10kV电压异常原因分析及处理措施

合集下载

10KV电压互感器运行故障原因分析及改进措施

10KV电压互感器运行故障原因分析及改进措施

10KV电压互感器运行故障原因分析及改进措施
首先,10KV电压互感器运行故障的原因之一是设备老化。

随着设备
的使用时间增加,电压互感器内部的绝缘材料和导电部件可能会出现老化
现象,导致绝缘能力下降,接触不良等故障产生。

为了解决这个问题,可
以定期进行检测和维护,对老化或损坏的部件及时更换。

其次,不合理的安装和使用也可能导致10KV电压互感器的故障。


安装过程中,如果没有正确连接接线和导线,或者固定不牢固,会导致互
感器内部接点松动或断裂。

此外,如果在使用过程中超过了互感器的额定
负载,也会导致故障。

为了避免这些问题,应确保正确安装,并根据额定
负荷要求合理使用。

另外,10KV电压互感器可能会受到外部环境的影响而出现故障。

比如,在潮湿的环境中,导致绝缘材料受潮并降低绝缘能力;在高温环境下,导致互感器内部绝缘材料软化等。

针对这些环境因素,可采取防潮、防水
等措施,确保互感器的正常运行。

此外,10KV电压互感器的故障还可能与质量问题有关。

例如,制造
过程中使用的材料质量不合格,或者生产工艺存在缺陷等。

因此,提高生
产质量控制,确保产品的可靠性和稳定性,是解决这一问题的关键。

综上所述,分析和改进10KV电压互感器运行故障需要多方面的考虑。

定期检测和维护,合理安装和使用,保护外部环境,提高产品质量等措施
都是必要的。

通过采取这些措施,可以提高10KV电压互感器的稳定性和
可靠性,延长其使用寿命。

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施10kV电压互感器是电力系统中常见的一种重要设备,它主要用于检测和测量电网中的电压变化,并将变压器的高电压信号转换为低电压信号,以供计量装置、保护装置和监控装置使用。

在实际使用过程中,电压互感器也存在着各种故障问题,这些故障可能会对电力系统的安全稳定运行产生不利影响。

对电压互感器的运行故障原因进行深入分析,找出故障根源并采取改进措施,对于提高电压互感器的可靠性和稳定性具有重要意义。

1、外部环境影响10kV电压互感器通常安装在户外或者变电站的室内,受到环境温度、湿度、灰尘等因素的影响。

长期暴露在恶劣的环境中,可能导致电压互感器的绝缘性能下降,出现击穿、漏电等故障。

2、设计制造缺陷电压互感器的设计制造质量直接影响着其性能和使用寿命。

如果在设计或者制造过程中存在缺陷,比如绝缘材料选择不当、工艺不严谨等问题,就会导致电压互感器在使用过程中出现故障。

3、操作维护不当操作维护不当是导致电压互感器故障的常见原因之一。

比如在清洁、维护和使用过程中,操作人员未能按照规定进行操作,对电压互感器的绝缘、连接等部分造成损坏或者松动,从而引发故障。

4、过载运行在电力系统运行中,电压互感器可能会遭受突发的过载电流冲击,如果电压互感器设计能力不足,就会导致其内部绕组过热、绝缘击穿等故障。

5、老化磨损二、改进措施1、加强绝缘保护针对外部环境因素的影响,可以在电压互感器的外壳上增加防水、防尘、防腐蚀的保护层,以防止湿气、灰尘等外部因素对电压互感器绝缘性能的影响。

加强设计和制造过程中的质量管理,严格按照相关标准进行设计和生产,选用优质的绝缘材料和工艺,确保产品质量达标,提高电压互感器的可靠性。

对操作人员进行规范的培训,提高其对电压互感器的操作和维护意识,定期对电压互感器进行检查和维护,确保其正常运行。

4、提高过载能力针对过载运行可能带来的问题,可以对电压互感器进行结构优化设计,提高其承受瞬时过载的能力,减少因此引起的故障。

分析10kV配电线路故障原因及运行维护检修措施

分析10kV配电线路故障原因及运行维护检修措施

分析10kV配电线路故障原因及运行维护检修措施现代工业生产中,电力设备是必不可少的重要设备之一,而配电线路作为电力传输的重要环节,一旦出现故障将会导致生产中断,给企业带来严重的经济损失。

对10kV配电线路的故障原因进行分析,并制定有效的运行维护检修措施,对保障生产稳定运行具有重要的意义。

一、10kV配电线路故障原因分析1. 设备老化10kV配电线路中的设备随着使用时间的增长,会逐渐老化,导致设备性能下降,甚至出现故障。

主要包括断路器、隔离开关、变压器等设备。

解决方法:定期进行设备的维护保养,及时更换老化设备,确保设备处于良好状态。

2. 温度影响温度是影响电力设备工作的重要因素,如在高温环境下,设备可能会因为过载而引起故障。

解决方法:对设备周围的温度进行检测,当温度超过设备允许的范围时,及时采取降温措施,确保设备正常工作。

3. 外部环境影响10kV配电线路所处的环境往往比较恶劣,例如受到风沙、潮湿等环境因素的影响,导致设备故障。

解决方法:在设备周围加装防护设施,保护设备不受外部环境的影响。

4. 施工质量10kV配电线路的施工质量直接影响设备的使用寿命及运行安全,如接头接触不良、电缆铺设不规范等问题都会引起故障。

解决方法:加强施工质量管理,采用先进的施工工艺和设备,确保施工质量符合标准要求。

二、10kV配电线路运行维护检修措施1. 定期检查定期对10kV配电线路进行全面的检查,包括设备的外观、温度、运行状态等,发现问题及时处理,确保设备安全运行。

2. 设备维护保养对10kV配电线路中的设备进行定期的维护保养工作,包括清洁、润滑、紧固,以及设备性能测试等,确保设备处于良好状态。

3. 故障预防通过对10kV配电线路故障的分析总结,制定相应的故障预防措施,包括提前更换老化设备、加强设备防护措施等,减少故障的发生。

4. 应急处理建立完善的应急处理机制,一旦发生故障,能够立即采取有效的措施进行处理,减少故障对生产造成的影响。

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施10kV配电线路是城市或乡村的主要电力配送系统之一,它承担着将高压电力输送到终端用户的重要任务。

由于各种原因,10kV配电线路可能会出现故障,导致停电或安全事故。

对于10kV配电线路的故障原因及运行维护检修措施的了解和掌握,对于保障电网运行安全和电力供应的稳定性至关重要。

一、10kV配电线路故障原因1. 天气原因天气原因是导致10kV配电线路故障的重要因素之一。

强风、暴雨、冰雪等极端天气可能导致电力设备的断线、短路,甚至设备损坏,进而引发停电事件。

2. 设备老化10kV配电线路中的电力设备经过长期运行,随着使用年限的延长,设备的性能可能会逐渐下降,导致设备老化、绝缘性能下降、接触电阻增加等现象,从而增加线路故障的风险。

3. 设备缺陷10kV配电线路中的电力设备可能存在制造缺陷或安装缺陷,这些缺陷可能随着时间的推移逐渐显现,并最终导致设备的故障和线路停电。

4. 外力破坏外力破坏是指外部因素(如施工、交通事故等)对10kV配电线路设备的非正常作用,可能导致设备的损坏、断线等故障现象。

5. 人为原因10kV配电线路的运行与维护需要人员进行操作和管理,如果操作不当或管理不善,可能引发线路故障。

过载操作、误操作、维护不到位等可能导致设备故障。

1. 定期检查对10kV配电线路中的主要设备进行定期检查,包括检查导线、绝缘子、变压器、避雷器、开关设备等,确保设备的正常运行。

2. 清洁维护对10kV配电线路中的设备进行定期清洁和维护,去除设备表面的杂物和灰尘,确保设备的绝缘性能和导电性能。

3. 防护措施加强10kV配电线路设备的防护措施,包括做好防雷、防风、防水等工作,确保设备在极端天气条件下的安全运行。

4. 线路勘察对10kV配电线路进行定期勘察,及时发现线路附近的外部危险因素,并及时处理,以减少外力破坏导致的故障事件。

5. 停电检修对10kV配电线路设备进行停电检修,并在安全措施下对设备进行维护、维修和更换,确保设备的正常运行。

小接地系统10kV母线电压异常原因分析及调度处理措施分析

小接地系统10kV母线电压异常原因分析及调度处理措施分析

小接地系统10kV母线电压异常原因分析及调度处理措施分析小接地系统是电力系统的一部分,主要用于发电厂、变电站等电力设施的地电位变化监测和电气设备的保护。

10kV母线电压异常可能会导致电力设备的故障,影响电力系统的正常运行。

本文将对造成10kV母线电压异常的原因进行分析,并提出相应的调度处理措施。

造成10kV母线电压异常的原因主要有以下几方面:1.负荷突变:当电力系统负荷突变时,如其中一供电点的负荷突增或突减,会引起10kV母线电压的异常变化。

例如,一些供电点的负荷突增,导致10kV母线电压下降;一些供电点的负荷突减,导致10kV母线电压上升。

2.输电线路故障:输电线路故障是引起电力系统电压异常波动的主要原因之一、例如,输电线路发生短路故障,会导致10kV母线电压瞬时下降;输电线路发生断线故障,会导致10kV母线电压瞬时上升。

3.发电机故障:发电机故障是引起10kV母线电压异常的另一个重要原因。

例如,发电机出现失磁故障,会导致10kV母线电压下降;发电机感应电压异常,会导致10kV母线电压上升。

针对以上原因,应采取相应的调度处理措施,以保障电力系统的正常运行:1.对于负荷突变引起的异常电压,可以通过增减发电机容量或调整负荷分配方式等方式来平衡系统负荷,以维持10kV母线电压稳定。

2.对于输电线路故障引起的异常电压,应及时采取故障线路隔离、检修和恢复供电等措施,以保障10kV母线电压的稳定。

3.对于发电机故障引起的异常电压,应及时检修或更换故障发电机,以恢复10kV母线电压的正常运行。

此外,还可以通过合理调整电力系统的调度策略,采用优化的电力调度算法来降低10kV母线电压异常的概率。

综上所述,造成10kV母线电压异常的原因较多,调度处理应根据具体情况采取相应的措施。

通过合理的负荷管理、线路维护和设备检修等措施,可以最大程度地减少异常电压对电力系统的影响,保障电力系统的正常运行。

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施10kV电压互感器是电力系统中重要的设备之一,它的运行状态直接关系到电力系统的安全稳定运行。

在实际运行中,10kV电压互感器常常会出现各种故障,给电力系统带来很大的风险和不便。

对10kV电压互感器运行故障进行深入分析,并提出改进措施,对于保障电力系统的安全运行具有重要意义。

1、设备老化10kV电压互感器在长时间运行过程中,设备内部绝缘材料会受到电气应力和环境因素的影响,导致绝缘老化,从而容易出现绝缘击穿和绝缘破坏现象。

设备的老化是10kV电压互感器故障的主要原因之一。

2、操作维护不当在日常运行中,操作维护不当也是引起10kV电压互感器故障的重要原因。

未按照规定周期进行检测维护,或者在操作过程中因疏忽大意导致设备损坏等。

3、外部环境因素外部环境因素包括温度、湿度、污秽度等,都会对10kV电压互感器的运行产生影响。

在高温高湿的环境下,设备可能会过载运行,导致设备损坏。

4、设计缺陷设备本身的设计缺陷也是引起10kV电压互感器故障的原因之一。

可能是在设计过程中考虑不周,导致设备在运行中存在隐患。

1、设备定期检测维护为了避免设备老化导致的故障,需要对10kV电压互感器进行定期检测和维护。

在检测过程中,可以对设备的绝缘电阻、温升、漏油情况等进行检测,及时发现问题并进行维修。

2、合理使用设备在日常操作中,需要合理使用设备,避免过载运行,以及避免在高温高湿环境下长时间运行。

还要严格按照设备操作规程进行操作,杜绝因为疏忽大意导致的设备损坏。

3、提高设备环境适应能力可以针对10kV电压互感器的外部环境因素进行改进,提高设备的环境适应能力。

增加设备的防潮性能、防尘能力等,使设备可以在恶劣的外部环境下正常运行。

4、优化设计在设备的设计阶段,需要充分考虑各种可能的工作情况和外部环境因素,进行充分的优化设计。

避免因为设计缺陷导致设备在运行中出现故障。

10kV配电线路故障原因分析及运行维护检修措施

10kV配电线路故障原因分析及运行维护检修措施

10kV配电线路故障原因分析及运行维护检修措施一、引言10kV配电线路是城市和乡村供电系统中的重要组成部分,其安全稳定运行关系到人民群众的生活和生产,因此对于配电线路的故障原因分析及运行维护检修措施至关重要。

本文将对10kV配电线路的故障原因进行分析,并提出运行维护检修的具体措施,以确保配电线路的安全稳定运行。

二、10kV配电线路故障原因分析1. 天气因素恶劣的天气条件是导致10kV配电线路故障的常见原因之一。

强风、雷电和大雨可能导致树木倒下、电杆倒塌、设备损坏等情况,从而引发电路短路或断路故障。

2. 落雷在雷电活跃的季节,落雷也是10kV配电线路故障的常见原因。

如果配电线路未设置良好的防雷设施或未进行及时维护,就会对线路设备造成损坏,甚至引发火灾等严重后果。

3. 设备老化设备老化是10kV配电线路故障的另一个重要原因。

随着设备的使用年限增长,设备的绝缘能力可能会下降,从而增加线路发生故障的概率。

设备的机械部件也可能因长期使用而出现磨损,导致设备的运行不稳定。

4. 人为因素人为因素也是导致10kV配电线路故障的一个重要原因。

未经授权的人员在不合适的情况下施工、擅自改动电缆或引线、未按规定操作设备等都可能造成线路故障。

5. 缺乏定期维护对于10kV配电线路来说,缺乏定期维护也是导致故障的一个常见原因。

设备长期使用或者长时间没有得到维护,会导致线路设备的老化、松动、腐蚀等问题,从而增加线路故障的概率。

三、运行维护检修措施1. 定期巡视对于10kV配电线路来说,定期巡视是保障线路安全稳定运行的重要手段。

电力供应企业应该进行定期的巡线工作,及时发现和解决可能存在的问题,防止故障的发生。

2. 设备防雷对于雷电活跃的地区,配电线路的设备应该进行防雷处理。

在电力设备上安装防雷设施,防止雷电对设备的损害,从而保障线路的安全运行。

3. 设备维护对于10kV配电线路的设备,应该进行定期的维护和检修,及时发现并解决设备的故障隐患。

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施
一、故障原因:
1. 接触不良:10kV配电线路中,由于线路所处环境复杂,可能存在接触不良的情况。

这种情况主要由于连接头、导线、绝缘子等部件的老化、损坏或者焊接不牢固等原因导
致。

2. 绝缘老化:长期使用的10kV配电线路中,绝缘材料容易老化。

在高温、潮湿等恶
劣环境下,绝缘材料会发生老化、变脆,降低其绝缘性能,从而容易引发故障。

3. 短路故障:10kV配电线路因为工作电压较高,一旦发生短路故障,由于大电流作用,可能导致设备的烧毁,进而造成线路故障。

4. 动物碰线:在一些农村地区,由于生活环境的特殊性,动物比较容易碰到10kV配
电线路,导致线路短路故障。

二、运行维护检修措施:
1. 定期巡视:对10kV配电线路进行定期巡视,检查线路的接触头、绝缘子、接地线
等部件的情况,及时发现问题并加以处理。

2. 绝缘测试:定期对10kV配电线路进行绝缘测试,测试绝缘材料的绝缘电阻是否符
合要求,如发现绝缘老化问题,及时更换绝缘材料。

3. 清理保护:定期清理10kV配电线路周围的树枝、杂草等杂物,避免这些杂物对线
路的短路故障产生影响。

4. 增强电气安全意识:加强对工作人员的安全教育培训,提高他们的电气安全意识,避免因操作不当引发线路故障。

5. 安装防护设备:在10kV配电线路上安装防鸟网、防猴子器、避雷器等设备,防止
动物碰线引发故障。

6. 及时处理故障:一旦发生10kV配电线路故障,需要及时进行处理,排除故障点,
确保线路的正常运行。

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施10kV电压互感器是电力系统中重要的电气设备,用于测量和监测高压电力系统中的电压变化。

在运行过程中,电压互感器也会出现各种故障,影响电力系统的正常运行。

对10kV电压互感器运行故障原因进行分析,并提出改进措施,对于提高电力系统的稳定性和可靠性具有重要意义。

1. 绝缘老化10kV电压互感器在长期运行过程中,绝缘材料会遭受电场、热场和环境等多方面影响,逐渐老化变质,导致绝缘性能下降,甚至出现击穿故障。

2. 温度过高电压互感器在运行过程中,由于工作电流过大或环境温度过高等原因,导致内部温度过高,加速了设备内部材料老化,降低了设备的工作性能。

3. 外部环境影响10kV电压互感器安装在户外,受到风雨、阳光等自然环境的侵蚀,外部绝缘子表面会积聚灰尘、杂物,导致绝缘子表面电阻增加,增加了放电风险。

4. 设备安装不合理电压互感器的安装位置、接线方式不合理,导致设备的电气连接不良,影响了设备的工作性能和稳定性。

5. 负载的影响10kV电压互感器在负载运行时,如果负载波动较大,设备内部的磁通也会发生变化,从而影响了电压互感器的输出性能。

6. 制造质量不合格电压互感器在制造过程中存在缺陷,如绝缘材料质量不合格、工艺不到位等,导致设备运行不稳定,容易发生故障。

1. 定期检测绝缘老化定期检测10kV电压互感器的绝缘性能,及时发现绝缘老化情况,并采取绝缘处理措施,延长设备的使用寿命。

3. 加强设备维护定期清洁电压互感器外部绝缘子表面,避免污浊物影响设备的绝缘性能,保证设备的安全运行。

5. 优化负载运行对负载运行情况进行监测和分析,采取措施稳定负载运行,减小负载波动对电压互感器的影响。

6. 加强质量管理加强对电压互感器制造过程的质量管理,确保制造工艺的合理性和制造质量的稳定性,提高设备的可靠性和稳定性。

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施10kV电压互感器是电力系统中非常重要的设备,用于测量电压和互联电气设备。

由于长期工作环境和操作人员的使用不当,电压互感器经常会发生故障,导致电力系统运行不稳定。

对10kV电压互感器的运行故障原因进行分析,并提出改进措施,对于保障电力系统的稳定运行具有重要意义。

1. 环境因素影响10kV电压互感器通常安装在户外,受到天气、温度变化等自然环境的影响。

长期暴露在潮湿、高温或寒冷环境下,可能导致绝缘性能下降,引起故障。

2. 维护不及时由于10kV电压互感器长期运行在高压和高温环境下,需要定期进行维护和检修。

如果维护和检修不及时,可能会导致电压互感器内部部件老化、磨损,从而引起故障。

3. 操作人员使用不当操作人员在使用10kV电压互感器时,经常需要对设备进行操作和调试。

如果操作人员对设备操作不规范,可能会导致设备损坏或故障。

4. 设计和制造质量问题部分10kV电压互感器的设计和制造质量存在一定问题,可能会导致一些潜在的故障隐患,在长期运行后可能引发故障。

5. 长期负载运行10kV电压互感器通常需要长时间处于负载运行状态,加速了设备内部部件的老化,降低了设备的使用寿命,有可能导致故障。

二、改进措施1. 加强维护和检修定期对10kV电压互感器进行维护和检修,可以延长设备的使用寿命,减少故障的发生。

特别是对设备的绝缘性能进行定期检测和维护,保证其在长期高压运行下的安全可靠性。

2. 提高设备的耐久性针对10kV电压互感器长期处于负载运行的特点,可以通过改进材料和工艺,提高设备的耐久性,降低部件老化速度。

4. 加大对设备质量的把关在选购10kV电压互感器时,应加大对设备质量的把关,选择正规厂家的产品,确保设备的设计和制造质量。

5. 完善故障预警机制建立完善的故障预警机制,对10kV电压互感器的运行状态进行实时监测和分析,一旦发现异常情况及时进行处理,可以避免故障的发生。

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施一、前言随着电力系统的不断发展,10kV配电线路在电网中的重要性越来越凸显。

作为城市和乡村供电的主要形式,10kV配电线路承担着输送和分配电能的重要任务。

10kV配电线路在运行过程中不可避免地会出现各种故障,这不仅会给供电系统的正常运行带来影响,也会影响广大用户的用电。

对10kV配电线路的故障原因及运行维护检修措施进行深入研究和总结,对保障供电系统的稳定运行具有重要意义。

二、10kV配电线路故障原因1. 天气原因:恶劣的天气条件是导致10kV配电线路发生故障的主要原因之一。

雷电、大风、暴雨等极端天气情况会导致线路设备遭受损坏,甚至造成短路、弧光等故障。

2. 线路老化:10kV配电线路长期使用后,线路设备可能会出现老化,导致绝缘子、导线、接头等设备的损坏,从而引发故障。

锈蚀、腐蚀等也是导致线路老化的主要原因。

3. 人为原因:不当的操作、施工、维护等人为因素也是10kV配电线路故障的主要原因之一。

未按要求进行设备维护保养、未按规范进行施工或操作等会导致线路设备损坏。

4. 设备故障:线路设备自身的设计、制造和安装质量问题都可能会导致设备故障,例如设备短路、漏电等问题。

5. 供电系统故障:10kV配电线路的正常运行还依赖于整个供电系统的支持,供电系统的故障也会间接导致10kV配电线路的故障。

10kV配电线路故障的原因是多方面的,涉及到自然因素、设备老化、人为因素、设备质量和整个电力系统等方面的问题。

1. 加强设备巡视和检查:定期对10kV配电线路的设备进行巡视和检查,发现问题及时处理,确保设备的正常运行。

2. 强化维护保养工作:对10kV配电线路的设备进行定期维护保养,及时更换老化设备,清理设备表面的污垢和杂物,做到设备清洁、干燥。

3. 完善操作规程和安全标准:制定合理的操作规程和安全标准,加强员工的操作培训和安全意识教育,降低人为因素导致的故障发生率。

4. 强化防护措施:加强对10kV配电线路设备的防护工作,如安装避雷设备、降温设备等,提高设备的抗雷击能力和抗风险能力。

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施

10kV配电线路故障原因及运行维护检修措施一、故障原因:1. 线路短路:可能是因为树木、建筑物等物体接触到了线路,或者因为绝缘子等设备损坏导致的电气短路。

2. 线路断线:可能是由于线路老化、腐蚀、金属松动等原因导致的线路断裂。

3. 绝缘子出现故障:绝缘子是保护线路的重要设备,当绝缘子损坏或老化时,会导致线路出现故障。

4. 接地故障:接地故障可能是由于接地装置松动、接触不良等原因导致的。

5. 耐压不足:线路在运行过程中,如果绝缘性能不良或者耐压不足,可能导致电压突然升高或突然降低,从而引发故障。

6. 维护不到位:如果线路的日常维护没有及时进行或者不到位,可能导致设备老化、损坏,从而引发故障。

二、运行维护检修措施:1. 定期巡视检查:定期对线路进行巡视检查,查找潜在故障隐患,如有发现问题应及时处理。

2. 清理障碍物:定期清理线路周围的树木、建筑物等障碍物,确保线路没有外界干扰。

3. 检查绝缘子:定期检查绝缘子的状况,如有损坏或老化现象,应及时更换。

4. 维护接地装置:定期检查接地装置的接触情况,如有松动或接触不良,及时进行维护。

5. 检查线路压力:定期检查线路的电压情况,确保线路的耐压能力正常。

6. 日常维护记录:建立完善的维护记录,对线路的维护情况进行记录,及时排查问题。

7. 培训维护人员:定期对维护人员进行培训,提高其维护技能和意识,确保线路的正常运行。

总结:10kV配电线路故障原因多种多样,要确保线路的正常运行,需要进行定期的巡视检查和维护工作,根据不同情况采取相应的修复措施,同时也需要加强维护人员的培训和意识提高。

只有做好线路的维护工作,才能确保电力系统的安全稳定运行。

10千伏线路电压不平衡原因及解决方法

10千伏线路电压不平衡原因及解决方法

10千伏线路电压不平衡原因及解决方法配电网的正常运行关系着人民群众的用电安全,对整个社会的生产生活有十分重要的作用,是我国社会发展的重要保证。

但是,配电线路中10千伏线路电压不平衡问题,会对配电网的运行产生极大的影响。

随着社会的发展和电力企业技术的不断更新,配电设备在不同的电压条件下,出现了不同的配电线路,共同组成了我国电力企业的配电网组织。

在高压领域,10千伏线路的优势非常明显,由于其所跨的里程最长, 10千伏线路的故障也最多,电压不平衡就是其中最常见的故障之一。

一、10千伏线路电压不平衡的一般故障10千伏线路电压不平衡的一般故障,主要分为:第一,如果配电线路中出现一相电压变成了零,或者是一相电压还没有到零,但是其他两相电压升高,却依然低于线电压,这时就可以判断,故障是单相接地故障。

常见的单相接地故障的产生原因主要有:配电线路与具备电能的无图或者设备距离太近;配电线路由于异物搭接造成的故障;配电设备被雷击。

10千伏线路的用户侧接地故障形成的故障,还有其他一些原因影响,导致出现配电线路电压不平衡的结果[1]。

第二,如果配电线路中出现了一相电压下降,但是还没有变成了零,但是其他的两相电压升高,却高于线电压,这时就可以判断,故障是谐振过电压故障。

如果三相电压出现了有顺序的轮流升高的现象,而且升高范围不在同一个范围内,并且三相电压一直处于摇摆不定的状态,这是应该判定为谐振过电压故障。

第三,如果配电线路中出现了一相电压变成了零,但是其他两相电压却没有发生变化,这时就应该判定为由于电压变化,导致单相熔丝熔断。

第四,如果配电线路中出现了一相电压出现了断相,那么,这时配电线路的三相电压就不平衡,然后就会出现接地信号故障。

这时断线的一相,以及中性点出的线路电压,就会不断增大,同时,没有断线的两相电压相同,这两相电压会同时降低,此时,配电修路的供电功率也会减少,这时就可以判定故障的原因为配电线路断线,导致其发生故障。

10kV配电线路故障常见原因及防范措施

10kV配电线路故障常见原因及防范措施

10kV配电线路故障常见原因及防范措施随着现代化的电力系统在全球范围内的逐步建设,10kV配电线路的应用越来越广泛。

然而,由于配电线路的复杂性和使用条件的不稳定性,配电线路故障的发生率并不低。

为此,本文将介绍10kV配电线路故障的常见原因及防范措施。

一、故障原因(一)设备老化随着配电设备的运行,其机械和电气性能会逐渐退化,导致设备老化。

这可能导致各种故障,例如设备内部的电弧故障、开关跳闸等。

(二)设备操作不当在10kV配电系统中,设备的操作不当是导致故障的另一种常见原因。

例如,误操作或操作错误、电动机启动电流过大或负载过大等情况都可能导致故障。

(三)环境因素环境因素也是导致配电线路故障的一种常见原因。

例如,闪电击中、排放电压等都可能导致故障,这些都对配电设备造成了损坏。

(四)维护不当由于不良维护,例如接地不良、电绝缘损坏等缺陷没有及时发现和处理,可能会导致故障。

二、防范措施(一)定期检测定期检测和维护是预防设备老化故障的最有效手段。

检查包括设备的物理、电气和绝缘性能等的测试。

(二)培训员工为了降低误操作和操作错误的风险,需要对员工进行培训,以提高员工的操作技能和认识。

(三)维护和保养为了保证设备的性能和使用寿命,需要定期进行维护和保养。

例如,清洁和润滑配电设备以确保其正常运行,及时更换损坏的部件。

(四)环境管理为了保护设备免受环境因素的影响,需要对配电线路环境进行管理。

例如,对于受雷击的线路,应安装防雷设备,对于受水淹的线路,应及时排水。

(五)应急响应计划要应对配电线路故障,需要制定有效的应急响应计划。

该计划应考虑到各种可能的事件,包括设备故障、自然灾害等,及时采取适当措施以减轻灾害损失和恢复设备运行。

总之,10kV配电线路故障的防范需要综合考虑各种因素,通过定期检测、员工培训、维护和保养、环境管理以及应急响应计划等综合措施,减少故障的发生率,提高电力系统的可靠性和安全性。

10kV线路常见故障分析及防范措施

10kV线路常见故障分析及防范措施

10kV线路常见故障分析及防范措施10kV线路是电网输电系统中常见的一种电压等级,在运行过程中,会出现各种故障。

对于10kV线路的常见故障进行分析并采取相应的防范措施,可以有效保障电网的安全稳定运行。

下面就为大家介绍10kV线路常见故障的分析及防范措施。

1. 短路故障10kV线路短路故障是线路上电气设备或线路本身出现漏电导致电流过大而发生的一种故障。

一般来说,短路故障发生后,会导致线路电压下降,甚至断路,从而影响电网供电质量。

2. 接地故障接地故障是指线路或线路设备发生漏电导致电流通过地面接地故障。

这种故障一般会引起线路电压降低,甚至会使线路设备过载、烧坏等严重后果。

3. 绝缘故障10kV线路绝缘故障是指线路或线路设备的绝缘受到外界因素破坏而导致的故障。

这种故障一般会导致线路设备损坏,严重情况下还会引发火灾等事故。

以上就是10kV线路常见故障的分析,下面将为大家介绍相应的防范措施。

1. 加强设备维护管理针对10kV线路常见的短路、接地、绝缘和过载故障,首先要加强对线路设备的日常维护管理。

定期对设备进行检查、清洁和维修,确保设备运行正常,减少故障发生的可能性。

2. 定期检测绝缘电阻为了预防10kV线路的绝缘故障,需要定期对线路设备的绝缘电阻进行检测。

定期检测绝缘电阻,可以及时发现绝缘存在问题的设备,采取措施进行维修或更换,从而降低绝缘故障的发生率。

3. 安装过载保护装置为了预防10kV线路的过载故障,可以在线路设备上安装过载保护装置。

过载保护装置可以及时监测设备的工作状态,一旦发现过载情况,立即切断电源,避免设备过载损坏。

4. 建立健全的故障应急预案针对10kV线路常见的短路、接地、绝缘和过载故障,需要建立健全的故障应急预案。

一旦发生故障,可以迅速进行应急处置,避免故障扩大造成更严重的后果。

5. 进行定期的故障排查为了及时发现10kV线路上存在的潜在故障隐患,需要进行定期的故障排查。

在排查的过程中,对线路设备进行全面检查,并对可能存在的问题进行修复,减少故障的发生可能性。

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施随着电力系统的不断发展,电力变压器作为输配电设备的重要组成部分,在电网中起着至关重要的作用。

而电压互感器作为电力变压器的附属设备,具有测量电压、保护系统以及离线检测等功能。

但随着电力系统的不断升级,电压互感器也逐渐出现运行故障,影响系统的可靠性和安全性。

本文将结合具体案例,从故障原因分析、解决方案、技术改进等方面,对电压互感器的运行故障进行深入剖析。

一、故障原因及分析1.负载过大负载过大是电压互感器运行故障的主要原因之一。

其主要表现为电流过载,从而导致绕组发热、变形甚至损坏,进而影响电流互感器的测量精度。

2.环境温度过高环境温度过高会引起绝缘材料老化加速,使互感器的绝缘性能下降。

另外,高温环境下容易引起设备内部部品松动或膨胀,使设备内部失衡、不均衡而导致噪声增大,影响仪表的精度。

3.电力系统电压突变电力系统电压突变不仅对电压互感器的绝缘性能产生冲击,而且会对互感器的磁芯和绕组产生电击和机械冲击,从而引起互感器失效。

4.残留电荷在互感器运行过程中,由于高压绕组间的残留电荷,可能导致电荷放电产生激烈的电弧,从而损坏设备。

二、解决方案1.加强设备维护保养定期对设备进行检查、测试,及时清洁、更换设备内部零部件,保证设备的正常运行。

2.做好环境保护加强设备绝缘保护,定期检查绝缘强度和干燥状况,同时对设备进行必要的绝缘处理。

3.完善电网管理在电力系统运行过程中,及时发现和解决电压突变等问题,保证电网的稳定性和安全性。

4.提升设备技术性能采用高品质的原材料和生产工艺,提高设备的使用寿命和抗干扰能力,提升电压互感器的测量精度。

三、技术改进1.采用大波比互感器在电压互感器的设计中增加大波比,即高压绕组次数与低压绕组次数之比增大的技术,可以提高互感器测量精度。

2.采用高性能材料采用具有较高绝缘性能和耐高温性能的材料,可以有效减少设备在高温环境下失效的可能性。

3.采用新型雷电保护措施采用新型的雷电保护器件,可以防止电压互感器由于雷电等异常情况导致的故障和损坏。

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施

10kV电压互感器运行故障原因分析及改进措施随着电力行业的快速发展,电网的迅速扩容和升级,互感器作为电力系统中重要的测量设备,起到了不可或缺的作用。

而在互感器的运行过程中,如果出现故障,不仅会给电网带来安全隐患,同时还会影响电力系统的正常运行。

因此,本文将对10kV电压互感器常见的运行故障原因进行分析,并提出改进措施,以提高互感器的运行可靠性和稳定性。

1.安装质量不高互感器的安装质量直接关系到互感器的使用寿命和运行稳定性。

如果安装不规范,例如安装不平、安装方向不正确等,都会导致互感器在使用过程中产生误差或永久性损坏。

2.连接线路松动互感器的连线松动是一种常见的故障现象。

如果互感器的连线不牢固,随着系统运行不断摆动、晃动,互感器与其它配电设备之间的接触可能会变差,导致数据误差。

3.湿度过高互感器是一种精密的测量设备,当湿度过高时,容易导致互感器内部出现短路、接触不良等故障,严重影响互感器的测量精度。

互感器在工作时,会因为负载电流的变化而产生热量,因此如果温度过高,将很容易导致互感器损坏甚至爆炸。

温度过高的原因可能是连线过长、散热不良或散热器堵塞等。

5.外力冲击互感器在运行过程中,可能会遭受外力冲击,例如抗震支架的故障、设备运输时碰撞等。

这些外力可能导致互感器内部元器件松动、短路等故障。

6.老化、磨损互感器在长期使用过程中,可能会因为磨损、老化等原因而导致故障。

例如互感器绝缘老化导致受潮、短路等。

以上就是10kV电压互感器运行故障的常见原因,下面将对改善10kV电压互感器的运行稳定性提出以下措施。

二、改进措施正确的互感器安装方式,能有效减少互感器在使用过程中产生误差或永久性损坏的概率。

采用优质、耐用的安装件,并按照标准安装,在安装后需要进行测试,确保互感器的安装质量。

2.加强维护互感器的安装、运行和维护必须严格按照规定进行,包括定期巡检、清洁、校准和维护等。

定期检查互感器的接线、散热器、绝缘状况,及时处理发现的故障。

10kV配电线路故障查找和处理措施

10kV配电线路故障查找和处理措施

10kV配电线路故障查找和处理措施一、引言10kV配电线路是城市和乡村电力配送系统中非常重要的一部分,它将高压电能输送到各个地方,为人们的日常生活和各种工业生产提供电力支持。

由于各种原因,10kV配电线路也难免会发生故障,为了确保电网的稳定运行,及时处理和检修这些故障是至关重要的。

本文将介绍10kV配电线路故障查找和处理的一般流程和方法。

二、故障分类10kV配电线路的故障一般可以分为两大类:短路故障和断路故障。

1. 短路故障:指两个或多个相之间或相与地之间的电路,由于某种原因而发生了电性接触,使电流异常增大,一般会伴随着电弧和火花现象。

2. 断路故障:指10kV配电线路某一部分由于外力作用或因其他原因断断续续地导通,从而使电路不能正常传导电流。

三、故障查找1. 定位故障地点:故障发生后,首先需要确认故障所在的具体位置。

可以通过电力监测系统、巡线等方式来确认故障地点。

如果是短路故障,通常会有烟雾和火花等现象,可以通过目视确认;如果是断路故障,则需要使用测试仪器来进行测量。

2. 排查可能原因:故障发生后,需要对可能的原因进行排查。

可能的原因包括设备老化、外部损坏、环境影响等等。

如果是短路故障,需要检查设备是否烧坏或有破损现象;如果是断路故障,则需要检查连接处和绝缘情况。

3. 进行测试检验:确认故障地点和可能原因后,需要进行一系列的测试检验,包括电流测试、电压测试、绝缘测试等。

这些测试可以帮助确认故障的性质和具体位置。

四、故障处理1. 切断电源:在确认故障地点和性质后,需要及时切断故障部分的电源,以确保人员和设备的安全。

2. 更换损坏设备:如果是设备老化或损坏导致的故障,需要及时更换相关设备或零部件。

需要注意的是,更换设备时需要确保设备的规格和型号与原来一致,并严格按照相关操作规程进行。

3. 绝缘处理:如果是由于绝缘破损导致的故障,需要对绝缘进行修复或更换。

对于绝缘处理,需要特别严谨和细心,确保绝缘处理的质量,以防止二次故障的发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10kV电压异常原因分析及处理措施10kV电压异常原因分析及处理措施摘要:本文对电网实际运行中时常出现的10kV电压异常现象的原因进行分类,并逐一研究分析其产生机理,从而引出处理10kV电压异常措施的思路。

关键词:电压异常;负荷;接地;断线;消弧线圈;谐振0 前言电压的异常直接影响设备的运行技术指标、经济指标,甚至导致用户的用电设备无法正常工作,电网的安全与经济运行遭至破坏。

10kV母线是调度部门可以进行电压调控的最后一级母线,也是最直接影响用户电压质量的母线。

因此对10kV电压异常产生的根本原因进行分析研究,对消除电压异常和保障电网安全运行具有十分重要的意义。

1 负荷变化引起的电压偏移根据相关调压原则要求:变电站和直调电厂的10kV母线正常运行方式下的电压允许偏差为系统额定电压的0%―+7%。

而在实际电网运行中,在白天用电高峰时段,10kV母线可能低于10.0kV下限,在深夜用电低谷时段,10kV母线也可能高于10.7kV上限。

造成电网正常运行中电压偏移的原因是不同大小的功率在电网元件中传输会产生不同的电压降落。

功率由系统通过110kV降压变压器经变压后到达10kV母线,其等值电路图和相量图如图1所示。

在上图中,为归算到110kV变压器10kV侧的一次电压,为110kV变压器的二次电压,即10kV母线电压,S为传输的视在功率,为归算到110kV变压器10kV侧的传输电流,φ为与的相位差,XT为110kV变压器归算到二次侧的等值电抗,RT为110kV变压器归算到二次侧的等值电阻。

图中,就是电压降相量,即(RT+XT),将电压降相量分解为与二次电压同方向和相垂直的两个分量和。

称为电压降落的纵分量,称为电压降落的横分量。

而在电网实际计算中,由于电压降横分量很小,可以忽略不计,因此,其电压降可以省略简化成仅为电压降落的纵分量,以ΔU表示。

由图3可得ΔU的模值为,将、、代入上式可得,因此可以得出,10kV母线电压与传输功率的关系公式为:由上式可知,通过减少传输的有功负荷P、无功负荷Q、电阻RT和电抗XT,或者提高110kV侧电压U1的方法,可以减少电压降落,提高10kV电压;反之则降低10kV电压。

由此可以得出负荷变化引起的电压偏移的处理措施:(1)通过增减无功功率Q,如投退并联电容器、并联电抗器;(2)改变变压器的电阻R和电抗X,如改变变压器的分接头,从而改变有功功率和无功功率的分布;(3)改变上一级系统电压U,如改变发电机、调相机的无功功率出力;(4)特殊情况下采用调整用电负荷或限电(减少有功功率P)的方法调整电压;2 单相接地引起的电压越限10kV电网属于中性点不直接接地系统,当发生单相接地故障时,由于与变压器中性点不能构成短路回路,因此没有短路电流,仅有不大的对地电容电流流过,对电气设备基本无影响。

但中性点发生偏移,对地具有电位差,其相间电压不平衡,故障相对地电压下降为0,非故障相对地电压升高到线电压,如图2所示。

由图2可见,UE为额定相电压,10kV电网正常时,三相对地电压大小相等,相位对称,可以得出而零序电压,即没有零序电压,因此也没有零序电流。

当10kV电网发生单相接地(如A相接地)时,A相对地电压为零,即=0,电源中性点电压不再与地电位相等,而是升高到相电压,,而B、C相对地电压也相应地升高为线电压,分别为系统中出现零序电压,其大小为相电压,其产生的零序电流流经接地点,其大小为非故障相产生的对地电容电流之和。

虽然10kV系统单相接地时故障点电流很小,而且三相之间的线电压仍然对称,对负荷的供电没有影响,允许继续运行,但是在单相接地以后,非故障相电压升高到线电压,为了防止故障进一步扩大到两点、多点接地短路,应该及时采取措施消除接地故障。

作为调度员,若现场配置接地选线装置的,则断开其选中的线路开关,隔离单相接地故障;若没有配置接地选线装置的,则根据母线电压变化,采用“瞬停法”瞬间断开线路开关来判断单相接地线路;若“瞬停法”无法找到单相接地线路,则可能是两条及以上线路同名相接地或母线单相接地,这就需要将母线上所有开关断开,逐一合上开关来判断接地设备。

3 消弧线圈投入引起的不平衡电压放大由上一节可知,当发生单相接地故障时,接地点将通过10kV电网的全部对地电容电流。

如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,可能会导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。

因此要在中性点装设消弧线圈,利用其感性电流补偿接地故障时的容性电流,使接地故障电流减少,从而自动熄弧,保证继续供电,如图3所示。

由图3可得,消弧线圈发挥最佳作用是电网出现单相接地故障后,实现全补偿,接地电容电流IC全部被消弧线圈的电感电流IL所补偿,即IL=IC,通过故障点的电流为零,从而使得电弧自动熄灭,达到灭弧的目的。

而实际上,消弧线圈并没有采用全补偿的补偿方式,那是因为在10kV经消弧线圈接地系统正常运行时,中性点的位移电压U0的大小为,上式中,d表示10kV电网的阻尼率,,表示10kV电网的脱谐度,UN为消弧线圈未投入时中性点不平衡电压值。

由上式可见,若消弧线圈未投入前系统已经不平衡,在电网阻尼率一定的情况下,脱谐度越小,中性点电压越高,放大作用越强,将加剧系统的不平衡。

脱谐度等于零即谐振补偿时,中性点电压最高。

为了保证正常运行时中性点电压的偏移不超过规定值,应采取避免谐振补偿的措施,即尽量在较大的过补偿或欠补偿运行,增大脱谐度v,或者采取措施增大系统的阻尼率d。

另外,在以架空线路为主的电网中,采用线路换位的措施,可以减少三相导线对地电容的不对称度,从而减少中性点的不平衡电压值UN。

调度员若确认三相电压不平衡过大是由于消弧线圈引起的,则应该将消弧线圈退出运行,重新整定消弧线圈的脱谐度。

4 电压互感器断线引起的显示电压失真当电压互感器发生断线故障时,二次电压输出就会异常下降,可能会造成继电保护或自动装置误动作,调度员若因为电压显示下降作出误判而进行不必要的操作,可能会危及电力系统的安全稳定运行。

T在电力系统运行中,用得最广泛的是YN-yn-d型接线的电压互感器,如图4所示。

图中,其一次线圈接成星形中性点接地,二次主线圈也接成星形中性点接地,辅助线圈接成开口三角形。

这种接线方式使得二次设备既可以取得相电压,又可以取得线电压,还可以取得零序电压。

由图4可得,二次零序电压,其中KV为一次线圈与开口三角形辅助线圈的匝数比。

在电力系统正常运行时,若电压互感器发生二次主线圈单相或多相熔断,相应的二次输出相电压为0,而由于电压互感器一次线圈三相对称,则UA+UB+UC=0,即二次零序电压Umn 输出也为0。

因此可以根据相电压与零序电压同时为0而判断出电压互感器二次断线故障。

当电压互感器一次侧发生熔断故障时,若三相全部熔断,相当于停运电压互感器,显然相电压与零序电压二次输出皆为0;若非三相全部熔断,相应的二次相电压输出为0,而由于电压互感器一次线圈三相电压不对称,导致二次零序电压输出不为0。

这种一相电压下降为0和零序电压大幅升高的情况与10kV中性点不接地系统发生单相接地故障时相似,容易造成调度员的误判。

通过非故障相电压是否升高或者是否有电压互感器断线信号发出来判断究竟是电压互感器断线故障还是10kV系统发生单相接地故障。

在确定是电压互感器断线故障后,调度员应该将其转检修处理。

5 运行操作中引起的谐振过电压在10kV中性点不接地系统中,容易激发起持续时间较长的铁磁谐振过电压,其中,最常见的是铁磁式电压互感器引起的铁磁谐振过电压,是造成事故较多的一种内部过电压,其危害轻则使得电压互感器熔断器熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器导致系统停运。

故以此为例进行分析,如图5所示。

图中,E为各相电源电势,C为线路等设备的对地电容,L为电压互感器的励磁感抗。

一般情况下,各相对地电容的容抗C小于电压互感器的励磁感抗L,因此整个10kV网络对地呈容性且基本对称。

但铁磁式电压互感器的励磁感抗L会随着其通过的电流大小而变化,系统正常时,电压互感器铁芯处在不饱和状态,其励磁感抗L相应地保持常数;当系统中出现某些波动时,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使得电压互感器的励磁电流过大,铁芯发生三相不同程度的饱和,励磁感抗L的值随之大大下降,以致破坏了电网的对称,电网中性点就出现较高的位移电压,造成铁磁谐振过电压。

以A相接地为例,10kV系统中非故障相(B、C相)对地电压会升高倍,使得铁磁式电压互感器B、C相的铁芯饱和,励磁感抗L大大减少,即XL=XC,因此B、C相的负荷呈感性,可用一个等效电感来表示,而A相由于接地后电压下降,电压互感器的铁芯不是运行在饱和状态,因此A相的负荷仍呈容性,可用一个等效电容来表示,将A相接地后的等效电路进一步简化后,如图6所示。

(下转第178页)(上接第140页)由图6可见,显然是一个串联电路,若容抗等于感抗就发生串联谐振,即,因此,消除谐振的主要办法就是要破坏产生谐振的条件,即改变系统的感抗、容抗等参数。

以铁磁式电压互感器器为例,其采取的措施有:在电压互感器的二次绕组开口三角处接入阻尼电阻或消谐器;在电压互感器一次侧中性点接地线上接入电阻增大阻尼;选用铁芯不易饱和的电压互感器等。

调度员在操作前应考虑采取防止谐振发生的措施,如母线送电时,采用线路和母线一起充电的方式,或者对母线充电前退出电压互感器,充电正常后再投入电压互感器,或者将变压器中性点接地或经消弧线圈接地等。

在操作过程中,若发生谐振过电压,应当迅速合上或断开某些设备开关,改变系统电感或电容参数,破坏谐振条件,消除谐振。

6 结语本文将10kV电压异常的情况分为负荷波动、单相接地、消弧线圈投入、电压互感器熔断及谐振五类,对其产生的机理进行逐一分析,为运行人员和调度员辨识10kV电压异常的原因提供依据,从而提高运行人员与调度员处理10kV电压异常的效率,保证电网安全和用户的电压质量。

参考文献:[1]莫广坚.PT断线与系统接地的判据分析.科协论坛,2009(12).[2]杜景远,崔艳.浅谈PT断线、系统接地、母线失压的判据[J].继电器,2002(01).[3]高汝武,许建安.电压互感器断线分析[J].水利科技,2004(01).[4]陈贤明,王彤.三相联接的电压互感器断线分析[J].电气技术,2006(10).[5]何?F.自动调谐消弧线圈投入引起谐振过电压的原因[M].高电压技术,2007.。

相关文档
最新文档