特殊平行四边形复习课教学设计1
平行四边形复习课教案
平行四边形复习课教案(2009.4)宁波求真学校 蒋莹飞教学目标:通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习特殊四边形的基本性质和常见判别方法,了解四边形与特殊四边形之间的关系及转化条件,在反思和交流过程中,逐渐建立知识体系。
引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
教学重点:梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
教学难点:有条理的利用性质与判别条件解决问题。
教学过程:一、复习几种平行四边形及相互关系二、课堂小练习三、自主探究题1.已知:△ABC 中AB=AC=a ,M 为底边BC 上任意一点,过点M 分别作AB 、AC 的平行线交AC 于P ,交AB 于Q.(1)线段QM 、PM 、AB 之间有什么关系?(2)图中的三角形之间有什么关系?2.已知:△ABC 中AB=AC=a ,M 为底边BC 上任意一点,过点M 分别作AB 、AC 的平行线交AC 于P ,交AB 于Q.探究:当M 位于BC 的什么位置时, 四边形AQMP 是菱形?并说明你的理由.当△ABC 满足什么条件菱形AQMP 是正方形?四、练习提高题(1)填空:思考:根据条件能求矩形ABCD 的面积吗?(2)选择:1、既是轴对称图形又是中心对称图形的是( )(A)等边三角形。
(B)平行四边形。
(C)矩形。
(D)等腰梯形。
2、下列条件中,能判定四边形为正方形的是( )____.则BC 6cm,若对角线AC BOC,2AOB BD相交于点O,AC,矩形ABCD的对角线1.如图, ==∠=∠.cm 的面积为______则平行四边形ABCD,11cm 的面积为若ΔDMC,M为AB延长线上的点2.如图,22(A)对角线相等的平行四边形;(B)对角线相等且互相垂直的四边形;(C)对角线相等且互相垂直的平行四边形;(D)对角线互相平分且互相垂直的四边形;3、用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有()A.1个B.2个C.3个D.4个(3)证明:1、已知点E在矩形ABCD的边BC上,且DE=AD,AF⊥DE,垂足为F。
特殊平行四边形回顾与思考教学设计
《特殊平行四边形回顾与思考》教学设计学以致用目标2BC DAE FG H(3)将直角尺靠紧窗框的一个角,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是形,根据的数学道理是。
3.动动手将一张矩形的纸对折再对折,然后沿着图中的虚线剪下打开,你会发现这是一个是。
你能解释其中的道理吗?4.想一想如果想得到一个正方形,该怎么剪?并解释你这样做的道理。
活动三:形式多样的练习1.大显身手2.能快速抢答.3.同桌合作完成,并能相互解释其中的道理。
4.能选择准确的正方形的判定方法1.会用全等的方法来证明第(1)问,会计算第学会用数学知识解决实际问题。
3.教师深入到各小组中,观察学生的动手操作并倾听他们解释的道理。
4 .提问学生并仔细倾听,对于回答的不太准确的地方找人补充。
1.提问学生口头回答第(1)问,注意一题多解;第(2)让学生写出计算过程,并提问思路。
学以致用巩固提升总结升华深化提高目标2已知正方形ABCD(1)若E为对角线上一点,连接EA、EC.EA=EC吗?说说你的理由。
(2)若AB=BE,求∠AED的大小2.应用迁移在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,则PE+PC的最小值为3.牛刀小试1.如图,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且 DP=OC,连结CP,试判断四边形CODP的形状.(2)问。
2.学有余力的同学能够独立完成,其余学生能够同伴合作完成。
3.能够独立完成证明过程。
4.能口述出《变式训练》的证明过程。
2.提问学生说明解题思路并总结求正方形内的最小值问题的解法。
3.找同学演板,点拨解题步骤,先判断再证明。
4.认真倾听学生的所思所想,做出评价,并鼓励学生尝试多练习此类题目。
1.教师走到学生中去,关注学生的讨论情况,并及时点拨个别小组。
目标1.2. (变式训练)(1)如果题目中的矩形变为菱形(图一),结论应变为什么?(2)如果题目中的矩形变为正方形(图二),结论又应变为什么?4.思考:折叠问题在矩形ABCD中,AB=16,BC=8.将矩形AC折叠,点D落在点E处,且CE交AB于点F,求AF的长.5.会准确选出使用的判定方法。
2019-2020学年最新北师大版九年级数学上册《特殊平行四边形》全章教学设计-优质课教案
第一章特殊平行四边形1.掌握菱形、矩形、正方形的概念,以及它们之间的关系.2.理解菱形、矩形、正方形的性质定理与判定定理,并能证明其他相关结论.3.掌握直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.1.经历探索菱形、矩形、正方形的概念、性质与判定的猜想与证明的过程,丰富数学活动经验,进一步发展合情推理和演绎推理的能力.2.理解菱形、矩形、正方形的概念,了解它们与平行四边形之间的关系,进一步体会从一般到特殊的思考问题的方法,提高发现问题和解决问题的能力.3.在参与观察、试验、猜想、证明等数学活动中,有意识地渗透试验论证、逆向思维的思想,提高学生的能力.1.积极参与数学学习活动,对数学有好奇心和求知欲.2.经历图形的分类、性质探讨的过程,掌握图形与几何的基础知识和基本技能.通过“猜想——总结——证明——应用”的数学活动提升科学素养.3.提高自主探究的能力和增强与他人合作交流的意识、方法.四边形是人们日常生活中应用较为广泛的一种几何图形,尤其是平行四边形、菱形、矩形、正方形等特殊四边形的用处更多.因此,四边形既是几何中的基本图形,也是“空间与图形”领域中主要研究对象之一.本章是在已经学过的多边形、平行线、三角形、平行四边形的基础上对菱形、矩形、正方形的有关性质与常用的判定方法的证明与扩充.它们的探索方法也都与平行四边形的性质和判定的探索方法一脉相承.本章的学习有助于深化对平行四边形的理解,以及对识图、画图等操作技能的掌握,丰富学生的数学活动经验和体验,促进其良好数学观的形成.本章主要渗透归纳、类比、转化等数学思想,注重通过引导探索过程来渗透与展现证明的思路.此外还要注意引导学生探索证明的不同思路与方法,并进行适当的比较和讨论,提高分析、寻求证明思路的能力.【重点】菱形、矩形、正方形的定义、性质与判定.【难点】平行四边形与菱形、矩形、正方形之间的联系与区别.1.本章对菱形、矩形的性质与判定的研究,都需要先探索、猜想得到结论后再证明.教学中,可以利用教科书上的素材,也可以根据实际情况构建更现实、更贴近学生的问题情境,引导学生进行相关的探索、猜想活动.充分调动学生的积极性与主动性,引导学生探索、发现结论、体会探索结论的各种方法,理解猜想后还应该给予证明的意义,感受合情推理与演绎推理的关系.2.在学习本章之前,学生已经掌握几何证明的基本要求、基本步骤和基本方法.本章中的大部分结论都是先通过合情推理探索,再利用演绎推理加以证明.在教学中应把证明作为探索活动的自然延续与必要发展,让学生对发现的结论进行分析说明,然后按照几何证明的要求进行表达,实现合情推理和演绎推理的有机结合.注意通过一定的练习进一步培养学生的几何证明能力,避免过分追求证明题的数量和证明技巧,把握证明的难度.3.探索图形有关性质的过程,往往可以启发证明的思路,在教学过程中,应充分考虑探索与证明的关系,为学生的积极思考创设条件.同时,要鼓励学生大胆探寻新颖独特的证明思路和证明方法,引导学生与同学在交流中比较证明方法的异同,提高演绎推理的能力.4.在菱形、矩形、正方形的性质与判定方法的探索与证明的过程中蕴含着一些数学思想方法,教学中有目的地让学生感悟、领会这些思想方法,并应用于解决相关问题的过程中.本章教学时间约需8课时,具体分配如下:1 菱形的性质与判定3课时2 矩形的性质与判定3课时3 正方形的性质与判定2课时1 菱形的性质与判定理解菱形的概念,了解它与平行四边形之间的关系.1.经历菱形的性质定理与判定定理的探索过程,进一步发展合情推理能力.2.能够用综合法证明菱形的性质定理与判定定理,进一步发展演绎推理能力.体会探索与证明过程中所蕴含的抽象、推理等数学现象.【重点】1.菱形的概念和性质.2.探索菱形的判定方法【难点】菱形的概念和性质在生活中的应用.第课时探索并掌握菱形的概念和菱形所具有的特殊性质,会进行简单的推理和运算.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步让学生养成用数学知识说理的习惯,并要求学生能熟练地按规范的推理格式书写.从学生已有的知识出发,通过欣赏、观察、动手操作等活动让学生感受身边的数学图形的和谐美与对称美,激发他们学习数学的兴趣,树立学好数学的信心,体会学习数学的快乐.培养学生主动探究、自主学习和合作交流的意识.【重点】菱形的概念和性质.【难点】菱形性质的灵活应用.【教师准备】1.教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片.2.多媒体课件.3.教师准备菱形纸片,上课前发给学生上课时使用.【学生准备】复习平行四边形的性质导入一:请同学们观察投影图片中的四边形并回答下列问题:(1)投影图片中有平行四边形吗?(2)这些平行四边形具有哪些特征?其中哪个特征不是平行四边形的性质?【师生活动】复习平行四边形的定义及性质.【学生活动】自主观察,小组合作交流,探究投影图片中平行四边形的新特征.导入二:1.提问:什么是平行四边形?学生回顾交流.2.平行四边形的相邻两边可能相等吗?请同学们讨论一下在我们生活中是否有相邻两边相等的平行四边形形状的图案?[设计意图] 通过这个环节,培养了学生的观察和对比分析能力.提高学生发现数学、应用数学的意识和学习兴趣.一、情景交流[过渡语] 今天我们来学习一种特殊的平行四边形,让我们一起观察、猜想、探究、归纳、论证吧!结合上面的观察,你能举出和上述图形具有相同特征的实物图形吗?具有这一特征的平行四边形是什么四边形?【学生活动】通过讨论,以小组为单位分别说出生活中具有邻边相等特征的平行四边形形状的实物.【教师活动】投影图片展示一些生活中的具有邻边相等特征的平行四边形形状的实物.二、学生活动,归纳概念思路一请口答下列问题.(1)上述图形都是平行四边形吗?(2)上述图形都有一组邻边相等吗?(3)如果平行四边形有一组邻边相等,那么另一组邻边也相等吗?小组合作交流,类比平行四边形的定义尝试给出菱形的定义.【老师点评】(1)是平行四边形;(2)都有一组邻边相等.【课件展示】像这样,有一组邻边相等的平行四边形叫做菱形.思路二【师】同学们,在观察上面图片之后,你能从中发现熟悉的图形吗?你能找出它们的共同特征吗?请同学们观察,图中的平行四边形与黑板上所画的▱ABCD相比较,还有不同点吗?【生】投影图片中的平行四边形不仅对边相等,而且任意两条邻边也相等.【师】同学们观察得很仔细,像这样,有一组邻边相等的平行四边形叫做菱形.[设计意图] 通过这个环节,培养了学生的观察和对比分析能力.让学生观察图形,从直观上把握菱形的特点,从而给出菱形的定义,让学生明确菱形不但是平行四边形,而且有其特点“一组邻边相等”.同时,让学生去发现生活中因为有了数学而变得更精彩,从而提高学生学习数学的兴趣.三、共同探究【想一想】(1)菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.你能列举一些这样的性质吗?【生】菱形的对边平行且相等,对角相等,对角线互相平分.(2)同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流.【学生活动】分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果.【教师活动】教师巡视,并参与到学生的讨论中,启发学生类比平行四边形从图形的边、角和对角线三个方面探讨菱形的性质.对学生的结论,教师要及时作出评价,积极引导,激励学生.【做一做】请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?【学生活动】分小组折纸探索答案.组长组织,并汇总结果.【教师活动】教师巡视并参与学生活动,引导学生怎样折纸才能得到正确的结论.学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学.【师生结论】(1)菱形是轴对称图形,有两条对称轴,且是菱形的两条对角线所在的直线,两条对称轴互相垂直.(2)菱形的四条边相等.[设计意图] 通过学生自己操作剪、折菱形纸片,探索菱形的对称性,不仅增加学生学习的兴趣,并为新课归纳菱形的性质做铺垫.【验证提升】证明菱形性质【师】通过折纸活动,同学们已经对菱形的性质有了初步的理解,下面我们要对菱形的性质进行严谨的逻辑证明.【教师活动】如图所示,在菱形ABCD中,已知AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD.【师生共析】(1)菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了.(2)因为菱形是平行四边形,所以点O是对角线AC与BD的中点.又因为在图形中可以得到相关的等腰三角形,所以就可以利用“三线合一”来证明结论了.【学生活动】写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理.指名学生在黑板上演示证明过程.证明:(1)∵菱形ABCD是平行四边形,∴AB=CD,AD=BC(平行四边形的对边相等).∵AB=AD,∴AB=BC=CD=AD.(2)∵AB=AD,∴ΔABD是等腰三角形.∵四边形ABCD是菱形,∴OB=OD(菱形的对角线互相平分).在等腰三角形ABD中,∵OB=OD,∴AO⊥BD,即AC⊥BD.【教师活动】展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明方法,规范学生的书写格式,提高学生的逻辑证明能力.【教师活动】 请你根据上面的证明,归纳出菱形的性质. 【学生活动】 小组交流,共同总结. 【教师活动】 多媒体课件展示 定理:菱形的四条边相等. 定理:菱形的对角线互相垂直.最后强调“菱形的四条边相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象. [设计意图] 学生通过折纸可以猜想到菱形的相关性质,教师在参与学生活动的过程中,应该关注学生的口述论证过程,并根据学生的认知水平加以引导,尽量减少学生推理论证过程中的困难.四、展示交流【教师活动】 例题讲解.(教材例1)如图所示,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD =60°,BD=6,求菱形的边长AB 和对角线AC 的长.〔解析〕 因为菱形的邻边相等,一个内角是60°,这样就可以得到等边三角形ABD,由BD =6知菱形的边长也是6.菱形的对角线互相垂直,可以得到直角三角形AOB.菱形的对角线互相平分,可以得到OB =3,根据勾股定理就可以求出OA 的长度,再一次根据菱形的对角线互相平分,即AC =2OA,求出AC.解:∵四边形ABCD 是菱形, ∴AB=AD(菱形的四条边相等), AC ⊥BD(菱形的对角线互相垂直),OB =OD =12BD =12×6=3(菱形的对角线互相平分). 在等腰三角形ABD 中,∵∠BAD =60°,∴ΔABD是等边三角形.∴AB=BD=6.在RtΔAOB中,由勾股定理,得:OA2+OB2=AB2,∴OA=2-2=62-2=3,∴AC=2OA=6.[知识拓展] (1)菱形是特殊的平行四边形,它具有平行四边形的所有性质;(2)菱形的定义既可以看做菱形的性质,也可以看做菱形的判定方法.1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:(1)菱形是轴对称图形,对称轴是两条对角线所在的直线;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直平分.3.菱形具有平行四边形的所有性质,应用菱形的性质可以进行计算和推理.1.如图所示,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是( )A.20B.15C.10D.5解析:因为四边形ABCD是菱形,所以AB=CB,CD∥BA,所以∠ABC=180°-∠BCD=180°-120°=60°,所以ΔABC是等边三角形,所以AC=AB=5.故选D.2.如图所示,菱形ABCD的周长为8cm.∠BAD=60°,则AC=cm.解析:因为菱形ABCD的周长为8cm,所以AB=AD=2cm.又因为∠BAD=60°,所以ΔABD是等边三BD=1cm,所以OA=2-2=22-12=(cm),所以AC=2cm.角形,所以BD=AB=2cm,所以OB=12故填2.3.如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,则四边形ABCD是菱形吗?为什么?解:四边形ABCD是菱形.理由:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵CD=BC,∴平行四边形ABCD是菱形.4.如图所示,四边形ABCD是菱形,F是AB上一点,DF交AC于点E.求证∠AFD=∠CBE. 证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又∵CE=CE,∴ΔBCE≌ΔDCE(SAS).∴∠CBE=∠CDE.在菱形ABCD中,∵AB∥CD,∴∠AFD=∠CDE.∴∠AFD=∠CBE.第1课时菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质:菱形的四条边相等菱形的对角线互相垂直例1一、教材作业【必做题】教材第4页随堂练习.【选做题】教材第4页习题1.1的1,2题.二、课后作业【基础巩固】1.在菱形ABCD中,AB=5cm,则此菱形的周长为( )A.5cmB.15cmC.20cmD.25cm2.菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为( )A.3∶1B.4∶1C.5∶1D.6∶13.如图所示,在菱形ABCD中,两条对角线的长分别为AC=6,BD=8,则此菱形的边长为( )A.5B.6C.8D.104.如图所示,在菱形ABCD中,对角线AC交BD于点O,AB=8,E是CD的中点,则OE的长等于.5.如图所示,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则BC=.6.如图所示,在菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证∠AEF=∠AFE.【能力提升】7.如图所示,两个全等菱形的边长均为1cm,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2015cm后停下,则这只蚂蚁停在点.8.已知菱形ABCD的边长为6,且∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.9.如图所示,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.【拓展探究】10.如图所示,在菱形ABCD 中,对角线AC =6,BD =8,点E,F 分别是边AB,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是 ( ) A.3 B.4 C.5 D.611.如图所示,在菱形ABCD 中,F 是BC 上任意一点,连接AF 交对角线BD 于点E,连接EC. (1)求证AE =EC;(2)当∠ABC =60°,∠CEF =60°时,点F 在线段BC 上的什么位置?说明理由. 【答案与解析】1.C(解析:因为菱形ABCD 的四条边相等,所以菱形的周长为5×4=20(cm).故选C.)2.C(解析:如图所示,因为菱形的周长为8cm,所以AD =2cm.因为高DE =1cm,所以DE =12AD,所以∠A = 0°,所以∠ADC =180°- 0°=150°,所以菱形两邻角的度数比为5∶1.故选C.)3.A(解析:因为四边形ABCD 是菱形,所以OA =12AC =3,OB =12BD =4,∠AOB =90°,所以AB = 2+ 2= 2+42=5.故选A.)4.4(解析:因为四边形ABCD 是菱形,所以O 是AC 的中点,且AD =AB =8.又因为E 是CD 的中点,所以OE 是ΔACD 的中位线,所以OE =12AD =12AB =4.故填4.)5.5(解析:因为点A,B 在数轴上对应的数为-4和1,所以AB =1-(-4)=5.因为四边形ABCD 是菱形,所以BC =AB =5.故填5.)6.证明:在菱形ABCD 中,有AB =AD,∠B =∠D.在ΔABE 和ΔADF 中,= ,∠ =∠= ,,∴ΔABE ≌ΔADF.∴AE=AF.∴∠AEF =∠AFE. 7.G(解析:因为两个全等菱形的边长均为1cm,所以蚂蚁由A 点开始按ABCDEFCGA 的顺序走一圈的路程为8×1=8(cm),2015÷8=251(cm)……7(cm),所以当蚂蚁走完第251圈后再走7cm 正好到达G 点.) 8.2 或49.解:(1)在菱形ABCD 中,AB =AD,∠A =60°,∴ΔABD 为等边三角形.∴∠ABD =60°.(2)由(1)可知BD =AB =4.又∵O 为BD 的中点,∴OB=2.又∵OE ⊥AB,∠ABD =60°,∴∠BOE = 0°.∴BE=1. 10.C11.证明:(1)如图所示,连接AC,∵BD 是菱形ABCD 的对角线,∴BD 垂直平分AC,∴AE=EC.(2)点F 是线段BC 的中点.理由如下.∵四边形ABCD 是菱形,∴AB=CB.又∵∠ABC =60°,∴ΔABC 是等边三角形,∴∠BAC =60°.∵AE=EC,∴∠EAC =∠ACE.∵∠CEF =60°,∴∠EAC = 0°.∴AF 是ΔABC 中∠BAC 的平分线,∴BF=CF,∴点F 是线段BC 的中点.本课时的主要教学内容为菱形的定义和性质.学生已经学习了平行四边形的性质,这是本课时知识的基础.关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的.本课时授课思路为“创设情境——猜想归纳——逻辑证明——知识运用”.课堂上的折纸活动,可以让学生直观感知图形的特点,还可以激发学生学习的兴趣和积极性.教师应该留给学生充分的独立思考时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师要引导学生积极思考,抓住表面现象中的本质.在性质的证明和应用过程中,教师要鼓励学生大胆探索新颖独特的证明思路和证明方法,提倡证明方法的多样性,并引导学生在与其他同学的交流中进行证明方法的比较,优化证明方法,有利于提高学生的逻辑思维水平.随堂练习(教材第4页)解:根据菱形的对角线互相垂直,可知ΔAOB是直角三角形,由勾股定理可求出OB=3cm,再根据菱形的对角线互相平分可得BD=2OB=6cm.习题1.1(教材第4页)1.证明:在菱形ABCD中,AB=BC,BC∥AD,∴∠B+∠BAD=180°,∵∠BAD=2∠B,∴∠B=60°,又∵BA=BC,∴ΔABC是等边三角形.2.解:∵四边形ABCD 是菱形,∴AD=DC=CB=BA,AC⊥BD,AO=12AC=12×8=4,DO=12BD=12×6=3,在RtΔAOD中,由勾股定理,得AD=2+2=42+ 2=5.∴菱形ABCD的周长为4AD=4×5=20.3.证明:在菱形ABCD中,AD=AB,AC⊥BD,∴AC平分∠DAB,同理,CA平分∠DCB,BD平分∠ABC和∠ADC.4.解:共有4个等腰三角形,分别为ΔBAD,ΔBCD,ΔADC,ΔABC.共有4个直角三角形,分别为ΔAOB,ΔAOD,ΔCOD,ΔBOC.(1)在折纸过程中,教师要与学生探讨折纸的方法,明确折叠过程中的对应点及相应的对称轴,便于学生正确迅速地找出菱形中的对称关系.掌握数学知识离不开“实践——认识——再实践——认识”这个重要的学习方法,通过说理论证可以使学生充分理解菱形的性质,在这个过程中,教师要充分关注学生使用几何语言的规范性和严谨性.(2)类比方法是数学中重要的方法,所以本课时类比以前学过的平行四边形的有关概念、性质,让学生通过自主学习,共同探究,很自然地突破了重难点.(3)本课时重难点、易错点的掌握要通过不同形式的练习加以巩固,让学生积极参与,培养合作意识,激发学习兴趣,同时教师随时注意学生们出现的问题,及时引导和反馈,使学生在快乐中掌握知识.(2014·莆田中考)如图所示,菱形ABCD的边长为4,∠BAD=120°.点E是AB的中点,点F 是AC上的一动点,则EF+BF的最小值是.〔解析〕如图所示,连接DE,EC,DF,则BF=DF.∵四边形ABCD为菱形,∠BAD=120°,∴∠ABC=60°.∴ΔABC为等边三角形.∵E是AB的中点,∴CE⊥AB,∴CE⊥CD.在RtΔBEC中,∠ABC=60°,BC =4,∴BE=1BC=2,CE=2-2=42-22=2.在RtΔECD中,CE=2,DC=4,∴ED=2.根据两点之间2线段最短,可知EF+DF的最小值为2 .∴EF+BF的最小值为2.故填2.第课时1.理解菱形的定义,掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.尝试从不同角度寻求菱形的判定方法,并能有效地解决问题,尝试比较不同判定方法之间的差异,并获得判定四边形是菱形的经验.启发引导学生理解探索结论和证明结论的过程,掌握合情推理与演绎推理的相互依赖和相互补充的辩证关系,培养学生合作交流的能力,以及独立思考的良好习惯.【重点】探索证明菱形的两个判定方法,掌握证明的基本要求和方法.【难点】明确推理证明的条件和结论能用数学语言正确表达.【教师准备】木条和橡皮筋【学生准备】复习上课时的相关知识.导入一:人们戴的帽子的形状千奇百怪,有一段时间,电视上经常看到大学生戴的菱形帽,它是受到外国博士帽的启发.在日本,到第二次世界大战为止,戴菱形帽一直是年轻人的梦想,戴上它显得有知识有学问.这是由于菱形的特殊因素能给人一种舒服的感觉.那么,我们怎样判断一个四边形是否是菱形呢?导入二:什么样的四边形是平行四边形?它有哪些判定方法?教师提示:判定方法应该从三个方面分析:边:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.角:两组对角分别相等的四边形是平行四边形.对角线:对角线互相平分的四边形是平行四边形.那么,菱形的判定有什么方法呢?[设计意图] 通过类比的方法引导学生发现判定菱形的方法.一、由菱形的定义判定[过渡语] 接下来我们研究怎样判断一个四边形是菱形.【学生活动】明确菱形的定义既是菱形的性质,又可作为菱形的第一种判定方法,即有一组邻边相等的平行四边形是菱形.【思考】除了运用菱形的定义,类比平行四边形的性质定理和判定定理,你能找出判定菱形的其他方法吗?二、菱形的判定(1)思路一已知:在▱ABCD中,对角线AC与BD相交于点O,AC⊥BD.求证▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.∵AC⊥BD,∴BD所在的直线是线段AC的垂直平分线.∴BA=BC.∴▱ABCD是菱形(菱形的定义).【思考】从上述证明过程中,你得出什么结论?定理:对角线互相垂直的平行四边形是菱形.思路二【学生活动】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?猜想:四边形的对角线互相平分.(2)继续转动木条,观察什么时候橡皮筋围成的四边形变成菱形?猜想:当木条互相垂直时,平行四边形的一组邻边相等,此时四边形为菱形.(3)你能证明你的猜想吗?猜想:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形.已知:在▱ABCD中,对角线AC,BD互相垂直.求证▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分).又∵AC⊥BD,∴BD所在的直线是线段AC的垂直平分线,∴AB=BC,∴▱ABCD是菱形(有一组邻边相等的平行四边形是菱形).定理:对角线互相垂直的平行四边形是菱形.三、菱形的判定(2)[过渡语] 菱形的判定还有其他的方法吗?思路一学生先画两条等长的线段AB,AD,然后分别以B,D为圆心,AB长为半径画弧,得到两弧的交点C,连接BC,CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画.通过探究,容易得到:四条边相等的四边形是菱形.证明上述结论.[设计意图] 采用观察、操作、交流、演绎的手法来突破难点,通过严谨的推理和证明培养学生的几何思维.思路二问题我们如何画一个菱形呢?通常先画两条等长的线段AB,AD,然后分别以B,D为圆心,AB长为半径画弧,得到两弧交点C,连接BC,CD即可.【学生活动】(1)观察画图的过程,你能说明得到的四边形为什么是菱形吗?学生思考后,展开讨论寻找原因.原因:这个四边形的四条边相等,根据菱形定义即可判定.(2)你能得出什么结论?学生得出从一般的四边形直接判定菱形的方法:四条边相等的四边形是菱形.[设计意图] 通过教师画图演示,让学生从直观操作的角度去发现问题,使探究的问题形象化、具体化,培养学生的形象思维能力.利用平行四边形的判定和菱形的定义判定该四边形是菱形,进一步提高学生的抽象思维能力.本活动进一步体现了试验几何和论证几何的有机结合.猜想:四条边相等的四边形是菱形.如图所示,在四边形ABCD,已知AB=BC=CD=DA.求证四边形ABCD是菱形.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).又∵AB=BC,。
丹东市第二十四中学 第一章 特殊平行四边形 复习课
丹东市第二十四中学 第一章 特殊平行四边形 复习课主备: 辅备: 审核: 2014年8月13日 一、学习准备:1、定义:两组 分别平行的四边形是平行四边形2、根据右图,填空:∵□ABCD∴AB= ; =BC ; ∥CD AD ∥ AO CO ;BO= 3、平行四边形的判定方法a 、两组对边 的四边形是平行四边形b 、一组对边 的四边形是平行四边形c 、对角线 的四边形是平行四边形4、已知□ABCD 的周长为32,AB=6,则BC=5、已知在△ABC 中,∠ACB=90°,AB=10,E 是AB 中点,则CE=6、如右上图所示在□ABCD 中,E 、F 分别是AD 、BC 上的两点,且DE=BF ,求证BE=DF 二、学习目标:1、回顾与复习平行四边形的相关定义、性义及判定2、 能根据题意及图形的相关知道熟练运用平行四边形的相关知道3、 初步掌握平行四边形开放性问题的解题方法与思路三、自学提示: 探究活动(一)1、如图E ,F 是四边形ABCD 的对角线AC 上的两点AF=CE ,DF=BE ,DF ∥BE ,求证:四边形ABCD 是平行四边形点拨:要证明一个四边形是平行四边形,要根据题目及图形的已知中分析出是边、还是对角线的角度来证明这是一个平行四边形。
2、如图,△ABC 中,∠ACB=90°,点D 、E 分别是AC 、AB 的中点, 点F 在BC 的延长线上,且∠CDF = ∠A,求证四边形DECF 为平行四边形。
探究活动(二) 1、(双柏)E ,F 是平行四边形ABCD 的对角线AC 上的点,CE=AF ,请你猜想:BE 与DF 有怎样的位置关系....和数量关系....?并加以证明 猜想:证明:FB点拨:开放型的猜想类问题,要充分根据已知条件出发,理出条件与要猜想对象之间的联系。
2、在□ABCD 中,E ,F 分别是BC ,AD 的中点。
(1)求证:△ABE ≌△CDF ;(2)连结AC ,若四边形AECF 是菱形,则△ABC 需增加的一个条件是 (不再标注其他字母,不得添加辅助线)并加以证明;点拨:开放型增加条件类问题,要分析题中的已知与结论之间缺少的内容,缺什么补什么。
人教版八年级数学下册第18章平行四边形复习课教学设计
(二)过程与方法
1.通过复习课的教学,引导学生自主探究、合作交流,提高学生的几何逻辑思维能力。
2.利用实际问题,激发学生的兴趣,培养学生的几何直观和空间想象能力。
3.设计具有层次性的练习题,使学生在解决问题的过程中,逐步提高解题能力和技巧。
(2)从生活中寻找一个实例,运用平行四边形的性质和判定方法进行分析,并简要说明。
2.选做题:
(1)探究题目:矩形、菱形、正方形各自具有哪些独特的性质?它们之间的关系是什么?
(2)拓展题目:运用平行四边形的性质,解决以下问题:一个平行四边形的对角线互相垂直,求证该平行四边形是菱形。
3.小组合作任务:
以小组为单位,设计一道关于平行四边形的实际问题,要求包含平行四边形性质和判定方法的应用。小组成员共同讨论,解决问题,并在课堂上进行展示。
7.总结提炼,形成知识体系
在复习课结束时,引导学生总结平行四边形的知识点,形成完整的知识体系,提高学生的归纳、总结能力。
8.拓展延伸,激发兴趣
设计一些拓展性问题和实际应用题,激发学生的学习兴趣,提高学生的创新思维和解决问题的能力。
四、教学内容与过程
(一)导入新课
1.教学活动:利用多媒体展示一组生活中常见的平行四边形实物图片,如建筑物的立面、操场上的跑道等,引导学生观察并说出这些图形的共同特征。
人教版八年级数学下册第18章平行四边形复习课教学设计
一、教学目标
(一)知识与技能
1.让学生掌握平行四边形的性质,如对边平行且相等、对角线互相平分等,并能运用这些性质解决实际问题。
2.培养学生运用平行四边形的判定方法,如两组对边分别平行、一组对边平行且相等、对角线互相平分等,识别和构造平行四边形。
八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)
的有 _______________________(组合序号)
4.若平行四边形一边长为8cm,一条对角线长为6cm,则另一条
对角线长X的取值范围是_____________
5.M为□ABCD 的边AD上一点,若▲MBC的面积为8cm2,□ABCD
的面积为_______
A
D
6.如图,□ABCD中,AE⊥BC,AF⊥CD,E,
(1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是 矩形?并证明你的结论.
A
M E
B
O FN
D C
(1)证明 ∵ CE 平分∠ ACB ∴ ∠ ACE= ∠ ECB ∵ MN // BC ∴ ∠ ECB= ∠ OEC ∴ ∠ OEC= ∠ ECO ∴ OE=OC
同理OF=OC ∴ OE=OF
A、对角相等
B、对角线相 C、对边相等 D、对角线互相平分
2、菱形有而一般的平行四边形不具有的性质是( )
A、对角相等 B、对角线互相平分C、对边平行且相等 D、对角线互相垂直
3.下列性质中,平行四边形不一定具备的是( )
(A)对角相等
(B)邻角互补 (C )对角互补
(D)内角和是360°
(4).下面判定四边形是平行四边形的方法中,错误的是( )。
(B)两条对角线互相平分。
(C )两条对角线互相垂直。 (D)一对邻角的和为180°。
5.不能判定四边形ABCD是平行四边形的条件是( ) (A) AB =CD, AD =BC。(B) BC // AD。 (C ) AB//DC, AD//BC。 (D) AB =CD,AD//BC。
1、矩形具有而一般的平行四边形不具有的性质是( )
O
《特殊的平行四边形》复习课教案
N M图1ODC B A 图 2AB CDOE O D C B A 图 3F ODC B A 图4图 6ABDE F图 7ABDE F 《特殊的平行四边形》复习课【教学目标】1、知识目标:掌握平行四边形和特殊平行四边形的性质和判定;并能运用有关知识进行推理证明和计算;2、能力目标:通过探索,进行观察、猜想、分析、归纳、推理,培养学生发散思维能力;同时提高学生分析问题,解决问题的能力;3、情感目标:通过基础题和探究题体验数学活动的逻辑性和趣味性,同时增强解题的自信心;【重点、难点】1.重点:特殊四边形的性质.2.难点:特殊四边形性质的灵活应用.【教学手段】多媒体教学、投影仪. 【教学实施】教案+学案. 【教学过程】一、复习提问、提取回忆2、几点推论:三角形的中位线平行于第三边且等于第三边的一半;直角三角形斜边上的中线等于斜边的一半. 二、例题讲授、上升理性【例1】如图1,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 点作MN ⊥AC 交AB 于M 点,交BC 于N 点, (1)若AD=8,AB=4,求△MDC 的周长; (2)在(1)的条件下, 求AM 的长;(3)判断四边形AMCN 的形状。
(试题背景:2008·济南市中考试题)【例2】如图2,菱形ABCD 的边长为2cm ,∠ABC =60°,请你设计一道试题,并想想设计问题的依据或目的?(例题背景:2009·河北省中考试题)变式1、如图3,取BC 边的中点E ,求OE 的长;(问题背景:2008·台州市中考试题)变式2、如图4,过A 作AF ⊥BC 于F 点,求AF 的长(问题背景:2009·凉山州中考试题)变式3、如图5,将菱形放置在平面直角坐标系中,使得点B 放置在坐标原点O ,求点D 的坐标;(问题背景:2009·长春市中考试题)【小结】基本思路1:“矩形菱形—等腰三角形—等边三角形”; 基本思路2:“菱形—对角线互相垂直—面积=12×对角线乘积”; 基本思路3:“矩形、菱形—直角三角形—勾股定理”.【例3】如图6,点O 是正方形ABCD 的两条对角线的交点,正方形的边长为4,点E 为BC 上任意一点,OE ⊥OF 交CD 于F 点,连接EF 。
特殊平行四边形复习课教学设计
《特殊平行四边形》复习课教学设计克伶(密云五中)《特殊平行四边形》复习课教案教学目标:1、掌握平行四边形、矩形、菱形、正方形的定义、性质和判定。
清楚平行四边形、特殊平行四边形(矩形、菱形、正方形)的特征以及彼此之间的关系。
2、能利用它们的性质和判定进行推理和计算。
3、学生明确知识体系,提高空间想象能力,掌握基本的推理能力。
教学重点、难点:重点:掌握平行四边形(包括矩形、菱形、正方形)的定义、性质与判定。
难点:能用平行四边形的判定定理和性质定理进行几何证明和计算。
教学过程:一、梳理知识:课前学生对本章知识的整理,以小组为单位进行分组汇报:教师以多媒体形式呈现给学生:1.定义:2.性质:3.判定:4、平行四边形、菱形、矩形、正方形之间的区别与联系:5.面积公式平行四边形:底×高。
菱形:(1)底×高;(2)对角线乘积的一半。
矩形:邻边相乘。
正方形:(1)2a S ;(2)对角线乘积的一半。
6、重要定理和推论:定理:直用三角形斜边上的中线等于斜边的一半。
推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
推论:在直角三角形中,30。
角所对的边等于斜边的一半。
二、例题学习:例1、如图,菱形ABCD的对角线AC、BD相交于点O,AE∥BD,BE∥AC,AE、BE相交于点 E ,求证:OAEB是矩形。
例2.如图,四边形ABCD为矩形,DE∥AC,且DE=AB,过点E作AD的垂线交AC于点F.(1)依题意补全图,并证明四边形EFCD是菱形;(2)若AB=3,BC=33,求平行线DE与AC间的距离.三练习(一)、填空题1、如图,DE∥BC,DF∥AC,EF∥AB,圈中共有_______个平行四边形。
(1题图)(5题图)(7题图)(10题图)2、如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,•那么这个正方形的边长为______cm。
3、已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm。
初中数学《平行四边形的性质和判定复习课》教学设计
《平行四边形的性质和判定—复习课》教学设计一、内容和内容解析1.内容数学模型作为用数学方法解决实际问题的第一步,越来越受到人们的重视。
所以本节课重在建立平行四边形模型解决一些数学问题。
2.内容解析平行四边形的原型广泛存在于现实生活中.研究平行四边形就是通过边或角的特殊化得到的三角形.对于平行四边形的研究,我们都是采用先给出几何对象的定义,再探究其性质和判定的研究思路,以及从图形性质定理的逆命题出发,探索图形判定条件的方法.在平行四边形的性质和判定的探究中,体现了用三角形及全等三角形的有关知识研究平行四边形的方法。
这些知识、研究思路及研究方法构成了本节主要内容.一方面,把这些知识和思想方法整理成具有良好结构的系统,从整体上把握知识体系,深化对相关知识和数学思想方法的理解,这是复习课的主要目的;另一方面,通过选择适当的知识进行推理计算,并解决问题的训练,发展逻辑推理能力和解决问题的能力,这也是复习课主要目的之一.建模解题大致分为三个环节:将实际问题转化为数学模型(建立模型)、解决数学模型、利用模型结论解释实际问题。
在这三个环节中“建立模型”尤为重要,需要学生具有一定的分析、转化能力。
在平行四边形问题中建立模型的关键有两个,一是借助线段图分析边、角、对角线有怎样的位置和数量关系;二是利用等量关系确立方程模型。
本类问题中,要顺利的画出平行四边形,并利用平行四边形的模型解决问题。
基于以上分析,确定本节课的教学重点:整体梳理平行四边形的性质和判定的知识体系,并根据具体问题选择适当的命题进行推理并解决问题。
二、目标和目标解析1.目标(1)知识:理解平行四边形的性质定理和判定定理并能灵活运用。
(2)能力:发展合情推理能力,体会在推理过程中所运用的归纳、类比、转化等数学思想。
借助平行四边形的模型解决实际问题,发展分析问题、解决问题的能力,进一步体会几何图形的模型作用,培养学生文字语言、符号语言、图形语言的转换能力。
北师大版九年级数学上册《第一章 特殊平行四边形回顾与思考》教学设计
北师大版九年级数学上册《第一章特殊平行四边形回顾与思考》教学设计一. 教材分析《北师大版九年级数学上册》第一章《特殊平行四边形回顾与思考》主要包括平行四边形的性质、判定以及特殊平行四边形的性质和判定。
本章内容是对初中阶段平行四边形知识的总结和提升,为后续几何学习打下基础。
通过本章的学习,学生需要掌握平行四边形的性质和判定方法,了解特殊平行四边形的性质和应用。
二. 学情分析九年级的学生已经学习了平行四边形的性质和判定,对特殊平行四边形有一定的了解。
但部分学生对知识的理解和运用还不够熟练,对特殊平行四边形的性质和判定方法容易混淆。
因此,在教学过程中,需要针对学生的实际情况,巩固基础知识,提高学生的解题能力。
三. 教学目标1.知识与技能:使学生掌握平行四边形的性质和判定方法,了解特殊平行四边形的性质和应用;2.过程与方法:培养学生运用几何知识分析问题、解决问题的能力;3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队协作精神。
四. 教学重难点1.教学重点:平行四边形的性质和判定方法,特殊平行四边形的性质和应用;2.教学难点:特殊平行四边形的性质和判定方法的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入特殊平行四边形的概念,激发学生的学习兴趣;2.问题驱动法:设置问题引导学生思考,培养学生解决问题的能力;3.合作学习法:分组讨论,培养学生团队协作精神;4.练习法:通过适量练习,巩固所学知识。
六. 教学准备1.准备相关教学材料,如PPT、练习题等;2.准备特殊平行四边形的模型或图片,以便于学生直观理解;3.安排课堂练习的时间和内容。
七. 教学过程1.导入(5分钟)利用生活实例引入特殊平行四边形的概念,如电梯门、蝴蝶翅膀等,引导学生回顾已学的平行四边形知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍特殊平行四边形的性质和判定方法,如矩形、菱形、正方形的性质和判定。
通过PPT展示,让学生直观地了解特殊平行四边形的特征。
数学九年级上册《特殊的平行四边形-复习课》教案
五、教学过程教学过程教师活动学生活动应对措施预测用时设计意图及资源准备程序1:导入提问:判断四边形的形状?猜想、交流回答老师问题:哪个是平行四边形? 哪个是矩形 ? 哪个是长方形?哪个是正方形?面对开放式的问题思考、交流、讨论引领思考教师对课堂生成问题采取相应措施3分钟从生活中简单的图形出发,激发学生学习兴趣。
改变问题的呈现方式,调动学生的思维。
激发学生思考讨论、交流,培养逆向思维程序2:自主学习主题1 从图形识别开始,怎样的四边形是平行四边形?它的性质和判别是什么?并结合图形用几何语言表述.观看屏幕明确学习内容积极回忆学生代表发言在学案上用几何语言写出平行四边形的性质和判定,交流点成绩中等学生发言,有鼓励+督促意图配合学生回答,点击投影,与学生交流3分钟导入课题,板书:《特殊的平行四边形》复习课用几何语言表述平行四边形的性质和判定,有利于学生更好的理解定理,并且提高熟练运用的能力(这是我在长期教学一线,得出的辅助几何定理学习的方法,对学困生帮助作用是很明显的)(1)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?不一定!(2) 有一组对边平行,并且另外一组对边相等的四边形一定是平行四边形吗?不一定!等腰梯形平行四边形❖平行四边形性质平行四边形对边相等且平行、对角相等、对角线互相平分❖平行四边形判别一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形对角线互相平分的四边形是平行四边形AB CDO平行四边形❖平行四边形性质∵□ABCD∴AB=DC AD=BCAB∥DC AD∥BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD❖平行四边形判别∵AB=DC且AB∥DC ∴□ABCD∵AB∥DC AD∥BC ∴□ABCD∵AB=DC AD=BC ∴□ABCD∵OA=OC OB=OD ∴□ABCDAB CDO、观察图形怎样的四边形是矩形?它的性质和判别是什么?并结合图形用几何语言表述.菱形❖菱形性质菱形对边平行且四边相等、对角相等、对角线互相垂直平分且每一条对角线平分一组对角❖菱形判别一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形A BCD O 菱形❖菱形性质∵菱形ABCD∴AB ∥DC AD ∥BC 且AB =DC =AD =BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD 且AC ⊥BD , ∠DAO=∠BAO 等❖菱形判别∵在□ABCD 中AB=AD ∴菱形ABCD ∵在□ABCD 中AC ⊥BD ∴菱形ABCD ∵四边形ABCD 中AB =DC =AD =BC ∴菱形ABCDA BCD O 矩形❖矩形性质∵矩形ABCD∴AB=DC AD=BC 且AB ∥DC AD ∥BC∠BAD=∠BCD=∠ABC=∠ADC= 90°AC=BD 且OA=OC OB=OD❖矩形判别∵在□ABCD 中∠ABC= 90°∴矩形ABCD ∵在□ABCD 中AC=BD ∴矩形ABCD在四边形ABCD 中∠BAD=∠BCD=∠ABC= 90°∴矩形ABCDADCBO矩形❖矩形性质矩形对边相等且平行、四个角相等且等于90度、对角线相等且互相平分❖矩形判别有一个角是直角的平行四边形是矩形对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形A DCBO正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形你能用恰当的方式表示平行四边形,菱形,矩形,正方形之间的关系吗?正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形ADCB O平行四边形要继续探索的问题?四边形两组对边分别平行平行四边形菱形矩形正方形11.如图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE=CF.(1)AE 与BF 相等吗?为什么?(2)AE 与BF 是否垂直?说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《特殊平行四边形》复习课教学设计
张克伶
(密云五中)
《特殊平行四边形》复习课教案
教学目标:
1、掌握平行四边形、矩形、菱形、正方形的定义、性质和判定。
清楚平行四边形、特殊平行四边形(矩形、菱形、正方形)的特征以及彼此之间的关系。
2、能利用它们的性质和判定进行推理和计算。
3、学生明确知识体系,提高空间想象能力,掌握基本的推理能力。
教学重点、难点:
重点:掌握平行四边形(包括矩形、菱形、正方形)的定义、性质与判定。
难点:能用平行四边形的判定定理和性质定理进行几何证明和计算。
教学过程:
一、梳理知识:
课前学生对本章知识的整理,以小组为单位进行分组汇报:
教师以多媒体形式呈现给学生:
1.定义:
2.性质:
3.判定:
4、平行四边形、菱形、矩形、正方形之间的区别与联系:
5.面积公式
平行四边形:底×高。
菱形:(1)底×高;(2)对角线乘积的一半。
矩形:邻边相乘。
正方形:(1)2a S ;(2)对角线乘积的一半。
6、重要定理和推论:
定理:直用三角形斜边上的中线等于斜边的一半。
推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
推论:在直角三角形中,30。
角所对的边等于斜边的一半。
二、例题学习:
例1、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AE ∥BD ,BE ∥AC ,AE 、BE 相交于点 E ,
求证:OAEB 是矩形。
例2.如图,四边形ABCD 为矩形,DE ∥AC ,且DE =AB ,过点E 作AD 的垂线交AC 于点F . (1)依题意补全图,并证明四边形EFCD 是菱形; (2)若AB =3,BC =33,求平行线DE 与AC 间的距离.
三练习 (一)、填空题
1、如图,DE ∥BC ,DF ∥AC ,EF ∥AB ,圈中共有_______个平行四边形。
A
B
C
D
E
(1题图)(5题图)(7题图)(10题图)
2、如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,•那么这个正方形的边长为
______cm。
3、已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm。
4、平行四边形ABCD,加一个条件__________________,它就是菱形。
5、如图,长方形ABCD是篮球场地的简图,长是28m,宽是15m,•则它的对角线长约为
________m。
(精确到1m)
6、在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该
平行四边形的周长是多少
(二)、选择题
1、如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DAE等于()
A.100° B.80° C.60° D.40°
2、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、平行四边形、菱形等四种图案,你认为符合条件的是()A.等腰三角形 B.正三角形 C.平行四边形 D.菱形
3、如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对。
A.1 B.2 C.3 D.4
(三)、解答题
1、如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠AEG和∠EGB的度数。
2.如图,在ABC
∆中,M,N分别是边AB、BC的中点,E、F是边AC上的三等分点,连接ME、NF且延长后交于点D,连接BE、BF
(1)求证:四边形BFDE是平行四边形
(2
)若AB=︒
=
∠45
A,︒
=
∠30
C,求:四边形BFDE的面积
四、课堂总结:
学生查缺补漏,谈谈收获
五、布置作业:
板书设计:
五、特殊的平行四边形
定义性质判定
菱形
(一)平行四边形
矩形
正方形
(二)面积公式:
(三)推论:
家庭作业:
一、选择题
1、下列图形不是轴对称图形的是()
A.平行四边形 B.矩形 C.菱形 D.等腰三角形
C
2、若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()
A.平行四边形 B.矩形 C.正方形 D.菱形
3、平行四边形ABCD的周长为40cm,△ABC的周长为25cm,则对角线AC的长为()
A.6cm B.15cm C.5cm D.16cm
4、已知菱形的两条对角线长分别是4cm和8cm,则与此菱形同面积的正方形的边长是()
A.8cm B.2
4cm C
.2
2cm D.4cm
6、用两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角⑥等边三角形,一定可以拼成的是()
A.①④⑤ B.②⑤⑥ C.①②③ D.①②⑤
7、如图1,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()
A.16 B.20 C.18 D.22
(图1)(图2)(图3)(图4)
二、填空题
8、四边形ABCD中,AB∥DC,AD∥BC,如果∠B=50°,则∠C= 。
9、如图2,在正方形ABCD内取一点M,使△MAB是等边三角形,那么∠DMC的度数
是。
10、如图3,在正方形ABCD中,E是对角线BD上任意一点,过E作EF⊥BC于F,作EG⊥CD 于G,若正方形ABCD的周长为m,则四边形EFCG的周长为。
11、如图4,用8块相同的小矩形地砖拼成一个大矩形,则每个小矩形的
面积是。
16、如图,在菱形ABCD中,AB=BD=5,求:(1)∠BAC的度数;(2)求AC的长。
O
D
C
B
A
12、已知点A (2,1-),点B (2,2--),点C (4,3-)请你写出一个点的坐标 ,使它与A 、B 、C 三点能构成一个平行四边形。
三、解答题
14、已知:在□ABCD 中,∠A 的角平分线交CD 于E ,若DE :EC=3:1,AB 的长为8,求BC 的长。
15、如图所示,矩形ABCD 的对角线AC 、BD 相交于点O ,AE ⊥BD ,垂足为E ,∠1=∠2,OB =6厘米。
(1)求∠BOC 的度数; (2)求△DOC 的周长。