江苏省南通市中考数学试卷

合集下载

最新版江苏省南通市2022届中考数学试卷和答案解析详解完整版

最新版江苏省南通市2022届中考数学试卷和答案解析详解完整版
11.为了了解“双减”背景下全国中小学生完成课后作业的时间情况,比较适合的调查方式是___________(填“全面调查”或“抽样调查”).
12.分式 有意义,则x应满足的条件是___________.
13.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。问人数、羊价各是多少?若设人数为x,则可列方程为___________.
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.若气温零上 记作 ,则气温零下 记作()
A. B. C. D.
2.下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是()
A. B.
当a>0时,若y关于x的一次函数 图象的“2阶方点”有且只有一个,
则 过点(-2,2)或(2,-2),
把(-2,2)代入 得: ,解得: (舍去);
把(2,-2)代入 得: ,解得: ;
当a<0时,若y关于x的一次函数 图象的“2阶方点”有且只有一个,
则 过点(2,2)或(-2,-2),
把(2,2)代入 得: ,解得: ;
(1)从袋子中随机摸出一个球,摸到蓝球的概率是___________;
(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.
23.如图,四边形 内接于 , 为 的直径, 平分 ,点E在 的延长线上,连接 .
(1)求直径 的长;
(2)若 ,计算图中阴影部分的面积.
把(-2,-2)代入 得: ,解得: (舍去);

南通九年级中考数学试卷【含答案】

南通九年级中考数学试卷【含答案】

南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。

()2. 负数的平方是正数。

()3. 所有的偶数都是2的倍数。

()4. 两个负数相乘得到正数。

()5. 所有的正方形都是矩形。

()三、填空题1. 2的平方是______。

2. 若 a = 3,b = -2,则 a + b = ______。

3. 下列图形中,______是轴对称图形。

4. 若 3x + 5 = 14,则 x = ______。

5. 下列数中,______是素数。

四、简答题1. 解释什么是负数。

2. 解释什么是平行四边形。

3. 解释什么是无理数。

4. 解释什么是代数式。

5. 解释什么是因数分解。

五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

3. 若 2x 3 = 7,求 x 的值。

4. 一个数的平方是16,求这个数。

5. 列出所有的2的倍数,从1到10。

六、分析题1. 解释为什么负数的平方是正数。

2. 解释为什么所有的偶数都是2的倍数。

七、实践操作题1. 画出一个边长为5cm的正方形。

2. 画出一个半径为3cm的圆。

八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。

2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。

2022南通中考数学试题及答案

2022南通中考数学试题及答案

2022南通中考数学试题及答案2022年南通中考数学试题一、选择题(每小题3分,共45分)1. 已知抛物线y = ax^2 + bx + c的顶点坐标为(1, 2),且经过点(2, 3),则a、b、c的值分别为()。

A. 1,1,1B. 1/2,3/2,1C. 2,1,-3D. 1,-3,22. 下列等式恒成立的是()。

A. 2^5 = 3^4B. 4^3 = 2^6C. 5^2 = 3^3D. 2^7 = 3^43. 五年前,甲的年龄是乙的2倍,五年后,甲的年龄是乙的$\frac{2}{3}$倍,那么现在甲的年龄是乙的()倍。

A. 3/4B. 4/3C. 2D. 34. 月宽度的南通标准时间(傲娇地)为29.53天.现有观察结果是:A月初是星期五,A月的天数是奇数.那么这个A月有()天。

A. 29B. 30C. 31D. 325. 矩形柱体的底面长为6cm,宽为4cm,体积是72cm^3,则高为()cm。

A. 2B. 3C. 4D. 6...42. 已知圆的半径为4cm,圆心角为$120^\circ$,则弧长是()cm.A. $8\pi$B. $4\pi$C. $2\pi$D. $\pi$43. 已知记录故事片时的手风琴是32cm长,录放电话机模型是藕节长的4.5倍,现有手风琴图片模型是藕节长的12倍,则这个图片模型长()cm.A. 216B. 172C. 144D. 139.544. 成员10元.团队中每个成员不同程度地患有胃病,需购买16盒胃药.若每盒胃药的价格相同,且处方由同一个团队发,今天药店出售胃药7. 5折,而芦山发生地震中的地点是芦山的甲地,在合同到期后半年又一次购买胃药.那么半年后每盒胃药的价格是原价的().A. $18\over32$B. $256\over432$C. $5\over8$D.$13\over18$45. 见数偶数框内线描的面积是10,木料表面积是75,该木料的宽比长小2,那么木料的长和宽是()和().A. 6和8B. 12和14C. 5和7D. 13和15二、非选择题(共55分)46. 2022南通中考数学试题的总分是150分,即使你全做对了,你只能得到55分,很遗憾你考试失败了。

2022年江苏省南通市中考数学真题(含答案)

2022年江苏省南通市中考数学真题(含答案)
24.某水果店购进甲、乙两种苹果的进价分别为8元/ 、12元/ ,这两种苹果的销售额y(单位:元)与销售量x(单位: )之间的关系如图所示.
(1)写出图中点B表示的实际意义;
(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位: )之间的函数解析式,并写出x的取值范围;
(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为 时,它们的利润和为1500元.求a的值.
3.沪渝蓉高铁是国家中长期铁路网规划“八纵八横”之沿江高铁通道的主通道,其中南通段总投资约39000000000元,将39000000000用科学记数法表示为()
A. B. C. D.
4.用一根小木棒与两根长分别为 的小木棒组成三角形,则这根小木棒的长度可以为()
A. B. C. D.
5.如图是中5个相同的正方体搭成的立体图形,则它的主视图为()
A. B. C. D.
6.李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是()
A.10.5%B.10%C.20%D.21%
7.如图, ,则 的度数是()
A. B. C. D.
8.根据图像,可得关于x的不等式 的解集是()
A. B. C. D.
(3)
【26题答案】
【答案】(1)②③(2)3或 ;
(3)
16.如图,B为地面上一点,测得B到树底部C的距离为 ,在B处放置 高的测角仪 ,测得树顶A的仰角为 ,则树高 为___________m(结果保留根号).
17.平面直角坐标系 中,已知点 是函数 图象上的三点。若 ,则k的值为___________.
18.如图,点O是正方形 的中心, . 中, 过点D, 分别交 于点G,M,连接 .若 ,则 的周长为___________.

江苏省南通市2022年中考数学试卷

江苏省南通市2022年中考数学试卷

江苏省南通市2022年中考数学试卷10小题,共30分) (共10题;共30分) 1.(3分)已知a4=b3,则a−b b的值是()A.34B.43C.3D.13【答案】D【解析】【解答】解:∵a4=b3,∴a b=43,∴a−b b=a b−1=43−1=13.故答案为:D.【分析】根据已知条件可得ab=43,待求式可变形为ab-1,据此计算.2.(3分)若单项式2x m y²与−3x3y n是同类项,则m n的值为()A.9B.8C.6D.5【答案】A【解析】【解答】解:因为单项式2x m y²与−3x3y n是同类项,所以m=3,n=2,所以m n=32=9故答案为:A.【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此可得m、n的值,然后根据有理数的乘方法则进行计算.3.(3分)-2022的绝对值是()A.12022B.−12022C.2022D.-2022【答案】C【解析】【解答】-2022的绝对值是2022.故答案为:C【分析】一个负数的绝对值等于它的相反数,据此解答即可.4.(3分)在如图的方格中,△ABC的顶点A、B、C都是方格线的交点,则三角形ABC的外角∠ACD的度数等于()A.130°B.140°C.135°D.145°【答案】C【解析】【解答】解,设每个小方格的边长为1,由勾股定理可得AB=√22+12=√5,BC=√22+12=√5,AC=√32+12=√10,∵(√5)2+(√5)2=(√10)2,∴AB2+BC2=AC2,且AB=BC,∴△ABC为等腰直角三角形,∴∠ABC=90°,∠BAC=45°,∴∠ACD=∠ABC+∠BAC=135°.故答案为:C.【分析】设每个小方格的边长为1,利用勾股定理可得AB、BC、AC,结合勾股定理逆定理知△ABC为直角三角形且AB=BC,△ABC=90°,△BCA=45°,由外角的性质可得△ACD=△ABC+△BAC,据此计算.5.(3分)如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1B.-1C.4D.-4【答案】A【解析】【解答】解:∵2x=2×1⋅x,∴k=12=1,故答案为:A.【分析】根据完全平方式的特点可得2=2√k,求解可得k的值.6.(3分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为()A.{5x+6y=165x+y=6y+x B.{5x+6y=164x+y=5y+xC.{6x+5y=166x+y=5y+x D.{6x+5y=165x+y=4y+x 【答案】B【解析】【解答】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有5x+6y=16互换其中一只则五只雀变为四只雀一只燕,即4x+y六只燕变为五只燕一只雀,即5y+x且一样重即4x+y=5y+x由此可得方程组{5x+6y=164x+y=5y+x.故答案为:B.【分析】由题意列出二元一次方程组,解方程7.(3分)如图,下列四个选项中不能判断AD//BC的是()A.∠1=∠3B.∠B+∠BAD=180°C.∠D=∠5D.∠2=∠4【答案】D【解析】【解答】解:A、∵∠1=∠3,∴AD//BC,故此选项不符合题意;B、∵∠B+∠BAD=180°,∴AD//BC,故此选项不符合题意;C、∵∠D=∠5,∴AD//BC,故此选项不符合题意;D、∵∠2=∠4,∴AB//CD,故此选项符合题意;故答案为:D.【分析】内错角相等,两直线平行,据此判断ACD;同旁内角互补,两直线平行,据此判断B. 8.(3分)某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中这家商店()A.赚了32元B.赚了8元C.赔了8元D.不赔不赚【答案】B【解析】【解答】解:设盈利60%的进价为x元,则:x+60%x=64160%x=64x=40再设亏损20%的进价为y元,则;y-20%y=6480%y=64y=80所以总进价是:40+80=120(元)总售价是:64+64=128(元)售价>进价,128-120=8(元)答:赚了8元.故答案为:B.【分析】分别求出两个计算器的进价,再与售价作比较即可.9.(3分)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【答案】D【解析】【解答】解:∵六边形ABCDEF是正六边形,∴△FAB= (6−2)×180°6=120°,AB=6,∴扇形ABF的面积= 120π×62360=12π,故答案为:D.【分析】根据正六边形的性质得△FAB= (6−2)×180°6,半径=正六边形的边长,然后根据扇形面积S=nπR 2360可求解.10.(3分)同步卫星在赤道上空大约36000000米处.将36000000用科学记数法表示应为()A.36×106B.0.36×108C.3.6×106D.3.6×107【答案】D【解析】【解答】解:36000000=3.6×107。

2024学年江苏省南通市九年级数学中考模拟卷+答案解析

2024学年江苏省南通市九年级数学中考模拟卷+答案解析

2024学年江苏省南通市九年级数学中考模拟卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果是()A.B.C.2D.52.下列图形中,是中心对称图形的是()A.B.C.D.3.据国家统计局数据,2022年中国国内生产总值约1210000亿元.将1210000用科学记数法表示为()A.B.C.D.4.如图所示的几何体是由几个大小相同的小正方体搭成的,其主视图是()A. B. C. D.5.一副直角三角板按如图所示的位置摆放,如果,那么的度数是()A. B. C. D.6.如图,AB、BC为的两条弦,连接OA、OC,点D为AB的延长线上一点,若,则的度数为()A. B. C. D.7.某人在甲、乙、丙、丁四个超市购买某品牌商品的总价和购买数量如图所示,按平均单价计算,购买该品牌商品最划算的超市是()A.甲B.乙C.丙D.丁8.如图,中,,以点B为圆心,任意长为半径画弧,分别交于E、F点,分别以点E、F为圆心,以大于的长为半径画弧,两弧交于点G,作射线BG,交AC于点D,已知,则CD的长为()A.2B.3C.D.9.如图,在中,,点D在BC上,延长AD到E,使得,过点B作,交射线AC于点F,设,,则y关于x的函数图象大致为()A. B.C. D.10.二次函数的图象与x轴相交于A,B两点,点C在二次函数图象上,且到x轴距离为4,,则a的值为()A.4B.2C.D.二、填空题:本题共8小题,每小题3分,共24分。

11.因式分解:____.12.计算的结果是____.13.二元一次方程组的解是______.14.如图,D,E两点分别在上,,要使,只需添加一个条件,则这个条件可以是______.15.用一个圆心角为,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为_____.16.测量附中国旗杆的高度,小宇的测量方法如下:如图,将直角三角形硬纸板的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得米,米,目测点D到地面的距离米,到旗杆的水平距离米.按此方法,可计算出旗杆的高度为_____米.17.如图,在平面直角坐标系中,直线与直线分别与函数的图象交点A、两点,连接、,若的面积为3,则k的值为_____.18.已知点为直线上一点,将一直角三角板的直角顶点放在D处旋转,保持两直角边始终交x轴于A、B两点,为y轴上一点,连接AC,BC,则四边形ACBD面积的最小值为_____.三、解答题:本题共8小题,共64分。

南通中考数学试题及答案2022

南通中考数学试题及答案2022

南通中考数学试题及答案2022一、选择题1. 计算:$\frac{3}{5}\div\frac{2}{3}=$A. $\frac{9}{10}$B. $\frac{15}{13}$C. $\frac{9}{13}$D.$\frac{15}{10}$2. 已知甲、乙两数的比为$3:5$,且$\frac{乙}{甲}=\frac{4}{15}$,则乙是甲的:A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{9}{2}$D.$\frac{15}{4}$3. 下列二次方程中,有实根的是:A. $2x^2-3x+8=0$B. $x^2+4x-5=0$C. $3x^2+5x+2=0$D.$4x^2+4x+4=0$4. 若$y$是$x$的函数,且满足$y(2)=5$,则在图像上的点$(2,5)$是:A. 横坐标为2,纵坐标为5的一个点B. 自变量为2,因变量为5的一个点C. 自变量为5,因变量为2的一个点D. 横坐标为5,纵坐标为2的一个点5. 当$x$取何值时,方程$4x-7=3x+5$成立?A. $x=12$B. $x=-12$C. $x=-4$D. $x=4$二、填空题6. 一盒装有红、黄、绿三种颜色的小球,其中红球比黄球多5个,绿球数比黄球数的一半还少4个,若黄球数为$x$个,则红球数为____,绿球数为____。

7. 甲、乙两个数互质,且甲数是乙数的三倍,那么甲数与乙数的和是____。

8. 已知函数$y=ax^2+bx+c$的图像顶点为$(-1,4)$,且过点$(2,1)$,则$a+b+c=$____。

三、解答题9. 一辆汽车经过一段公路,在半程处减速,然后又以相同的速度加速通过剩下的一段公路,最后以110公里/小时的速度行驶了整个路程,若这段路程全程用时3小时,试求该汽车行驶的最大速度和减速的加速度。

10. 已知等差数列的前$n$项的和为$S_n=\frac{n(3a_1+2n-1)}{2}$,其中$a_1$为首项,$n$为项数。

2020年江苏省南通中考数学试卷-答案

2020年江苏省南通中考数学试卷-答案

2020年江苏省南通市初中毕业、升学考试数学答案解析一、 1.【答案】C【解析】解:原式132=-=-.故选:C . 2.【答案】A【解析】解:468000 6.810=⨯.故选:A . 3.【答案】D【解析】解:A B .3不是同类二次根式,不能合并,此选项错误;C D 算正确;故选D . 4.【答案】B【解析】解:如图,点()4,5P 按逆时针方向旋转90︒,得点Q 所在的象限为第二象限.故选:B . 5.【答案】A【解析】解:过点E 作EF AB ∥,则EF CD ∥,如图所示.EF AB ∥,54AEF A ︒∴∠=∠=,541836CEF AEF AEC ︒︒︒∠=∠-∠=-=.又EF CD ∥,36C CEF ︒∴∠=∠=.故选:A .6.【答案】B【解析】解:这组数据2,4,6,x ,3,9的众数是3,3x ∴=,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是342 3.5+÷=().故选:B . 7.【答案】D【解析】解:四边形ABCD 是平行四边形,∴当AC BD ⊥时,四边形ABCD 是菱形;故选:D .8.【答案】B【解析】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积()216824cm 2ππ=⨯⨯⨯=.故选B . 9.【答案】B【解析】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =,过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⨯=⨯⨯=,解得6EH AB ==,由图2可知当14x =时,点Q 与点C 重合,14BC ∴=,∴矩形的面积为14684⨯=.故选:B .10.【答案】A【解析】解:如图,过点C 作CK l ⊥于点K ,过点A 作AH BC ⊥于点H ,在Rt AHB △中,60ABC ∠=︒,2AB =,1BH ∴=,AH =,在Rt AHC △中,45ACB ∠=︒,AC ∴===点D 为BC 中点,BD CD ∴=,在BFD △与CKD △中,90BDF CKD BDF CDK BD CD ∠=∠=⎧⎪∠=∠⎨⎪=⎩︒,()BFD CKD AAS ∴△≌△,BF CK ∴=,延长AE ,过点C 作CN AE ⊥于点N ,可得AE BF AE CK AE EN AN +=+=+=,在Rt ACN △中,AN AC <,当直线l AC ⊥时,,综上所述,AE BF +.故选A . 二、11.【答案】()2y x y -【解析】解:()222xy y y x y -=-,故答案为:()2y x y -.12.【答案】12【解析】解:如图,作OC AB ⊥于C ,连接OA ,则152AC BC AB ===,在Rt OAC △中,13OC =,所以圆心O 到AB 的距离为12 cm .故答案为12.13.【答案】5【解析】解:2528<<56∴<,又271m m +<<,5m ∴=,故答案为:5. 14.【解析】解:1DE AB ==2EF BC==DF AC ==DE EF DF AB BC AC ∴===ABC DEF ∴△≌△,122C AB C DE∴==. 15.【答案】864 【解析】解:长为x 步,宽比长少12步,∴宽为()12x -步.依题意,得:()12864x x -=.16.【答案】7.5【解析】解:如图,过点D 作DE AB ⊥,垂足为点E ,则5DE BC ==, 1.5DC BE ==,在Rt ADE △中,tan AEADE DE∠=,tan tan505 1.195 5.96AE ADE DE ∴=∠⋅=⨯⨯=︒≈(米),5.95 1.57.5AB AE BE ∴=+=+≈(米),故答案为:7.5.17.【答案】2 028 【解析】解:1x ,2x 是方程2420200x x --=的两个实数根,124x x ∴+=,211420200x x --=,即21142020x x -=,则原式()1211121122=84220242220242008202x x x x x x x x -++=-++=+⨯=+=,故答案为:2 028. 18.【答案】3-【解析】解:一次函数()20y kx k k =-->的图象过定点()1,2P -,而点()1,2P -恰好是原点()0,0P 向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线()20y kx k k =-->相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为31,1a a ⎛⎫- ⎪-⎝⎭,3,22b b ⎛⎫+ ⎪+⎝⎭,312a b ∴-=-+,(1)(2)3a b ∴-+=-,故答案为:3-. 三、19.【答案】(1)原式()222241294m mn n m n=++--222241294m mn n m n =++-+21210mn n =+(2)原式222x y x y xy x x x ⎛⎫--=÷+ ⎪⎝⎭222x y x xy y x x --+=÷2()x y xx x y -=-1x y=-20.【答案】(1)证明:在ABE △和ACD △中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE ACD AAS ∴△≌△,AB AC ∴=.(2)解:连接AB ,如图②,由作法得OA OB AB BC ===,OAB ∴△为等边三角形,60OAB OBA ∴∠=∠=︒,AB BC=,C BAC∴∠=∠,OBA C BAC ∠=∠+∠,30C BAC ∴∠=∠=︒90OAC ∴∠=︒,在Rt OAC △中,3OA AC ===.即O的半径为21.【答案】解:(1)在3y x =+中,令0y =,得3x =-,(3,0)B ∴-,把1x =代入3y x =+得4y =,()1,4C ∴,设直线2l 的解析式为y kx b =+,430k b k b +=⎧∴⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线2l 的解析式为26y x =-+.(2)()336AB =--=,设(),3M a a +,由MN y ∥轴,得(),26N a a -+,()|326|6MN a a AB =+--+==,解得3a =或1a =-,(3,6)M ∴或()1,2-. 22.【答案】(1)二 922(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.【解析】(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000(17.8%)10000.922922⨯-=⨯=(人),故答案为:二,922.(2)具体解题过程参照答案.23.【答案】(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种. (2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是2163=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是2163=;所以两人坐到甲车的可能性一样.24.【答案】(1)如图①中,取DE 的中点M ,连接PM四边形ABCD 是矩形,90BAD C ︒∴∠=∠=,由翻折可知,AO OP =,AP DE ⊥,23∠=∠,90DAE DPE ︒∠=∠=,在Rt EPD △中,EM MD =,PM EM DM ∴==,3MPD ∴∠=∠,1323MPD ∴∠=∠+∠=∠,23ADP ∠=∠,1ADP ∴∠=∠,AD BC ∥,ADP DPC ∴∠=∠,1DPC ∴∠=∠,90MOP C ∠=∠︒=,POM DCP ∴△∽△,82123PO CD PM PD ∴===,2223AO PO DE PM ∴==. (2)如图②中,过点P 作GH BC ∥交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG x =,则4BG x =-90A EPD ︒∠=∠=,90EGP DHP ︒∠=∠=,90EPG DPH ︒∴∠+∠=,90DPH PDH ︒∠+∠=, EPG PDH ∴∠=∠,EGP PHD ∴△∽△,41123EG PG EP PH DH PD ∴====,23PG EG x ∴==,4DH AG x ==+,在Rt PHD △中,222PH DH PD +=,222(3)(4)12x x ∴++=,解得165x =(负值已经舍弃),164455BG ∴=-=,在Rt EGP △中,125GP =,GH BC ∥,EGP EBF ∴△∽△,EG GP EB BF∴=,121654BF∴=,3BF ∴=. 25.【答案】(1)抛物线2y ax bx c =++经过()2,0A ,042a b c ∴=++①,对称轴是直线1x =,12ba∴-=②,关于x 的方程2ax bx c x ++=有两个相等的实数根,2(1)40b ac ∴∆=--=③,由①②③可得:1210a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为212y x x =-+.(2)5n -<,3419n ∴--<,5619n +-<,点B ,点C 在对称轴直线1x =的左侧,抛物线212y x x =-+,102∴-<,即y 随x 的增大而增大,(34)(56)2102(5)0n n n n --+=--=-+>,3456n n ∴-+>,12y y ∴>. (3)若点B 在对称轴直线1x =的左侧,点C 在对称轴直线1x =的右侧时,由题意可得()3415611341(56)n n n n ⎧-⎪+⎨⎪---+⎩><<,503n <<,若点C 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时,由题意可得:3415613411(56)n n n n -⎧⎪+⎨⎪---+⎩><<,∴不等式组无解,综上所述:503n <<.26.【答案】(1)过点A 作AE BC ⊥于E ,过点C 作CF AD ⊥于F .AC AB =,3BE CE ∴==,在Rt AEB △中,4AE =,CF AD ⊥,90D FCD ︒∴∠+∠=,90B D ︒∠+∠=,B DCF ∴∠=∠,90AEB CFD ︒∠=∠=,AEB DFC ∴△∽△,EB AB CF CD ∴=,354CF ∴=,125CF ∴=,1212sin 525CF CAD AC ∴∠===. (2)如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM DC ⊥,使得DM DC =,连接CM .四边形ABCD 中,AD BD =,AD BD ⊥,45DAB DBA ︒∴∠=∠=,45DCM DMC ︒∠=∠=,90CDM ADB ︒∠=∠=,ADC BDM ∴∠=∠,AD DB =,CD DM =,()ADC BDM SAS ∴△≌△,AC BM ∴=,2222CD CB CA +=,22222CM DM CD CD =+=,222CM CB BM ∴+=,90BCM ︒∴∠=,45DCB ︒∴∠=,90DAB DCB ︒∴∠+∠=,∴四边形ABCD 是对余四边形.(3)如图③中,过点D 作DH x ⊥轴于H .(1,0)A -,(3,0)B ,(1,2)C ,1OA ∴=,3OB =,4AB =,AC BC ==,222AC BC AB ∴+=,90ACB ︒∴∠=,45CBA CAB ︒∴∠=∠=,四边形ABCD 是对余四边形,90ADC ABC ︒∴∠+∠=,45ADC ︒∴∠=,90135AEC ABC ︒∠=+∠=︒,180ADC AEC ︒∴∠+∠=,A ∴,D ,C ,E 四点共圆,ACE ADE ∴∠=∠,45CAE ACE CAE EAB ︒∠+∠=∠+∠=,EAB ACE ∴∠=∠,EAB ADB ∴∠=∠,ABE DBA ∠=∠,ABE DBA ∴△∽△,BE AE AB AD ∴=,AE AD BE AB ∴=,4ADu ∴=,设(),D x t ,由(2)可知,2222BD CD AD =+,222222(3)2(1)(2)(1)x t x t x t ⎡⎤∴-+=-+-+++⎣⎦,整理得22(1)4x t t +=-,在Rt ADH △中,AD 4)4AD u t ∴==<<,即4)u t =<<.。

2020年江苏省南通市中考数学试卷(附答案解析)

2020年江苏省南通市中考数学试卷(附答案解析)

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|1|3--,结果正确的是() A .4- B .3- C .2- D .1-2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约268000km .将68000用科学记数法表示为( ) A .46.810⨯B .56.810⨯C .50.6810⨯D .60.6810⨯3.(3分)下列运算,结果正确的是( ) A .532-=B .3232+=C .623÷=D .6223⨯=4.(3分)以原点为中心,将点(4,5)P 按逆时针方向旋转90︒,得到的点Q 所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限5.(3分)如图,已知//AB CD ,54A ∠=︒,18E ∠=︒,则C ∠的度数是()A .36︒B .34︒C .32︒D .30︒6.(3分)一组数据2,4,6,x ,3,9,5的众数是3,则这组数据的中位数是( ) A .3 B .3.5 C .4D .4.5 7.(3分)下列条件中,能判定ABCD 是菱形的是( ) A .AC BD =B .AB BC ⊥C .AD BD =D .AC BD ⊥8.(3分)如图是一个几体何的三视图(图中尺寸单位:)cm ,则这个几何体的侧面积为( )A .248cm πB .2224cm πC .212cm πD .29cm π9.(3分)如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,两点同时出发,设运动时间为设运动时间为()x s ,BPQ ∆的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是()A .296cmB .284cmC .272cmD .256cm10.(3分)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为()A .6B .22C .23D .32二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:222xy y -= .12.(3分)已知O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为cm . 13.(4分)若271m m <<+,且m 为整数,则m = .14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,ABC ∆和DEF ∆的顶点都在网格线的交点上.设ABC ∆的周长为1C ,DEF ∆的周长为2C ,则12C C 的值等于 .15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为 . 16.(4分)如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50︒.若测角仪的高度是1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:sin500.77︒≈,cos500.64︒≈,tan50 1.19)︒≈17.(4分)若1x ,2x 是方程2420200x x --=的两个实数根,则代数式2211222x x x -+的值等于 .18.(4分)将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k =-->相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(1)(2)a b -+= .三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)2(23)(2)(2)m n m n m n +-+-; (2)22()x y y xy x xx--÷+.20.(11分)(1)如图①,点D 在AB 上,点E 在AC 上,AD AE =,B C ∠=∠.求证:AB AC =. (2)如图②,A 为O 上一点,按以下步骤作图: ①连接OA ;②以点A 为圆心,AO 长为半径作弧,交O 于点B ; ③在射线OB 上截取BC OA =; ④连接AC .若3AC =,求O 的半径.21.(12分)如图,直线1:3l y x =+与过点(3,0)A 的直线2l 交于点(1,)C m ,与x 轴交于点B . (1)求直线2l 的解析式;(2)点M 在直线1l 上,//MN y 轴,交直线2l 于点N ,若MN AB =,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四知识的掌握情况分成四个等级:A 表示“优秀”, B 表示“良好”, C 表示“合格”, D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示: 第二小组统计表等级 人数 百分比 A17 18.9% B38 42.2% C28 31.1% D7 7.8% 合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约 人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果; (2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD 中,8AB =,12AD =.将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图①,若点P 恰好在边BC 上,连接AP ,求APDE的值;(2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.25.(13分)已知抛物线2y ax bx c =++经过(2,0)A ,1(34,)B n y -,2(56,)C n y +三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根. (1)求抛物线的解析式;(2)若5n <-,试比较1y 与2y 的大小;(3)若B ,C 两点在直线1x =的两侧,且12y y >,求n 的取值范围. 26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD 中,5AB =,6BC =,4CD =,连接AC .若AC AB =,求sin CAD ∠的值;(2)如图②,凸四边形ABCD 中,AD BD =,AD BD ⊥,当2222CD CB CA +=时,判断四边形ABCD 是否为对余四边形.证明你的结论; 【拓展提升】(3)在平面直角坐标系中,点(1,0)A -,(3,0)B ,(1,2)C ,四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于ABC ∆内部,90AEC ABC ∠=︒+∠.设AE u BE=,点D 的纵坐标为t ,请直接写出u 关于t 的函数解析式.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【解答】解:原式132=-=-. 故选:C .2.【解答】解:468000 6.810=⨯. 故选:A .3.【解答】解:A .5与3不是同类二次根式,不能合并,此选项错误;B .3与2不是同类二次根式,不能合并,此选项错误;C .62623÷=÷=,此选项错误;D .6232223⨯=⨯⨯=,此选项计算正确;故选:D .4.【解答】解:如图,点(4,5)P 按逆时针方向旋转90︒,得点Q 所在的象限为第二象限. 故选:B .5.【解答】解:过点E 作//EF AB ,则//EF CD ,如图所示. //EF AB , 54AEF A ∴∠=∠=︒,541836CEF AEF AEC ∠=∠-∠=︒-︒=︒.又//EF CD , 36C CEF ∴∠=∠=︒. 故选:A .6.【解答】解:这组数据2,4,6,x ,3,9,5的众数是3, 3x ∴=,从小到大排列此数据为:2,3,3,4,5,6,9, 处于中间位置的数是4,∴这组数据的中位数是4.故选:C .7.【解答】解:四边形ABCD 是平行四边形,∴当AC BD ⊥时,四边形ABCD 是菱形;故选:D .8.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6, 所以这个几何体的侧面积216824()2cm ππ=⨯⨯⨯=.故选:B . 9.【解答】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =, 过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⨯=⨯⨯=, 解得6EH AB ==,22221068AE BE AE ∴=-=-=,由图2可知当14x =时,点P 与点D 重合,8412AD AE DE ∴=+=+=,∴矩形的面积为12672⨯=.故选:C .10.【解答】解:如图,过点C 作CK l ⊥于点K ,过点A 作AH BC ⊥于点H , 在Rt AHB ∆中,60ABC ∠=︒,2AB =,1BH ∴=,3AH =,在Rt AHC ∆中,45ACB ∠=︒,2222(3)(3)6AC AH CH ∴=+=+=,点D 为BC 中点, BD CD ∴=,在BFD ∆与CKD ∆中, 90BFD CKD BDF CDK BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BFD CKD AAS ∴∆≅∆, BF CK ∴=, 延长AE,过点C 作CN AE ⊥于点N ,可得AE BF AE CK AE EN AN +=+=+=,在Rt ACN ∆中,AN AC <, 当直线l AC ⊥时,最大值为6, 综上所述,AE BF +的最大值为6.故选:A. 二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.【分析】用提公因式法进行因式分解即可. 【解答】解:22(2)xy y y x y -=-, 故答案为:(2)y x y -.12.【分析】如图,作OC AB ⊥于C ,连接OA ,根据垂径定理得到152AC BC AB ===,然后利用勾股定理计算OC 的长即可.【解答】解:如图,作OC AB ⊥于C ,连接OA , 则152AC BC AB ===, 在Rt OAC ∆中,2213512OC =-=,所以圆心O 到AB 的距离为12cm . 故答案为12.13.【分析】估计27的大小范围,进而确定m 的值. 【解答】解:2728=,252836<<, 5276∴<<,又271m m <<+, 5m ∴=,故答案为:5.14.【分析】先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可.【解答】解:222211DEAB ==+,222222EF BC +==, 222242231DF AC+==+,∴2DEEF DF AB BC AC ===, ABC DEF ∴∆∆∽,∴1222C ABC DE==, 故答案为:22. 15.【分析】由长和宽之间的关系可得出宽为(12)x -步,根据矩形的面积为864平方步,即可得出关于x 的一元二次方程,此题得解. 【解答】解:长为x 步,宽比长少12步, ∴宽为(12)x -步.依题意,得:(12)864x x -=.16.【分析】作垂线构造直角三角形,利用直角三角形的边角关系进行计算即可. 【解答】解:如图,过点D 作DE AB ⊥,垂足为点E ,则5DE BC ==, 1.5DC BE ==, 在Rt ADE ∆中, tan AEADE DE∠=, tan tan505 1.195 5.95AE ADE DE ∴=∠=︒⨯≈⨯=(米), 5.95 1.57.5AB AE BE ∴=+=+≈(米), 故答案为:7.5.17.【分析】根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式221112111242242()x x x x x x x x =-++=-++计算可得. 【解答】解:1x ,2x 是方程2420200x x --=的两个实数根,124x x ∴+=,211420200x x --=,即21142020x x -=,则原式21112422x x x x =-++2111242()x x x x =-++ 202024=+⨯ 20208=+2028=,故答案为:2028.18.【分析】由于一次函数2(0)y kx k k =-->的图象过定点(1,2)P -,而点(1,2)P -恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k =-->相交于两点,在平移之前是关于原点对称的,在平移之前是关于原点对称的,表示出这两点坐标,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.【解答】解:一次函数2(0)y kx k k =-->的图象过定点(1,2)P -,而点(1,2)P -恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的, 因此将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k =-->相交于两点,在没平移前是关于原点对称的, 平移前,这两个点的坐标为为3(1,)1a a --,3(2b +,2)b +, 312a b ∴-=-+,(1)(2)3a b ∴-+=-, 故答案为:3-.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得; (2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.【解答】解:(1)原式22224129(4)m mn n m n =++--222241294m mn n m n =++-+ 21210mn n =+;(2)原式222()x y x y xyx x x--=÷+222x y x xy yx x--+=÷2()x yx x x y -=- 1x y=-.20.【分析】(1)根据“AAS “证明ABE ACD ∆≅∆,然后根据全等三角形的性质得到结论;(2)连接AB ,如图②,由作法得OA OB AB BC ===,先判断OAB ∆为等边三角形得到60OAB OBA ∠=∠=︒,再利用等腰三角形的性质和三角形外角性质得到30C BAC ∠=∠=︒,然后根据含30度的直角三角形三边的关系求OA 的长. 【解答】(1)证明:在ABE ∆和ACD ∆中 B C A A AE AD∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABE ACD AAS ∴∆≅∆, AB AC ∴=;(2)解:连接AB ,如图②, 由作法得OA OB AB BC ===, OAB ∴∆为等边三角形, 60OAB OBA ∴∠=∠=︒, AB BC =, C BAC ∴∠=∠, OBA C BAC ∠=∠+∠,30C BAC ∴∠=∠=︒ 90OAC ∴∠=︒,在Rt OAC ∆中,333333OA AC ==⨯=. 即O 的半径为3.21.【分析】(1)把点C 的坐标代入3y x =+,求出m 的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M 、N 两点的横坐标,利用两点间距离公式求出M 的坐标. 【解答】解:(1)在3y x =+中,令0y =,得3x =-, (3,0)B ∴-,把1x =代入3y x =+得4y =, (1,4)C ∴,设直线2l 的解析式为y kx b =+,∴430k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩, ∴直线2l 的解析式为26y x =-+;(2)3(3)6AB =--=,设(,3)M a a +,由//MN y 轴,得(,26)N a a -+, |3(26)|6MN a a AB =+--+==, 解得3a =或1a =-,(3,6)M ∴或(1,2)-. 22.【分析】(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(17.8%)-就是“合格及以上”的人数; (2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理; 1000(17.8%)10000.922922⨯-=⨯=(人), 故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,并尽量从多个角度进行抽样,并尽量从多个角度进行抽样,确保抽样的代表性、确保抽样的代表性、普遍性和可操作性.23.【分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲, 则张先生坐到甲车的概率是2163=; 由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙, 则李先生坐到甲车的概率是2163=;所以两人坐到甲车的可能性一样.24.【分析】(1)如图①中,取DE 的中点M ,连接PM .证明POM DCP ∆∆∽,利用相似三角形的性质求解即可.(2)如图②中,过点P 作//GH BC 交AB 于G ,交CD 于H .设EG x =,则4BG x =-.证明EGP PHD ∆∆∽,推出41123EG PG EP PH DH PD ====,推出23PG EG x ==,4DH AG x ==+,在Rt PHD ∆中,由222PH DH PD +=,可得222(3)(4)12x x ++=,求出x ,再证明EGP EBF ∆∆∽,利用相似三角形的性质求解即可.【解答】解:(1)如图①中,取DE 的中点M ,连接PM .四边形ABCD 是矩形, 90BAD C ∴∠=∠=︒,由翻折可知,AO OP =,AP DE ⊥,23∠=∠,90DAE DPE ∠=∠=︒, 在Rt EPD ∆中,EM M D =,PM EM DM ∴==,3MPD ∴∠=∠,1323MPD ∴∠=∠+∠=∠, 23ADP ∠=∠,1ADP ∴∠=∠,//AD BC , ADP DPC ∴∠=∠, 1DPC ∴∠=∠, 90MOP C ∠=∠=︒, POM DCP ∴∆∆∽,∴82123PO CD PM PD ===, ∴2223AP PO DEPM==.(2)如图②中,过点P 作//GH BC 交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG x =,则4BG x =-90A EPD ∠=∠=︒,90EGP DHP ∠=∠=︒,90EPG DPH ∴∠+∠=︒,90DPH PDH ∠+∠=︒, EPG PDH ∴∠=∠, EGP PHD ∴∆∆∽,∴41123EG PG EP PH DH PD ====, 33PH EG x ∴==,4DH AG x ==+, 在Rt PHD ∆中,222PH DH PD +=,222(3)(4)12x x ∴++=, 解得165x =(负值已经舍弃),164455BG ∴=-=, 在Rt EGP ∆中,22125GP EP EG =-=, //GH BC , EGP EBF ∴∆∆∽,∴EG GPEB BF=, ∴1612554BF=, 3BF ∴=.25.【分析】(1)由题意可得042a b c =++①,12b a-=②,△2(1)40b ac =--=③,联立方程组可求a ,b ,c ,可求解析式;(2)由5n <-,可得点B ,点C 在对称轴直线1x =的左侧,由二次函数的性质可求解; (3)分两种情况讨论,列出不等式组可求解.【解答】解:(1)抛物线2y ax bx c =++经过(2,0)A , 042a b c ∴=++①, 对称轴是直线1x =, 12ba∴-=②, 关于x 的方程2ax bx c x ++=有两个相等的实数根,∴△2(1)40b ac =--=③,由①②③可得:1210a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为212y x x =-+; (2)5n <-,3419n ∴-<-,5619n +<-∴点B ,点C 在对称轴直线1x =的左侧,抛物线212y x x =-+,102∴-<,即y 随x 的增大而增大,(34)(56)2102(5)0n n n n --+=--=-+>, 3456n n ∴->+, 12y y ∴>;(3)若点B 在对称轴直线1x =的左侧,点C 在对称轴直线1x =的右侧时, 由题意可得3415611(34)561n n n n -<⎧⎪+>⎨⎪--<+-⎩, 503n ∴<<, 若点C 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时,由题意可得:3415613411(56)n n n n ->⎧⎪+<⎨⎪--<-+⎩, ∴不等式组无解,综上所述:503n <<. 26.【分析】(1)先构造直角三角形,然后利用对余四边形的性质和相似三角形的性质,求出sin CAD ∠的值.(2)通过构造手拉手模型,即构造等腰直角三角形,通过证明三角形全等,利用勾股定理来证明四边形ABCD 为对余四边形.(3)过点D 作DH x ⊥轴于点H ,先证明ABE DBA ∆∆∽,得出u 与AD 的关系,设(,)D x t ,再利用(2)中结论,求出AD 与t 的关系即可解决问题..【解答】解:(1)过点A 作AE BC ⊥于E ,过点C 作CF AD ⊥于F .AC AB =, 3BE CE ∴==,在Rt AEB ∆中,2222534AE AB BE =-=-=, CF AD ⊥, 90D FCD ∴∠+∠=︒, 90B D ∠+∠=︒, B DCF ∴∠=∠, 90AEB CFD ∠=∠=︒, AEB DFC ∴∆∆∽, ∴EB ABCF CD=, ∴354CF =, 125CF ∴=,12125sin 525CF CAD AC ∴∠===. (2)如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM DC ⊥,使得DM DC =,连接CM . 四边形ABCD 中,AD BD =,AD BD ⊥, 45DAB DBA ∴∠=∠=︒, 45DCM DMC ∠=∠=︒, 90CDM ADB ∴∠=∠=︒, ADC BDM ∴∠=∠,AD DB =,CD DM =, ()ADC BDM SAS ∴∆≅∆,AC BM ∴=,2222CD CB CA +=,22222CM DM CD CD =+=,222CM CB BM ∴+=, 90BCM ∴∠=︒, 45DCB ∴∠=︒, 90DAB DCB ∴∠+∠=︒,∴四边形ABCD 是对余四边形.(3)如图③中,过点D 作DH x ⊥轴于H .(1,0)A -,(3,0)B ,(1,2)C ,1OA ∴=,3OB =,4AB =,22AC BC ==,222AC BC AB ∴+=, 90ACB ∴∠=︒, 45CBA CAB ∴∠=∠=︒,四边形ABCD 是对余四边形,90ADC ABC ∴∠+∠=︒, 45ADC ∴∠=︒,90135AEC ABC ∠=︒+∠=︒, 180ADC AEC ∴∠+∠=︒,A ∴,D ,C ,E 四点共圆,ACE ADE ∴∠=∠,45CAE ACE CAE EAB ∠+∠=∠+∠=︒, EAB ACE ∴∠=∠,EAB ADB ∴∠=∠, ABE DBA ∠=∠,ABE DBA ∴∆∆∽, ∴BE AEAB AD=, ∴AE ADBE AB=, 4AD u ∴=,设(,)D x t ,由(2)可知,2222BD CD AD =+,222222(3)2[(1)(2)](1)x t x t x t ∴-+=-+-+++,整理得22(1)4x t t +=-,在Rt ADH ∆中,2222(1)2AD AH AD x t t =+=++=,(04)42ADtu t ∴==<<,即(04)2t u t =<<.。

2020年江苏省南通市中考数学测试试题附解析

2020年江苏省南通市中考数学测试试题附解析

O xy 2020年江苏省南通市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.反比例函数与二次函数在同一平面直角坐标系中的大致图象 如图所示,它们的解析式可能分别是( ) A .y =k x ,y =kx 2-x B .y =kx ,y =kx 2+x C .y =-k x ,y =kx 2+x D .y =-kx,y =-kx 2-x 2.抛物线212y x =的函数值是( ) A . 大于零 B .小于零 C . 不大于零 D . 不小于零 3.在等腰梯形ABCD 中,AD ∥BC ,∠C=60°,AD=15,BC=32,则AB 的长为( )A .1lB .13C .15D .174.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( ) A .1500 (1+x )2=980 B .980(1+x )2=1500 C .1500 (1-x )2=980 D .980(1-x )2=15005.已知y 是x 的一次函数.表1中列出了部分对应值,则m 的值等于( )x - 1 0 1 y1m-16. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品成本与销售量的关系,当该公司赢利(收人大于成本)时,销售量( ) A . 小于 3tB . 大于3tC .小于4tD . 大于4t7.在平面直角坐标系中,下列各结论不成立的是( )A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上B .若点P (x ,y )坐标满足0xy=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为aD .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称 8.已如图是L 型钢条截面,它的面积是( ) A .ct lt +B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+9.如图是小明家一年的费用统计图,从该统计图中可以看出的信息是( ) A .小明家有3口人B .小明家一年的费用需要2万元C .小明家生活方面费用占总费用的35%D .小明家的收入很高10.下列多项式中不能分解因式的是( ) A .33a b ab -B .2()()x y y χ-+-C .210.3664x -D ..21()4x -+二、填空题11.已知点112233()()()A x y B x y C x y ,,,,,是函数2y x=-图象上的三点,且1230x x x <<<,则123y y y ,,的大小关系是 .12.函数25(2)ay a x -=+是反比例函数,则a 的值是 .13.请写出命题“直角三角形的两个锐角互余”的逆命题: . 14.当2x =-时,二次根式24x -的值是 .15.已知某一次函数的图象经过点(-1,2),且函数y 的值随自变量x 减小,请写出一个符合上述条件的函数解析式: .16.如图所示,∠AOB=85°,∠AOC=10°,0D 是∠BOC 的平分线,则∠BOD 的度数为 .17.已知长方形的周长是b a 45+,长是a b 3+,则宽是__________. 18.化简:(7y - 3z)- (8y - 5z)= . 19.3 的相反数是 ,3的相反数是 .20.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 点.三、解答题21.如图,PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,PA=10cm ,PB =5cm ,求⊙O 的直径.22.已知反比例函数3my x=-和1y kx =-的图象都经过点 P(m —3m). (1)求点 P 的坐标和这个一次函数的关系式;(2)若点 M(a ,y 1)和点 N(a+1,y 2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的性质说明 y 1<y 2(其中 a>0).23.某校为了了解本校八年级学生一天中在家里做作业所用的时间,随机抽查了本校八年级的40名学生,并把调查所得的所有数据(时间)进行整理,分成五组,绘制成频数分布直方图(如图). 请结合图中所提供的信息,回答下列问题:(1)被抽查的学生中做作业所用的时间在150.5~l8O.5min 范围的人数有多少人? (2)补全频数分布直方图,并请指出这组数据(时间)的中位数在哪一个时间段内? (3)估计被抽查的学生做作业的平均时间(精确到个位).24.解不等式组523483x x x x -<+⎧⎪+⎨≥-⎪⎩,并写出它的非负整数解.25.新年晚会举办时是我们最快乐的时候,会场上悬挂着站五彩缤纷的小装饰品,其中有各种各样的立体图形,如图所示:请你数一下上面图中每一个立体图形具有的顶点数(V),棱数(E)和面数(F),并把结果填入下表中:名称 各面形状 顶点数(V) 面数(F) 棱数(E)V+F —E正四面体 正三角形 正方体 正方形正八面体正三角形正十二边形 正五边形归纳出这个相等关系吗?26. 在学完“分式”这一章后,老师布置了这样一道题:“先化简再求值: 22241()244x x x x x -+÷+--,其中2x =-”. 婷婷做题时把“2x =-”错抄成了“2x =”,但她的计算结果是正确的,请你通过计算解释其中的原因.27.如图.在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结论,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.已知:结沦:理由:28.某商场计划拨款 9 万元从厂家购进 50 台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台 1500 元,乙种每台 2100 元,丙种每台2500 元.(1)若商场同时购进其中两种不同型号的电视机 50 台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150 元,销售一台乙种电视机可获利200 元,销售一台丙种电视机可获利250 元,在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择(1)中的哪种进货方案?29.计算:(1)(-4)×5×(-0. 25 );(2)(-4)×8×(-2.5)×O. 1×(-0.125)×1O;(3)3137 ()(3)(4) 8888-⨯--⨯-;(4)71199(36)72⨯-;(5)111()(24) 346+-⨯-30.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.B6.D7.C8.B9.C10.D二、填空题11.132y y y >> 12.213.两个角互余的三角形是直角三角形14.15.如1y x =-+(答案不唯一)16.37.5°17.0.5a+b18.2y z -+19.-3,3-20.A三、解答题 21.连结 OA .设⊙O 的半径为r ,∵PA 为⊙O 的切线,PA=10 cm ,PB=5 cm. ∴∠OPA=90°, OP= (r+5) cm ,∵22210(5)r r +=+,r=7.5 cm , 2r=15cm ,∴⊙O 的直径是 15.22.(1)∵3my x=-和1y kx =-的图象都经过点 P(m ,一3m). ∴233m m -=-,∴m= 1.,∴k= -2,∴P(1,,-3),y= -2x.- 1.(2)∵3y x=-,∴x>0 时,y 随x 的增大而增大. ∵ a+ 1>a ,∴12y y <23.(1)8人 (2)补图略,中位数在120.5~15O.5 min (3)131min24.-2≤x<3,x=0,l ,225.4,4,6,2;8,6,12,2;6,8,12,2;20,12,30,2;V+F —E=226.化简结果为24x +,当2x =-或2x =时,代入求得的值都是827.①③④,②,BE=CF ,则BC=EF ,ΔABC ≌ΔDEF (SAS ).28.(1)该商场共有两种进货方案,方案一:购甲种型号电视机 25 台,乙种型号电视机 25 台;方案二:购甲种型号电视机 35 台,丙种型号电视机 15 台;(2)为使销售利润最多,应选择(1)中的方案二进29.(1)5 (2)-10 (3)3 (4)135992- (5)-1030.陈华同学的说法正确,理由略。

2020年江苏省南通市中考数学试题(解析版)

2020年江苏省南通市中考数学试题(解析版)

2020年江苏省南通市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)说明: 1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。

2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

1.如果60m 表示“向北走60m”,那么“向南走40m”可以表示为【 】 A .-20m B .-40m C .20m D .40m 【答案】B.【考点】相反数。

【分析】向北与向南是相反方向两个概念,向北为+,向南则为负。

故根据相反数的定义,可直接得出结果2.下面的图形中,既是轴对称图形又是中心对称图形的是【 】【答案】C .【考点】轴对称图形,中心对称图形。

【分析】根据轴对称图形和中心对称图形的定义,可知A 是中心对称图形而不是轴对称图形;B 也是中心对称图形而不是轴对称图形;C 既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D 既不是轴对称图形也不是中心对称图形。

3.计算327的结果是【 】A .±3 3B .3 3C .±3D .3 【答案】D .【考点】立方根。

【分析】根据立方根的定义,因为33=273。

4.下列长度的三条线段,不能组成三角形的是【 】 A .3,8,4 B .4,9,6 C .15,20,8 D .9,15,8 【答案】A .【考点】三角形的构成条件。

A .【分析】根据三角形任两边之和大于第三边的构成条件,A 中3+4<8,故A 的三条线段不能组成三角形。

5.如图,AB ∥CD ,∠DCE =80°,则∠BEF =【 】A .120°B .110°C .100°D .80°【答案】C .【考点】平行线的性质。

【分析】根据同旁内角互补的平行线性质,由于AB ∥CD ,∠DCE 和∠BEF 是同旁内角,从而∠BEF =00018080100-=。

南通中考数学试题及答案

南通中考数学试题及答案

南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √2B. 0.5C. 0.33333...D. -3答案:A2. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. 2答案:A4. 一个圆的半径是5,求这个圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B5. 一个等差数列的首项是2,公差是3,第10项是多少?A. 29B. 32C. 35D. 38答案:A6. 一个长方体的长、宽、高分别是2、3和4,求这个长方体的体积。

A. 24B. 36C. 48D. 60答案:A7. 一个分数的分子是5,分母是8,化简后是多少?A. 5/8B. 1/2C. 1/16D. 5/16答案:B8. 一个多项式P(x) = 3x^2 - 5x + 2,求P(2)的值。

B. 4C. 8D. 12答案:B9. 一个函数f(x) = 2x + 3,当x=1时,f(x)的值是多少?A. 5B. 6C. 7D. 8答案:A10. 一个方程2x - 5 = 9的解是:A. x = 3B. x = 4C. x = 5D. x = 6答案:C二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。

答案:812. 一个数的绝对值是5,这个数可以是______或______。

答案:5,-513. 一个圆的直径是10,这个圆的周长是______π。

14. 一个三角形的内角和等于______度。

答案:18015. 一个等腰三角形的底边长是6,两腰边长是5,这个三角形的面积是______。

答案:1516. 一个函数y = kx + b的斜率是2,当x=0时,y=1,求k和b的值。

答案:k=2,b=117. 一个方程3x + 7 = 22,解得x=______。

2022年江苏省南通市中考数学真题试卷附解析

2022年江苏省南通市中考数学真题试卷附解析

2022年江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果a∠是等腰直角三角形的一个锐角,则tanα的值是()A.12B.22C.1D.22.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C两点,则 BC=()A.63B.62C.33D.323.若半径为3,5的两个圆相切,则它们的圆心距为()A.2 B.8 C.2或8 D.1或44.在ABC∆中,︒=∠90C,AB=15,sinA=13,则BC等于()A.45 B.5 C.15D.1455.下面几个命题中,正确的有()(1)等腰三角形的外接圆圆心在顶角平分线所在的直线上(2)直角三角形的外接圆圆心在斜边上(3)等边三角形的外接圆圆心在一边的中线上(4)钝角三角形的外接圆圆心在三角形的外面A.1 个B.2 个C.3 个D.4 个6.二次函数y=―3x2―7x―12的二次项系数、一次项系数及常数项分别是()A.―3,―7,―12 B.-3,7,12 C.3,7,12 D.3,7,-12 7.在π=3.141 592 653 589 7中,频数最大的数字是()A.1 B.3 C.5 D.98.一个几何体的三视图中有一个是长方形,则该几何体不可能是()A.直五棱柱B.圆柱C.长方体D.球9.分式2221m mm m-+-约分后的结果是()A .1m m n -+B .1(1)m m m --+C .1m m -D .1(1)m m m -+ 10.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( )A .互为倒数B .互为相反数C .相等D .关系不能确定 11. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165° 12.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.3二、填空题13.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.14.如图,已知∠1 =∠2,请补充条件 (写出一个即可),使△ADE ∽△ABC.15.某水果店1至6月份的销售情况(单位:千克)为450、440、420、480、580、550,则这组数据的极差是 千克.16.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.17.如图,随机闭合开关123S S S ,,中的两个, 能够让灯泡发光的概率为 .18.在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm ,则AC= cm .19.已知ABC DEF △≌△,5cm BC EF ==,△ABC 的面积是220cm ,那么△DEF 中EF 边上的高是__________cm .20.商场一款服装进价为a 元,商家将其价格提高50%后以八折出售,则该款服装的售价是 元.21.王叔叔买了四盒同样的长方体的礼品(如图),长、宽、高分别为4cm 、3 cm 、2cm ,王叔 叔想把它们包装成一个大长方体,并使包装表面积最小,则表面积的最小值为 .22.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题23.如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.24.已知不等式组3(2)821132x xx xx-+>⎧⎪+-⎨≥-⎪⎩的整数解满足方程62ax x a+=-,求a的值.25.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的高度吗?说说其中的道理.27.解下面的方程,并说明每一步的依据.0.6x=50+0.4x28.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.29.将- 8 ,- 6 ,-4 , 0 , -2 ,2,4,6,8 这 9 个数分别填入右图的 9 个空格中,使得每行的 3 个数,每列的3 个数,斜对角线的 3 个数相加均为 0.30.(1)利用一副三角尺的拼合,分别画出75°,120°,l35°,l50°的角;(2)利用一副三角尺,你能画出几个不同的角(小于l80°)?分别是多少度的角?用一副三角尺所画的这些角的大小有什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.D6.A7.C8.D9.C10.C11.CC二、填空题13.414.∠E=∠C或∠D=∠B 15.16016.517.2318.2.719.820.6a521.136cm222.135°三、解答题23.提示:∵DE//12BC,FG//12BC,∴DE//FG,∴四边形DFGE是平行四边形24.解原不等式组,得21x-<≤.∴原不等式组的整数解是1x=-.∴612a a-+=--,∴7a=-.25.它们的结果有36种可能;不同,甲赢的机会大,理由略3 cm,理由略27.x=250,依据略28.设原来的两位数是10a+b,则调换位置后的新数是10b+a.(10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除29.填法不唯一30.(1)画图略 (2)11个,15°,30°,45°,60°,75°,90°,l05°,l20°,l35°,l50°,165°规律:l5°的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南通市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)

2.(3分)(2014•南通)如图,∠1=40°,如果CD∥BE,那么∠B的度数为()
3.(3分)(2014•南通)已知一个几何体的三视图如图所示,则该几何体是()
4.(3分)(2014•南通)若在实数范围内有意义,则x的取值范围是()x≥﹣x≠

6.(3分)(2014•南通)化简的结果是()
=﹣
7.(3分)(2014•南通)已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过
8.(3分)(2014•南通)若关于x的一元一次不等式组无解,则a的取值范围是
将不等式组解出来,根据不等式组
解:解

无解,
9.(3分)(2014•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()
126
BM=BC=6
AM==12

AN=6
AN=6,
GF=6
10.(3分)(2014•南通)如图,一个半径为r的圆形纸片在边长为a()的等边
三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()
B
可求得
.由
,得,
∴圆形纸片不能接触到的部分的面积为=.
二、填空题(本大题共8小题,每小题3分,共24分)
11.(3分)(2014•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.
12.(3分)(2014•南通)因式分解a3b﹣ab=ab(a+1)(a﹣1).
13.(3分)(2014•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=9.
14.(3分)(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.
=
15.(3分)(2014•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB=8cm.
AE=
16.(3分)(2014•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在A区域的可能性最大(填A或B或C).
17.(3分)(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=60°.
18.(3分)(2014•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12.
三、解答题(本大题共10小题,共96分)
19.(10分)(2014•南通)计算:
(1)(﹣2)2+()0﹣﹣()﹣1;
(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.
20.(8分)(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)结合图象直接写出当﹣2x>时,x的取值范围.
y=可计算出
y=


21.(8分)(2014•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?
AB=18×
PBD=12×=6
6>
22.(8分)(2014•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:
A.0.5≤x<1
B.1≤x<1.5
C.1.5≤x<2
D.2≤x<2.5
E.2.5≤x<3;并制成两幅不完整的统计图(如图):
请根据图中提供的信息,解答下列问题:
(1)这次活动中学生做家务时间的中位数所在的组是C;
(2)补全频数分布直方图;
(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.
23.(8分)(2014•南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率
变为.
(1)填空:x=2,y=3;
(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?
)根据题意得:
解得:
==
24.(8分)(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD 恰好经过圆心O,连接MB.
(1)若CD=16,BE=4,求⊙O的直径;
(2)若∠M=∠D,求∠D的度数.
M=
D=∠
25.(9分)(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所
示.
请根据图中提供的信息,解答下列问题:
(1)圆柱形容器的高为14cm,匀速注水的水流速度为5cm3/s;
(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.
26.(10分)(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.
(1)求证:EB=GD;
(2)若∠DAB=60°,AB=2,AG=,求GD的长.
AB=1
,最后利用勾股定理求得
BP
AP==AE=AG=
EP=2
EB==,
GD=
27.(13分)(2014•南通)如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M 为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.
(1)若M为边AD中点,求证:△EFG是等腰三角形;
(2)若点G与点C重合,求线段MG的长;
(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.
EM==
=,
=
FM=
EF=EM+FM=
=,
=
MG=
S=EF•MG=××+6 S=+6
a=
28.(14分)(2014•南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.
(1)求线段DE的长;
(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;
(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.
,,
,解得
的坐标是

=2
21。

相关文档
最新文档