数学专升本考试试题

合集下载

专升本试题2023数学及答案

专升本试题2023数学及答案

专升本试题2023数学及答案一、选择题(每题2分,共10分)1. 函数f(x)=2x^2+3x-5的导数是:A. 4x+3B. 2x+3C. 4x^2+6xD. 4x^2+3x2. 圆的方程为(x-2)^2+(y-3)^2=1,圆心坐标是:A. (2, 3)B. (1, 2)C. (3, 4)D. (0, 0)3. 已知等差数列的首项为a1=3,公差为d=2,第5项a5的值为:A. 11B. 13C. 15D. 174. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. 2D. 不存在5. 矩阵A = [1 2; 3 4]和矩阵B = [5 6; 7 8]的乘积AB的行列式det(AB)为:A. 22B. 30C. 36D. 44二、填空题(每题2分,共10分)6. 若f(x)=x^3-2x^2+x-2,则f'(x)=______。

7. 若曲线y=x^2-4x+3在点x=1处的切线斜率为______。

8. 一个等比数列的首项为2,公比为3,其第3项为______。

9. 若函数y=ln(x)的图像与直线y=4相交于点(a,4),则a=______。

10. 一个矩阵的秩为2,且该矩阵的行列式为-5,则该矩阵的迹为______。

三、解答题(每题10分,共30分)11. 证明:若函数f(x)在区间(a,b)内连续,且f(a)f(b)<0,则至少存在一点c∈(a,b),使得f(c)=0。

12. 解不等式:|x-2|+|x-5|<7。

13. 计算定积分:∫(0到1) (2x+1)dx。

四、证明题(每题15分,共15分)14. 证明:若数列{an}是单调递增数列,且数列{an}的极限存在,则数列{an}是收敛的。

五、综合题(每题25分,共25分)15. 已知函数f(x)=x^3-6x^2+11x-6,求:a. 函数f(x)的极值点;b. 函数f(x)在区间[0,3]上的最大值和最小值。

专升本高等数学一考试真题及参考答案.doc

专升本高等数学一考试真题及参考答案.doc

专升本高等数学(一)考试真题及参考答案
专升本高等数学(一)考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B 参考答案:A 参考答案:B
参考答案:A
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题
第22题第23题第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题第28题。

专升本高等数学考试题及答案

专升本高等数学考试题及答案

一、 判断下列命题是否正确,正确的在题后的括号划“√ ”,错误的划“×”(每小题2分,共10分)1. 设函数()f x 在点0x 处连续,则0lim ()0x x f x →'⎡⎤=⎢⎥⎣⎦( )2. 若()f x 为可导函数,则()f x 也为可导函数 ( )3. 设()f x 在[],a a -上连续,且()()f x f x -=,则(2)0aaxf x dx -=⎰( )4. 方程2520x x -+=在区间(1,2)内必有一个正实根 ( )5. 若()1f x < ,且在区间[]0,1上连续,则()21()xF x x f t dt =--⎰是区间[]0,1上的单调增函数 ( )二、填空题(每小题2分,共10分)1. 21lim()2xx x x→∞+= . 2. 设函数211ln(),21x x y e x -+=-则dy dx= . 3. 曲线12cos y x =+在(,2)3π出的法线方程为4. 设()arcsin xf x dx x c =+⎰,则1()dx f x ⎰= . 5.72= .三.选择题(每小题2分,共10分)1.曲线32y ax bx =+的拐点为(1,3),则 ( )(A )0a b +> (B )0a b += (C )0a b +≥ (D )0a b +< 2 设xy x =,则dydx为 ( )(A )1x x x-⋅ (B )ln xx x (C )(ln 1)xx x + (D )ln 1x +3[()()]aax f x f x dx -+-=⎰( )(A )04()axf x dx ⎰(B ) 02[()()]ax f x f x dx +-⎰(C ) 0 (D )前面都不正确4 设20()(2)xf x t t dt =-⎰,则它在12x =处取 ( ) (A )极大值 (B )极小值 (C ) 单调下降 (D ) 间断点5 直线111:314x y z L ---==-与平面:3x y z π++=的位置关系为 ( )(A )垂直 (B )斜交 (C )平行 (D )L π在内四 计算下列各题(每小题6分,共48分)1 设(cos )(sin ),yxdy x y dx=求 2 arctan x xdx ⋅⎰341⎰4 2303cos sin x xdx π⎰5 设空间三点为(1,1,1),(2,2,2),(1,1,3)A B C ----,试写出过点A ,B,C 的平面方程及过AB 中点M 的直线MC 的方程 61⎰7 若1y ≤,计算11x x y e dx --⋅⎰8 已知参数方程()()()x u y u u u ϕϕϕ'=⎧⎨'=⋅-⎩,且()0u ϕ''≠,求22d ydx五 证明不等式(8分)1ln(x x x +⋅≥-∞<<+∞六 应用题(8分)计算a 为何值时,曲线21y x ax a =-+-与直线0,2,0x x y =-=围城的封闭图形绕轴x 旋转一周所形成的旋转体的体积最小?并求出该体积。

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。

2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。

又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。

联立两个方程,得到d = 2,故选A。

3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。

4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。

2023年成人高考专升本数学考试真题与答案

2023年成人高考专升本数学考试真题与答案

2023年成人高考专升本数学考试真题与答案一、选择题1. 题目:以下哪个不是函数的定义域?- A. 实数集- B. 自然数集- C. 有限集- D. 空集- 正确答案:B2. 题目:已知函数 f(x) = 3x^2 - 2x + 1,求 f(2) 的值。

- A. 3- B. 8- C. 7- D. 9- 正确答案:C二、填空题1. 题目:求解方程 2x + 3 = 7 的解。

- 答案:x = 22. 题目:已知三角形 ABC,其中∠B = 90°,边 AC = 5,边BC = 3,求∠A 的大小。

- 答案:∠A = 45°三、计算题1. 题目:计算 2^3 × 4^2 - (5 + 3^2) 的值。

- 答案:402. 题目:已知三角形 ABC,其中∠A = 60°,边 AB = 3,边BC = 4,求边 AC 的长度。

- 答案:边AC ≈ 5.36四、简答题1. 题目:什么是平行线?如何判断两条直线是否平行?- 答案:平行线是在同一个平面内永不相交的两条直线。

判断两条直线是否平行,可以使用以下方法:- 方法1:如果两条直线的斜率相等且不相交,则它们是平行线。

- 方法2:如果两条直线的法向量相等,则它们是平行线。

2. 题目:简述解一元一次方程的步骤。

- 答案:解一元一次方程的步骤如下:- 1. 将方程转化为标准形式,即将所有项移到等式左边,等式右边为0。

- 2. 通过合并同类项,化简方程。

- 3. 通过移项,将未知量的项移到方程的一边,使另一边为0。

- 4. 根据未知量的系数和常数项的值,进行运算,求得未知量的解。

以上为2023年成人高考专升本数学考试的真题与答案。

希望对您的备考有所帮助!注意:以上答案仅供参考,具体判断以考试官方发布的答案为准。

2023年成人高考专升本高等数学(二)真题+参考答案解析

2023年成人高考专升本高等数学(二)真题+参考答案解析

2023年成人高等学校招生全国统一考试专升本高等数学(二)真题一、选择题(1~10小题,每题4分,共40分。

在每小给出的四个选项中,只有一是符合题目要求的)1.x→∞x2+1 x2+xlim=()A.-1B.0C.12D.12.设f(x)=x3+5sin x,f'(0)=()A.5B.3C.1D.03.设f(x)=ln x-x,f'(x)=()A.xB.x-1C.1x D.1x-14.f(x)=2x3-9x2+3的单调递减区间为()A.(3,+∞)B.(-∞,+∞)C.(-∞,0)D.(0,3)5.x23dx=()A.x32+CB.35x53+C C.x53+C D.x13+C6.设函数f(x)=x ,则1-1f(x)dx=()A.-2B.0C.1D.27.连续函数f(x)满足x0f(t)dt=e x-1,求f'(x)=()A.e xB.e x-1C.e x+1D.x+18.设z=e xy,dz=()A.e xy dx+e xy dyB.e x dx+e y dyC.ye xy dx+xe xy dyD.e y dx+e x dy9.设z=14(x2+y2),∂2z∂x∂y=()A.x2B.0 C.y2D.x+y10.扔硬币5次,3次正面朝上的概率是()A. B. C. D.二、填空题(11~20小题,每题4分,共40分)11.x→31+x-2x-3=lim。

12.x→∞(x+1 x-1)lim x=。

13.f(x)=e2x,则f(n)(0)=。

14.f(x)=x2-2x+4在(x0,f(x))处切线与直线y=x-1平行,x=。

15.曲线y=xe x的拐点坐标为。

16.y=2x1+x2的垂直渐近线是。

17.xx2+4dx=。

18.曲线y=x2与x=y2所围成图形的面积是。

19.+∞0xe-x2dx=。

20.z=x2+y2-x-y-xy的驻点为。

三、解答题(21~28小题,共70分。

2024年成人高考专升本《数学》考试真题附答案

2024年成人高考专升本《数学》考试真题附答案

2024年成人高考专升本《数学》考试真题附答案一、选择题(每题1分,共5分)A. 牛顿B. 欧拉C. 高斯D. 希尔伯特2. 设函数f(x)在区间(∞, +∞)内连续,且f(x) = f(x),则f(x)是()A. 奇函数B. 偶函数C. 周期函数D. 非奇非偶函数A. 交换两行B. 两行相加C. 两行互换D. 两行相乘4. 若函数y = f(x)在点x0处可导,则f'(x0)表示()A. 曲线在点(x0, f(x0))处的切线斜率B. 曲线在点(x0, f(x0))处的法线斜率C. 函数在点x0处的极值D. 函数在点x0处的拐点5. 设A、B为两个事件,若P(A) = 0.4,P(B) = 0.6,P(A∩B) =0.2,则P(A|B) = ()A. 0.2B. 0.4C. 0.5D. 0.6二、判断题(每题1分,共5分)1. 任何实数的平方都是非负数。

()2. 若矩阵A的行列式为零,则A不可逆。

()3. 函数的极值点必定在导数为零的点处取得。

()4. 概率论中的大数定律表明,随机事件的频率会随着试验次数的增加而稳定在概率附近。

()5. 线性方程组的解一定是唯一的。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x,则f'(x) = _______。

2. 矩阵A = [[1, 2], [3, 4]]的行列式值是 _______。

3. 在平面直角坐标系中,点(1, 2)到原点的距离是 _______。

4. 设随机变量X服从正态分布N(μ, σ^2),则μ表示 _______。

5. 若函数f(x)在区间[a, b]上连续,且f(a)·f(b) < 0,则根据闭区间上连续函数的零点定理,至少存在一点ξ∈(a, b),使得f(ξ) = _______。

四、简答题(每题2分,共10分)1. 简述罗尔定理的条件和结论。

2. 什么是矩阵的秩?如何求矩阵的秩?3. 简述导数的物理意义。

2023年广西省专升本数学考试真题

2023年广西省专升本数学考试真题

选择题已知集合A = {1, 2, 3},B = {x | x^2 = 4},则A ∩B =A. {1}B. {2}C. {1, 2}D. {2, 4}函数y = 3x^2 - 2x - 1的导数为A. 6x - 2B. 3x^2 - 2C. 6xD. 2x - 2下列极限中,等于0的是A. lim(x→∞) (1/x)B. lim(x→0) (sin x)/xC. lim(x→1) (x^2 - 1)/(x - 1)D. lim(x→2) (x^2 + 1)已知复数z = 1 + i(其中i为虚数单位),则z的共轭复数是A. 1 - iB. -1 + iC. 1 + 2iD. -1 - i下列二次函数中,图象的对称轴是直线x = 1的是A. y = x^2 + 2x + 1B. y = x^2 - 2x + 1C. y = x^2 + 2x - 1D. y = x^2 - 2x - 1在空间直角坐标系中,点P(1, 2, 3)关于平面xOy的对称点P'的坐标是A. (1, 2, -3)B. (-1, 2, 3)C. (1, -2, 3)D. (1, -2, -3)填空题函数f(x) = √(x - 1)的定义域为__________。

若直线l的方程为3x - 4y + 5 = 0,则直线l在y轴上的截距为__________。

已知等差数列{a_n}的首项为2,公差为3,则a_10 = __________。

已知圆的方程为x^2 + y^2 = 9,则圆心到点(0, 3)的距离为__________。

函数y = ln(x^2 - 1)的定义域为__________。

在复数范围内,方程x^2 + 1 = 0的解为__________。

简答题求函数y = x^3 - 3x^2 + 2的极值。

已知三角形ABC的三个顶点分别为A(1, 2),B(3, 4),C(5, 0),求三角形ABC的面积。

专升本数学考试题

专升本数学考试题

专升本数学考试题一、选择题1. 已知函数f(x) = x^2 - 3x + 2,则f(2)的值为多少?A. 0B. 1C. 2D. 32. 若一个等差数列的首项为3,公差为2,则第n项的值为多少?A. 2n - 1B. 3n - 2C. 3n + 1D. 2n + 13. 如图所示,ABCD是一个正方形,O为AC的中点,∠ABO的度数为多少?(插入图示)A. 30°B. 45°C. 60°D. 90°4. 若函数f(x)满足f(x + 3) = f(x - 2) + 1,则f(4)的值为多少?A. f(2) + 1B. f(1)C. f(2) - 1D. f(1) + 15. 在三角形ABC中,∠C = 90°,AC = 8,BC = 15。

则三角形ABC 的斜边AB的长度为多少?A. 7B. 17C. 23D. 25二、计算题1. 将5x - 2y = 3和3x + 4y = 1联立,求出x和y的值。

2. 已知a = log2(3),b = log4(9),计算log2(81)的值。

3. 计算sin(30° + 45°)的值。

4. 已知函数f(x) = 2x^2 + 3x - 4,求f(-1)和f(2)的值。

5. 计算以下方程的解:2x^2 + 3x - 2 = 0。

三、解答题1. 求函数f(x) = 2x^3 - 5x^2 + 3x的导数。

2. 解方程:3^(x + 2) = 9^(x - 1)。

3. 求等差数列前n项和Sn的公式。

4. 解方程:log3(4x + 1) = 2。

5. 某商品原价为800元,现在打5折出售,再额外打9.5折,求打完折扣后的最终价格。

以上就是专升本数学考试的题目,希望能帮到你!祝你考试顺利!。

大学数学专升本考试题目及答案

大学数学专升本考试题目及答案

大学数学专升本考试题目及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)答案:D2. 二次方程 x^2 - 5x + 6 = 0 的根是:A. 2, 3B. -2, 3C. -3, 2D. 1, 6答案:A3. 极限 lim (x->2) [(x^2 - 4)/(x - 2)] 的值是:A. 4B. 6C. 8D. 无法计算答案:B4. 以下哪个选项是连续函数?A. f(x) = 1/xB. f(x) = |x|C. f(x) = sin(x)D. f(x) = x^2答案:C5. 曲线 y = x^3 在点 (1,1) 处的切线斜率是:A. 1B. 2C. 3D. 4答案:C6. 以下哪个级数是收敛的?A. ∑(n=1 to ∞) (1/n^2)B. ∑(n=1 to ∞) (1/n)C. ∑(n=1 to ∞) (1/n^0.5)D. ∑(n=1 to ∞) (n)答案:A7. 矩阵 A = [[1, 2], [3, 4]] 的行列式是:A. -2B. 2C. 6D. 8答案:A8. 方程 (x - 1)y = 3x 在 y = 0 时有:A. 唯一解B. 无穷多解C. 无解D. 解集为全体实数答案:C9. 以下哪个积分是发散的?A. ∫(0 to 1) (1/x) dxB. ∫(0 to 1) x^2 dxC. ∫(1 to 2) e^x dxD. ∫(0 to 1) x dx答案:A10. 以下哪个选项是微分方程 y'' - y' - 6y = 0 的解?A. y = e^(3x)B. y = e^(x)C. y = cos(2x)D. y = sin(3x)答案:B二、填空题(每题4分,共20分)11. 函数 f(x) = x^3 - 6x^2 + 11x - 6 的最大值点的 x 坐标是_______。

2020年成人高等考试《数学二》(专升本)试题(网友回忆版)

2020年成人高等考试《数学二》(专升本)试题(网友回忆版)

2020年成人高等考试《数学二》(专升本)试题(网友回忆版)[单选题]1.()。

A.B.C.D.e6参考答案:B参考解析:[单选题]2.设函数y=x+2sinx,则dy=()。

A.(1-2cosx)dxB.(1+2cosx)dxC.(1-cosx)dxD.(1+cosx)dx参考答案:B参考解析:y,=(x+2sinx)’=1+2cosx,故dy=y’dx=(1+2cosx)dx[单选题]3.()。

A.3/2B.1C.2D.1/2参考答案:A参考解析:[单选题]4.设函数f(x)=3+x5,则f’(x)=()。

A.x4B.1+x4C.D.5x4参考答案:D参考解析:[单选题]5.()。

A.B.C.D.参考答案:B参考解析:[单选题]6.()。

A.4B.0C.2D.-4参考答案:A参考解析:[单选题]7.()。

A.B.C.D.参考答案:C参考解析:[单选题]8.3本不同的语文书和2本不同的英语书排成一排,则2本英语书恰好相邻的概率为()。

A.2/5B.4/5C.3/5D.1/2参考答案:A参考解析:[单选题]9.设函数z=x2-4y2,则dz=()。

A.xdx-4ydyB.xdx-ydyC.2xdx-4ydyD.2xdx-8ydy参考答案:D参考解析:[单选题]10.()。

A.3x2+2xyB.3x2+y2C.2xyD.2y参考答案:C参考解析:[问答题]1.参考答案:无参考解析:[问答题]2.参考答案:无参考解析:[问答题]3.参考答案:无参考解析:[问答题]4.参考答案:无参考解析:[问答题]5.参考答案:无参考解析:[问答题]6.求函数x=x2+2y4+4xy2-2x的极值。

参考答案:无参考解析:[问答题]7.求曲线y=x3-3x2+2x+1的凹凸区间与拐点参考答案:无参考解析:[问答题]8.已知离散型随机变量X的概率分布为且E(X)=0(1)求a,b;(2)求E[X(X+1)]。

参考答案:无参考解析:[填空题]1.设函数y=e2x,则dy=______。

2021年成人高等学校招生全国统一考试专升本高等数学(一)

2021年成人高等学校招生全国统一考试专升本高等数学(一)

2021年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设lim x →0ln (1+bx )x=2,则b =( )A .2B .1C .12D .-2 2.当x →0时,tan x 2A .低阶无穷小量B .等价无穷小量C .同阶但不等价无穷小量D .高阶无穷小量 3.设函数f (x ) 满足lim x →1f (x )-f (1)2(x -1)=1,则f ′(1)=( )A .2B .1C .12 D .-1 4.设y =x +e -x,则d y|x =1=( )A .e -1d x B .-e -1d xC .(1+e -1)d xD .(1-e -1)d x5.曲线y =x ln x 在点(e ,e )处法线的斜率为( ) A .— 2 B .-12C .12D .2 6.∫(cos x )′d x =( ) A .sin x +C B .cos x +C C .-sin x +C D .-cos x +C 7.⎠⎛-11 (x cos x +1)d x =3( )A .— 2B .— 1C .1D .2 8.⎠⎛1+∞ 1x3 d x =( )A .12B .14C .-14D .-129.设z =y 5+arctan x ,则∂z ∂y =( )A .5y 4+11+x 2 B .11+x 2C .5y 4D .5y 4+arctan x 10.设z =e2x -y,则∂2z∂x ∂y=( )A .-e 2x -yB .e 2x -yC .-2e 2x -yD .2e 2x -y第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分) 11.lim x →03x +1x 2+2x +3=.12.lim n →∞ 3n 2+5n2n 2+4n +5 =.13.设函数f (x )=e x-12x,则f (x )的间断点为x =.14.设y =x e x,则y ′=.15.设y =y (x )是由方程y +e y=x 所确定的隐函数,则y ′=. 16.曲线y =1x -2的铅直渐近线方程为. 17.∫x e x 2d x =. 18.d d x ⎝⎛⎭⎫⎠⎛2x tan t d t =. 19.⎠⎛0111+x 2 d x =. 20.过坐标原点且与平面3x -7y +5z -12=0平行的平面方程为.三、解答题(21~28题,共70分.解答应写出推理、演算步骤) 21.(本题满分8分)设函数f (x )=⎩⎪⎨⎪⎧2ax +a 2,x >1,-x ,x ≤1在x =1处连续,求a .22.(本题满分8分) 设y =ln x x,求d y .23.(本题满分8分) 计算∫cos x xd x .24.(本题满分8分)求曲线y =2x 3-6x 2的凹、凸的区间及拐点.25.(本题满分8分) 设z =ln (x +y 2),求d z|(1.1).26.(本题满分10分)求微分方程y ″-3y ′+2y =2的通解.27.(本题满分10分)xy d x d yx=0,y=x和x2+y2=1在第一象限所围成的闭区域.计算∬D28.(本题满分10分)将y=e x+1展开成x的幂级数.参考答案及解析一、选择题 1.【答案】A【考情点拨】本题考查了等价无穷小的代换的知识点. 【应试指导】当x →0时,ln (1+bx )~bx ,故lim x →0 ln (1+bx )x=lim x →0 bxx =b=2. 2.【答案】D【考情点拨】本题考查了高阶无穷小量的知识点.【应试指导】lim x →0 tan x 2x =lim x →0 x 2x=lim x →0x =0,故当x →0时,tan x 2为x 的高阶无穷小量.3.【答案】A【考情点拨】本题考查了函数的导数的知识点.【应试指导】f ′(1)=lim x →1f (x )-f (1)x -1 =2lim x →1 f (x )-f (1)2(x -1)=2. 4.【答案】D【考情点拨】本题考查了函数的微分的知识点. 【应试指导】d y =(x +e -x)′d x =(1-e -x)d x ,因此d y|x =1=(1-e -x)|x =1d x =(1-e-1)d x .5.【答案】B【考情点拨】本题考查了曲线的法线的知识点.【应试指导】y ′=(x ln x )′=ln x +x ·1x=ln x +1,因此曲线在点(e ,e )处切线的斜率为y ′|x =e=(ln x +1)|x =e=2,故其法线的斜率为-12.6.【答案】B【考情点拨】本题考查了不定积分的基本性质的知识点. 【应试指导】∫(cos x )′d x =∫d(cos x )=cos x +C . 7.【答案】D【考情点拨】本题考查了定积分的性质的知识点.【应试指导】⎠⎛-11 (x cos x +1)d x =∫1-1 x cos x d x +⎠⎛-11 d x =⎠⎛-11d x =x ⎪⎪⎪1-1 =2. 8.【答案】A【考情点拨】本题考查了广义积分的计算的知识点. 【应试指导】⎠⎛1+∞ 1x3 d x =1-3+1 x -3+1⎪⎪⎪+∞1 =-⎝ ⎛⎭⎪⎫0-12 =12.9.【答案】C【考情点拨】本题考查了二元函数的偏导数的知识点. 【应试指导】∂z ∂y=(y 5)′=5y 4.10.【答案】C【考情点拨】本题考查了二元函数的高阶偏导数的知识点.【应试指导】∂z ∂x =e 2x -y ·2=2e 2x -y,∂2z ∂x ∂y =2e 2x -y ·(-1)=-2e 2x -y .二、填空题 11.【答案】13【考情点拨】本题考查了函数极限的四则运算的知识点. 【应试指导】lim x →0 3x +1x 2+2x +3 =0+10+0+3 =13.12.【答案】32【考情点拨】本题考查了函数极限的四则运算法则的知识点. 【应试指导】lim n →∞ 3n 2+5n2n 2+4n +5 =lim n →∞3+5n2+4n +5n2=32.13.【答案】0【考情点拨】本题考查了函数的间断点的知识点. 【应试指导】函数在x =0处无定义,故其间断点为x =0.14.【答案】(x +1)e x【考情点拨】本题考查了函数导数的知识点.【应试指导】y ′=(x e x )′=e x +x e x =(1+x )e x. 15.【答案】11+ey【考情点拨】本题考查了隐函数的求导的知识点.【应试指导】方程两边对x 求导,得y ′+e y·y ′=1,即y ′=11+e y .16.【答案】x =2【考情点拨】本题考查了曲线的铅直渐近线的知识点. 【应试指导】当x →2时,lim x →2 1x -2=∞,故x =2为曲线的铅直渐近线. 17.【答案】12e x 2+C【考情点拨】本题考查了不定积分的第一换元积分法的知识点. 【应试指导】∫x e x 2d x =12 ∫2x e x 2d x =12 ∫e x 2d(x 2)=12 e x 2+C .18.【答案】tan x【考情点拨】本题考查了变上限定积分的性质的知识点. 【应试指导】d d x ⎝⎛⎭⎫⎠⎛2x tan t d t =tan x . 19.【答案】π4【考情点拨】本题考查了定积分的知识点. 【应试指导】⎠⎛01 11+x2 d x =arctan x ⎪⎪⎪10 =π4 . 20.【答案】3x -7y +5z =0【考情点拨】本题考查了平面方程的知识点.【应试指导】已知所求平面与3x -7y +5z -12=0平行,则其法向量为(3,- 7,5),故所求方程为3(x -0)+(-7)(y -0)+5(z -0)=0,即3x -7y +5x =0.三、解答题21.lim x →1+ f (x )=lim x →1+ ()2ax +a 2=2a +a 2,lim x →1- f (x )=lim x →1-(-x )=-1. 由于f (x )在x =1处连续,所以lim x →1+ f (x )=lim x →1- f (x ),即2a +a 2=-1.解得a =-1. 22.y ′=1-ln xx2, d y =y ′d x =1-ln x x2d x . 23.令t =x ,则x =t 2,d x =2t d t . ∫cos xxd x =∫2t cos ttd t=2∫cos t d t=2sin x +C .24.y ′=6x 2-12x ,y ″=12x -12. 由y ″=12x -12=0得x =1.当x <1时,y ″<0,因此在区间(-∞,1)曲线是凸的; 当x >1时,y ″>0,因此在区间(1,+∞)曲线是凹的; 当x =1时,y =-4,点(1,-4)为曲线的拐点. 25.∂z ∂x =1x +y 2 ,∂z ∂y =2y x +y 2 , 于是d z =1x +y 2 d x +2yx +y 2d y , 因此d z|(1,1)=12d x +d y . 26.原方程对应的齐次方程的特征方程为r 2-3r +2=0, 特征根为r 1=1,r 2=2.故原方程对应的齐次方程的通解为y =C 1e x +C 2e 2x, y *=1为原方程的特解,所以原方程的通解为y =C 1e x +C 2e 2x+1.27.在极坐标系中,D 可表示为π4 ≤θ≤π2,0≤r ≤1.∬Dxy d x d y =∫π2 π4 d θ⎠⎛01 r 2cos θsin θ·r d r=∫π2 π4 sin θd(sin θ)·⎠⎛01 r 3d r=12 sin 2θ⎪⎪⎪⎪π2π4·14 r 4⎪⎪⎪10=116 . 28.ex +1=e ·e x=∑n =0∞ e n ! x n (-∞<x <+∞).。

四川2023年大专生专升本数学考试及答案 (1)

四川2023年大专生专升本数学考试及答案 (1)

普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.“a =1”是“直线0=+y x 和直线0=-ay x 互相垂直”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅=().A .23-B .32-C .32D .233.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像().A .向左平移π6个长度单位B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位4.函数|lg |)(x x x f -=在定义域上零点个数为().A .1B .2C .3D .45.如图是一个空间几何体的主视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为().A .1B .21C .31D .616.一个等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是()A.a11B.a10C.a9D.a87.设函数f(x)=logax(a>0,且a ≠1)满足f(9)=2,则f -1(log92)等于()A.2B.2C.21 D.±28.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a,则三棱锥D —ABC 的体积为()A.63a B.123a C.3123a D.3122a 9.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a+b+c=0,a ·b=b ·c=c ·a=-1,则|a|+|b|+|c|等于()A.22B.23C.32D.3310.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是()A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞⎥⎝⎦11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=()A .15BC .3D .512.设F 为双曲线C :22221x y a b -=(a>0,b>0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x2+y2=a2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为()ABC .2D二、填空题(共4小题,每小题5分;共计20分)1、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______.2、已知2tan -=α,71tan =+)(βα,则βtan 的值为______.3.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E-BCD 的体积是______.4.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点,则点P 到直线x+y=0的距离的最小值是______.三、大题:(满分70分)1、已知函数3()x x bf x x++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和;(2)求()f x 的极值.2、已知集合A 是由a -2,2a2+5a,12三个元素组成的,且-3∈A ,求a.3.(本题满分12分)已知四边形ABCD 是菱形,060BAD ∠=四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点.(1)求证:平面//AEF 平面BDGH(2)若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH 所成的角的正弦值4.设),(),,(2211y x Q y x P 是抛物线px y 22=)0(>p 上相异两点,P Q 、到y 轴的距离的积为4且0=⋅OQ OP .(1)求该抛物线的标准方程.(2)过Q 的直线与抛物线的另一交点为R ,与x 轴交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.5.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程. 6.已知函数(a ∈R ).(Ⅰ)讨论g (x )的单调性;(Ⅱ)若.证明:当x >0,且x ≠1时,.参考答案:一、选择题:1-5题答案:CDCCC 6-10题答案:ABDCB 11-12题答案:BA 二、填空题:1、︒60;2、3;3、10;4、4.三、大题:1、【解析】(1)由3()x x b f x x++=得211(1)21b a f b ++===+,3322(2)522b ba f ++===+,3433(3)1033b ba f ++===+,由于{}n a 为等差数列,∴2432a a a +=,即(2)(10)2(5)32b b b +++=+,解得6b =-,∴22624a b =+=-+=-,3655222b a =+=-+=,461010833b a =+=-+=,设数列{}n a 的公差为d ,则326d a a =-=,首项1210a a d =-=-,故数列{}n a 的通项公式为1(1)616n a a n d n =+-=-,∴数列{}n a 的前n 项和为21()(10616)31322n n n a a n n S n n +-+-===-;(2)法一(导数法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,332226262(3)()2x x f x x x x x ++'=+==,当330x +<,即x <()0f x '<,函数()f x 在(,-∞上单调递减,当330x +>,即x >时,()0f x '>,函数()f x 在()+∞上单调递增,故函数()f x 在x =极小值为53(31f =+,无极大值.法二(基本不等式法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,当0x >时,26()1f x x x =-+为单调递增函数,故()f x 在(0,)+∞上无极值.当0x <时,则6x ->,∴2226633()1()()1()()()11f x x x x x x x x =-+=-++=-+++≥+---53131==+,当且仅当23()x x-=-,即x =综上所述,函数()f x 在x =53(31f =+,无极大值.【评注】本题考查等差数列的通项公式以及前n 项和、函数单调性及应用,数列与函数进行结合考查,综合性较强,属于中档题.2、解:由-3∈A ,可得-3=a -2或-3=2a2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a2+5a =-3,∴a =-32.3.参考答案:解:(1)G H 、分别是CE CF 、的中点所以//EF GH ------①---1分连接AC 与BD 交与O ,因为四边形ABCD 是菱形,所以O 是AC 的中点,连OG ,OG 是三角形ACE 的中位线//OG AE -②-----3分由①②知,平面//AEF 平面BDGH ----4分(2),BF BD ⊥平面BDEF ⊥平面ABCD ,所以BF ⊥平面ABCD -------5分取EF 的中点N ,//ON BF ON ∴⊥平面ABCD ,建系{,,}OB OC ON设2AB BF t ==,,则()()()100,03,0,10B C F t ,,,,,13,,222t H ⎛⎫⎪ ⎪⎝⎭--------6分()131,0,0,,222t OB OH ⎛⎫== ⎪ ⎪⎝⎭ 设平面BDGH 的法向量为()1,,n x y z = 110130222n OB x t n OH x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,所以(10,3n t =- 平面ABCD 的法向量()20,0,1n = ----9分12231|cos ,|23n n t <>==+ ,所以29,3t t ==----10分所以()1,3,3CF =,设直线CF 与平面BDGH 所成的角为θ13133321336|,cos |sin 1=⨯=〉〈=n CF θ4.参考答案:解:(1)∵OP→·OQ →=0,则x1x2+y1y2=0,-1分又P 、Q 在抛物线上,故y12=2px1,y22=2px2,故得y122p ·y222p+y1y2=0,y1y2=-4p2222212144)(||pp y y x x ==∴-------3分又|x1x2|=4,故得4p2=4,p=1.所以抛物线的方程为:22y x =-------------4分(2)设直线PQ 过点E(a,0)且方程为x =my +a联立方程组⎩⎨⎧=+=x y amy x 22消去x 得y2-2my -2a =0∴⎩⎨⎧-==+ay y m y y 222121①设直线PR 与x 轴交于点M(b,0),则可设直线PR 方程为x =ny +b,并设R(x3,y3),同理可知,⎩⎨⎧-==+by y n y y 223131②--7分由①、②可得32y b y a=由题意,Q 为线段RT 的中点,∴y3=2y2,∴b=2a又由(Ⅰ)知,y1y2=-4,代入①,可得-2a =-4∴a =2.故b =4.∴831-=y y ∴3123123124)(1||1|PR |y y y y n y y n -+⋅+=-+=2481222≥+⋅+=n n .当n=0,即直线PQ 垂直于x 轴时|PR|取最小值245.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程.【解答】解:(Ⅰ)所给直线方程变形为,可知直线所过定点为.∴椭圆焦点在y 轴,且c=,依题意可知b=2,∴a2=c2+b2=9.则椭圆C1的方程标准为;(Ⅱ)依题意,设椭圆C2的方程为,A(x1,y1),B(x2,y2),∵λ>1,∴点C(﹣1,0)在椭圆内部,直线l与椭圆必有两个不同的交点.当直线l垂直于x轴时,(不是零向量),不合条件;故设直线l为y=k(x+1)(A,B,O三点不共线,故k≠0),由,得.由韦达定理得.∵,而点C(﹣1,0),∴(﹣1﹣x1,﹣y1)=2(x2+1,y2),则y1=﹣2y2,即y1+y2=﹣y2,故.∴△OAB的面积为S△OAB=S△AOC+S△BOC====.上式取等号的条件是,即k=±时,△OAB的面积取得最大值.∴直线的方程为或.6.已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.【解答】(Ⅰ)解:由已知得g(x)的定义域为(0,+∞),…(1分)方程2x2+x﹣a=0的判别式△=1+8a.…(2分)①当时,△≤0,g'(x)≥0,此时,g(x)在(0,+∞)上为增函数;…(3分)②当时,设方程2x2+x﹣a=0的两根为,若,则x1<x2≤0,此时,g'(x)>0,g(x)在(0,+∞)上为增函数;…(4分)若a>0,则x1<0<x2,此时,g(x)在(0,x2]上为减函数,在(x2,+∞)上为增函数,…..…(5分)综上所述:当a≤0时,g(x)的增区间为(0,+∞),无减区间;当a>0时,g(x)的减区间为(0,x2],增区间为(x2,+∞).…(6分)(Ⅱ)证明:由题意知,…(7分)∴,…(8分)考虑函数,则…(9分)所以x≠1时,h'(x)<0,而h(1)=0…(10分)故x∈(0,1)时,,可得,x∈(1,+∞)时,,可得,…(11分)从而当x>0,且x≠1时,.。

宁夏专升本考试真题数学

宁夏专升本考试真题数学

选择题:1. 若一元二次函数(f(x) = ax^2 + bx + c)的判别式(b^2 - 4ac)小于0,则该函数的图像与x轴的交点个数为:A) 0 B) 1 C) 2 D) 3答案:A) 02. 若在直角三角形ABC中,∠B=60°,BC=6,则AB的长度为:A) 3 B) 3√3 C) 6 D) 6√3答案:B) 3√33. 若集合A={1, 2, 3, 4, 5},集合B={4, 5, 6, 7, 8},则A∪B的元素个数为:A) 1 B) 2 C) 3 D) 4答案:D) 54. 若函数(f(x) = x^3 - 3x^2 + 4x - 2),则f(1)的值为:A) 0 B) 1 C) 2 D) 3答案:C) 35. 设直线L1的方程为(2x + 3y = 6),直线L2与L1垂直且经过点(1, 2),则直线L2的方程为:A) (2x + 3y = 6) B) (3x + 2y = 5) C) (3x - 2y = 5) D) (3x - 2y = 6)答案:D) (3x - 2y = 6)填空题:1. 若(x^2 + 6x + k)是一个完全平方的形式,求k的值。

答案:92. 在平面直角坐标系中,点A(4, -3)和点B(-1, 2)之间的距离是___。

3. 若(f(x) = 4x^2 - 2x + 1),则f(-1)的值为___。

答案:74. 若三角形的两边长分别为6和8,且夹角为90°,则这个三角形的面积为___。

答案:245. 已知集合A={1, 2, 3, 4, 5},集合B={3, 4, 5, 6, 7},则A∩B的元素个数为___。

答案:3应用题:1. 一个长方形花坛的周长为30米,宽为4米,求其面积。

2. 一根长为20厘米的绳子从一端开始剪,每次剪掉的长度都是前一次的一半,问剪了多少次后,绳子的长度会小于1厘米?3. 已知函数(f(x) = x^3 - 3x^2 + 2x + 4),求f(0)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(二)命题预测试卷(二)一、选择题(本大题共5个小题,每小题4分,共20分。

在每个小题给出的选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内) 1.下列函数中,当1→x 时,与无穷小量)1(x -相比是高阶无穷小的是( )A .)3ln(x -B .x x x +-232C .)1cos(-xD .12-x 2.曲线xx y 133+-=在),1(+∞内是( ) A .处处单调减小 B .处处单调增加 C .具有最大值 D .具有最小值 3.设)(x f 是可导函数,且1)()2(lim000=-+→hx f h x f x ,则)(0x f '为( )A .1B .0C .2D .21 4.若1)1(+=x xx f ,则⎰10)(dx x f 为( )A .21B .2ln 1-C .1D .2ln 5.设xuxy u z ∂∂=,等于( ) A .z zxy B .1-z xy C .1-z y D .z y二、填空题:本大题共10个小题,10个空,每空4分,共40分,把答案填在题中横线上。

6.设2yx e z xy +=,则)2,1(yz ∂∂= .7.设x e x f x ln )(+=',则='')3(f .8.x x x f -=1)(,则=)1(xf . 9.设二重积分的积分区域D 是4122≤+≤y x ,则⎰⎰=Ddxdy . 10.xx x)211(lim -∞→= .11.函数)(21)(x x e e x f -+=的极小值点为 .12.若314lim21=+++-→x ax x x ,则=a . 13.曲线x y arctan =在横坐标为1点处的切线方程为 . 14.函数⎰=2sin x tdt y 在2π=x 处的导数值为 .15.=+⎰-1122cos 1sin dx xxx . 三、解答题:本大题共13小题,共90分,解答应写出推理、演算步骤。

16.(本题满分6分)求函数⎪⎩⎪⎨⎧=≠==0 001arctan )(x x xx f 的间断点.17.(本题满分6分)计算121lim 2--++∞→x x x x .18.(本题满分6分)计算⎥⎦⎤⎢⎣⎡++→x x x x 1)1(arcsin ln lim .19.(本题满分6分)设函数⎪⎩⎪⎨⎧≤<-+>=-01)1ln(0 )(1x x x xe x f x ,求)(x f '.20.(本题满分6分)求函数)sin(y x y +=的二阶导数.21.(本题满分6分)求曲线342)(x x x f -=的极值点.22.(本题满分6分)计算⎰+dx x x 123.23.(本题满分6分)若)(x f 的一个原函数为x x ln ,求⎰⋅dx x f x )(.24.(本题满分6分)已知⎰∞-=+02211dx x k ,求常数k 的值.25.(本题满分6分)求函数5126),(23+-+-=y x x y y x f 的极值.26.(本题满分10分)求⎰⎰+Ddxdy y x )(2,其中D 是由曲线2x y =与2y x =所围成的平面区域.27.(本题满分10分)设⎰-=adx x f x x f 02)()(,且常数1-≠a ,求证:)1(3)(3+=⎰a a dx x f a.28.(本题满分10分)求函数xxy ln =的单调区间、极值、此函数曲线的凹凸区间、拐点以及渐近线并作出函数的图形.参考答案一、选择题1.B 2.B 3.D 4.D 5.D 二、填空题6.122+e 7.313+e8.11-x 9.π310.21-e11.0=x12.5 13.)1(214-=-x y π14.4sin 2ππ 15.0三、解答题16.解 这是一个分段函数,)(x f 在点0=x 的左极限和右极限都存在.21arctan lim )(lim 00π-==-→-→x x f x x21arctan lim )(lim 00π==+→+→x x f x x)(lim )(lim 00x f x f x x +→-→≠故当0→x 时,)(x f 的极限不存在,点0=x 是)(x f 的第一类间断点.17.解 原式=222112111lim121lim222==--+=--++∞→+∞→xxx x x x x x . 18.解 设xx x x f 1)1(arcsin )(++=.由于0=x 是初等函数)(ln x f 的可去间断点,故 []⎥⎦⎤⎢⎣⎡++==→→→x x x x x x x f x f 100)1(arcsin lim ln )(lim ln )(ln lim⎥⎦⎤⎢⎣⎡++=→→xx x x x 100)1(lim arcsin lim ln1ln )0ln(==+=e e .19.解 首先在0≠x 时,分别求出函数各表达式的导数,即 当0>x 时,)11(1)()(12111x e xxeexe x f x xxx+=⋅+='='----当01<<-x 时,[]11)1ln()(+='+='x x x f .然后分别求出在0=x 处函数的左导数和右导数,即111lim )0(0=+='-→-x f x 0)11(lim )0(10=+='-+→+xe f xx 从而)0()0(+-'≠'f f ,函数在0=x 处不可导. 所以⎪⎪⎩⎪⎪⎨⎧<+>+='-0 110 )11()(1x x x x e x f x 20.解 )sin(y x y +=)cos()cos()1)(cos(y x y y x y y x y +'++='++=' ① [])1()sin()cos()1)(sin(y y x y y x y y y x y '++-'++''+'++-=''[]2)1)(sin()cos(1y y x y y x '++-=''+-)cos(1)1)(sin(2y x y y x y +-'++-='' ②又由①解得)cos(1)cos(y x y x y +-+='代入②得2)cos(1)cos(1)cos(1)cos(y x y x y x y x y +-⎥⎦⎤⎢⎣⎡+-+++=' []3)cos(1)sin(y x y x +-+-= 21.解 先出求)(x f 的一阶导数:)23(464)(223-=-='x x x x x f令0)(='x f 即0)23(42=-x x 解得驻点为23,021==x x .再求出)(x f 的二阶导数)1(121212)(2-=-=''x x x x x f .当232=x 时,09)23(>=''f ,故1627)23(-=f 是极小值. 当01=x 时,0)0(=''f ,在)0,(-∞内,0)(<'x f ,在)23,0(内0)(<'x f故 01=x 不是极值点.总之 曲线242)(x x x f -=只有极小值点23=x . 22.解 Θ 11)1(112222323+-=+-+=+-+=+x xx x x x x x x x x x x ∴ ⎰⎰⎰⎰+-=+-=+dx x xxdx dx x x x dx x x 1)1(12223 ⎰++-=++-=C x x x x d x )1ln(21211)1(21212222 23.解 由题设知1ln )(ln ln )ln ()(+='+='=x x x x x x x f 故⎰⎰+=⋅dx x x dx x f x )1(ln )( ⎰⎰+=xdx xdx x ln⎰+=222121ln x dx x[]22221)(ln ln 21x x d x x x +-⋅=⎰22221121ln 21x dx x x x x ⎰+-⋅=222121ln 21x xdx x x ⎰+-=C x x x +-=2241ln 21.24.解 Θ ⎰⎰⎰+⋅=+=+-∞→∞-∞-02020211lim 111a a dx x k dx x k dx x k 2)arctan (lim arctan lim 0π⋅=-⋅=⋅=-∞→-∞→k a k x k a a a又21102=+⎰∞-dx x k 故 212=⋅πk 解得π1=k .25.解 Θ123,622-=∂∂+-=∂∂y yf x x f 解方程组⎩⎨⎧=-=+-01230622y x 得驻点)2,3(),2,3(00-B A又 Θy f C f B f A yy xy xx 6,0,2=''==''=-=''= 对于驻点126,0,2:230-===-===y x y C B A A ,故0242>=-AC B∴ 驻点0A 不是极值点.对于驻点126,0,2:230-===-=-==y x y C B A B故 0242<-=-AC B ,又02<-=A .∴ 函数),(y x f 在)2,3(0-B 点取得极大值 30524189)2()2,3(3=+++--=-f26.解 由2x y =与2y x =得两曲线的交点为)0,0(O 与)1,1(A )0(2≥=y y x 的反函数为x y =.∴dx y y x dy y x dx dxdy y x x xx xD212222102)21()()(⎰⎰⎰⎰⎰+=+=+14033)1034172()21()21(105227104425=-+=⎥⎦⎤⎢⎣⎡+-+=⎰x x x dx x x x x 27.证 Θ⎰⎰⎰⎥⎦⎤⎢⎣⎡-=a aadx dx x f x dx x f 0020)()(dx dx x f dx x a aa ⎰⎰⎰⎥⎦⎤⎢⎣⎡-=0002)(⎰⎰⋅-=a aa dx dx x f x 0003)(31⎰-=a dx x f a a 03)(3∴3)()(3a dx x f a dx x f aa=+⎰⎰于是)1(3)(3+=⎰a a dx x f a.28.解 (1)先求函数的定义域为),0(+∞. (2)求y '和驻点:2ln 1xxy -=',令0='y 得驻点e x =. (3)由y '的符号确定函数的单调增减区间及极值. 当e x <<0时,0ln 12>-='xxy ,所以y 单调增加; 当e x >时,0<'y ,所以y 单调减少.由极值的第一充分条件可知ey e x 1==为极大值.(4)求y ''并确定y ''的符号:33ln 2xx y -='',令0=''y 得23e x =. 当230e x <<时,0<''y ,曲线y 为凸的;当23e x >时,0>''y ,曲线y 为凹的.根据拐点的充分条件可知点)23,(2323-e e 为拐点.这里的y '和y ''的计算是本题的关键,读者在计算时一定要认真、仔细。

相关文档
最新文档