ABC =∠EBD=60°,BE=BD.∵∠ABD=∠ABC +∠DBC,∠EBC=∠EBD +∠DBC,∴∠ABD=∠EBC,∴△ABD≌△CBE,∴∠BCE=∠BAD =39°.18.3 解析:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可.连接AG交EF于M.∵△ABC是等边三角形,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC.又EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,∴当P点与E点重合时,BP+PG最小,即△PBG的周长最小,最小值是PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.19. 6 解析:方程两边同时乘(x-2)得4x-12=3(x-2),解得x=6,经检验得x=6是原方程的根.20.20°或120°解析:设两内角的度数为、4.当等腰三角形的顶角为时,+4+4=180°,=20°;当等腰三角形的顶角为4时,4++=180°,=30°,4=120°.因此等腰三角形的顶角度数为20°或120°.21. 解: (1) 原式=(1+0.02)(1-0.02)=1-0.000 4=0.999 6.(2) 原式=(100-1)2=10 000-200+1=9 801.22.分析:此题根据条件容易证明△BED≌△CFD,然后利用全等三角形的性质和角平分线的性质就可以证明结论.证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,∴△BED≌△CFD,∴DE=DF.又∵DE⊥AB,DF⊥AC,∴点D在∠BAC的平分线上.23. 分析:从图形看,GE,GD分别属于两个显然不全等的三角形:△GEC和△GBD.此时就要利用这两个三角形中已有的等量条件,结合已知添加辅助线,构造全等三角形.方法不止一种,下面证法是其中之一.证明:如图,过E作EF∥AB且交BC的延长线于F.在△GBD 及△GEF中,∠BGD=∠EGF(对顶角相等),①∠B=∠F(两直线平行,内错角相等),②又∠B=∠ACB=∠ECF=∠F,所以△ECF是等腰三角形,从而EC=EF.又因为EC=BD,所以BD=EF.③由①②③知△GBD≌△GFE (AAS),所以GD=GE.24.解:原式=(+1)×=,当=-1时,分母为0,分式无意义,故不满足;当=1时,成立,代数式的值为1.25.分析:先由已知条件根据SAS可证明△ABF≌△ACE,从而可得∠ABF=∠ACE,再由∠ABC=∠ACB可得∠PBC=∠PCB,依据等边对等角可得PB=PC.证明:因为AB=AC,所以∠ABC=∠ACB.又因为AE=AF,∠A=∠A,所以△ABF≌△ACE(SAS),所以∠ABF=∠ACE,所以∠PBC=∠PCB,所以PB=PC.相等的线段还有BF=CE,PF=PE,BE=CF.26.解:设的速度为千米/时,则的速度为千米/时.根据题意,得方程解这个方程,得.经检验是原方程的根.所以.答:两人的速度分别为千米/时千米/时.27.解:设前一小时的速度为千米/时,则一小时后的速度为1.5千米/时,由题意得,解这个方程得 .经检验,=60是所列方程的根,即前一小时的速度为60千米/时.28.分析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等).∵E是CD的中点(已知),∴DE=EC(中点的定义).在△ADE与△FCE中,∠ADC=∠ECF,DE=EC,∠AED=∠CEF,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等).又BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF(已证),∴AB=BC+AD(等量代换).。

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。

——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。

四川省宜宾市八年级上学期数学期末联考试卷

四川省宜宾市八年级上学期数学期末联考试卷

四川省宜宾市八年级上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·平谷模拟) 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2. (2分) (2019八上·桐梓期中) 下列线段中能围成三角形的是()A . 1,2,3B . 4,5,6C . 5,6,11D . 7,10,183. (2分) (2018八上·龙岗期中) 在平面直角坐标系中,点A(﹣1,2)关于y轴的对称点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)一个多边形的内角和与外角和相等,则这个多边形是()A . 四边形B . 五边形C . 六边形D . 八边形5. (2分)用尺规作图,已知三边作三角形,用到的基本作图是()A . 作一个角等于已知角B . 作已知直线的垂线C . 作一条线段等于已知线段D . 作角的平分线6. (2分)(2018·吉林模拟) 将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A .B .C .D .7. (2分) (2018八上·下城期末) 若等腰三角形的一边长是4,则它的周长可能是()A . 7B . 8C . 9D . 8或98. (2分)(2018·道外模拟) 下列图形中,是轴对称图形而不是中心对称图形的是()A .B .C .D .9. (2分) (2020八上·大洼期末) 如图,在等边三角形ABC中,BC=2,D是AB的中点,过点D作DF⊥AC 于点F,过点F作EF⊥BC于点E,则BE的长为()A . 1B .C .D .10. (2分) (2019八上·法库期末) 在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A . 3B . 4C . 15D . 7.211. (2分) (2015八上·宜昌期中) 下列说法正确的是()A . 三个角对应相等的两个三角形全等B . 面积相等的两个三角形全等C . 全等三角形的面积相等D . 两边和其中一边的对角对应相等的两个三角形全等12. (2分)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A . PC=PDB . ∠CPO=∠DOPC . ∠CPO=∠DPOD . OC=OD二、填空题 (共6题;共6分)13. (1分) (2017七下·桥东期中) 一个正多边形,它的每一个外角都等于45°,则该正多边形为正________边形.14. (1分) (2019八上·淮安期中) 如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=10,则CP的长为________.15. (1分) (2018八上·泰州期中) 如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形;⑤连CG,则∠BGC=∠DGC ;⑥EG+GC=GD.其中正确的有________.(只要写序号)16. (1分) (2017八上·哈尔滨月考) 已知△ABC中,AB=AC,现将△ABC折叠,使点A、B两点重合,折痕所在的直线与直线AC的夹角为40°,则∠B的度数为________°.17. (1分) (2019八上·江津期中) 如图,点P在∠AOB内,点M、N分别是点P关于OA、OB的对称点,若△PEF的周长为15,则MN的长为________.18. (1分) (2019九上·锦州期末) 如图,正方形A1ABC的边长为1,正方形A2A1B1C1边长为2.正方形A3A2B2C2边长为4,…依此规律继续做正方形An+1AnBn∁n ,其中点A,A1 , A2 , A3 ,…在同一条直线上,连接AC1交A1B1于点D1 ,连接A1C2交A2B2于点D2 ,…,若记△AA1D1的面积为S1 ,△A1A2D2的面积为S2…,△An ﹣1AnDn的面积为Sn ,则S2019=________.三、解答题 (共7题;共65分)19. (5分)(2019·台江模拟) 如图,在△ABC中,∠A=90°,AC⊥CE ,ED⊥BD , BC=CE ,求证:AB =CD .20. (15分)如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼符合要求的图形:(如图1)图1 图2既不是轴对称图形,又不是中心对称图形是轴对称图形,不是中心对称图形图3 图4是中心对称图形,不是轴对称图形既是轴对称图形,又是中心对称图形21. (5分) (2016八上·萧山期中) 如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E 在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.22. (10分)(2018·沈阳) 已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N 在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它多件不变时,∠BDE的度数是________(用含α的代数式表示)(3)若△ABC是等边三角形,AB=3 ,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.23. (10分) (2017七下·昌平期末) 请你根据右框内所给的内容,完成下列各小题.(1)若m⊕n=1,m⊕2n=-2,分别求出m和n的值;(2)若m满足m⊕2≤0,且3m⊕(-8)>0,求m的取值范围.24. (5分) (2017八下·黄山期末) 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25. (15分) (2018八上·江北期末) 已知中,,,点、分别是轴和轴上的一动点.(1)如图,若点的横坐标为,求点的坐标;(2)如图,交轴于,平分,若点的纵坐标为,,求点的坐标.(3)如图,分别以、为直角边在第三、四象限作等腰直角和等腰直角,交轴于,若,求 .参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共65分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

(2021年整理)人教版2014-2015八年级数学上期末试卷【精选3套】

(2021年整理)人教版2014-2015八年级数学上期末试卷【精选3套】

(完整版)人教版2014-2015八年级数学上期末试卷【精选3套】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)人教版2014-2015八年级数学上期末试卷【精选3套】)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)人教版2014-2015八年级数学上期末试卷【精选3套】的全部内容。

(完整版)人教版2014—2015八年级数学上期末试卷【精选3套】编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)人教版2014-2015八年级数学上期末试卷【精选3套】这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)人教版2014—2015八年级数学上期末试卷【精选3套】> 这篇文档的全部内容.3 / 31人教版2014-2015八年级数学上册 期末考试试卷 后附答案一、选择题(本大题共有8题,每题3分,共24分) 1、已知6x y +=,2xy =-,则2211x y+= 。

2、以下五家银行行标中,是轴对称图形的有( )A 、1个B 。

2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC ≌△C B A '''的是( ) A 、BC = B 'C ' ,AB =A 'B ' ,∠B =∠B ' B 、∠B =∠B ' AC =A 'C 'AB = A 'B 'C 、∠A =∠A ',AB = A 'B ', ∠C =∠C 'D 、BC = B 'C '4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ) A.11㎝B 。

2015年春期宜宾市抽测八年级试题及评分标准

2015年春期宜宾市抽测八年级试题及评分标准

2015年春期末义务教育阶段教学质量测试八年级 数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. (注意:在试题卷上作答无效) 1. 下列各式中,是分式的是A .21 B .π2 C .a 1D .21=x2. 分式11-+x x 的值为0,则A .1=xB .1-=xC .1±=xD .0=x3. 甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为: S 甲2=0.58,S 乙2=0.52,则成绩最稳定的是 A .甲 B .乙 C .甲和乙一样 D .无法判定 4.一次函数k kx y -=)0(<k 的图象大致是A. B. C. D.5. 如图所示,四边形ABCD 的对角线AC 和BD 相交于点O ,下列判断正确的是 A .若CO AO =,则ABCD 是平行四边形 B .若BD AC =,则ABCD 是平行四边形C .若BO AO =,DO CO =,则ABCD 是平行四边形 D .若OC AO =,OD BO =,则ABCD 是平行四边形. 6. 如图,菱形OABC 的顶点C 的坐标为(6,8).顶点A 在x 轴的正半轴上,反比例函数)0(>=x xky 的图象经过顶点B ,则k 的值为A. 128B. 120C. 48D. 140 7.矩形ABCD 中,4=BC ,3=CD ,AE ⊥BD 于点E ,则AE 的长为 A. 4 B. 3 C.2.5 D. 2.48. 关于函数xy 6=有如下结论:① 函数图象一定经过点(-2, -3) ② 函数图象在第一、三象限 ③ 函数值y 随x 的增大而减小 ④ 当6-≤x 时,函数y 的取值范围为01<≤-y ,这其中正确的有A B C DO (第5题图) (第7题图)DACB E (第6题图)A .1个B .2个C .3个D .4个二、填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上. 9.某种呼吸综合症病毒的直径为0.000 000 012米,将这个数用科学记数法表示为 米.10.函数x y -=21中,自变量x 的取值范围是 . 11.计算:ab bb a a -+-22= . 12.直线x y 3=向上平移4个单位得到的直线的解析式为:____________.13.平行四边形的周长为36cm ,相邻两边的比为1:2,则它的较短边长是_________cm . 14.一组数据1,2,a 的平均数为2,另一组数据-l ,a ,1,2,b 的唯一众数为-l ,则数据-1,a ,1,2,b 的中位数为 .15. 若A ),(11y x ,B ),(22y x ,C ),(33y x 都是反比例函数xy 1-=的图象上的点,且3210x x x <<<,则321,,y y y 由小到大的顺序是 .16.如图,正方形ABCD 的边长为2,对角线AC 、BD 相交于点O , 把OEF Rt ∆放在正方形上,使直角顶点与点O 重合,让OEF Rt ∆绕着 点O 旋转,OE 、OF 分别交BC 、CD 于点M 、N .给出下列结论: ① CN BM = ② S 四边形OMCN 1= ③ OA MN =; ④ MN 的最短距离为2.其中正确的结论是 .(只填番号)三、解答题:本大题共8个题,共72分.解答应写出文字说明,证明过程或演算步骤. 17.(每小题5分,共15分)(1)计算:22-+121-⎪⎭⎫ ⎝⎛+02015 (2)解方程x x -=+2112(3)先化简,再求代数式的值:)112(1222-+÷-+-x xx x x ,其中x 是32<<-x 之间的整数, 请选一个合适的x 求解.AD CEFB M N (第16题图)OA B CD E F 18.(本小题6分)如图,四边形ABCD 是平行四边形,E 、F 在对角线AC 上,且CF AE , 求证: 四边形BEDF 是平行四边形.19.(本小题9分)某校一学生身患白血病,该校八年级(1)班全体同学参加了学校组织的捐款活动,捐款情况的部分统计图如图所示: (1)求该班的总人数; (2)将条形图补充完整;(3)该班平均每人捐款多少元?20.(本小题6分)某市为治理污水,需要铺设一段全长为3000m 的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.实际每天铺设多长管道?4 4 2 8 612 10 181614人捐款(元) 5 10 15 20 25 7 14 9 图1 A B 28%D E C A :5元 B :10元 C :15元 D :20元 E :25元图2F EC D B A 一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1) 甲乙两地之间的距离为 千米; (2) 求快车和慢车的速度;(3) 求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.22.(本小题8分)如图,已知ABC ∆中,D 是BC 边上的中点,E 是AD 的中点,过A 点作BC 的平行线,交CE 的延长线于点F ,连接BF .(1)求证:BD AF =;(2)如果AC AB =,试判断四边形AFBD 的形状,并证明你的结论.y (千米) x (小时)如图,已知正比例函数x y 34=和反比例函数的图象交于点A (m ,4-)和点D . (1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)若双曲线上点C (4,n )沿OA 方向平移5个单位长度得到点B ,判断四边形OABC 的形状并证明你的结论.24.(本小题10分)如图,在直角坐标系中,四边形ABCO 为矩形,点A 在x 轴上,点C 在y 轴上,点B 的坐标是(12,8),点E 是线段OA 上的一点,点F (12,5)在线段AB 上,将矩形ABCO 沿直线EF 折叠,使点A 落在BC 边上的G 点处. (1)求点G 的坐标;(2)求直线EF 的解析式;(3)坐标系内是否存在点M ,使以点A ,E ,F ,M 为顶点的四边形为平行四边形?若存在,直接写出点M 的坐标,若不存在,请说明理由.2015年春期末义务教育阶段教学质量测试B AC O G F E x y八年级参考答案一、选择题 题号 1 2 3 4 5 6 7 8 答案 CBBADADC二、填空题9. 8102.1-⨯ 10. 2≠x 11. 2 12. 43+=x y 13. 6 14. 1 15. 132y y y << 16. ①②④ 三、简答题17.(1)解:原式124++-= ……3分1-= ………5分(2)解:方程两边同乘以)2)(1(x x -+得:1)2(2+=-x x ………2分 解得: 1=x ………3分 经检验: 1=x 是原方程的根 ………4分 所以,原方程的根是1=x ………5分(3)解:原式1)1(2)1()1(2++-÷--=x x x x x ………2分 xx 1+-= ………3分 而x 是-2<x<3之间的整数有-1、0、1、2,且1-≠x 、0、1 , ∴2=x ………4分∴当2=x 时,原式23212-=+-= ………5分 18. 证明:连结AC ,AC 与BD 相交于点O∵四边形ABCD ABCD 是平行四边形∴OC OA =,OD OB = ……2分 ∵CF AE =ABCDEFO∴OF OE = ………4分∴四边形BEDF 是平行四边形. ……………6分19. (1)14÷28%=50 该班的总人数为50人 …………3分(2)捐款10元的有16人,条形图略, …………6分 (3)1.13504257201415161095=⨯+⨯+⨯+⨯+⨯=x 元 ………8分该班平均每人捐款13.1元 …………9分 20. 解:设原计划每天铺设x 米的管道.则根据题意,得30%)251(30003000=+-xx …………3分 去分母整理,解得: 20=x …………5分 经检验:20=x 为原分式方程的解,也符合实际.∴2520%251=⨯+)( 答:实际每天铺设25m 长的管道. …………6分21. 解:(1)由题意可得出:甲乙两地之间的距离为280千米;故答案为:280 …………2分(2)由题意可得出:慢车往返分别用了2小时,慢车行驶2小时的距离,快车1.5小时即可行驶完, ∴设慢车速度为3xkm/h ,快车速度为4xkm/h , ∵由题意可得出:快车行驶全程用了3.5小时,∴快车速度为:=÷5.3280 80(km/h ), …………3分∴慢车速度为:80×43=60(km/h ), …………4分 (3)由题意可得出:当行驶3.5小时后,慢车距离甲地30km , ∴D (4,30), …………5分 ∵慢车往返各需4小时,∴E (4.5,0), …………6分设DE 的解析式为:y =kx +b ,∴⎩⎨⎧=+=+30405.4b k b k 解得:⎩⎨⎧=-=27060b k .∴线段DE 所表示的y 与x 之间的函数关系式为:y=﹣60x+270(4≤x≤4.5).…………8分 22. 解:(1)证对DEC AEF ∆≅∆ ……………2分得 DC AF = ……………3分 又∵ CD BD =∴ BD AF = ……………4分(2)四边形AFBD 是矩形 ……………5分 ∵BD AF =,且AF ∥BD∴ 四边形AFBD 是平行四边形 ……………6分 ∵AC AB =,CD BD =∴AD ⊥BC ……………7分 ∴四边形AFBD 是矩形 ……………8分23. 解:(1)设反比例函数的解析式为xky =(k >0), ∵A (m ,﹣4)在x y 34=上,∴﹣4=34m , ∴ m =﹣3, ∴A(﹣3,﹣4), …………1分又∵ 点A 在xky =上, ∴k=12, ∴反比例函数的解析式为y =x12; …………3分 (2)由中心对称性可知:D (3,4). …………4分观察图象可知正比例函数值大于反比例函数值时自变量x 的取值范围为﹣3<x <0或x >3;…………6分(3)四边形OABC 是菱形. …………7分 证明:∵A (﹣3,﹣4),∴OA =2243+=5, …………8分由题意知:CB ∥OA 且CB =5,∴CB =OA ,∴四边形OABC 是平行四边形,∵C (4,n )在y=x12上,∴n =3,∴C (4,3),OC =2243+=5,∴OC =OA , ……9分 ∴四边形OABC 是菱形. …………10分 24. 解:(1)由题意知:5==GF AF ,3=BF ,︒=∠90B∴43522=-=BG , 8412=-=CG ……………2分 ∴ 点G 的坐标(8,8) …………3分(2)过点D 作DE ⊥BC ,垂足为点D设点E 的坐标为(m ,0)则8==OC DE m DG -=8 m EG AE -==12在EDG Rt ∆中,有222)12()8(8m m -=-+ ……………5分解得:2=m , ∴ 点E 的坐标(2,0)设直线EF 的解析式为b kx y +=, 则有 ⎩⎨⎧=+=+51202b k b k ……………6分解得:⎪⎩⎪⎨⎧-==121b k , ∴直线EF 的解析式121-=x y ……………7分 (3)存在.1M (2,5)、2M (22,5)、3M (2,-5)…10分 (答对1个得1分)B ACOGFE xy D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年四川省宜宾市八年级(上)期末数学试卷一、选择题:本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一项符合题目要求的。

(注意:在试题卷上作答无效)1.(3分)下列实数是无理数的是()A.﹣1B.C.D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+ab+b2C.(1+a)(a﹣1)=a2﹣1D.(a+b)(b﹣a)=a2﹣b23.(3分)如图,△ABC≌△EFD且AB=EF,CE=2.5,CD=2,则AC=()A.2B.2.5C.4D.4.54.(3分)如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25B.12.5C.9D.8.55.(3分)若△ABC中,AB=13cm,AC=15cm,高AD=12cm,则BC的长为()A.14cm B.4cm C.14cm或4cm D.以上都不对6.(3分)大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是()A.0.1B.0.2C.0.3D.0.77.(3分)若x m+n y m﹣1(xy n+1)2=x8y9,则4m﹣3n=()A.10B.9C.8D.以上结果都不正确8.(3分)已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,某同学分析图形后得出以下结论:①DH⊥BC;②CE=;③△AEB≌△CEB;④△BDF≌△CDA.上述结论一定正确的是()A.①③B.③④C.①③④D.①②③④二、填空题:本大题共8个小题,每小题3分,共24分。

请把答案直接填在答题卡对应题中横线上。

(注意:在试题卷上作答无效)9.(3分)4的平方根是.10.(3分)(﹣22)3=.11.(3分)命题“两直线平行,同位角相等.”的逆命题是.12.(3分)计算:4ab÷(﹣2a)×=.13.(3分)若a﹣b=1,ab=4,则a2+b2=.14.(3分)如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是.15.(3分)如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.16.(3分)如图,点P是∠AOB的角平分线OC上一点,分别连接AP、BP,若再添加一个条件即可判定△APO≌△BPO,则在以下条件中:①∠A=∠B;②∠APO=∠BPO;③∠APC=∠BPC;④AP=BP;⑤OA=OB,不一定正确的是.(只需填序号即可)三、解答题:本大题共8个小题,共72分。

解答应写出文字说明、证明过程或演算步骤。

17.(20分)(1)计算:﹣3×(﹣2)2(2)计算:(ab3÷3a2b2)÷ab﹣(a÷b)2(3)因式分解:﹣2x2+4x﹣2(4)因式分解:(x﹣1)(x﹣3)+1.18.(6分)先化简,再求值:2b2+2b+(a+b)(a﹣b)﹣(a+b)2,其中a=﹣3,b=.19.(6分)如图,在△ABC中,∠C=90°.(1)试作出边AB的垂直平分线(要求:不写作法,保留作图痕迹).(2)若边AB的垂直平分线交BC于点E,连结AE,设CE=1,AC=2,则BE=.20.(6分)如图,已知:AB⊥BC于B,EF⊥AC于G,DF⊥BC于D,BC=DF.求证:AC=EF.21.(7分)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?22.(8分)正数a的正的平方根叫做a的算术平方根,记作:,我们把≥0和a≥0叫做的两个非负性,据此解决以下问题:(1)若实数a、b满足=0,求a+b的立方根.(2)已知实数x、y满足y=++2,求x y的平方根.23.(9分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?24.(10分)如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.2014-2015学年四川省宜宾市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一项符合题目要求的。

(注意:在试题卷上作答无效)1.(3分)下列实数是无理数的是()A.﹣1B.C.D.【分析】根据无理数的三种形式求解.【解答】解:=3,﹣1,是有理数,是无理数.故选:C.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+ab+b2C.(1+a)(a﹣1)=a2﹣1D.(a+b)(b﹣a)=a2﹣b2【分析】依据平方差公式和完全平方公式进行判断即可.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故A错误;B、(a+b)2=a2+2ab+b2,故B错误;C、(1+a)(a﹣1)=(a+1)(a﹣1)=a2﹣1,故C正确;D、(a+b)(b﹣a)=(b+a)(b﹣a)=b2﹣a2,故D错误.故选:C.3.(3分)如图,△ABC≌△EFD且AB=EF,CE=2.5,CD=2,则AC=()A.2B.2.5C.4D.4.5【分析】根据题意求出DE的长,根据全等三角形的性质得到答案.【解答】解:∵CE=2.5,CD=2,∴DE=4.5,∵△ABC≌△EFD,∴AC=DE=4.5,故选:D.4.(3分)如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25B.12.5C.9D.8.5【分析】根据求差法,让大正方形面积减去周围四个直角三角形的面积即可解答.【解答】解:如图:小方格都是边长为1的正方形,∴四边形EFGH是正方形,S□EFGH=EF•FG=5×5=25S△AED=DE•AE=×1×2=1,S△DCH=•CH•DH=×2×4=4,S△BCG=BG•GC=×2×3=3,S△AFB=FB•AF=×3×3=4.5.S四边形ABCD=S□EFGH﹣S△AED﹣S△DCH﹣S△BCG﹣S△AFB=25﹣1﹣4﹣3﹣4.5=12.5.故选:B.5.(3分)若△ABC中,AB=13cm,AC=15cm,高AD=12cm,则BC的长为()A.14cm B.4cm C.14cm或4cm D.以上都不对【分析】高的位置不确定,应分情况进行讨论:(1)高在内部;(2)高在外部.依此即可求解.【解答】解:如图(1),AB=13cm,AC=15cm,AD⊥BC,则BD==5cm,CD==9cm,则BC=14cm;如图(2),由(1)得BD=5cm,CD=9cm,则BC=4cm.则BC的长为14cm或4cm.故选:C.6.(3分)大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是()A.0.1B.0.2C.0.3D.0.7【分析】从数据中数出在90~110这一组的频数,再由频率=频数÷数据总数计算.【解答】解:跳绳次数在90~110之间的数据有91,93,100,102四个,故频率为=0.2.故选:B.7.(3分)若x m+n y m﹣1(xy n+1)2=x8y9,则4m﹣3n=()A.10B.9C.8D.以上结果都不正确【分析】利用积的乘方运算法则结合同底数幂的乘法运算法则得出关于m,n的方程组求出即可.【解答】解:∵x m+n y m﹣1(xy n+1)2=x8y9,∴x m+n y m﹣1•x2y2n+2=x8y9,∴,解得:,故4m﹣3n=4×4﹣3×2=10.故选:A.8.(3分)已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,某同学分析图形后得出以下结论:①DH⊥BC;②CE=;③△AEB≌△CEB;④△BDF≌△CDA.上述结论一定正确的是()A.①③B.③④C.①③④D.①②③④【分析】根据∠ABC=45°,CD⊥AB于D,可以证明△BCD是等腰直角三角形,然后根据等腰直角三角形的性质可得DH⊥BC,判断①正确,然后证明△BDF与△CDA全等,④正确,根据全等三角形对应边相等可得BF=AC,根据BE平分∠ABC,且BE⊥AC于E,可以证明△ABE与△CBE全等,③正确;根据全等三角形对应边相等可得AE=CE,从而判断②正确.【解答】解:∵∠ABC=45°,CD⊥AB于D,∴△BCD是等腰直角三角形,H是BC边的中点,∴BD=CD,DH⊥BC,①正确;∵CD⊥AB于D,BE⊥AC于E,∴∠DBF+∠A=90°,∠ACD+∠A=90°,∴∠DBF=∠ACD,在△BDF与△CDA中,,∴△BDF≌△CDA(ASA),故④正确;∴BF=AC,∵BE平分∠ABC,且BE⊥AC于E,∴∠ABE=∠CBE,∠AEB=∠CEB=90°,∴在△ABE与△CBE中,,∴△ABE≌△CBE(ASA),故③正确;∴AE=CE=AC,∴BF=2CE,故②正确;二、填空题:本大题共8个小题,每小题3分,共24分。

请把答案直接填在答题卡对应题中横线上。

相关文档
最新文档