BAK1 and BKK1 Regulate Brassinosteroid

合集下载

高级植物生理复习资料

高级植物生理复习资料

高级植物生理学一名词解释(仅供参考)1植物生理学:高级植物生理学是一门研究植物生命规律及其调控的综合学科2核孔(nuclear pore):核膜是细胞核与细胞质之间的界膜,但核膜不连接,上有许多小孔,这就称为核孔。

它实现核质之间频繁的物质交换和信息交流3水势(water potential);就是每偏摩尔体积水的化学势差,即体系中水的化学势与纯水化学势之差除以水的偏摩尔体积所得的商.4渗透势(溶质势):由于溶质的存在而使水势降低的值,其值为负.5压力势(pressure potential)由于细胞壁压力的存在而引起的细胞水势增加的值,其为正值.6水孔蛋白(aquaporin):研究发现植物细胞质膜和液泡膜上有一类膜内蛋白,其多肽链穿越膜并形成孔道,特异的允许水分子通过,具有高效转运水分子的功能,这类蛋白被称为水孔蛋白.7胞间连丝:在初生纹孔场上集中分布着许多小孔,细胞的原生质细丝通过这些小孔,与相邻细胞的原生质体相连。

这种穿过细胞壁,沟通相邻细胞的原生质细丝称为胞间连丝。

是细胞间物质运输与信息传递的重要通道,通道中有一连接两细胞内质网的连丝微管8微体:含有酶的单层膜囊泡状小体,与溶酶体功能相似,但所含酶不同于溶酶体9渗透作用(Osmosis)指两种不同浓度的溶液隔以半透膜,水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。

或水分子从水势高的一方通过半透膜向水势低的一方移动的现象。

10高渗溶液(hypertonic solution):将细胞(或生物体)浸入某种溶液中时,水从细胞向外部渗出,这种溶液显示高渗性,称为高渗溶液11低渗溶液:如果水向细胞内渗入,则表示溶液为低渗性,则称为低渗溶液12等渗溶液:细胞内外浓度相等的溶液13质壁分离:指的是成熟的植物细胞在外界溶液浓度较高的环境下,细胞内的水分会向细胞外渗透,进而失水导致原生质层和细胞壁收缩,而细胞壁的伸缩性要小于原生质层,所以产生了这种原生质层和细胞壁分离的现象14矿质元素(mineral element):灰分中的物质为各种矿质的氧化物、硫酸盐、磷酸盐等,构成灰分的元素称为灰分元素又称为矿质元素.15必需元素(essential element):是植物生长发育必不可少的元素.16离子的主动吸收与被动吸收(active absorption and passive absorption)被动吸收:溶质顺电化学势梯度进入质外体的吸收过程,不需要代谢提供能量.主动吸收:溶质跨膜进入细胞质和液泡的过程,要利用呼吸释放的能量逆电化学势梯度吸收.17协助扩散(facilitated diffusion):协助扩散是小分子物质经膜转运蛋白协助,顺浓度梯度或电化学梯度跨膜的转运,不需要细胞提供能量.18离子通道(ion channel):是细胞膜中一类内在蛋白构成的孔道.可为化学方式或电学方式激活,控制离子通过细胞膜的顺势流动.19离子的选择吸收(selective absorption):是指植物对同一溶液中不同离子或同一盐的阳离子和阴离子,吸收的比例不同的现象.20光合作用(photosynthesis):通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程.从广义上讲,光合作用是光养生物利用光能把二氧化碳合成有机物的过程.21原初反应(primany reaction):是光合作用起始的光物理化学过程,包括光能的吸收、传递与电荷的分离,即天线色素吸收光能并传递给中心色素分子,使之激发,被激发的中心色素分子将高能电子传给原初电子受体.同时又从原初电子供体获得电子.原初反应的速度极快.22作用中心色素(reaction center pigment):又称为反应中心色素,是指少数特殊状态的叶绿素a分子,具有光化学活性,将获得的光能进行电荷分离,直接参与光化学反应的色素.23聚光色素(light harvesting pigment):聚光色素没有光化学活性,不直接参与光化学反应,类似无线电天线将吸收的光能以诱导共振方式传递给作用中心色素.包括:大部分叶绿素a分子、全部叶绿素b、类胡萝卜素分子.24希尔反应(Hill reaction):离体叶绿体在有适当氢受体存在时照光发生放氧的反应称为希尔反应.25红降现象(red drop):光合作用的量子产额在波长大于680nm时急剧下降的现象.26爱默生效应(Emerson effect):指如果用波长大于685nm的红光补充一个波长较短的红光(650nm),则量子产额比分别单独用这种光照射的产量产额之和还要高,这种现象为双光增益效应.27 PSI:光系统 I,作用中心I,其作用中心色素最大吸收峰在700nm处,也称P700;28 PSII:光系统II,作用中心II,其作用中心色素最大吸收峰在680nm处,也称P680.29 Rubisco(RuBP carboxylase/oxygenase):1,5-二磷酸核酮糖羧化酶/加氧酶30荧光现象(fluorescence):激发态的叶绿素分子回到基态时,可以光子形式释放能量.处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光.31作用中心(reaction centre):是叶绿体中进行光合原初反应的最基本的色素蛋白结构.它至少包括:1个作用中心色素分子(P);1个原初电子受体(A);1个原初电子供体(D).作用中心基本成分是由结构蛋白质和脂类组成.32光合链(photosynthetic chain):由PSII和PSI以及一系列电子传递体组成的使水中的电子最终传给NADP+ 的电子传递轨道称为光合电子传递链,简称光合链.33光合磷酸化(photophosphorylation):光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应.34光呼吸(photorespiration):植物的绿色细胞在光照下吸收氧气释放CO2的过程,由于这种反应仅在光下发生,需叶绿体参与,并与光合作用同时发生,故称作为光呼吸.因为光呼吸的底物乙醇酸和其氧化产物乙醛酸,以及后者经转氨作用形成的甘氨酸皆为C2化合物,因此光呼吸途径又称为C2光呼吸碳氧循环35呼吸作用(respiration):生活细胞内的有机物,在酶的参与下,逐步氧化分解并释放能量的过程.36 EMP途径(EMP pathway):即糖酵解,己糖在细胞质中分解成丙酮酸的过程.37三羧酸循环(tricarboxylic acid cycle,TCAC):在有氧条件下丙酮酸在线粒体基质中彻底氧化分解为二氧化碳的途径.38 PPP(pentose phosphate pathway):即戊糖磷酸途径,葡萄糖在细胞质内直接氧化分解,并以戊糖磷酸为重要中间产物的有氧呼吸途径.39生物氧化(biological oxidation):也称细胞氧化,广义上指生物体内各种有机物质的氧化分解过程,狭义上指发生在线粒体内一系列传递氢和电子的氧化还原过程.40呼吸链(respiration chain):即呼吸电子传递链,指线粒体内膜上由呼吸传递体组成的电子传递的总轨道.41氧化磷酸化(oxidative phosphorylation):氧化磷酸化就是呼吸链上的磷酸化作用,也就是当NADH+H+上的一对电子被传递至氧时,所发生的ADP被磷酸化为ATP的作用.42能荷调节(regulation of energy charge):细胞中腺苷酸(AMP,ADP,ATP)对呼吸作用和其他一些代谢有明显的调节作用.43抗氰呼吸(Cyanide resistat repiration):对氰化物不敏感的那一部分呼吸.抗氰呼吸可以在某些条件下与电子传递主路交替运行.44呼吸商(respiration quotient RQ):植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数.45末端氧化酶(terminal oxidase):处于生物氧化一系列反应的最末端的氧化酶.除了线粒体内膜上的细胞色素氧化酶和抗氰氧化酶之外,还有存在于细胞质中的酚氧化酶、抗坏血酸氧化酶和乙醇酸氧化酶等.46无氧呼吸消失点(anaerobic respiration extinetion point):无氧呼吸停止进行的最低氧浓度(10%左右)称为无氧呼吸消失点.47植物激素(plant hormones,phytohormones):在植物体内合成的、能从合成部位运往作用部位、对植物生长发育产生显著调节作用的微量小分子有机物.目前国际上公认的植物激素有五大类:生长素类、赤霉素类、细胞分裂素类、脱落酸、乙烯.另外有人建议将油菜素甾体类、茉莉酸类也列为植物激素.48三重反应(triple response):乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应.49植物生长调节剂(plant growth regulators):人们研究并合成的与天然植物激素具有同样生理作用的有机化合物. 50植物生长物质(plant growth substances):能够调节植物生长发育的微量化学物质,包括植物激素和植物生长调节剂、抑制物质、植物生长调节剂.51生长抑制剂(growth inhibitor):抑制顶端分生组织生长的生长调节剂,它能干扰顶端细胞分裂,引起茎伸长的停顿和破坏顶端优势,其作用不能被赤霉素所恢复,常见的有脱落酸、青鲜素、水杨酸、整形素等.52生长延缓剂(growth retardant):抑制植物亚顶端分生组织生长的生长调节剂,它能抑制节间伸长而不抑制顶芽生长,其效应可被活性GA所解除.生产中广泛使用的生长延缓剂有矮壮素、烯效唑、缩节安等.53极性运输(polar transport):只能从形态学的一端运向另一端的运输,如生长素的运输,只能从形态学的上端运向形态学的下端,而不能从形态学下端运向上端.54激素受体:能与激素特异结合并引起特殊生理效应的物质,一般是属于蛋白质.55植物细胞的全能性(totipotency):植物体每一个细胞都具有分化成一个完整植株的潜在能力,即具有形成完整生物个体的全套基因.56黄化现象(ctiolation):在黑暗中生长的植物茎柔嫩而细长,叶片似小鳞片状紧贴于茎上,茎的顶端一直保持弯曲状态而不伸展;内部组织分化不完全,薄壁细胞多,输导和机械组织不发达,茎叶中没有叶绿素,整个植株呈黄白色. 57温周期现象(thermoperiodicity):植株或器官的生长速率随昼夜温度变化而发生有规律变化的现象.58光形态建成(photomorphogenesis):由光调节植物生长、分化与发育的过程称为植物的光形态建成,或称光控发育作用.59蓝光效应(blue effect):蓝紫光抑制生长,促进分化,抑制黄化现象的产生,诱导向光性反应,这种现象称为蓝光效应.60光敏色素(Phytochrome,Phy):一种对红光和远红光的吸收有逆转效应、参与光形态建成、调节植物发育的色素蛋白.61生长相关性(correlation):植物各部分之间的相互制约与协调的现象.62顶端优势(apical dominance):植物的顶芽生长占优势而抑制侧芽生长的现象.63生长大周期(grand period of growth):植物器官或整株植物的生长速度表现出"慢-快-慢"的基本规律,即开始时生长缓慢,以后逐渐加快,然后又减慢以至停止.这一生长全过程称为生长大周期.64向光性(phototropism):植物随光的方向而弯曲生长的现象.包括正向光性、负向光性、横向光性.65识别蛋白(recognition protein ):存在于花粉与柱头上能够起识别作用的蛋白质.66生长素梯度学说(auxin gradient theory):不是叶片内生长素的绝对含量,而是横过离层区两边生长素的浓度梯度影响脱落.梯度大,即远轴端生长素含量高,不易脱落;梯度小时,即近轴端生长素含量高于或等于远轴端的量,则促进脱落.67生物自由基(biological radicals):自由基是具有未配对价电子的基因或分子.生物自由基,通过生物自身代谢产生的一类自由基.68呼吸跃变(climacteric):果实成熟过程中,呼吸速率突然增高,然后又迅速下降的现象.呼吸跃变的产生与外界温度和果实内乙烯的释放密切相关.呼吸跃变是果实进入完熟的一种特征.69衰老(senescence):在正常条件下发生在生物体的机能衰退并逐渐趋于死亡的现象,具体指的是植物的细胞、组织、器官或整个植株的生理功能衰退的现象.70膜脂过氧化作用(membrane lipid peroxidation):指生物膜中不饱和脂肪酸在自由基诱发下发生的过氧化反应,其结果不仅使膜中不饱和脂肪酸含量降低,引起膜流动性下降以致膜相分离和膜通透性增大,膜的正常功能破坏,而且膜脂过氧化物MDA等也能直接对细胞起毒害作用.71水合补偿点(hydrtion compensation point):缺水会导致植物光合作用降低,当植物因缺水而使其光合速率与呼吸速率相等(即净光合速率为零)时,植物叶片的水势称为水合补偿点.72 SOD(super-oxide dismutase):超氧化物歧化酶.存在于植物细胞中最重要的清除自由基的酶,能催化生物体内分子氧活化的第一个中间产物氧自由基发生歧化反应,生成氧气和过氧化氢.SOD分Cu-Zn-SOD,Mn-SOD和Fe-SOD三种类型,主要分布在叶绿体、线粒体和细胞质中.73活性氧(active oxygen):化学性质活泼、氧化能力很强的含氧物质的总称,包括含氧自由基和含氧非自由基.74油菜素甾醇:油菜素甾醇在植物的生长发育中有着重要的作用,与其他植物激素一起参与调控植物发育的很多方面,包括茎叶的生长、根的生长、维管组织的分化、育性、种子萌发、顶端优势的维持、植物光形态建成等。

芝士焗波龙英语作文

芝士焗波龙英语作文

芝士焗波龙英语作文Title: Cheese Baked LobsterCheese baked lobster is a delicious and popular dish that combines the rich flavors of lobster with the creamy texture of cheese. It is a gourmet treat that is often served in upscale restaurants and seafood specialties.To prepare this dish, first, a whole lobster is steamed or boiled to cook it thoroughly. The lobster is then carefully removed from the shell, keeping the tail and claws intact. The meat is then seasoned with herbs, spices, and a light drizzle of lemon juice for a fresh flavor.Next, a rich and creamy cheese sauce is prepared. This sauce is made with a combination of cream, cheese, and seasonings, such as garlic, parsley, and white wine. The sauce is thick and rich, coating the lobster meat perfectly.Once the sauce is ready, the lobster meat is placed back into the shell, and the cheese sauce is generously poured over it. The lobster is then placed in a preheated oven and baked until the cheese is melted and golden brown on top.The final result is a dish that is visually appealing and mouthwatering. The lobster meat is tender and flavorful, while the cheese sauce is rich and indulgent. The combination of thetwo creates a dish that is a feast for the senses, with a balance of flavors and textures that is hard to resist.In conclusion, cheese baked lobster is a gourmet dish that combines the flavors of lobster with the richness of cheese. It is a dish that is perfect for special occasions and celebrations, and it is sure to impress any seafood lover.中文翻译:标题:芝士焗龙虾芝士焗龙虾是一道美味且受欢迎的菜肴,它将龙虾的丰富风味与奶酪的奶油质地相结合。

初二测试题制作土耳其肉饼夹肉配菠菜英语作文

初二测试题制作土耳其肉饼夹肉配菠菜英语作文

初二测试题制作土耳其肉饼夹肉配菠菜英语作文Turkey is known for its rich culinary tradition, and one of the most popular dishes in Turkish cuisine is the Turkish meatball sandwich with spinach. In this essay, we will explore the process of making this delicious and nutritious meal.To start with, let's gather the ingredients needed for the Turkish meatballs. You will need ground beef or lamb, onions, garlic, parsley, bread crumbs, salt, pepper, and cumin. Mix all these ingredients together in a bowl and shape them into small, round meatballs.Next, we will move on to preparing the spinach. For this part of the dish, you will need fresh spinach, garlic, olive oil, and lemon juice. Start by washing the spinach thoroughly and chopping it into small pieces. Then, sauté the spinach with garlic in olive oil until it is cooked through. Finish by adding a squeeze of lemon juice for a refreshing flavor.Now, let's focus on the bread for the sandwich. You can use pita bread or any other type of flatbread. Warm up the bread in a toaster or oven to make it soft and pliable for assembling the sandwich.Once all the components are ready, it's time to assemble the Turkish meatball sandwich. Take a piece of warm bread and place a generous portion of the cooked spinach on one side. Then, adda few meatballs on top of the spinach. You can also drizzle some yogurt or tzatziki sauce for extra flavor.In Turkey, this dish is often served with a side of pickles, olives, and tomatoes for a complete meal. The combination of savory meatballs, flavorful spinach, and soft bread creates a satisfying and wholesome eating experience.In conclusion, the Turkish meatball sandwich with spinach is a delightful dish that showcases the vibrant flavors of Turkish cuisine. By following the steps outlined in this essay, you can create a delicious and nutritious meal that will surely impress your friends and family. Enjoy your culinary journey through the flavors of Turkey!。

制作巴西鸡尾酒虾英语作文

制作巴西鸡尾酒虾英语作文

制作巴西鸡尾酒虾英语作文Title: Making Brazilian Cocktail Shrimp An English EssayBrazilian Cocktail Shrimp is a delicious and refreshing appetizer that combines the flavors of juicy shrimp with a zesty cocktail sauce. This popular dish is perfect for parties, gatherings, or even a simple night in with friends. In this essay, we will explore the process of making Brazilian Cocktail Shrimp and discover the steps involved in creating thisdelectable treat.To begin making Brazilian Cocktail Shrimp, you will need the following ingredients: fresh shrimp, cocktail sauce, lemon juice, Worcestershire sauce, hot sauce, and various seasonings such as salt, pepper, and paprika. It is essential to use highquality, fresh ingredients to ensure the best possible flavor for your dish.The first step in preparing Brazilian Cocktail Shrimp is to cook the shrimp. You can either boil or sauté the shrimp until they are pink and cooked through. Be careful not to overcook the shrimp, as this can make them tough and rubbery. Once the shrimp are cooked, remove them from the heat and allow them to cool slightly.While the shrimp are cooling, you can prepare the cocktail sauce. In a bowl, combine the cocktail sauce, lemon juice, Worcestershire sauce, hot sauce, and seasonings. Mix theingredients together until they are well combined and the sauce has a smooth consistency. Taste the sauce and adjust the seasonings as needed to suit your personal preferences.Once the cocktail sauce is ready, you can add the cooked shrimp to the sauce. Gently toss the shrimp in the sauce until they are evenly coated. Allow the shrimp to marinate in the sauce for at least 30 minutes to allow the flavors to meld together.When you are ready to serve the Brazilian Cocktail Shrimp, arrange the shrimp on a platter and garnish with fresh lemon wedges and parsley. You can also add additional hot sauce or seasonings to taste. Serve the shrimp chilled, either on their own or with crackers or crusty bread for dipping.In conclusion, making Brazilian Cocktail Shrimp is a simple and enjoyable process that results in a delicious and flavorful dish. By following the steps outlined in this essay, you can create a tasty appetizer that is sure to impress your friends and family. So gather your ingredients, roll up your sleeves, and get ready to enjoy the delightful flavors of Brazilian Cocktail Shrimp!。

植物抗病机理研究进展综述

植物抗病机理研究进展综述

植物抗病机理研究进展综述作者:汪巧来源:《安徽农学通报》2015年第08期摘要:在面对病原微生物的侵袭时,植物用2类先天性免疫系统对侵染做出免疫应答,第一类内免疫系统能识别很多种类微生物的共有分子并对其做出应答,第二类是对病原体分泌的毒力效应因子产生应答反应。

该文根据最近的研究发现对植物免疫病原微生物的作用机理及研究进展进行了综述。

关键词:植物抗病;抗病蛋白;无毒效应因子中图分类号 Q7 文献标识码 A 文章编号 1007-7731(2015)08-24-08Advances on the Mechanism of Plant Disease ResistanceWang Qiao(College of Life Sciences, Wuhan University, Key Laboratory of Hybrid Rice, Wuhan 430072,China)Abstract:When the plant in the face of pathogens,plants respond to the infection using two kinds of innate immune system,the first level is triggered by the recognition of Pathogen Associated Molecular Patterns,the second level is respond to the virulence factors that secreted by the pathogen.This paper summarizes the mechanism of plant defense pathogen microorganisms according to recent study.Key words:Plant disease resistance;Resistance proteins;Virulence factors当植物面临各种不利环境时,会影响其生长发育,严重时甚至死亡,据统计,我国每年损失将近500亿kg粮食,其中因病虫害造成的损失达200亿kg以上。

植物富亮氨酸重复类受体蛋白激酶的研究进展

植物富亮氨酸重复类受体蛋白激酶的研究进展

植物富亮氨酸重复类受体蛋白激酶的研究进展查笑君;马伯军;潘建伟;杨金水【摘要】介绍了植物富亮氨酸重复类受体蛋白激酶(LRR-RLK)的结构与分类;分别以CLAVATA1,BRI1,FLS2为例,阐述了LRR-RLK基因在植物生长发育、激素信号转导和植物抗病防御等方面的生理功能及作用机制;总结了LRR-RLK作用模型、信号通路间的交互作用及展望.【期刊名称】《浙江师范大学学报(自然科学版)》【年(卷),期】2010(033)001【总页数】6页(P7-12)【关键词】富亮氨酸重复类受体蛋白激酶;植物;功能;作用机制【作者】查笑君;马伯军;潘建伟;杨金水【作者单位】浙江师范大学,化学与生命科学学院,浙江,金华,321004;浙江师范大学,化学与生命科学学院,浙江,金华,321004;浙江师范大学,化学与生命科学学院,浙江,金华,321004;复旦大学,生命科学学院,上海,200433【正文语种】中文【中图分类】Q946.5富亮氨酸重复类受体蛋白激酶 (leucine rich-repeat receptor-like kinases,LRR-RLK,LRK)是植物基因组中已知的最大的一类跨膜类受体激酶 (receptor-like kinases,RLK)亚家族,在拟南芥中已鉴别出这类基因亚家族的 216个成员[1],水稻中已鉴别出 300多个成员[2].LRR-RLK的胞外富亮氨酸结构域与胞外的信号分子如离子、化学小分子或多肽等的特异性结合后,激活胞内激酶结构域的互磷酸化和自磷酸化的活性.这类分子具有类似动物受体蛋白激酶 (receptor protein kinase,RPK)的活性,但是大部分还没分离出与其特异结合的胞外信号分子,故被称为类受体蛋白激酶[1].此类基因的结构由胞外 LRR结构域 (LRR domain)、单次跨膜区 (trans-membrane domain,T M)以及胞内激酶结构域 (kinase domain)3部分组成[3](见图 1).其中的 LRR基序具有LxxLxxLxxLxLxxNxLVGxIP[4]的保守序列.保守区内的可变氨基酸决定了其与互作蛋白质(配基)之间结合的特异性.胞外富亮氨酸重复序列结构域的受体据其胞质内的结构差异分为 3大类.第 1类是富亮氨酸重复序列类受体蛋白激酶LRR-RLK,此类激酶占绝大多数,包括胞外 LRR 结构域、跨膜域和胞内苏氨酸/丝氨酸激酶域 3部分.第 2类是富亮氨酸重复序列受体蛋白 LRR-RP(LRR-receptor Proteins),这类蛋白包括胞外LRR结构域,跨膜域,不同的是胞内部分缺失激酶域.功能研究表明 LRRRP与 LRR-RLK类似,在植物的生长发育和抗原识别中具有重要作用,它与LRR-RLK结合成异源二聚体共同发挥作用.第 3类是富亮氨酸重复序列伸展蛋白 LRX(LRR-extensins),这类蛋白由氮端 LRR 结构域及碳端伸展蛋白构成[1].拟南芥和水稻中分别含有 11和 8个 LRX,初步研究表明拟南芥中的 LRX与根毛的形态建成及延伸有关,推测其位于细胞壁中[6]. LRR-RLK在细胞内的广泛分布及结构特点决定了其功能的重要性.自从第一个LRR-RLK基因从玉米中分离以来,越来越多 LRR-RLK基因的功能通过突变体和互补试验得到证实[7].本节将着重介绍LRR-RLK在植物生长发育、激素信号转导和抗病等方面的功能.多细胞的组织通过精细而错综复杂的信号网络系统整合信息,调控自身的生长发育.目前,在 LRRRLK参与的植物发育调控途径中,对拟南芥 CLAVATA(CLV)信号通路研究得较为深入.植物胚胎发育主要由细胞分裂和分化 2个过程组成,正常的发育需要分裂与分化之间保持平衡.通过反向遗传学研究发现,细胞分裂调控与 CLV信号转导有关.CLV信号转导途径主要包括 3个基因CLV1,CLV2和 CLV3.CLV1是典型的 LRR-RLK基因,由胞外 21个亮氨酸结构域、跨膜区和胞内激酶域 3部分构成.CLV2属于类受体蛋白 (LRR-RP)基因,由胞外 21个亮氨酸结构域和跨膜区组成,但不含胞内激酶域.CLV1功能缺失突变体 (clv1)促进细胞增殖,CLV2功能缺失突变体 (clv2)显示CLV1无法在细胞膜上聚集,表明:CLV1基因抑制细胞增殖,CLV2蛋白起到稳定CLV1的作用,CLV1与 CLV2结合形成稳定的异源二聚体,共同接受外界的信号.CLV3由 96个氨基酸的多肽组成,是 CLV1和 CLV2异源二聚体的配体.CLV3从茎尖中心分裂区分泌,扩散到周围细胞,CLV1感应 CLV3的同时也限制了 CLV3的随意扩散[8-9].CLV1与CLV2共同受体结合 CLV3后抑制促进因子WUS(wuschel)基因的表达.WUS的表达又促进CLV3的分泌 (如图 2所示).近年来,通过遗传和生化实验分离了 CLV1信号通路的下游组分.许多动物的受体激酶与 Ras亚家族的小 GTPases有关,然后传递给更下游的有丝分裂蛋白激酶MAPKs(mitogen-activated protein kinases)通路.植物中有个与 Ras同源的家族Rho(Ras homologue),与其相关的 GTPases,简称 Rop(Rho-related GTPase)[10-11].体外免疫共沉淀实验揭示 CLV1与 Rop蛋白可以结合形成复合物[12].另外,参与此信号通路的还有蛋白磷酸酶激酶 (Kinase-associated protein phosphatase,KAPP)和蛋白磷酸酶 POL(POLTERGEIST).实验表明 KAPP在 LRR-RLK蛋白介导的途径中扮演相似的角色,包括 CLV1,FLS2[13]和 HAESA转导的通路[14].Kim等[15]从水稻中分离了 CLV的同源基因OsLRK1,序列分析表明其与 CLV基因具有 55%的同源性,组织特异性表达谱显示此基因主要在幼嫩的芽中表达,抑制OsLRK1表达增加了的花器官的数目,其性状与 CLV基因在拟南芥中的表现类似.另外,Suzaki等[16]从水稻中分离了 CLV1的另一个同源基因FON1,发现它与花序分裂组织发育有关.这些实验结果暗示 CLV基因的信号通路在单子叶和双子叶植物中的作用是保守的.除此之外,在拟南芥中已克隆与发育相关的植物 LRR-RLK基因主要有ERECTA[17],HAESA/RLK5[14],EXS/EMS1[18],PRK[19],GASSHO1和GASSHO2[20]等,它们分别在器官大小和形态控制、器官脱落、配子体发育、花粉和柱头的识别以及体细胞胚胎发生等生物过程中起重要作用.从水稻中已分离克隆了 LRK1,并证实其与水稻产量和分枝发育有关[5].玉米中此类基因有 PAN1和SHB1,分别在细胞不对称分化和胚乳细胞膨大和增殖中起重要作用[21-22].植物激素对植物的生长发育具有广泛的调节作用,除一些小分子化合物,如细胞分裂素、赤霉素、生长素、油菜素甾醇 (brassinosteroid,BR)等外,20世纪初还发现了一些小分子多肽类激素,如植物硫肽激素 (Phytosulfokine,PSK)、硫化酪氨酸的糖肽 (PSY1)和系统素 (Systemin)等,这些小分子多肽基于配体-受体识别的模式参与细胞与细胞间的交流.目前,对LRR-RLK在 BR信号转导中的研究相对比较深入.自从 1970年Mitchell等[23]从花粉中分离、鉴定得到 BR这种活性成分以来,利用生化、生理和遗传的手段对 BR进行了研究,已证实 BR影响植物的多种生理功能,包括茎的伸长、花粉管的生长、叶片卷曲和偏上性生长、木质部的分化等[24].文献[25]从拟南芥突变体中分离了 BR I1(brassinolide-insensitive 1)基因,并证实其是BR的受体,BR I1基因编码 1 196个氨基酸的富亮氨酸重复序列的膜受体蛋白激酶,属于典型的 LRR-RLK家族的基因.2002年,Nam等[26]通过酵母双杂及遗传筛选突变体的方法克隆了BAK1基因,BAK1也是一个富含亮氨酸重复序列的类受体蛋白激酶,Nam等认为BAK1与BR I1在膜上形成异源二聚体感受 BR的信号,类同于 CLV1和 CLV2的作用模式.文献[27]从拟南芥中克隆了BIN2(Brassinosteroid-insensitive)基因,其属于 GSK家族,并证实 B IN2是催化下游信号转导蛋白磷酸化并抑制BR信号转导的酶,在植物感受 BR后 B IN2即失活.遗传和生化研究表明:B IN2通过磷酸化几个序列相似的核蛋白如 BES1(BR I1-EMS-suppressor 1)和 BZR1(Brassinazole-resistant 1)调控 BR的信号转导.综上,BR的信号转导途径如下:当外界存在 BR时,BR I1与 BAK1形成异源二聚体感受外界信号,将信号传至胞内,抑制 B IN2的表达,导致 BES1和 BZR1去磷酸化后在核内大量积累,从而调控 BR相关基因的表达;当外界不存在 BR信号时,BR I1与BAK1处于失活状态,B IN2催化 BES1和 BZR1磷酸化,使之被蛋白酶识别降解,从而抑制了 BR的信号转导[28].在这个途径中,接受 BR的 2个膜受体基因BR I1与BAK1皆属于 LRR-RLK基因家族成员 (如图 3所示).目前,对小分子多肽类激素的生物学功能的研究也受到广泛关注,如含 5个氨基酸的小肽——植物硫肽激素 (PSK),PSK在细胞增殖和去分化过程中起着重要作用.Matsubayashi等[29]通过亲和膜色谱技术,从胡萝卜 (Daucus carota)中分离纯化了与 PSK特异结合的 120 kD的膜蛋白 DcPSKR1,DcPSKR1编码一个1 021氨基酸的受体蛋白,包括膜外的富亮氨酸重复序列、单跨膜区和胞内激酶域.通过对PSK进行[3H]标记的响应实验,发现胡萝卜细胞过量表达该受体激酶能显著地提高PSK结合位点数[29],并确定配基 PSK结合域为DcPSKR1的 Glu503-Lys517[30].近来,研究人员又在拟南芥细胞悬浮培养的培养基中分离得到了一个长为 18氨基酸的硫化酪氨酸的糖肽,命名为 PSY1,能促进细胞的增殖,并在拟南芥不同组织广泛地表达.AtPSY1的识别同样也依赖于一个富含亮氨酸重复序列的类受体激酶(At1g72300)[31].植物抗病一般是指识别外界病原物,然后快速启动抗性反应的过程.近来发现许多由外界诱导的抗性反应及 R-基因介导的免疫反应都与LRR-RLK基因有关.最典型的例子是水稻抗白叶枯病的 Xa21基因、拟南芥中感受鞭毛蛋白的 FLS2基因等.另外,LRR-RLK基因家族还在抗盐等方面起作用[32].这些都显示LRR-RLK家族成员广泛参与植物的防御和对病原微生物的识别.LRR-RLK基因家族中最早发现具有抗病功能的是 FLS2(flagellin sensitive 2)基因,该基因广泛分布于植物的组织器官中,包括花、叶、茎和根等;采用荧光蛋白示踪法将它定位于细胞外围,比如气孔等病原微生物的入口.FLS2通过胞外的LRR结构域识别病原菌的鞭毛蛋白,介导植物的免疫反应[33].最近确定了识别鞭毛蛋白的位置为胞外第 9~15个 LRR[34].植物在植食性损伤口分泌信号分子系统素 (一种 18肽信号分子),从而启动防御基因的系统表达.系统素的感受依赖于膜受体基因SR160(16 kD的LRR-RLK基因),其与拟南芥中的 BR I1同源性高达90%[35].2006年,在拟南芥中发现了一个新的内源多肽 AtPep1(23肽),具有识别病原微生物、引起植物免疫应答的能力[36].同年,Yamaguchi等[37]分离了AtPep1的膜受体 PEPR1蛋白,同样具有LRR-RLK的结构.所以,LRR-RLK基因家族广泛参与外源、内源病原微生物的识别.植物的另一种防御机制是由一些具有抗性功能的基因 (简称 R基因)介导的,R基因在转基因植株中过表达可使寄主在没有病原物的存在下诱发获得性免疫抗性 (systemic acquired resistence,SAR).如Xa21,Xa3/Xa26等水稻白叶枯病 (Xoo)抗性基因,前者在水稻的生长过程中抗性从无到有逐渐增强,而后者在植物生长过程中具有持续性抗性[38-39].目前,我们对植物被侵染后体内的信号转导通路尚知之甚少.对 FLS2,Xa21基因的研究发现,它们的作用机制与泛素化有关[40].另外,有意思的是,一些在植物生长发育过程中起重要调控作用的基因同时也参与抗病防御.例如:ERECTA不仅调控花序发育和气孔分布[41],而且还具有抵御细菌性(Ralstonia solanacearum)委焉病的功能[42-43];BAK1/SERK3不仅与 BR I1互作参与油菜素内酯的信号转导,而且与 FLS2形成复合物参与植物的抗病反应[26,44],还参与光反应、细胞凋亡等途径[45].这些例子揭示 LRR-RLK基因家族对激素信号的转导、抗病反应的调控在某种程度上存在交互作用(cross-talk).目前,对富亮氨酸类蛋白激酶受体作用机制的研究表明:其通过胞外 LRR结构域感受外界信号,然后通过胞内的激酶域传递信号.对 CLV和 BR通路的研究,揭示 LRR-RLK通常与其他蛋白形成异源二聚体在细胞膜上共同感受信号、履行功能.LRR-RLK在接受外界或内源的信号后,经转导输入或输出相应信号,从而指导植物细胞对胞内外的信号作出相应的反应.就像动物一样,植物通过受体开启错综复杂的信号通路,信号通路间可以互相作用或者形成反馈环使多个复杂的单元联合在一起指导目标基因的转录.在植物中,LRR-RLK家族存在基因冗余的现象,很难完全阐释 LRR-RLK蛋白的功能.在拟南芥和水稻中都存在上百个 LRR-RLK基因,目前只有少数几个基因的生物学功能被鉴定.相信在不久的将来,越来越多的 LRR-RLK基因将被鉴定.【相关文献】[1]Torii KU.Leucine-rich repeat receptor kinases in plants:structure,function,and signal transduction pathways[J].Int Rev Cytol,2004,234(243):1-46.[2]Shiu S H,KarlowskiW M,Pan Runsun,et parative analysis of the receptor-like kinase family inArabidopsisand rice[J].Plant Cell,2004,16(5):1220-1234.[3]Shiu S H,BleeckerA B.Receptor-like kinases fromArabidopsisform a monophyletic gene family related to animal receptor kinases[J].Proceedings of the NationalAcademy of Sciences of the United States ofAmerica,2001,98(19):10763-10768.[4]Kobe B,Deisenhofer J.A structural basis of the interactions between leucine-rich repeats and protein ligands[J].Nature,1995,374(6518):183-186.[5]Zha Xiaojun,Luo Xiaojin,Qian Xiaoyin,et al.Over-expression of the rice LRK1 gene improves quantitative yield components[J].Plant Biotechnology Journal,2009,7(7):611-620.[6]BaumbergerN,Doesseger B,Guyot R,et al.Whole-genome comparison of leucine-rich repeat extensins inArabidopsisand rice.A conserved family of cellwall proteins form a vegetative and a reproductive clade[J].Plant Physiol,2003,131(3):1313-1326.[7]Walker J C,ZhangRen.Relationship of a putative receptorprotein-kinase from maize to the S-locus glycoproteinsofB rassica[J].Nature,1990,345(6277):743-746.[8]LenhardM,Laux T.Stem cell homeostasis in theArabidopsisshootmeristem is regulated by intercellularmovement of CLAVATA3 and its sequestration byCLAVATA1[J].Development,2003,130(14):3163-3173.[9]DievartA,Clark S E.LRR-containing receptors regulating plant development and defense[J].Development,2004,131(2):251-261.[10]Li Hai,Wu Guang,Ware D,et al.ArabidopsisRho-related GTPases:differential gene expression in pollen and polar localization in fission yeast[J].PlantPhysiology,1998,118(2):407-417.[11]W inge P,Brembu T,BonesAM.Cloning and characterization of rac-like cDNAs fromArabidopsis thaliana[J].PlantMolecularBiology,1997,35(4):483-495.[12]Trotochaud A E,Hao Tong,Wu Guang,et al.The CLAVATA1 receptor-like kinase requiresCLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein[J].Plant Cell,1999,11(3):393-406.[13]G∏mez-G∏mezL,Bauer Z,Boller T.Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling inArabidopsis[J].Plant Cell,2001,13(5):1155-1163.[14]Jinn TL,Stone J M,Walker J C.HAESA,anArabidopsisleucine-rich repeat receptor kinase,controls floral organ abscission[J].Genes&Development,2000,14(1):108-117.[15]Kim C H,JeongD H,An G H.Molecular cloning and characterization ofOsLRK1 encodinga putative receptor-like protein kinase from Oryza sativa[J].Plant Science,2000,152(1):17-26.[16]Suzaki T,SatoM,AshikariM,et al.The gene FLORAL ORGAN NUMBER1 regulates floralmeristern size in rice and encodes a leucine-rich repeat receptor kinase orthologous toArabidopsisCLAVATA1[J].Development,2004,131(22):5649-5657.[17]Torii KU,Mitsukawa N,Oosumi T,et al.TheArabidopsisERECTA gene encodes a putative receptor protein kinase with extracellular leucinerich repeats[J].Plant Cell,1996,8(4):735-746.[18]Canales C,BhattA M,Scott R,et al.EXS,a putative LRR receptor kinase,regulatesmale ger mline cell number and tapetal identity and promotes seed development inArabidopsis[J].CurrentBiology,2002,12(20):1718-1727.[19]Muschietti J,Eyal Y,Mccormick S.Pollen tube localization implies a role in pollen-pistil interactions for the tomato receptor-like protein kina-sesLePRK1 and LePRK2[J].Plant Cell,1998,10(3):319-330.[20]Tsuwamoto R,Fukuoka H,Takahata Y.GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat trans membrane-type receptor kinase are essential for the normal development of the epidermal surface inArabidopsisembryos[J].PlantJournal,2008,54(1):30-42.[21]Cartwright H N,Humphries J A,Smith L G.PAN1:a receptor-like protein that promotes polarization of an asymmetric cell division in maize[J].Science,2009,323(5914):649-651.[22]Zhou Yun,Zhang Xiaojuan,Kang Xiaojun,et al.SHORT HYPOCOTYL UNDER BLUE1 associates with MIN ISEED3 and HA IKU2 promoters in vivo to regulateArabidopsisseed development[J].Plant Cell,2009,21(1):106-117.[23]Mitchell J W,Mandava N,Worley J F,et al.Brassins:a New Family of Plant Hormones from Rape Pollen[J].Nature,1970,225(5237):1065-1068.[24] Iwasaki T,Shibaoka H.BrassinosteroidsAct as Regulators of Tracheary-Element Differentiation in Isolated Zinnia Mesophyll-Cells[J].Plant and CellPhysiology,1991,32(7):1007-1014.[25]Li Jianming,Chory J.A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction[J].Cell,1997,90(5):929-938.[26]Nam K H,Li Jianming.BR I1/BAK1,a receptor kinase pairmediating brassinosteroid signaling[J].Cell,2002,110(2):203-212.[27]Li Jianming,Nam K H,VafeadosD,et al.B IN2,a new brassinosteroid-insensitive locus inArabidopsis[J].Plant Physiology,2001,127(1):14-22.[28]Li Jianming,Jin Hua.Regulation of brassinosteroid signaling[J].Trends in Plant Science,2007,12(1):37-41.[29]Matsubayashi Y,OgawaM,MoritaA,et al.An LRR receptor kinase involved in perception of a peptide plant hormone,phytosulfokine[J].Science,2002,296(5572):1470-1472. [30]Shinohara H,OgawaM,Sakagami Y,et al.Identification of ligand binding site of phytosulfokine receptor by on-column photoaffinity labeling[J].The Journal ofBiological Chemistry,2007,282(1):124-131.[31]Amano Y,Tsubouchi H,Shinohara H,et al.Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion inArabidopsis[J].Proceedings of the NationalAcademy of Sciences of the United States ofAmerica,2007,104(46):18333-18338.[32]Liu Jiping,Zhu Jiankang.A calcium sensor homolog required for plant salttolerance[J].Science,1998,280(5371):1943-1945.[33]G∏mez-G∏mezL,Boller T.Flagellin perception:a paradigm for innateimmunity[J].Trends in Plant Science,2002,7(6):251-256.[34]Dunning FM,SunW,Jansen K L,et al.Identification and mutational analysis ofArabidopsisFLS2 leucine-rich repeat domain residues that contribute to flagellin perception[J].Plant Cell,2007,19(10):3297-3313.[35]Scheer JM,Ryan C A Jr.The systemin receptor SR160 from Lycopersicon peruvianum is amemberof theLRR receptor kinase family[J].Proceedings of the NationalAcademy of Sciences of the United States ofAmerica,2002,99(14):9585-9590.[36]HuffakerA,Pearce G,Ryan C A.An endogenous peptide signal inArabidopsisactivates components of the innate immune response[J].Proceedings of the NationalAcademy of Sciences of the United States ofAmerica,2006,103(26):10098-10103.[37]Yamaguchi Y,Pearce G,Ryan C A.The cell surface leucine-rich repeat receptor forAtPep1,an endoaenous peptide elicitor inArabidopsis,is functional in transgenic tobacco cells[J].Proceedings of the NationalAcademy of Sciences of the United States ofAmerica,2006,103(26):10104-10109.[38]SongWenyuan,Wang Guoliang,Chen Lili,et al.A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene,Xa21[J].Science,1995,270(5243):1804-1806.[39]Cao Yinglong,Duan Liu,Li Hongjing,et al.Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv.oryzae[J].Theoretical and Applied Genetics,2007,115(7):887-895.[40]Goff K E,Ramonell KM.The role and regulation of receptor-like kinases in plant defense[J].Gene Regulation and Systems Biology,2007,1(1):167-175.[41]Shpak E D,Mcabee JM,PillitteriL J,et al.Stomatalpatterning and differentiation by synergistic interactionsof receptor kinases[J].Science,2005,309(5732):290-293.[42]Godiard L,Sauviac L,Torii KU,et al.ERECTA,an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterialwilt[J].Plant Journal,2003,36(3):353-365.[43]Van ZantenM,Snoek L B,Proveniers MC,et al.The many functions of ERECTA[J].Trends in Plant Science,2009,14(4):214-218.[44]Chinchilla D,Zipfel C,Robatzek S,et al.A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J].Nature,2007,448(7152):497-500.[45]Chinchilla D,Shan Libo,He Ping,et al.One for all:the receptor-associated kinaseBAK1[J].Trends in Plant Science,2009,14(10):535-541.。

07_brassinosteroid

07_brassinosteroid

Clouse, The Plant Cell, Vol. 14, 1995, September 2002,
BR SIGNAL TRANSDUCTION
Figure 1. The BZR1–BES1 family of transcription factors regulates BRresponsive genes in Arabidopsis. BR perceived by the receptor kinases BRI1 and BAK1 at the plasma membrane initiates the BR signal transduction pathway that leads to dephosphorylation and accumulation of BZR1 and BES1 in the nucleus. The phosphorylation state of BZR1 and BES1 is regulated by the counter actions of the BIN2 kinase and the BSU1 phosphatase. BZR1 and BES1 represent a class of plant-specific transcription factors that bind to and activate the promoters of BRresponsive genes, with the facilitation of other transcription factors such as BIM1 in the case of BES1. BZR1 also specifically binds to and represses BR biosynthetic genes to reduce BR levels in the cell. Whether BZR1 binding requires co-factors such as the BIM proteins has not yet been determined. [The oxygen function (between C6 and C7) in the B ring of the steroid nucleus is highlighted in orange in the BR structure.] The model shown here is based on Refs [6–9].

烘焙原料中英文对照表

烘焙原料中英文对照表

烘焙原料中英文对照表在中国,家庭烘焙的概念还是刚刚兴起,所以,许多烘焙类的书籍,食谱,网站均来自国外或台湾,所以,在许多食谱中的材料名称均是英文表示或是台湾译名,而很多原料的包装上面也都是英文或台湾译名的表述,所以,如果这些名称弄不清楚的话,就很容易会有买错原料或是用错原料的事情发生,综合了许多网站上的转帖,以及书籍上的解说,将一些烘焙常用的原材料的中英文以及台湾译名的对照表罗列如下,希望对初学烘焙的姐妹们有所帮助.英文名字台湾译名中文名字Whole Wheat Flour 全麦面粉Butter 牛油奶油Cream 忌廉鲜奶油Cheese 芝士.起司乳酪Cream Cheese 忌廉芝士奶油奶酪Yogurt 优格酸乳酪Sour Cream 酸奶油Whipped Cream 打发鲜奶油Plant Oil 色拉油大豆油Shortening 固体菜油酥油Margarine 人造奶油玛棋琳Lard 猪油Olive Oil 橄榄油Chocolate 朱古力巧克力Jelly 者哩果冻Gelatin 吉利丁鱼胶粉Corn Syrup 玉米糖桨Flour 面粉Whole Wheat Flour 全麦面粉Self-raising flour 自发粉Corn Flour 玉米面粉Corn Starch 粟粉豆粉玉米粉Potato Starch 生粉太白粉Baking Powder 发粉泡打粉Cream of tartar 塔塔粉Easter 乳化剂Almond Powder 杏仁粉Strawberry 士多啤梨草莓Custard Powder 吉士粉Cinnamon 肉桂Vanilla Essence 云呢拿油香草精___________________________________________________________________常用西点制作专业术语戚风打法-即分蛋打法,蛋白加糖打发之蛋白糖与另蛋黄加其它液态材料及粉类材料拌匀之面糊拌合。

油菜素内酯及其在种子萌发过程中的生理效应研究进展

油菜素内酯及其在种子萌发过程中的生理效应研究进展

油菜素内酯及其在种子萌发过程中的生理效应研究进展作者:朱早兵等来源:《热带农业科学》2015年第05期摘要简述油菜素内酯的化学结构、合成、信号传导机制,种子萌发生理,正常环境下油菜素内酯促进种子萌发的生理作用和逆境条件下油菜素内酯对种子萌发的促进效应等,提出油菜素内酯促进种子萌发机理的研究方向。

关键词油菜素内酯;种子萌发;进展分类号 Q945Abstract Based on the introduction of brassinolide sources, methods of synthesis and signal transduction pathway, the paper mainly expounded the physiological effects of brassinolide on seeds during germination stage and part of the molecular mechanism that brassinolide promoted seed germination when the seeds were in the normal and stress conditions, further put forward the research direction of the mechanism that brassinolide promoted seed germination.Keywords brassinolide ; seed germination ; research progress油菜素内酯(brassinolide, BL)又名芸苔素内酯或芸苔素,是植物中的甾醇类生长促进激素,它的作用贯穿植物萌发到开花结果的整个生活史,它能促进细胞伸长,影响细胞分裂分化,促进植物进入生殖生长,影响花诱导及分化,同时在提高植物对逆境条件抵御能力,增强植物净光合作用、增加作物产量等方面都具有十分重要的意义。

油菜素甾醇类物质的生理作用及信号转导

油菜素甾醇类物质的生理作用及信号转导

油菜素甾醇类物质的生理作用及信号转导摘要近年来,人们研究发现植物细胞中存在甾醇类激素,其在植物的生长发育过程中发挥着重要的调控作用,并发现了膜受体复合物的重要组成部分BRI1 和通过膜受体介导的信号转导途径,使得油菜素凿醇类信号从膜上被感知一直到在核内诱导特异基因表达的信号转导途径有了一个基本的轮廓。

关键词植物油菜素甾醇类BRs 生理作用调控信号转导 BRI1 油菜素甾醇类化合物(Brassinosteroids,BRs) 是指与油菜素内酯(brassinolide,BL)有类似的结构与功能的甾醇类植物激素,BRs被证明是一类植物生长不可缺少的植物激素,存在于植物的花粉、种子、叶片、根、茎和花冠中。

研究表明,花粉、未成熟的种子及根可能是BRs的生物合成位点。

在植物体内, BR的活性水平在BR生物合成、代谢及去活化等层次上受到精细调控。

在天然BRs中,BL的生物活性最强,被认为是植物体内起作用的BR的活性形式[1]。

BR的生物合成呈代谢网格状(metabolicgrid),其生物合成酶受到终产物和信号转导的一些中间组分的反馈抑制[2]。

从BR信号的产生,包括BR的合成、活性与水平的调节及运输, 到与膜受体结合引起信号的感知和传递,并最终引起BR诱导基因的表达和特定的生理反应, 是一个连续且相互影响的过程,并且每一个环节都受到多种内外因子在多个层次上的调节,BR信号从细胞膜向细胞核传导的途径已基本清晰[3]。

(方欢欢)1油菜甾醇类的生理作用与传统的5大类植物激素相比,其作用机理独特、生理效应广泛、生理活性极高,其用量仅是5大激素的千分之一。

BRs能增加植物对冷害、冻害、病害、除草剂及盐害等的抗性,协调植物体内多种内源激素的相对水平,改变组织细胞化学成分的含量,激发酶(包括RNA 与DNA多聚酶、ACC合成酶、ATP酶等)的活性,影响基因表达,促进Ⅸ蛆、RNA和蛋白质合成,促进细胞分裂和伸长,增加植物生长发育速度,参与光信号调节,影响光周期反应,提高作物产量及种子活力,减少果实的败育和脱落等[4]。

腌制榨菜的步骤作文英语

腌制榨菜的步骤作文英语

腌制榨菜的步骤作文英语Title: The Art of Pickling Mustard Greens: A Step-by-Step Guide。

Pickling mustard greens, also known as zha cai in Chinese cuisine, is a traditional method of preserving vegetables while enhancing their flavor. This age-old technique involves a careful balance of salt, spices, and fermentation to create a tangy and crunchy condiment. Inthis guide, we'll walk through the step-by-step process of pickling mustard greens.Step 1: Prepare the Mustard Greens。

Start by selecting fresh mustard greens from the market. Rinse them thoroughly under cold water to remove any dirtor debris. Trim off any tough stems and discard any damaged leaves. Cut the mustard greens into uniform pieces,typically about 2-3 inches in length.Step 2: Salt the Mustard Greens。

In a large bowl, layer the mustard greens with coarse salt. Make sure to coat each layer evenly with salt. The salt helps to draw out excess moisture from the greens and acts as a natural preservative. Let the mustard greens sit for about 2-3 hours, allowing them to wilt and releasetheir liquid.Step 3: Rinse and Drain。

植物雄配子体发生和发育的遗传调控

植物雄配子体发生和发育的遗传调控
关键词 花药, 拟南芥, 配子体, 花粉 杨克珍, 叶德 (2007). 植物雄配子体发生和发育的遗传调控. 植物学通报 24, 293−301.
高等植物的生活周期经历从二倍体孢子体世代到单 倍体配子体世代的交替循环。这种世代交替过程是通 过配子体发生和受精作用实现的。配子体发生过程产 生单倍体雌、雄配子, 而受精作用使得单倍体的雌、雄 配子体结合形成新二倍体世代。因此, 雄配子体发生和 发育对高等植物通过有性生殖进行世代交替至关重要。 植物配子体的发生是一个重新起始(de novo)的过程, 不 同于动物的配子体发生过程。雄配子体的发生包括雄 性生殖细胞的分化发育、小孢子的形成( 包括减数分 裂)、雄配子体(花粉粒)的形成和花粉管的生长, 一直到 雄配子(精子)与雌配子体结合。在这个过程中, 经历了 一系列的细胞分化发育作用。因此, 雄配子体不仅对 植物有性生殖有重要意义, 也是一个研究细胞分化发育 机制的好材料。近几年来, 雄配子体遗传机制已经成 为一个研究热点, 利用不同的分子遗传技术, 已发现一 些调控雄配子体形成和花粉管生长的重要基因。本文 着重总结和讨论雄配子体发生和发育遗传机制研究的 最新进展, 主要包括雄配子体形成的细胞学机制、雄 性生殖细胞分化发育、雄配子发育和花粉管生长等的 遗传机制。
成小孢子母细胞(microsporocyte,Msc)。初生周缘细 胞再进行平周分裂产生内外 2 层次生周缘细胞 (secondary parietal cells,SPC)。外层次生周缘细胞 直接发育成药室内壁(endothecium,En), 而内层的次生 周缘细胞再次平周分裂产生2层细胞, 内层的细胞形成 初生绒毡层 (primary tapetum, PT), 然后进一步发育为 成熟的绒毡层, 外层细胞形成中间层(middle layer)。拟 南芥花药发育可分为 14 个发育时期(Sanders et al., 1999)。在第 4期完成前, 由于细胞分裂的不同步, 细胞 排列没有明显的分层。而当第 4 期完成后, 进入第 5 期 时, 拟南芥花药具有排列整齐的5层细胞, 由外向内分别 是表皮层、花药内壁、中间层、绒毡层和小孢子母细 胞。此后, 第 5 层的小孢子母细胞经过减数分裂产生单 倍体的小孢子(microspores), 小孢子进一步发育为成熟 的花粉粒, 其中包含精细胞。在花药发育的过程中, 除 了出现活跃的细胞分化发育作用, 也出现细胞的程序性 死亡(programmed cell death)。首先是第 3 层的中间 层细胞退化消亡, 然后第4层的绒毡层成熟后为花粉粒 的形成提供物质, 最后在花粉粒成熟前退化消亡。最终, 成熟的花药共有 4 个充满花粉粒的药室。

巴西坚果蛋白基因和Kunitz胰蛋白酶抑制剂等位基因与大豆蛋白酶抑制剂活性及农艺性状间的关系

巴西坚果蛋白基因和Kunitz胰蛋白酶抑制剂等位基因与大豆蛋白酶抑制剂活性及农艺性状间的关系

与大 豆蛋 白酶抑制剂 活性及农艺性状 问的关 系
Lo Sri 等 enG.t t e
在无 热处 理 的条 件 下 在家 畜饲 养 中采 用 大 豆 可能 会 降低 蛋 白酶 抑制 剂 的活 性 。本 研
究 的 目的 在 于 测 定 通 过 来 自转 基 因 系
B494 B xP 3 1 6的 巴西 坚果 蛋 白 ( N ) 因与 起 BP基
本 研 究所 采 用 的遗传 材 料 为 K nt ui z品种 和转 基 因系 B 4 94 B 。K nt具 有 t等 位基 因 xP3 16 u i z i 且 缺 乏 S T —A 显 带 。 B4 9 4 B BI , x P 3 1 6是 通 过 把 起 源 于 巴西 坚果 树 的 、 码 高蛋 氨 酸 2 编 S白 蛋 白的一 个 基 因 转 育 到 品种 9 4 3 1培 育 而 成 的 。该转 基 因 系与 9 4 3 1品种 相 比, 种 子 的 其
维普资讯
后代 的棕榈酸含量与正常棕榈酸水平亲本 的 平均 含 量有 关 ( =0 9 r .4—0 9 , .9 P<0 0 ) 例 .5 , 如在 正 常 的棕 榈 酸 亲 本 中每 增 加 l/g棕 榈 gk
酸 , 后代 将增 加 03 其 .2~0 5gk . 1/g棕 榈 酸 。 假定 遗 传背 景 效应 与 从正 常棕榈 酸 亲本 转 入 微效 等 位 基 因 的作 用 有 关 。降低 棕 榈 酸等 位 基 因 的存在 与 所 有 熟 期 组 间 显 著 ( p<0 0 ) .1
显著降低了。除 M GI外其余 每个 M G检测 中优 良品系 的植 株倒 伏 都 显 著 减少 。只有 在
M GI和 MG1 中优 良品 系 的种 子 蛋 白质 含 量 1

brassicasterol结构

brassicasterol结构

英文回答:Brassicasterol is a plant vinyl that exists in some vegetable oils, such as mustard and oilseed oils. Its chemical structure is similar to cholesterol, but it has unique functions and biological activity. According to scientific research, Brassicasterol has a variety of physiological activities, such as cholesterol reduction, inflammation and oxidation. The substance is considered beneficial for cardiovascular health and the immune system. In the area of medicine and health products, there is a wide range of potential applications for brasicasterol. Its potential role in policy and development strategies merited in—depth study and cooperation.brassicasterol是一种植物甾醇,存在于一些植物油中,如芥菜油和油菜籽油。

它的化学结构类似于胆固醇,但具有独特的功能和生物活性。

据科学研究显示,brassicasterol具有降低胆固醇、抗炎和抗氧化等多种生理活性。

这种物质被认为对心血管健康和免疫系统有益。

在医药和保健产品领域,brassicasterol具有广阔的应用前景。

植物细胞全能性

植物细胞全能性

在拟南芥等其他植物中,SERK不仅在胚性细胞中表达, 在某些非胚性细胞中也有表达。
AtSERK1 的表达比较广泛, 不仅在早期的合子胚及培 养的胚性细胞内大量表达, 还在雌配子体、孢子体原基周 围细胞层、表皮细胞及成熟的根茎叶维管组织中少量表达, 在合子胚发育中只表达到心形期。
TcSERK与ZmSERK2、MtSERK1 的表达方式相似, 在合 子胚和体细胞胚的整个发育过程中均表达。TcSERK不仅在 胚性愈伤和增生胚中大量表达,还在叶片中有微量表达, 但在根、花瓣及退化雄蕊中没有表达信号。
DcSERK首先在培养了7 d的胚性培养物中表达。下胚轴 培养5 d 时,增大的细胞开始出现,7 d时增生细胞团表面 的一些起源于原维管组织的增大细胞开始表达 SERK。随后 的培养过程中,一些小型细胞簇也表达SERK,这些细胞都 发育成体胚。原位杂交结果表明,SERK表达在时间与数量 上都与 “ 感受态细胞”的出现紧密相关。 RT-PCR后 Southern杂交也表明,SERK 表达和外植体感受态细胞开始 出现之间存在密切的相关, 认为 SERK是感受态细胞的一 种标记 。
胡萝卜感受态细胞可以分成以下几类:B状态细胞 ,球 形且液泡化 、直径约为 12μm的细胞;C状态细胞 ,球形且 细胞质丰富 、直径约为12μm的细胞; D状态细胞 ,长形 、 液泡化的细胞。
B状态细胞的细胞壁存在阿拉伯半乳聚糖蛋白(AGP), 而 C状态细胞不含AGP。麦克凯布(McCabe,1997)等 ,利 用能够识别上糖类抗原簇的单克隆抗体JIM8 ,进行细胞免疫 荧光标记 ,揭示了胡萝卜感受态细胞发生和生长发育的过程。
AtSERK3 与BR11 共同接收胞外BR信号,形成同源/
异源二聚体或多聚体,抑制BIN2、GSK3 的活性或激活

Brassinosteroid-regulated plant growth and development and gene expression in soybean

Brassinosteroid-regulated plant growth and development and gene expression in soybean

ARTICLE INFO
Article history: Received 5 July 2018 Received in revised form 8 October 2018 Accepted 15 November 2018 Available online 1 December 2018
Keywords: Soybean Brassinosteroid Senescence Gravitropism WRKY
brassinosteroid-regulated plant growth and development and gene expression in soybean shortcommunication brassinosteroid-regulated plant growth geneexpression soybeanwenchao yin nanadong meiniu, xiaoxing zhang, lulu li, jun liu, bin liu, hongning tong nationalkey facility cropgene resources geneticimprovement, institute cropsciences, chinese academy agriculturalsciences, beijing 100081, china articlehistory: received july2018 received revisedform october2018 accepted 15 november 2018 available online december2018 brassinosteroids (brs) endogenousphytohormones playimportant roles regulatingplant growth study,we evaluated brassinolide(bl, one activebrs) identifiedroles regulatingmultiple aspects plantgrowth development.bl application promoted hypocotyl epicotylelongation blockedepicotyl elongation dark.high levels blaccumulated light-grownplants. bl disrupted shoot negative gravitropism, whereas gibberellin did bldelayed leaf senescence. tran- scriptome analysis showed blinduced cell wall-modifying genes auxin-

制作巴西肉末炖豆配木薯英语作文

制作巴西肉末炖豆配木薯英语作文

制作巴西肉末炖豆配木薯英语作文Title: How to Make Brazilian Beef and Bean Stew with Cassava Brazilian Beef and Bean Stew, also known as "Feijoada," is a traditional dish from Brazil that combines hearty ingredients like beef, beans, and cassava into a flavorful and comforting meal. This dish has a rich history and is often enjoyed during festive occasions or as a hearty family meal. Here is a stepbystep guide on how to make this delicious Brazilian dish: Ingredients:1 pound of beef, cut into cubes2 cups of black beans, soaked overnight1 onion, diced4 cloves of garlic, minced2 bay leaves1 tablespoon of olive oilSalt and pepper to taste2 cups of cassava, peeled and cut into chunksChopped fresh parsley for garnishInstructions:1. Prepare the Ingredients: Start by soaking the black beans overnight to soften them. Cut the beef into cubes and season with salt and pepper. Peel and chop the onion and garlic. Peel and cut the cassava into chunks.2. Cook the Beef: In a large pot, heat the olive oil over medium heat. Add the diced onion and minced garlic, and sauté until fragrant. Add the seasoned beef cubes and brown on all sides.3. Add the Black Beans: Drain the soaked black beans and add them to the pot with the beef. Stir well to combine. Add enough water to cover the beef and beans. Toss in the bay leaves for added flavor.4. Simmer the Stew: Bring the pot to a boil, then reduce the heat to low and cover. Let the stew simmer for about 1.5 to 2 hours, or until the beef is tender and the beans are cooked through. Stir occasionally and add more water if needed to keep the stew from drying out.5. Cook the Cassava: In a separate pot, bring water to a boil and add the cassava chunks. Cook until the cassava is tender, about 2030 minutes. Drain and set aside.6. Finish and Serve: Once the beef and beans are cooked through and tender, taste and adjust seasoning with salt and pepper if needed. Serve the stew hot, alongside the cookedcassava chunks. Garnish with chopped fresh parsley for a pop of color and freshness.Enjoy the hearty and flavorful Brazilian Beef and Bean Stew with Cassava with your friends and family, and savor the rich and comforting flavors of this traditional Brazilian dish. Obrigado! (Thank you!)。

倍半碱和一水碱工艺流程

倍半碱和一水碱工艺流程

倍半碱和一水碱工艺流程## English Response.## Bischler-Napieralski and Mannich Reaction.The Bischler-Napieralski reaction and the Mannich reaction are two important chemical reactions that are used in the synthesis of heterocyclic compounds.Bischler-Napieralski Reaction.The Bischler-Napieralski reaction is a cyclization reaction that involves the intramolecular nucleophilic addition of an amine to an imine. The reaction is typically carried out in refluxing acetic acid or ethanol.The Bischler-Napieralski reaction is a versatile method for the synthesis of a variety of heterocyclic compounds, including indoles, quinolines, and isoquinolines.Mannich Reaction.The Mannich reaction is a three-component reaction that involves the addition of an amine, an aldehyde, and aketone or imine. The reaction is typically carried out in refluxing methanol or ethanol.The Mannich reaction is a powerful method for the synthesis of a variety of β-amino carbonyl compounds. These compounds are important intermediates in thesynthesis of many natural products and pharmaceuticals.## Chinese Response.## 倍半碱反应和一水碱反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Current Biology17,1109–1115,July3,2007ª2007Elsevier Ltd All rights reserved DOI10.1016/j.cub.2007.05.036Report BAK1and BKK1Regulate Brassinosteroid-Dependent Growth and Brassinosteroid-Independent Cell-Death PathwaysKai He,1Xiaoping Gou,1Tong Yuan,1Honghui Lin,1,2 Tadao Asami,3Shigeo Yoshida,3Scott D.Russell,1 and Jia Li1,*1Department of Botany and MicrobiologyUniversity of OklahomaNorman,Oklahoma730192College of Life ScienceSichuan UniversityChengduP.R.China6100643RIKEN2-1HirosawaWako,Saitama351-0198JapanSummaryBrassinosteroids(BRs)are phytosteroid hormones controlling various physiological processes critical for normal growth and development.BRs are per-ceived by a protein complex containing two trans-membrane receptor kinases,BRASSINOSTEROID INSENSITIVE1(BRI1)and BRI1-ASSOCIATED RECEP-TOR KINASE1(BAK1)[1–3].BRI1null mutants exhibit a dwarfed stature with epinastic leaves,delayed se-nescence,reduced male fertility,and altered light re-sponses.BAK1null mutants,however,only show a subtle phenotype,suggesting that functionally re-dundant proteins might be present in the Arabidopsis genome.Here we report that BAK1-LIKE1(BKK1) functions redundantly with BAK1in regulating BR sig-naling.Surprisingly,rather than the expected bri1-like phenotype,bak1bkk1double mutants exhibit a seed-ling-lethality phenotype due to constitutive defense-gene expression,callose deposition,reactive oxygen species(ROS)accumulation,and spontaneous cell death even under sterile growing conditions.Our de-tailed analyses demonstrate that BAK1and BKK1 have dual physiological roles:positively regulating a BR-dependent plant growth pathway,and negatively regulating a BR-independent cell-death pathway.Both BR signaling and developmentally controlled cell death are critical to optimal plant growth and develop-ment,but the mechanisms regulating early events in these pathways are poorly understood.This study provides novel insights into the initiation and cross-talk of the two signaling cascades.Results and DiscussionThe model plant Arabidopsis contains a large family of proteins called leucine-rich-repeat receptor-like protein kinases(LRR-RLKs).A typical LRR-RLK con-tains a ligand-binding extracellular LRR domain and a cytoplasmic serine/threonine kinase domain.There are at least223LRR-RLKs in the Arabidopsis genome[4], only a handful of which have been functionally charac-terized.Those characterized have been shown to play critical roles in various processes directly modulating growth and development,as well as immunity re-sponses[5–7].The discoveries of two LRR-RLKs, BRASSINOSTEROID INSENSITIVE1(BRI1)and BRI1-ASSOCIATED RECEPTOR KINASE1(BAK1),in control-ling the early event of the brassinosteroid(BR)-signaling pathway,suggested that the heterodimerization of dis-tinct LRR-RLKs after ligand binding could be a central paradigm in the activation of LRR-RLK-mediated signal-ing cascades[1–3].The biological significance of BRI1has been well documented.Genetic analyses indicated that bri1null alleles are extremely dwarfed and are insensitive to ex-ogenous brassinolide(BL),the most active BR,but remain sensitive to other known phytohormones[8]. Biochemical analyses demonstrated that the island seg-ment and the22nd LRR of the BRI1extracellular domain together confer BR-binding activity[9,10],whereas the kinase domain of BRI1activates downstream compo-nents by protein phosphorylation.BAK1is a distinct LRR-RLK that contains onlyfive LRRs and lacks the is-land region within its LRRs.BAK1physically interacts with BRI1in vivo[2,3,11].In addition,BRI1and BAK1 are able to phosphorylate each other.Both the interac-tion and the phosphorylation of BRI1and BAK1are BR dependent[12].Unlike BRI1,however,null alleles of BAK1display subtle bri1-like phenotypes,suggesting at least one additional protein in Arabidopsis is function-ally redundant with BAK1[2,3].BAK1belongs to the LRR type II subfamily,which contains14members[13],five of which were previously named SERK1to SERK5(Figure1A;[14])because of the similarity of their protein structures to that of the carrot DcSERK[15].Phylogenetic analysis indicated that SERK4and SERK5are the two closest paralogs of BAK1/SERK3(Figure1A),and they might have biological functions similar to BAK1.Because overexpression of BAK1is able to suppress a weak bri1allele,bri1-5[2], it was predicted that a BAK1redundant gene would also suppress bri1-5phenotypes when overexpressed. SERK4and SERK5were subsequently transformed into bri1-5to test whether they can suppress bri1-5 upon overexpression.Like BAK1,SERK4—but not SERK5—was able to partially rescue bri1-5when over-expressed(Figures1B and1C).SERK4was subse-quently renamed BAK1-LIKE1(BKK1).Further analyses indicated that Col-0SERK5bears an amino acid substi-tution of Leu for Arg at position401within the critical arginine/aspartate(RD)kinase motif,and this substitu-tion might block the function of Col-0SERK5in the BR signaling pathway(Figure S1in the Supplemental Data available online;[16]).Interestingly,the same mutation was not found in SERK5from other Arabidopsis eco-types,such as Wassilewskiji2(WS2)(data not shown).*Correspondence:lij@To examine the genetic significance of BAK1and BKK1in a real physiological setting,we isolated single T-DNA knockout lines from SALK T-DNA insertion pools.Several knockout lines were obtained for both genes.Only the lines directly relevant to this work are shown (Figure 2A).Whereas a BAK1null allele,bak1-4,showed a subtle bri1-like phenotype,a BKK1null allele,bkk1-1,did not exhibit any defective phenotypes (Figures 2B–2E).The double-null mutant,bak1-4bkk1-1,however,il-lustrated extremely dwarfed phenotypes,distinct from typical bri1null mutants,such as bri1-4.During the first 4days after germination,the double-null mutant showed no observable defective phenotypes compared to those of wild-type plants.A week after the germina-tion,however,shoot apical meristem (SAM)growth of the double mutant almost completely ceased (Fig-ure S2).Ten days after germination,the seedlings showed early senescence symptoms starting at the cot-yledons.Careful analysis of embryos from the progeny of bak1-4+/2bkk1-12/2or bak1-42/2bkk1-1+/2plants failed to identify any abnormal embryos during embryo-genesis.It was expected that 25%of the embryos would be aberrant if bak1-4bkk1-1double mutations did affect zygotic embryogenesis.The onset of seedling lethality is,therefore,a postembryonic phenotype probably con-trolled by unknown developmental cues.The pheno-types observed in the double mutant were reproduced with different bak1and bkk1allele combinations from a Col-0background (Figure S3)and were restored to wild-type-like seedlings by the expression of either BAK1or BKK1(Figures 2F and 2G).Various genetic seg-regation analyses further demonstrated that the ob-served phenotype was solely caused by the double BAK1and BKK1knockouts (Table S1).The overexpression of BKK1suppresses bri1-5phe-notypes,suggesting that BKK1has a role in the BR sig-naling.To further substantiate the function of BKK1inFigure 1.BKK1Plays a Redundant Role with BAK1in Suppressing bri1-5When Overexpressed(A)Phylogenetic analysis suggesting BKK1/SERK4is the closest paralog of BAK1in Arabidopsis .(B)Overexpression of BAK1or BKK1,but not SERK5,suppresses the phenotypes of bri1-5.(C)RT-PCR analyses to confirm the elevated expression of the transgenes in the transgenicplants.Figure 2.A bak1-4bkk1-1Double-Null Mutant Shows a Seedling-Lethality Phenotype at an Early Developmental Stage(A)T-DNA insertion sites of single knockout lines,bak1-4(SALK_116202)and bkk1-1(SALK_057955).Both are in a Col-0background.(B–C)Phenotypes of wild-type (in Col-0,left side)and double-null mutant (right side)seedlings at different developmental stages after germination.(D)Phenotypes of wild-type,bak1-4and bkk1-1single-mutant,bak1-4bkk1-1double-mutant,and bri1-4mutant seedlings.(E)RT-PCR analyses to confirm the genotypes shown in (D).Genotypic analysis of bri1-4is not included.(F)Overexpression of either BAK1or BKK1driven by the 35S promoter completely rescues the lethal bak1-4bkk1-1double-null phenotypes.(G)RT-PCR analysis verifies the genotypes of the plants shown in (F).Current Biology 1110the BR pathway,we conducted a series of tests.To be-gin,we generated a BKK1kinase-dead mutant,mBKK1(K322E),and introduced it into bri1-5.Over 50%of the transgenic plants displayed dominant-negative pheno-types,with phenotypic severity positively correlated with the expression levels of the transgene (Figures 3A and 3B).The most severe plants resembled the pheno-types of null bri1,characterized by extreme dwarfism and complete male sterility (data not shown).This result suggested that BKK1might associate with BRI1in vivo;this was subsequently confirmed by a coimmunoprecipi-tation analysis with transgenic plants harboring 35S-BKK1-GFP and 35S-BRI1-FLAG (Figure 3C).The inter-action was greatly enhanced by exogenously applied BL.Moreover,biochemical analysis indicated that the in vivo phosphorylation levels of BKK1were also regu-lated by exogenously applied BL (Figure 3D),similar to that of BAK1[12]and BRI1(Figure 3E).The depletion of endogenous BRs by the treatment of seedlings (BKK1-GFP in bak1-4bkk1-1and BRI1-GFP in Col-0)for a week with the specific BR-biosynthesis inhibitor brassinazole (BRZ)[17]showed basal levels of threonine phosphorylation on both BKK1and BRI1.A 90min treat-ment of these BRZ-pretreated seedlings with BL greatly increased phosphorylation levels on their threonine residues.These data demonstrated that BKK1has bio-chemical properties similar to those of BAK1in regulat-ing the BR signal transduction.To further verify the physiological role of BKK1in the BR signaling,we grew double and single mutants in the darkness.A typ-ical BR mutant shows a de-etiolated phenotype when grown in darkness,including shortened hypocotyls and opened cotyledons.bak1-4,but not bkk1-1,showed weak de-etiolated phenotypes.Although the double mutants did not show additive effect on hypo-cotyl growth compared to that of the bak1single mutant,they showed enhanced cotyledon opening phenotype similar to that of the null bri1mutant,bri1-4(Figures S4A–S4F).These results confirmed that BKK1has a clear role in the BR signal transduction,but there shouldbeFigure 3.BKK1Interacts with BRI1and Mediates BR Signal Transduction(A)The overexpression of BKK1-GFP suppresses bri1-5pheno-types,whereas the overexpression of mBKK1-GFP results in a dominant-negative effect,which greatly enhances bri1-5defective phenotypes.(B)The severity of the transgenic plant phenotype is apparently cor-related to the mBKK1-GFP protein levels.An equal amount of total protein was used for each sample for a western analysis to show differently expressed mBKK1-GFP levels.(C)BKK1interacts with BRI1in vivo,and the interaction is BL enhanced.Wild-type and transgenic seeds harboring 35S -BRI1-FLAG and 35S -BKK1-GFP in Col-0were grown in liquid culture[12].One week after germination,one flask of seedlings was treated with mock (dimethyl sulfoxide [DMSO]),and a duplicated flask of seedlings was treated with 1m M BL.The membrane fractions from these two treatments were extracted and immunoprecipitated with a -FLAG.The coimmunoprecipitated BKK1-GFP was detected by a western blot with a -GFP.A duplicated blot was hybridized with a -FLAG to confirm equal loading of the immunoprecipitated BRI1-FLAG (bottom panel).BKK1-GFP,immunoprecipitated with a -GFP from single-transgenic plants harboring 35S-BKK1-GFP,was used as a size reference.(D)Exogenous application of BL increases the phosphorylation level of BKK1.Liquid-cultured seedlings harboring 35S-BKK1-GFP in a bak1-4bkk1-1double-null background were either treated or un-treated with 1m M BL,after treatment with 1m M BRZ to deplete en-dogenous BRs in liquid culture.Levels of threonine phosphorylation were detected with phosphoThr antibody (upper panel).The same amount of transgenic seedlings,as well as nontransgenic Col-0as a negative control,were harvested and immunoprecipitated with anti-GFP antibody.Equal amounts of BKK1-GFP proteins were used,as demonstrated in a duplicated immunoblot with an anti-GFP antibody as shown in the lower panel.(E)Exogenous BL application elevates the phosphorylation level of BRI1.Seedlings harboring 35S-BRI1-GFP in Col-0were used for the experiments.The treatments and detection were similar to those described in (D).Dual Roles of BAK1and BKK11111additional proteins,aside from BAK1and BKK1,in-volved in BR signal transduction.It was recently re-ported that SERK1was part of the BRI1and BAK1com-plex and that it might also participate in BR signal transduction [18].Reverse-transcription polymerase chain reaction (RT-PCR)analysis indicated that BKK1is expressed considerably less than are BAK1and SERK1in darkness,and this explains why BKK1plays less of a role in controlling hypocotyl growth under the dark condition (Figure S4C).Because the bak1-4bkk1-1double mutant showed a seedling-lethality phenotype,a triple mutant was not generated in this study.To investigate the molecular mechanisms leading to the seedling-lethality phenotype of bak1-4bkk1-1,we employed Affymetrix arrays to compare the global gene expression patterns of the 8-day-old double mu-tant with those of the Col-0wild-type.Among the most significantly upregulated genes were those involved in defense responses.Representative upregulated de-fense-and senescence-related genes,PR1,PR2,PR5,ACS2,ACS6,and the downregulated gene,PDF1.2,were further analyzed by RT-PCR to examine whether the expression patterns were similar to those shown in bri1-4.If BAK1and BKK1are involved exclusively in the BR signaling,one would expect these genes to show similarly dramatic expression changes in both bri1-4and bak1-4bkk1-1.Interestingly,these defense-and senescence-related genes showed either no or opposite expression changes in bri1-4(Figure 4A).Because extreme dwarfism,constitutive defense-gene expression,early senescence,and seedling lethality are common phenotypes of cell-death mutants [19,20],various tissue-staining approaches were conducted to determine whether cell death is involved in the double-mutant seedlings.Interestingly,callose deposition (aniline-blue staining [21]),cell death (trypan-blue stain-ing [22]),and the accumulation of reactive oxygen spe-cies (ROSs)(3,30-diaminobenzidine [DAB]staining [23])were all seen in the double-mutant seedlings but not in other seedlings from the samedevelopmentalFigure 4.BAK1and BKK1Are Also Involved in a BR-Independent Cell-Death Signaling Pathway(A)A number of defense-related genes are ei-ther upregulated or downregulated in bak1-4bkk1-1relative to its background Col-0plants,whereas these genes are not affected or are oppositely regulated in bri1-4com-pared to those of its background,WS2.(B–G)Aniline-blue-stained cotyledons of 8-day-old seedlings grown on 1⁄2Murashige and Skoog medium (MS)plates under sterile conditions.Only vascular tissues and guard cells were stained in wild-type (Col-0,[B]),bak1-4(C),bkk1-1(D),and bri1-4(E)seed-lings.Additional clustered signals on bak1-4bkk1-1(F and G)double mutants were stained,indicating callose accumulation,a typical spontaneous defense response.(H–M)Trypan-blue-stained cotyledons of 8-day-old seedlings grown on 1⁄2MS medium under sterile conditions.No cell death was found in cotyledons of wild-type (Col-0,[H]),bak1-4(I),bkk1-1(J),and bri1-4(K)seedlings.Significant microscopic mesophyll cell death (shown as blue-stained cells)was detected in the cotyledons of the bak1-1bkk1-1double mutants (L and M).(N–S)DAB-stained cotyledons of 8-day-old seedlings grown on 1⁄2MS medium under sterile conditions.H 2O 2was only detected in the vascular tissues of wild-type (Col-0,[N]),bak1-4(O),bkk1-1(P),and bri1-4(Q)seedlings;relatively little was detected in their mesophyll cells.H 2O 2accumulation was observed in the clustered mesophyll cells of the bak1-1bkk1-1double mutants near the vascular tissues (R and S).(T–V)Expression of bacterial NahG in the double mutant partially rescues its seedling-lethality phenotype.Phenotypes of 9-day-old Col-0(T),bak1-4bkk1-1(U),and bak1-4bkk1-1NahG (V)seedlings.Scale bars represent 50m m (B–F),10m m (G),40m m (H–K),150m m (L),40m m (M),1mm (N–R),200m m (S),and 2mm (T–V).Current Biology 1112stages (Figures 4B–4S).Many cell-death mutants,such as lsd1,showed a cell-death phenotype in a salicylic acid (SA)-dependent manner [24].To test whether the cell-death phenotype observed in bak1-4bkk1-1was also SA-dependent,we introduced the bacterial NahG gene into the double mutant by performing a genetic crossing with a transgenic Col-0Arabidopsis plant expressing NahG [25].NahG encodes a salicylate hydroxylase that converts SA to catechol.The presence of the NahG transgene partially rescues the bak1-4bkk1-1double-mutant phenotype,suggesting that the cell-death phenotype in the double mutant was likely SA-dependent (Figures 4T–4V).Our extensive analyses demonstrated that BAK1and BKK1are not only involved in a BRI1-mediated pathway,but also involved in a BR-independent signaling path-way.The two pathways mediated by BAK1and BKK1showed some antagonistic features.For example,null bri1mutants usually displayed prolonged life spans and a dark-green phenotype,whereas bak1bkk1double-mutant plants exhibited shortened a life span,early cotyledon senescence,and a cell-death phenotype.Ex-pressions of senescence-related genes such as ACS2and ACS6are reduced in null bri1mutants but enhanced in bak1bkk1double-null seedlings,relative to their wild-type backgrounds.The seedling-lethality phenotype of the double mutant is likely a consequence of the block-ing of a second unknown BR-independent pathway.We hypothesize that BAK1and BKK1regulate BR-de-pendent and BR-independent pathways via an alternat-ing interaction with BRI1and/or another defense-related LRR-RLK (Figure 5).In wild-type plants,BAK1and BKK1positively regulate the BR-mediated cell-growth path-way and negatively regulate a defense-related cell-death pathway.In bak1-4bkk1-1,the cell-death path-way is constitutively activated,leading to spontaneous cell death.This hypothesis is partially supported by an independent study from Nu ¨rnberger and colleagues [26],who recently found that BAK1knockout alleles,bak1-3and bak1-4,were more susceptible than the wild-type to several different pathogens.They similarly concluded that BAK1was probably involved in a BR-independent immunity pathway [26].This model can also be used to explain several early observations.For example,it was reported that overexpression of CPD ,a key gene regulating multiple steps in BR biosynthesis,could induce the expression of a number of defense-related genes [27].Early experiments also indicated that the application of BL induced senescence.It is likely that when the BR signaling pathway was enhanced,its antagonistic pathway was automatically reduced,lead-ing to the upregulation of defense-related genes and cell death (Figure 5).Developmentally controlled pro-grammed cell death is critical for normal plant growth and development,as well as a defense against numer-ous biotic and abiotic stresses.It would be interesting to further define the second signaling pathway in which BAK1and BKK1are involved.If the hypothesis is cor-rect,the alternative BAK/BKK1binding partner should have roles in plant defense and/or cell-death control.To date,at least two LRR-RLKs are known to be in-volved in plant defense against pathogens in Arabidop-sis .For instance,ERECTA has roles in both plant devel-opment and immunity [28,29],and FLS2is involved in defense responses [30].In the future,it will be intriguing to investigate whether BAK1and BKK1dimerize with ERECTA or FLS2to mediate their corresponding signal-ing pathways.Experimental ProceduresMaterials and Plant Growth Conditionsbri1-5is in ecotype WS2.bak1-4(SALK_116202),bkk1-1(SALK_057955),and NahG transgenic plants were all in Col-0.Plants were grown at 22 C under 16hr light/8hr dark,unless otherwise specified.Gene Cloning and Arabidopsis TransformationThe BAK1expression vector used was the same as previously re-ported [2].BKK1and AtSERK5cDNAs were amplified by RT-PCR from Col-0.The following primers were used:BKK1-fw 50-TCTAGA TCTATGGAACAAAGATCACTCCTTTGCT-30,BKK1-rv 50-TCTAGAT CTTTATCTTGGACCCGAGGGGTAATCGT-30,AtSERK5-fw 50-TCTA GATCTATGGAACATGGATCATCCCGTGGCT-30,and AtSERK5-rv 50-TCTAGATCTTTATCTTGGCCCCGAGGGGTAATCGT-30.The PCR products were cloned into the KpnI site of the binary vector pBIB-BASTA-35S .Constructs were transformed into bri1-5by the floral dipping method [31].BAK1and BKK1cDNAs were also cloned into the KpnI and BamHI sites of the binary vector pBIB-BASTA-35S-GFP with the primers BAK1-fw 50-TCTAGATCTATGGAACGAAGATTAATGATCCCT-30,BAK1-rv 50-TCTGGATCCTCTTGGACCCGAGGGGTATTCGTT-30,BKK1-fw and BKK1-rv250-TCTGGATCCTCTTGGACCCGAGGGG TAATCGT-30.The constructs were all confirmed by sequencing analysis.RT-PCR AnalysisTwo micrograms of total RNA was reverse transcribed in a 20m l volume with Superscript III reverse transcriptase (Invitrogen).Two microliters of first-strand cDNA was used for RT-PCR with Ex Taq polymerase (Takara).A preliminary experiment was performed to determine the exponential range of each individual gene.The PCR cycles used were BAK122,BKK122,AtSERK528,PR130,PR230,PR522,ACS226,ACS622,PDF1.230,and EF1a 19,respec-tively.The primers for BAK1and paralogs were the same as those used for cloning.The primers for defense-related genes and senes-cence-related genes were the same as previously reported [32–34].Figure 5.A Proposed Model Indicating that BAK1and BKK1Posi-tively Regulate a BR Signaling Pathway and Negatively Regulate a Spontaneous Cell-Death PathwayCell death was observed on bak1-42/2bkk1-12/2seedlings grown under sterilized conditions,suggesting that the death signal is pro-duced by the plant itself.The production of this cell-death signal is likely controlled by unknown developmental cues.Dual Roles of BAK1and BKK11113Protein Extraction and ImmunoprecipitationFive grams of liquid-cultured seedlings was ground in liquid N2as previously described[12].Various treatments with1m M BRZ or 1m M BL and membrane-protein isolation were the same as previ-ously reported[2,12].BKK1-GFP was immunoprecipitated from solubilized total membrane protein with anti-GFP mouse antibody (Invitrogen)followed by a pull-down process with protein G beads (Roche).Western-Blot AnalysisGFP-immunoprecipitated membrane proteins were separated with 10%sodium dodecyl sulfate(SDS)polyacrylamide gel electrophore-sis.Various antibodies of a-GFP,a-FLAG,and a-phosphothreonine and western-analysis procedures were all the same as previously described[2,12].Site-Directed MutagenesisBKK1was cloned into the Gateway donor vector pDONR/zeo(Invi-trogen)to generate pENTR-BKK1.PCR was conducted with pENTR-BKK1as a template and primers50-AATCTAGTGGCTGTCGAAAGG CTAAAAGAAGAA-30and50-TTCTTCTTTTAGCCTTTCGACAGCCAC TAGATT-30.The mutation was confirmed by sequencing analysis. The obtained pENTR-mBKK1was further cloned into pBIB-BASTA-35S-GFP with a Gateway strategy for transformation. Tissue StainingsTissue stainings with aniline blue(0.01%,Sigma),trypan blue (1.25mg/ml,Sigma),and DAB(1mg/ml,Sigma)were the same as previously reported[19,22,23].Supplemental DataExperimental Procedures,fourfigures,and one table are available at /cgi/content/full/17/13/1109/ DC1/.AcknowledgmentsWe are grateful to the Salk Institute and the Arabidopsis Biological Resource Center for the knockout lines and to Ben H.Holt III for the NahG transgenic plants and discussions.Special thanks to Steven Clouse,Rebecca Powell,and James Mathew Jones for their comments on the manuscript.These studies were supported by National Science Foundation(NSF)grants IBN-0317729(to J.L.) and MCB-0419819(to S.D.Clouse,J.Li,S.Huber,and M.Goshe). Received:February25,2007Revised:May16,2007Accepted:May17,2007Published online:June28,2007References1.Li,J.,and Chory,J.(1997).A putative leucine-rich repeat recep-tor kinase involved in brassinosteroid signal transduction.Cell 90,929–938.2.Li,J.,Wen,J.,Lease,K.A.,Doke,J.T.,Tax,F.E.,and Walker,J.C.(2002).BAK1,an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1and modulates brassinosteroid signaling.Cell110,213–222.3.Nam,K.H.,and Li,J.(2002).BRI1/BAK1,a receptor kinase pairmediating brassinosteroid signaling.Cell110,203–212.4.Arabidopsis Genome Initiative.(2000).Analysis of the genomesequence of theflowering plant Arabidopsis thaliana.Nature 408,796–815.5.Becraft,P.W.(2002).Receptor kinase signaling in plant develop-ment.Annu.Rev.Cell Dev.Biol.18,163–192.6.Dievart,A.,and Clark,S.E.(2004).LRR-containing receptorsregulating plant development and defense.Development131, 251–261.7.Morillo,S.A.,and Tax,F.E.(2006).Functional analysis of recep-tor-like kinases in monocots and dicots.Curr.Opin.Plant Biol.9, 460–469.8.Clouse,S.D.,Langford,M.,and McMorris,T.C.(1996).A brassi-nosteroid-insensitive mutant in Arabidopsis thaliana exhibitsmultiple defects in growth and development.Plant Physiol.111,671–678.9.Wang,Z.Y.,Seto,H.,Fujioka,S.,Yoshida,S.,and Chory,J.(2001).BRI1is a critical component of a plasma-membrane receptor for plant steroids.Nature410,380–383.10.Kinoshita,T.,Cano-Delgado,A.,Seto,H.,Hiranuma,S.,Fujioka,S.,Yoshida,S.,and Chory,J.(2005).Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1.Nature 433,167–171.11.Russinova,E.,Borst,J.W.,Kwaaitaal,M.,Cano-Delgado,A.,Yin,Y.,Chory,J.,and de Vries,S.C.(2004).Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3(BAK1).Plant Cell16,3216–3229.12.Wang,X.,Goshe,M.B.,Soderblom,E.J.,Phinney,B.S.,Kuchar,J.A.,Li,J.,Asami,T.,Yoshida,S.,Huber,S.C.,and Clouse,S.D.(2005).Identification and functional analysis of in vivo phos-phorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1receptor kinase.Plant Cell17,1685–1703.13.Shiu,S.H.,and Bleecker,A.B.(2001).Receptor-like kinases fromArabidopsis form a monophyletic gene family related to animal receptor A98,10763–10768.14.Hecht,V.,Vielle-Calzada,J.P.,Hartog,M.V.,Schmidt, E.D.,Boutilier,K.,Grossniklaus,U.,and de Vries,S.C.(2001).The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1gene is expressed in developing ovules and embryos and en-hances embryogenic competence in culture.Plant Physiol.127, 803–816.15.Schmidt, E.D.,Guzzo, F.,Toonen,M.A.,and de Vries,S.C.(1997).A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos.Develop-ment124,2049–2062.16.Dardick,C.,and Ronald,P.(2006).Plant and animal pathogenrecognition receptors signal through non-RD kinases.PLoS Pathog.2,e2.17.Asami,T.,Min,Y.K.,Nagata,N.,Yamagishi,K.,Takatsuto,S.,Fujioka,S.,Murofushi,N.,Yamaguchi,I.,and Yoshida,S.(2000).Characterization of brassinazole,a triazole-type brassi-nosteroid biosynthesis inhibitor.Plant Physiol.123,93–100. 18.Karlova,R.,Boeren,S.,Russinova,E.,Aker,J.,Vervoort,J.,andde Vries,S.(2006).The Arabidopsis SOMATIC EMBRYOGENE-SIS RECEPTOR-LIKE KINASE1protein complex includes BRAS-SINOSTEROID-INSENSITIVE1.Plant Cell18,626–638.m,E.(2004).Controlled cell death,plant survival and develop-ment.Nat.Rev.Mol.Cell Biol.5,305–315.20.Ichimura,K.,Casais,C.,Peck,S.C.,Shinozaki,K.,and Shirasu,K.(2006).MEKK1is required for MPK4activation and regulates tissue-specific and temperature-dependent cell death in Arabi-dopsis.J.Biol.Chem.281,36969–36976.21.Dietrich,R.A.,Delaney,T.P.,Uknes,S.J.,Ward,E.R.,Ryals,J.A.,and Dangl,J.L.(1994).Arabidopsis mutants simulating disease resistance response.Cell77,565–577.22.Shirasu,K.,Lahaye,T.,Tan,M.W.,Zhou,F.,Azevedo,C.,andSchulze-Lefert,P.(1999).A novel class of eukaryotic zinc-bind-ing proteins is required for disease resistance signaling in barley and development in C.elegans.Cell99,355–366.23.Thordal-Christensen,H.,Zhang,Z.,Wei,Y.,and Collinge,D.B.(1997).Subcellular localization of H2O2in plants.H2O2accumu-lation in papillae and hypersensitive response during the bar-ley—powdery mildew interaction.Plant J.11,1187–1194.24.Aviv,D.H.,Rusterucci,C.,Holt,B.F.,3rd,Dietrich,R.A.,Parker,J.E.,and Dangl,J.L.(2002).Runaway cell death,but not basal disease resistance,in lsd1is SA-and NIM1/NPR1-dependent.Plant J.29,381–391.25.Delaney,T.P.,Uknes,S.,Vernooij,B.,Friedrich,L.,Weymann,K.,Negrotto, D.,Gaffney,T.,Gut-Rella,M.,Kessmann,H., Ward,E.,et al.(1994).A central role of salicylic acid in plant dis-ease resistance.Science266,1247–1250.26.Kemmerling,B.,Schwedt,A.,Rodriguez,P.,Frank,M.,Qamar,S.A.,Mengiste,T.,Betsuyaku,S.,Parker,J.E.,Altman, A., Tomma,B.P.,et al.(2007).A brassinolide-independent role for the BRI1associated receptor kinase(BAK1)in plant cell death control.Curr.Biol.17.Published online June21,2007.10.1016/j.cub.2007.05.046.Current Biology 1114。

相关文档
最新文档