辽宁省铁岭市2015年中考数学试题及答案解析(Word版)
2015年辽宁省辽阳市中考数学试题(word版,含解析)
2015年辽宁省辽阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是正确的)1.的相反数是()A.﹣B.C.D.﹣考点:实数的性质.专题:计算题.分析:利用相反数的定义计算即可得到结果.解答:解:的相反数是﹣.故选A点评:此题考查了实数的性质,熟练掌握相反数的定义是解本题的关键.2.下列计算正确的是()A.x2•x3=x6B.x5+x5=2x10C.(﹣2x)3=8x3D.(﹣2x3)÷(﹣6x2)=x考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用积的乘方运算法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.解答:解:A、原式=x5,错误;B、原式=2x5,错误;C、原式=﹣8x3,错误;D、原式=x,正确,点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.下列各图不是正方体表面展开图的是()A.B.C.D.考点:几何体的展开图.分析:根据正方体展开图的常见形式选择.解答:解:A、是正方体的展开图,B、是正方体的展开图,C、折叠有两个正方形重合,不是正方体的展开图,D、是正方体的展开图,故选C.点评:本题考查了几何体的展开图,熟记正方体展开图的11种形式是解题的关键.4.一组数据:2,3,6,6,7,8,8,8的中位数是()A. 6 B. 6.5 C.7 D.8考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:2,3,6,6,7,8,8,8,则中位数为:=6.5.故选B.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如图,AD∥CB,∠D=43°,∠B=25°,则∠DEB的度数为()A.72°B.68°C.63°D.18°考点:平行线的性质.专题:计算题.分析:由AD与CB平行,利用两直线平行内错角相等得到∠C=∠D,再利用外角性质即可求出所求角的度数.解答:解:∵AD∥CB,∠D=43°,∴∠C=∠D=43°,∵∠DEB为△ECB的外角,且∠B=25°,∴∠DEB=∠B+∠D=68°,故选B点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.6.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A.=×2 B.=﹣35C.﹣=35 D.﹣=35考点:由实际问题抽象出分式方程.分析:设出未知数,根据客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,列出方程即可.解答:解:设该客车由高速公路从甲地到乙地所需时间为x小时,那么由普通公路从甲地到乙地所需时间为2x,由题意得,﹣=35,故选:D.点评:本题考查的是列分式方程解应用题,正确设出未知数、找出合适的等量关系是解题的关键.7.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3考点:一次函数与一元一次不等式.分析:函数y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),求不等式﹣x+2≥ax+b 的解集,就是看函数在什么范围内y=﹣x+2的图象对应的点在函数y=ax+b的图象上面.解答:解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y=ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选D.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.8.下列事件为必然事件的是()A.如果a,b是实数,那么a•b=b•aB.抛掷一枚均匀的硬币,落地后正面朝上C.汽车行驶到交通岗遇到绿色的信号灯D.口袋中装有3个红球,从中随机摸出一球,这个球的白球考点:随机事件.分析:分别利用随机事件和必然事件以及不可能事件的定义分析得出即可.解答:解:A、如果a,b是实数,那么a•b=b•a,是必然事件,符合题意;B、抛掷一枚均匀的硬币,落地后正面朝上,是随机事件,不合题意;C、汽车行驶到交通岗遇到绿色的信号灯,是随机事件,不合题意;D、口袋中装有3个红球,从中随机摸出一球,这个球的白球,是不可能事件,不合题意.故选:A.点评:此题主要考查了随机事件和必然事件以及不可能事件的定义,正确把握相关定义是解题关键.9.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为()A.(0,0)B.(0,1)C.(﹣3,2)D.(3,﹣2)考点:位似变换;坐标与图形性质.分析:利用位似图形的性质得出连接各对应点,进而得出位似中心的位置.解答:解:如图所示:P点即为所求,故P点坐标为:(﹣3,2).故选:C.点评:此题主要考查了位似变换,根据位似图形的性质得出是解题关键.10.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A. 1 B. 2 C. 3 D. 4考点:反比例函数图象上点的坐标特征.分析:根据题意得出△AOD∽△OCE,进而得出==,即可得出k=EC×EO=2.解答:解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴|xy|=AD•DO=×6=3,∴k=EC×EO=1,则EC×EO=2.故选B.点评:此题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,得出△AOD∽△OCE是解题关键.二、填空题(本大题共8小题,每小题3分,共24分)11.某工业园区,今年第一季度新开工94个项目,总投资7429亿元.请将7429亿,用科学记数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7429亿有12位,所以可以确定n=12﹣1=11.解答:解:7429亿=7.429×1011.故答案为:7.429×1011.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值12.的整数部分是.考点:估算无理数的大小.分析:根据平方根的意义确定的范围,则整数部分即可求得.解答:解:∵9<13<16,∴3<<4,∴的整数部分是3.故答案是:3.点评:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.13.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=度.考点:圆周角定理;等边三角形的判定与性质;圆内接四边形的性质.分析:根据AO=AB,且OA=OB,得出△OAB是等边三角形,再利用圆周角和圆心角的关系得出∠BAC+∠ABC=30°,解答即可.解答:解:∵点A,B,C是⊙O上的点,AO=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠BAC+∠ABC=30°,∴∠ACB=150°,故答案为:150点评:此题考查了圆心角、圆周角定理问题,关键是根据AO=AB,且OA=OB,得出△OAB是等边三角形.14.某校组织“书香校园”读书活动,某班图书角现有文学书18本,科普书9本,人物传记12本,军事书6本,小明随机抽取一本,恰好是人物传记的概率是.考点:概率公式.分析:利用概率公式即可直接求解.解答:解:恰好是人物传记的概率是:=.故答案是:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于.考点:直角三角形斜边上的中线;勾股定理.分析:利用直角三角形斜边上的中线等于斜边的一半,进而结合勾股定理得出BD的长.解答:解:∵BD⊥AC于D,点E为AB的中点,∴AB=2DE=2×5=10,∴在Rt△ABD中,BD===8.故答案为:8.点评:此题主要考查了勾股定理以及直角三角形斜边的中线的性质,得出AB的长是解题关键.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为.考点:翻折变换(折叠问题);坐标与图形性质.分析:由折叠的性质可知,∠B′AC=∠BAC,∠BAC=∠DCA,易得DC=DA,设OD=x,则DC=6﹣x,在Rt△AOD中,由勾股定理得OD,得OD的坐标.解答:解:由折叠的性质可知,∠B′AC=∠BAC,∵四边形OABC为矩形,∴OC∥AB,∴∠BAC=∠DCA,∴∠B′AC=∠DCA,∴AD=CD,设OD=x,则DC=6﹣x,在Rt△AOD中,由勾股定理得,OA2+OD2=AD2,即9+x2=(6﹣x)2,解得:x=,∴点D的坐标为:(0,),故答案为:(0,﹣).点评:本题主要考查了翻折变换的性质及其应用问题,灵活运用有关定理来分析、判断、推理或解答是解题的关键.18.如图,△ABC,∠C=90°,AC=BC=a,在△ABC中截出一个正方形A1B1C1D1,使点A1,D1分别在AC,BC边上,边B1C1在AB边上;在△BC1D1在截出第二个正方形A2B2C2D2,使点A2,D2分别在BC1,D1C1边上,边B2C2在BD1边上;…,依此方法作下去,则第n个正方形的边长为.考点:相似三角形的判定与性质;等腰直角三角形;正方形的性质.专题:规律型.分析:设正方形A1B1C1D1的边长为x,利用△CA1D1和△AA1B1都是等腰直角三角形得到A1C=x,AA1=x,则x+x=a,解得x=a,于是得第1个正方形的边长为a,运用同样的方法可得第2个正方形的边长为()2a,于是根据指数与序号的关系可得第n个正方形的边长为()n a.解答:解:设正方形A1B1C1D1的边长为x,∵△CA1D1和△AA1B1都是等腰直角三角形,∴A1C=x,AA1=x,∴x+x=a,解得x=a,即第1个正方形的边长为a,设正方形A2B2C2D2的边长为y,∵△C2D1D2和△C1A2D2都是等腰直角三角形,∴C1D2=y,D1D2=y,∴y+y=a,解得y=()2a,即第2个正方形的边长为()2a,同理可得第3个正方形的边长为()3a,∴第n个正方形的边长为()n a.故答案为()n a.点评:本题考查了等腰直角三角形的性质和正方形的性质,灵活应用等腰直角三角形三边的关系进行几何计算.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:[﹣]÷,请选取一个适当的x的数值代入求值.考点:分式的化简求值.分析:先化简分式,再取x=2代入求值.解答:解:[﹣]÷=[﹣]•2x,=•2x,=.当x=2时,原式=4.点评:本题主要考查了分式的化简求值,解题的关键是正确的化简分式.20.校文艺部在全校范围内随机抽取一部分同学,对同学们喜爱的四种“明星真人秀”节目进行问卷调查(每位同学只能选择一种最喜爱的节目),并将调查结果整理后分别绘制成如图所示的不完整的扇形统计图和条形统计图).请根据所给信息回答下列问题:(1)本次问卷调查共调查了多少名学生?(2)请将两幅统计图补充完整;(3)若该校有1500名学生,据此估计有多少名学生最喜爱《奔跑吧兄弟》节目.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)利用本次问卷调查共调查的学生数=喜欢真正男子汉的人数÷对应的百分比求解即可,(2)先求出奔跑吧兄弟的百分比,喜欢爸爸去哪里了的人数,喜欢花儿与少年的人数,喜欢花儿与少年的百分比,作图即可,(3)利用该校学生总数乘喜爱《奔跑吧兄弟》节目的百分比即可.解答:解:(1)本次问卷调查共调查的学生数为:30÷15%=200(名)(2)奔跑吧兄弟的百分比为×100%=40%,喜欢爸爸去哪里了的人数为200×25%=50(名),喜欢花儿与少年的人数为:200﹣80﹣30﹣50=40(名),喜欢花儿与少年的百分比为×100%=20%,如图,(3)1500×40%=600(名)答:估计有600名学生最喜爱《奔跑吧兄弟》节目.点评:本题主要考查了条形统计图,扇形统计图及用样本估计总体,解题的关键是读懂统计图,从统计图中获得准确的信息.四、解答题(每小题12分,共24分)21.某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.考点:一次函数的应用;二元一次方程组的应用.分析:(1)设一台A型换气扇x元,一台B型换气扇的售价为y元,根据“一台A型换气扇和三台B 型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元”列方程组求解即可;(2)首先确定自变量的取值范围,然后得到有关总费用和换气扇的台数之间的关系得到函数解析式,确定函数的最值即可;解答:解:(1)设一台A型换气扇x元,一台B型换气扇的售价为y元,根据题意得:,解得,答:一台A型换气扇50元,一台B型换气扇的售价为75元;(2)设购进A型换气扇z台,总费用为w元,则有z≤3(40﹣z),解得:z≤30,∵z为换气扇的台数,∴z≤30且z为正整数,w=50z+75(40﹣z)=﹣25z+3000,∵﹣25<0,∴w随着z的增大而减小,∴当z=30时,w最大=25×30+3000=2250,此时40﹣z=40﹣30=10,答:最省钱的方案是购进30台A型换气扇,10台B型换气扇.点评:此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键,难度不大.22.如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)考点:解直角三角形的应用-方向角问题.分析:根据正切函数,可得CD的长,根据直角三角形的性质,可得答案.解答:解:作CD⊥AB交AB延长线于点D,∠D=90°由题意,得∠DCB=45°,∠CAD=90°﹣60°30°,AB=32海里,设CD=x海里,在Rt△DCB中,tan∠DCB=,tan45°==1,BD=x,AD=AB+BD=32+x,tan30°==,解得x=16+16,∵∠CAD=30°,∠CDA=90°,∴AC=2CD=32+32≈87.42海里,答:码头A与小岛C的距离约为87.42海里.点评:本题考查了解直角三角形,利用了锐角三角函数,直角三角形的性质,画出直角三角形得出CD 的长是解题关键.五、解答题(本题12分)23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)首先判断出OD∥AC,推得∠ODG=∠DGC,然后根据DG⊥AC,可得∠DGC=90°,∠ODG=90°,推得OD⊥FG,即可判断出直线FG是⊙O的切线.(2)首先根据相似三角形判定的方法,判断出△ODF∽△AGF,再根据cosA=,可得cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值各是多少.解答:(1)证明:如图1,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线.(2)解:如图2,∵AB=AC=10,AB是⊙O的直径,∴OA=OD=10÷2=5,由(1),可得OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∴△ODF∽△AGF,∴,∵cosA=,∴cos∠DOF=,∴=,∴AF=AO+OF=5,∴,解得AG=7,∴CG=AC﹣AG=10﹣7=3,即CG的长是3.点评:(1)此题主要考查了切线的判定和性质的应用,要熟练掌握,解答此题的关键是要明确切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)此题还考查了三角形相似的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.六、解答题(本题12分)24.某商场试销一种商品,成本为每件200元,规定试销期间销售单价不低于成本单价,且获利不得高于50%,一段时间后,发现销售量y(件)与销售单价x(元)之间的函数关系如下表:销售单价x(元)… 230 235 240 245 …销售量y(件)… 440 430 420 410 …(1)请根据表格中所给数据,求出y关于x的函数关系式;(2)设商场所获利润为w元,将商品销售单价定为多少时,才能使所获利润最大?最大利润是多少?考点:二次函数的应用.[来源:Z,xx,]分析:(1)设y与x的函数关系式为y=kx+b,利用待定系数法求得函数的解析式即可;(2)先求得单价的定价范围,然后根据利润=每件获利×件数列出利润的函数关系式,然后根据自变量的取值和二次函数的对称性即可求得最大利润.解答:解:(1)根据所给数据可知y与x的图象是一条直线.设y与x的函数关系式为y=kx+b.将x=230,y=440;x=235,y=430代入y=kx+b得:,解得:∴y=﹣2x+900经验证,x=240,y=420;x=245,y=410都满足上述函数关系式∴y与x的函数关系式为y=﹣2x+900;(2)由题意得:200≤x≤200×(1+50%),∴200≤x≤300.W=(x﹣200)(﹣2x+900)=﹣2(x﹣235)2+31250∵a=﹣2<0,∴抛物线开口向下.∵200≤x≤300,在对称轴x=325的左侧,∴W随x的增大而增大.∴当x=300时,W有最大值,W最大=﹣2×(300﹣325)2+31250=30000元.答:商品的销售单价定为300元时,才能使所获利润最大,最大利润时30000元.点评:本题主要考查的是二次函数的最值问题,确定抛物线的对称轴以及自变量的取值范围是解题的关键.七、解答题(本题12分)25.菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.(1)如图1,当∠ABC=90°时,△OEF的形状是;(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且=时,直接写出线段CE的长.考点:四边形综合题.分析:(1)先求得四边形ABCD是正方形,然后根据正方形的性质可得∠EBO=∠FCO=45°,OB=OC,再根据同角的余角相等可得∠BOE=∠COF,然后利用“角边角”证明△BOE和△COF全等,根据全等三角形对应边相等即可得证;(2)过O点作OG⊥BC于G,作OH⊥CD于H,根据菱形的性质可得CA平分∠BCD,∠ABC+BCD=180°,求得OG=OH,∠BCD=180°﹣60°=120°,从而求得∠GOH=∠EOF=60°,再根据等量减等量可得∠EOG=∠FOH,然后利用“角边角”证明△EOG和△FOH全等,根据全等三角形对应边相等即可得证;(3)过O点作OG⊥BC于G,作OH⊥CD于H,先求得四边形O′GCH是正方形,从而求得GC=O′G=3,∠GO′H=90°,然后利用“角边角”证明△EO′G和△FO′H全等,根据全等三角形对应边相等即可证得△O′EF 是等腰直角三角形,根据已知求得等腰直角三角形的直角边O′E的长,然后根据勾股定理求得EG,即可求得CE的长.解答:(1)△OEF是等腰直角三角形;证明:如图1,∵菱形ABCD中,∠ABC=90°,∴四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,∴∠BOE+∠COE=90°,∵∠MON+∠BCD=180°,∴∠MON=90°,∴∠COF+∠COE=90°,∴∠BOE=∠COF,在△BOE与△COF中,,∴△BOE≌△COF(ASA),∴OE=OF,∴△OEF是等腰直角三角形;故答案为等腰直角三角形;(2)△OEF是等边三角形;证明:如图2,过O点作OG⊥BC于G,作OH⊥CD于H,∴∠OGE=∠OGC=∠OHC=90°,∵四边形ABCD是菱形,∴CA平分∠BCD,∠ABC+BCD=180°,∴OG=OH,∠BCD=180°﹣60°=120°,∵∠GOH+∠OGC+∠BCD+∠OHC=360°,∴∠GOH+∠BCD=180°,∴∠MON+∠BCD=180°,∴∠GOH=∠EOF=60°,∵∠GOH=∠GOF+∠FOH,∠EOF=∠GOF+∠EOG,∴∠EOG=∠FOH,在△EOG与△FOH中,,∴△EOG≌△FOH(ASA),∴OE=OF,∴△OEF是等边三角形;(3)证明:如图3,∵菱形ABCD中,∠ABC=90°,∴四边形ABCD是正方形,∴=,过O点作O′G⊥BC于G,作O′H⊥CD于H,∴∠O′GC=∠O′HC=∠BCD=90°,∴四边形O′GCH是矩形,∴O′G∥AB,O′H∥AD,∴===,∵AB=BC=CD=AD=4,∴O′G=O′H=3,∴四边形O′GCH是正方形,∴GC=O′G=3,∠GO′H=90°∵∠MO′N+∠BCD=180°,∴∠EO′F=90°,∴∠EO′F=∠GO′H=90°,∵∠GO′H=∠GO′F+∠FO′H,∠EO′F=∠GO′F+∠EO′G,∴∠EO′G=∠FO′H,在△EO′G与△FO′H中,,∴△EO′G≌△FO′H(ASA),∴O′E=O′F,∴△O′EF是等腰直角三角形;∵S正方形ABCD=4×4=16,=,∴S△O′EF=18,∵S△O′EF=O′E2,∴O′E=6,在RT△O′EG中,EG===3,∴CE=CG+EG=3+3.根据对称性可知,当∠M′ON′旋转到如图所示位置时,CE′=E′G﹣CG=3﹣3.综上可得,线段CE的长为3+3或3﹣3.点评:本题考查了正方形的性质,菱形的性质,三角形全等的判定和性质,解决此类问题的关键是正确的利用旋转不变量.正确作出辅助线是关键.八、解答题(本题14分)26.如图1,平面直角坐标系中,直线y=﹣x+3与抛物线y=ax2+x+c相交于A,B两点,其中点A在x轴上,点B在y轴上.(1)求抛物线的解析式;(2)在抛物线上存在一点M,使△MAB是以AB为直角边的直角三角形,求点M的坐标;(3)如图2,点E为线段AB上一点,BE=2,以BE为腰作等腰Rt△BDE,使它与△AOB在直线AB的同侧,∠BED=90°,△BDE沿着BA方向以每秒一个单位的速度运动,当点B与A重合时停止运动,设运动时间为t秒,△BDE与△AOB重叠部分的面积为S,直接写出S关于t的函数关系式,并写出自变量t的取值范围.考点:二次函数综合题.专题:综合题.分析:(1)根据直线解析式,求出A与B的坐标,代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)由M在抛物线图象上,设出M坐标,分两种情况考虑:①当∠MBA=90°时;②当∠BAM′=90°时,分别求出M坐标即可;(3)根据t的范围,分三种情况考虑:当0≤t≤时;当≤t≤3时;当3≤t≤5时,分别确定出S与t的函数解析式即可.解答:解:(1)对于直线y=﹣x+3,当y=0时,0=﹣x+3,即x=4,∴A(4,0),当x=0时,y=3,即B(0,3),把A与B坐标代入y=ax2+x+c中,得:,解得:,则抛物线解析式为y=﹣x2+x+3;″(2)设M坐标为(x,﹣x2+x+3),①当∠MBA=90°时,如图1,作MN⊥y轴,则有∠MNO=90°,∴∠NMB+∠MBN=90°,∵∠MBN+∠ABM+∠ABO=180°,∴∠MBN+∠ABO=90°,∴∠NMB=∠ABO,∵∠MNO=∠BOA,∴△MNB∽△BOA,∴=,即=,解得:x=或x=0(舍去),当x=时,y=,即M(,);②当∠BAM′=90°时,易知△AM′N′∽△BAO,∴,即,解得x=﹣或4(舍去),当x=﹣时,y=﹣,即M′(﹣,﹣),则满足条件M的坐标为(,)或(﹣,﹣);(3)如图2所示,当D点运动到x轴上时,易知△AD′E′∽△ABO,∴,∴AE′=,∴EE′=AB﹣BE﹣AE′=5﹣2﹣=,∴当0≤t≤时,S=2;当≤t≤3时,S=﹣t2+t+;当3≤t≤5时,S=t2﹣t+.点评:此题属于二次函数综合题,涉及的知识有:一次函数与坐标轴的交点,待定系数法确定抛物线解析式,相似三角形的判定与性质,利用了分类讨论的思想,熟练掌握二次函数的性质是解本题的关键.。
2015年辽宁省大连市中考数学试题(解析版)
2015辽宁省大连市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A. 2 B.-2 C. 21 D.-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱 【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C .3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A. 1,2,3 B.,1,2,3 C.3,4,8 D.4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D . 5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=xB. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x +2-2x =4.移项合并得:2=x 。
故选C .6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9-【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C .7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B .8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD =()1252222=-=-AC AD ,因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以BC =5+1,故选D .二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
辽宁省铁岭市中考数学试卷及答案
辽宁省铁岭市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、下列根式中,最简二次根式是 ( )2、下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是 ( )3、已知⊙O 1和⊙O 2 的半径分别为 5 和 2,圆心距为 3,则两圆的位置关系是 ( )A、内含B、外切C、相交D、内切4、已知正六边形的边长为 10cm则它的边心距为 ( )5、在函数中,自变量 x 的取值范围是 ( )6、反比例函数 y=k/x 的图象经过点 P(-4,3),则 k 的值等于 ( )A、12B、-3/4C、-4/3D、-127、如图,正方形的边长为 a,以各边为直径在正方形内画半圆,则阴影部分的面积为( )8、在矩形 ABCD 中,AB=3cm,AD=2 cm,则以 AB 所在直线为轴旋转一周所得到的圆柱的表面积为 ( )A、17π cm2B、20π cm2C、21π cm2D、30π cm29、用换元法解方程那么原方程可变形为( )10、已知点 P 是半径为 5 的⊙O 内一定点,且 OP=4,则过点 P 的所有弦中,弦长可能取到的整数值为( )A、54 3B、10987654 3C、10987 6D、121110987 6二、填空题(每小题 3 分共 30 分)11、在平面直角坐标系中,点 P(-2,-4)关于 y 轴的对称点的坐标是__________。
12、一组数据-2,-1,0,1,2 的方差是_________。
13、已知是关于 x 的方程 x2 -4x+c=0 的一个根,则 c 的值是_________ 。
14、如图,AB 是⊙O 的直径,C、D 是⊙O 上两点,∠D=130°,则∠BAC 的度数为_________ 。
15、据某校环保小组调查,某区垃圾量的年增长率为 m,2003 产生的垃圾量为 a 吨,由此预测,该区 2005 年产生的垃圾量为________吨。
辽宁省铁岭市中考数学试卷含答案解析版
2017年辽宁省铁岭市中考数学试卷一、选择题本大题共10小题;每小题3分;共30分1.3分5的相反数是A .5B .﹣5C .15D .﹣15A .6.01×108B .6.1×108C .6.01×109D .6.01×107 3.3分下列几何体中;主视图为三角形的是A .B .C .D .4.3分如图;在同一平面内;直线l 1∥l 2;将含有60°角的三角尺ABC 的直角顶点C 放在直线l 1上;另一个顶点A 恰好落在直线l 2上;若∠2=40°;则∠1的度数是A .20°B .30°C .40°D .50°5.3分在某市举办的垂钓比赛上;5名垂钓爱好者参加了比赛;比赛结束后;统计了他们各自的钓鱼条数;成绩如下:4;5;10;6;10.则这组数据的中位数是A .5B .6C .7D .106.3分下列事件中;不可能事件是A .抛掷一枚骰子;出现4点向上B .五边形的内角和为540°C .实数的绝对值小于0D .明天会下雨7.3分关于x 的一元二次方程4x 2﹣3x +m=0有两个相等的实数根;那么m 的值是 A .98 B .916 C .﹣98 D .﹣916 8.3分某校管乐队购进一批小号和长笛;小号的单价比长笛的单价多100元;用6000元购买小号的数量与用5000元购买长笛的数量恰好相同;设小号的单价为x 元;则下列方程正确的是A .6000x =5000x−100B .6000x−100=5000xC .6000x =5000x+100D .6000x+100=5000x9.3分如图;在△ABC中;AB=5;AC=4;BC=3;分别以点A;点B为圆心;大于12AB的长为半径画弧;两弧相交于点M;N;作直线MN交AB于点O;连接CO;则CO的长是A.1.5B.2C.2.4D.2.510.3分如图;在射线AB上顺次取两点C;D;使AC=CD=1;以CD为边作矩形CDEF;DE=2;将射线AB绕点A沿逆时针方向旋转;旋转角记为α其中0°<α<45°;旋转后记作射线AB′;射线AB′分别交矩形CDEF的边CF;DE于点G;H.若CG=x;EH=y;则下列函数图象中;能反映y与x之间关系的是A.B.C.D.二、填空题本大题共8小题;每小题3分;共24分11.3分在函数y=√x−4中;自变量x的取值范围是.12.3分分解因式:x2y﹣6xy+9y=.13.3分从数﹣2;1;2;5;8中任取一个数记作k;则正比例函数y=kx的图象经过第二、四象限的概率是.14.3分学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛;四名同学平时成绩的平均数x单位:分及方差s2如下表所示:甲乙丙丁x94989896s21 1.21 1.8如果要选出一个成绩好且状态稳定的同学参赛;那么应该选择的同学是.15.3分如图;菱形ABCD的面积为6;边AD在x轴上;边BC的中点E在y轴上;反比例函数y=kx的图象经过顶点B;则k的值为.16.3分在ABCD中;∠DAB的平分线交直线CD于点E;且DE=5;CE=3;则ABCD的周长为.17.3分如图;在圆心角为135°的扇形OAB中;半径OA=2cm;点C;D为AB̂的三等分点;连接OC;OD;AC;CD;BD;则图中阴影部分的面积为cm2.18.3分如图;△ABC的面积为S.点P1;P2;P3;…;P n﹣1是边BC的n等分点n≥3;且n为整数;点M;N分别在边AB;AC上;且AMAB=ANAC=1n;连接MP1;MP2;MP3;…;MP n﹣1;连接NB;NP1;NP2;…;NP n﹣1;线段MP1与NB相交于点D1;线段MP2与NP1相交于点D2;线段MP3与NP2相交于点D3;…;线段MP n﹣1与NP n﹣2相交于点D n﹣1;则△ND1P1;△ND2P2;△ND3P3;…;△ND n﹣1P n﹣1的面积和是.用含有S与n的式子表示三、解答题本大题共2小题;共22分19.10分先化简;再求值:xx−y﹣1÷yx2−y2;其中x=√3﹣2;y=12﹣1.20.12分某校九年级开展征文活动;征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个;九年级每名学生按要求都上交了一份征文;学校为了解选择各种征文主题的学生人数;随机抽取了部分征文进行了调查;根据调查结果绘制成如下两幅不完整的统计图.1求本次调查共抽取了多少名学生的征文;2将上面的条形统计图和扇形统计图补充完整;3如果该校九年级共有1200名学生;请估计选择以“友善”为主题的九年级学生有多少名;4本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的;若从中随机选取2份以“诚信”为主题的征文进行交流;请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.四、解答题本大题共2小题;共24分21.12分某大型快递公司使用机器人进行包裹分拣;若甲机器人工作2h;乙机器人工作4h;一共可以分拣700件包裹;若甲机器人工作3h;乙机器人工作2h;一共可以分拣650件包裹.1求甲、乙两机器人每小时各分拣多少件包裹;2“双十一”期间;快递公司的业务量猛增;要让甲、乙两机器人每天分拣包裹的总数量不低于2250件;它们每天至少要一起工作多少小时22.12分如图;某市文化节期间;在景观湖中央搭建了一个舞台C;在岸边搭建了三个看台A;B;D;其中A;C;D三点在同一条直线上;看台A;B到舞台C的距离相等;测得∠A=30°;∠D=45°;AB=60m;小明、小丽分别在B;D看台观看演出;请分别求出小明、小丽与舞台C的距离.结果保留根号五、解答题本大题共1小题;共12分23.12分如图;AB是半圆O的直径;点C是半圆上一点;连接OC;BC;以点C为顶点;CB为边作∠BCF=12∠BOC;延长AB交CF于点D.1求证:直线CF是半圆O的切线;2若BD=5;CD=5√3;求BĈ的长.六、解答题本大题共1小题;共12分24.12分铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食;每盒售价为50元;由于食材需要冷藏保存;导致成本逐日增加;第x天1≤x≤15且x为整数时每盒成本为p元;已知p与x之间满足一次函数关系;第3天时;每盒成本为21元;第7天时;每盒成本为25元;每天的销售量为y盒;y 与x之间的关系如下表所示:第x 天1≤x≤66<x≤15每天的销售量y /盒1x+61求p与x的函数关系式;2若每天的销售利润为w元;求w与x的函数关系式;并求出第几天时当天的销售利润最大;最大销售利润是多少元3在“荷花美食”厨艺秀期间;共有多少天小张每天的销售利润不低于325元请直接写出结果.七、解答题本大题共1小题;共12分25.12分如图;△ABC中;∠BAC为钝角;∠B=45°;点P是边BC延长线上一点;以点C为顶点;CP为边;在射线BP下方作∠PCF=∠B.1在射线CF上取点E;连接AE交线段BC于点D.①如图1;若AD=DE;请直接写出线段AB与CE的数量关系和位置关系;②如图2;若AD=√2DE;判断线段AB与CE的数量关系和位置关系;并说明理由;2如图3;反向延长射线CF;交射线BA于点C′;将∠PCF沿CC′方向平移;使顶点C落在点C′处;记平移后的∠PCF为∠P′C′F′;将∠P′C′F′绕点C′顺时针旋转角α0°<α<45°;C′F′交线段BC于点M;C′P′交射线BP于点N;请直接写出线段BM;MN与CN之间的数量关系.八、解答题本大题共1小题;共14分26.14分如图;抛物线y=﹣x2+bx+c与x轴的两个交点分别为A3;0;D﹣1;0;与y轴交于点C;点B在y轴正半轴上;且OB=OD.1求抛物线的解析式;2如图1;抛物线的顶点为点E;对称轴交x轴于点M;连接BE;AB;请在抛物线的对称轴上找一点Q;使∠QBA=∠BEM;求出点Q的坐标;3如图2;过点C作CF∥x轴;交抛物线于点F;连接BF;点G是x轴上一点;在抛物线上是否存在点N;使以点B;F;G;N为顶点的四边形是平行四边形若存在;请直接写出点N的坐标;若不存在;请说明理由.2017年辽宁省铁岭市中考数学试卷参考答案与试题解析一、选择题本大题共10小题;每小题3分;共30分1.3分2017 铁岭5的相反数是A.5B.﹣5C.15D.﹣15考点14:相反数.分析根据相反数的定义求解即可.解答解:5的相反数是﹣5;故选:B.点评本题考查了相反数;在一个数的前面加上负号就是这个数的相反数.A.6.01×108B.6.1×108C.6.01×109D.6.01×107考点1I:科学记数法—表示较大的数.分析科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数.确定n 的值时;要看把原数变成a时;小数点移动了多少位;n的绝对值与小数点移动的位数相同.当原数绝对值>1时;n是正数;当原数的绝对值<1时;n是负数.解答×108;故选A.点评此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数;表示时关键要正确确定a的值以及n的值.3.3分2017 铁岭下列几何体中;主视图为三角形的是A.B.C.D.考点U1:简单几何体的三视图.分析分别找出从图形的正面看所得到的图形即可.解答解:A、主视图是矩形;故此选项错误;B、主视图是矩形;故此选项错误;C、主视图是三角形;故此选项正确;D、主视图是正方形;故此选项错误;故选:C.点评此题主要考查了简单几何体的三视图;关键是掌握主视图是从几何体的正面看所得到的图形.4.3分2017 铁岭如图;在同一平面内;直线l1∥l2;将含有60°角的三角尺ABC的直角顶点C放在直线l1上;另一个顶点A恰好落在直线l2上;若∠2=40°;则∠1的度数是A.20°B.30°C.40°D.50°考点JA:平行线的性质.分析根据平行线的性质得到∠1+30°+∠2+90°=180°;再把∠2=40°代入可求∠1的度数.解答解:∵l1∥l2;∴∠1+30°+∠2+90°=180°;∵∠2=40°;∴∠1+30°+40°+90°=180°;解得∠1=20°.故选:A.点评本题考查的是平行线的性质;用到的知识点为:两直线平行;同旁内角互补是解答此题的关键.5.3分2017 铁岭在某市举办的垂钓比赛上;5名垂钓爱好者参加了比赛;比赛结束后;统计了他们各自的钓鱼条数;成绩如下:4;5;10;6;10.则这组数据的中位数是A.5B.6C.7D.10考点W4:中位数.分析根据中位数的定义先把这组数据从小到大重新排列;找出最中间的数即可.解答解:把这数从小到大排列为:4;5;6;10;10;最中间的数是6;则这组数据的中位数是6;故选B.点评此题考查了中位数的意义;中位数是将一组数据从小到大或从大到小重新排列后;最中间的那个数最中间两个数的平均数;叫做这组数据的中位数;如果中位数的概念掌握得不好;不把数据按要求重新排列;就会错误地将这组数据最中间的那个数当作中位数.6.3分2017 铁岭下列事件中;不可能事件是A.抛掷一枚骰子;出现4点向上B.五边形的内角和为540°C.实数的绝对值小于0D.明天会下雨考点X1:随机事件.分析依据不可能事件的概念求解即可.解答解:A、抛掷一枚骰子;出现4点向上是随机事件;故A错误;B、五边形的内角和为540° 是必然事件;故B错误;C、实数的绝对值小于0是不可能事件;故C正确;D、明天会下雨是实际事件;故D错误.故选C.点评本题主要考查的是不可能事件的定义;熟练掌握相关概念是解题的关键.7.3分2017 铁岭关于x的一元二次方程4x2﹣3x+m=0有两个相等的实数根;那么m的值是A.98B.916C.﹣98D.﹣916考点AA:根的判别式.分析由方程有两个相等的实数根;即可得出关于m的一元一次方程;解之即可得出m 的值.解答解:∵关于x 的一元二次方程4x 2﹣3x +m=0有两个相等的实数根; ∴△=﹣32﹣4×4m=9﹣16m=0;解得:m=916. 故选B .点评本题考查了根的判别式;牢记“当△=0时;方程有两个相等的实数根”是解题的关键.8.3分2017 铁岭某校管乐队购进一批小号和长笛;小号的单价比长笛的单价多100元;用6000元购买小号的数量与用5000元购买长笛的数量恰好相同;设小号的单价为x 元;则下列方程正确的是A .6000x =5000x−100B .6000x−100=5000xC .6000x =5000x+100D .6000x+100=5000x考点B6:由实际问题抽象出分式方程.分析设小号的单价为x 元;则长笛的单价为x ﹣100元;根据6000元购买小号的数量与用5000元购买长笛的数量恰好相同;列方程即可.解答解:设小号的单价为x 元;则长笛的单价为x ﹣100元;由题意得:6000x =5000x−100. 故选:A .点评本题考查了由实际问题抽象出分式方程;解答本题的关键是读懂题意;设出未知数;找出合适的等量关系;列方程.9.3分2017 铁岭如图;在△ABC 中;AB=5;AC=4;BC=3;分别以点A;点B 为圆心;大于12AB 的长为半径画弧;两弧相交于点M;N;作直线MN 交AB 于点O;连接CO;则CO 的长是A .1.5B .2C .2.4D .2.5考点N2:作图—基本作图;KG :线段垂直平分线的性质;KP :直角三角形斜边上的中线;KS :勾股定理的逆定理.分析先利用勾股定理的逆定理证明△ABC 为直角三角形;∠ACB=90°;再由作法得MN 垂直平分AB;然后根据直角三角形斜边上的中线性质求解.解答解:∵AB=5;AC=4;BC=3;∴AC2+BC2=AB2;∴△ABC为直角三角形;∠ACB=90°;由作法得MN垂直平分AB;∴AO=OB;∴OC=12AB=2.5.故选D.点评本题考查了作图﹣基本作图:熟练掌握基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.10.3分2017 铁岭如图;在射线AB上顺次取两点C;D;使AC=CD=1;以CD为边作矩形CDEF;DE=2;将射线AB绕点A沿逆时针方向旋转;旋转角记为α其中0°<α<45°;旋转后记作射线AB′;射线AB′分别交矩形CDEF的边CF;DE于点G;H.若CG=x;EH=y;则下列函数图象中;能反映y与x之间关系的是A.B.C.D.考点E7:动点问题的函数图象.分析根据矩形的性质得到CF∥DE;根据相似三角形的性质即可得到结论.解答解:∵四边形CDEF是矩形;∴CF∥DE;∴△ACG∽△ADH;∴CGDH =AC AD;∵AC=CD=1;∴AD=2;∴xDH = 1 2 ;∴DH=2x;∵DE=2;∴y=2﹣2x;∵0°<α<45°;∴0<x<1;故选D.点评本题考查了动点问题的还是图象;矩形的性质;相似三角形的判定和性质;正确的理解题意是解题的关键.二、填空题本大题共8小题;每小题3分;共24分11.3分2017 铁岭在函数y=√x−4中;自变量x的取值范围是x≥4.考点E4:函数自变量的取值范围;72:二次根式有意义的条件.分析根据二次根式的性质;被开方数大于等于0;列不等式求解.解答解:根据题意得:x﹣4≥0;解得x≥4;则自变量x的取值范围是x≥4.点评本题考查的知识点为:二次根式的被开方数是非负数.12.3分2017 铁岭分解因式:x2y﹣6xy+9y=yx﹣32.考点55:提公因式法与公式法的综合运用.分析原式提取y;再利用完全平方公式分解即可.解答解:原式=yx2﹣6x+9=yx﹣32;故答案为:yx﹣32点评此题考查了提公因式法与公式法的综合运用;熟练掌握因式分解的方法是解本题的关键.13.3分2017 铁岭从数﹣2;1;2;5;8中任取一个数记作k;则正比例函数y=kx的图象经过第二、四象限的概率是15.考点X4:概率公式;F7:一次函数图象与系数的关系.分析从数﹣2;1;2;5;8中任取一个数记作k;有5种情况;其中使正比例函数y=kx的图象经过第二、四象限的k值只有1种;根据概率公式求解即可.解答解:∵从数﹣2;1;2;5;8中任取一个数记作k;有5种情况;其中使正比例函数y=kx 的图象经过第二、四象限的k 值只有1种;即k=﹣2;∴满足条件的概率为15. 故答案为15. 点评本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比.也考查了正比例函数的性质.14.3分2017 铁岭学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛;四名同学平时成绩的平均数x 单位:分及方差s 2如下表所示:甲 乙 丙 丁 x 94 98 98 96s 2 1 1.2 1 1.8如果要选出一个成绩好且状态稳定的同学参赛;那么应该选择的同学是 丙 . 考点W7:方差;W1:算术平均数.分析先比较平均数得到乙同学和丙同学成绩较好;然后比较方差得到丙同学的状态稳定;于是可决定选丙同学去参赛.解答解:∵乙、丙同学的平均数比甲、丁同学的平均数大;∴应从乙和丙同学中选;∵丙同学的方差比乙同学的小;∴丙同学的成绩较好且状态稳定;应选的是丙同学;故答案为:丙.点评本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数;叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大;则平均值的离散程度越大;稳定性也越小;反之;则它与其平均值的离散程度越小;稳定性越好.15.3分2017 铁岭如图;菱形ABCD 的面积为6;边AD 在x 轴上;边BC 的中点E在y 轴上;反比例函数y=k x的图象经过顶点B;则k 的值为 3 . 考点G5:反比例函数系数k 的几何意义;L8:菱形的性质.分析在Rt△AEB中;由∠AEB=90°;AB=2BE;推出∠EAB=30°;设AE=a;则AB=2a;由题意2a×√3a=6;推出a2=√3;可得k=√3a2=3.解答解:在Rt△AEB中;∵∠AEB=90°;AB=2BE;∴∠EAB=30°;设AE=a;则AB=2a;由题意2a×√3a=6;∴a2=√3;∴k=√3a2=3;故答案为3.点评本题考查反比例函数系数的几何意义、菱形的性质等知识;解题的关键是灵活运用所学知识解决问题;属于中考常考题型.16.3分2017 铁岭在ABCD中;∠DAB的平分线交直线CD于点E;且DE=5;CE=3;则ABCD的周长为26.考点L5:平行四边形的性质.分析易证得△ADE是等腰三角形;所以可得AD=DE;再求出DC的长;继而求得答案.解答解:∵四边形ABCD是平行四边形;∴AD∥BC;AB=CD=DE+CE=8;∴∠BAE=∠DEA;∵AE平分∠BAD;∴∠BAE=∠EAD;∴∠DEA=∠EAD;∴DE=AD=5;∴ABCD的周长=2AD+AB=2×13=26;故答案为:26.点评本题考查了平行四边形的性质以及等腰三角形的判定.注意证得△ADE是等腰三角形是关键.17.3分2017 铁岭如图;在圆心角为135°的扇形OAB中;半径OA=2cm;点C;D为AB̂的三等分点;连接OC;OD;AC;CD;BD;则图中阴影部分的面积为32π﹣3√2cm2.考点MO :扇形面积的计算.分析易知△AOC ≌△COD ≌△DOB;如图作DH ⊥OB 于H .求出DH;即可求出△DOB 的面积;再根据阴影部分面积=扇形面积﹣三个三角形面积;计算即可. 解答解:如图作DH ⊥OB 于H .∵点C;D 为AB̂的三等分点;∠AOB=135°; ∴∠AOC=∠COD=∠DOB=45°;∴△ODH 是等腰直角三角形;△AOC ≌△COD ≌△DOB;∵OD=2;∴DH=OH=√2;∴S △ODB =12OB DH=√2; ∴S △AOC =S △COD =S △DOB =√2;∴S 阴=135?π?22360﹣3S △DOB =32π﹣3√2cm 2; 故答案为32π﹣3√2cm 2. 点评本题考查扇形的面积、全等三角形的判定和性质等知识;解题的关键是学会添加常用辅助线;构造直角三角形解决问题;属于中考常考题型.18.3分2017 铁岭如图;△ABC 的面积为S .点P 1;P 2;P 3;…;P n ﹣1是边BC 的n 等分点n ≥3;且n 为整数;点M;N 分别在边AB;AC 上;且AM AB =AN AC =1n;连接MP 1;MP 2;MP 3;…;MP n ﹣1;连接NB;NP 1;NP 2;…;NP n ﹣1;线段MP 1与NB 相交于点D 1;线段MP 2与NP 1相交于点D 2;线段MP 3与NP 2相交于点D 3;…;线段MP n ﹣1与NP n ﹣2相交于点D n ﹣1;则△ND 1P 1;△ND 2P 2;△ND 3P 3;…;△ND n ﹣1P n ﹣1的面积和是 n−12nS .用含有S 与n 的式子表示考点K3:三角形的面积.分析连接MN;设BN 交MP 1于O 1;MP 2交NP 1于O 2;MP 3交NP 2于O 3.由AM AB =AN AC =1n;推出MN ∥BC;推出MN BC =AM AB =1n;由点P 1;P 2;P 3;…;P n ﹣1是边BC 的n 等分点;推出MN=BP 1=P 1P 2=P 2P 3;推出四边形MNP 1B;四边形MNP 2P 1;四边形MNP 3P 2都是平行四边形;易知S △ABN =1n S;S △BCN =n−1n S;S △MNB =n−1n 2S;推出S △BP 1O 1=S △P 1P 2O 2=S △P 3P 2O 3=n−12n 2 S;根据S 阴=S △NBC ﹣n S △BP 1O 1计算即可; 解答解:连接MN;设BN 交MP 1于O 1;MP 2交NP 1于O 2;MP 3交NP 2于O 3. ∵AM AB =AN AC =1n; ∴MN ∥BC;∴MN BC =AM AB =1n; ∵点P 1;P 2;P 3;…;P n ﹣1是边BC 的n 等分点;∴MN=BP 1=P 1P 2=P 2P 3;∴四边形MNP 1B;四边形MNP 2P 1;四边形MNP 3P 2都是平行四边形;易知S △ABN =1n S;S △BCN =n−1n S;S △MNB =n−1n 2 S; ∴S △BP 1O 1=S △P 1P 2O 2=S △P 3P 2O 3=n−12n 2 S; ∴S 阴=S △NBC ﹣n S △BP 1O 1=n−1n S ﹣n n−12n 2 S=n−12nS; 故答案为n−12n S . 点评本题考查三角形的面积;平行线的判定和性质、平行四边形的判定和性质等知识;解题的关键是灵活运用所学知识解决问题;属于中考压轴题.三、解答题本大题共2小题;共22分19.10分2017 铁岭先化简;再求值:x x−y ﹣1÷yx 2−y 2;其中x=√3﹣2;y=12﹣1. 考点6D :分式的化简求值;6F :负整数指数幂.分析根据分式的减法和除法可以化简题目中的式子;然后将x 、y 的值代入即可解答本题.解答解:x x−y ﹣1÷yx 2−y 2=x−x+y x−y ?(x+y)(x−y)y=yx−y(x+y)(x−y)y=x+y;当x=√3﹣2;y=12﹣1=2时;原式=√3﹣2+2=√3.点评本题考查分式的化简求值、负整数指数幂;解答本题的关键是明确分式化简求值的方法.20.12分2017 铁岭某校九年级开展征文活动;征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个;九年级每名学生按要求都上交了一份征文;学校为了解选择各种征文主题的学生人数;随机抽取了部分征文进行了调查;根据调查结果绘制成如下两幅不完整的统计图.1求本次调查共抽取了多少名学生的征文;2将上面的条形统计图和扇形统计图补充完整;3如果该校九年级共有1200名学生;请估计选择以“友善”为主题的九年级学生有多少名;4本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的;若从中随机选取2份以“诚信”为主题的征文进行交流;请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.考点X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.分析1用“诚信”的人数除以所占的百分比求出总人数;2用总人数减去“爱国”“敬业”“诚信”“的人数;求出“友善”的人数;从而补全统计图;分别求出百分比即可补全扇形图;3用样本估计总体的思想解决问题即可;4根据题意画出树状图;再根据概率公式进行计算即可;解答解:1本次调查共抽取的学生有3÷6%=50名.2选择“友善”的人数有50﹣20﹣12﹣3=15名;占1550=30%;“爱国”占2050=40%;“敬业”占1250=24%.条形统计图和扇形统计图如图所示;3该校九年级共有1200名学生;请估计选择以“友善”为主题的九年级学生有1200×30%=360名.4记小义、小玉和大力分别为A 、B 、C .树状图如图所示:共有6种情形;小义和小玉同学的征文同时被选中的有2种情形;小义和小玉同学的征文同时被选中的概率=13. 点评本题考查读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时;必须认真观察、分析、研究统计图;才能作出正确的判断和解决问题.四、解答题本大题共2小题;共24分21.12分2017 铁岭某大型快递公司使用机器人进行包裹分拣;若甲机器人工作2h;乙机器人工作4h;一共可以分拣700件包裹;若甲机器人工作3h;乙机器人工作2h;一共可以分拣650件包裹.1求甲、乙两机器人每小时各分拣多少件包裹;2“双十一”期间;快递公司的业务量猛增;要让甲、乙两机器人每天分拣包裹的总数量不低于2250件;它们每天至少要一起工作多少小时考点C9:一元一次不等式的应用;9A :二元一次方程组的应用.分析1设甲、乙两机器人每小时各分拣x 件、y 件包裹;根据“若甲机器人工作2h;乙机器人工作4h;一共可以分拣700件包裹;若甲机器人工作3h;乙机器人工作2h;一共可以分拣650件包裹”列出方程组;求解即可;2设它们每天要一起工作t 小时;根据“甲、乙两机器人每天分拣包裹的总数量不低于2250件”列出不等式;求解即可.解答解:1设甲、乙两机器人每小时各分拣x 件、y 件包裹;根据题意得 {2x +4y =7003x +2y =650;解得{x =150y =100; 答:甲、乙两机器人每小时各分拣150件、100件包裹;2设它们每天要一起工作t 小时;根据题意得150+100t ≥2250;解得t ≥9.答:它们每天至少要一起工作9小时.点评本题考查了一元一次不等式的应用以及二元一次方程组的应用;解决问题的关键是读懂题意;找到关键描述语;找到所求的量的关系.22.12分2017 铁岭如图;某市文化节期间;在景观湖中央搭建了一个舞台C;在岸边搭建了三个看台A;B;D;其中A;C;D三点在同一条直线上;看台A;B到舞台C的距离相等;测得∠A=30°;∠D=45°;AB=60m;小明、小丽分别在B;D看台观看演出;请分别求出小明、小丽与舞台C的距离.结果保留根号考点T8:解直角三角形的应用.分析如图作BH⊥AD于H.;CE⊥AB于E.解直角三角形;分别求出BC、CD即可解决问题.解答解:如图作BH⊥AD于H.;CE⊥AB于E.∵CA=CB;CE⊥AB;∴AE=EB=30;∴tan30°=CEAE;∴CE=10√3;AC=CB=2CE=20√3;在Rt△CBH中;CH=12BC=10√3;BH=√3CH=30;在Rt△BHD中;∵∠D=45°;∴BH=DH=30;∴DC=DH+CH=30+10√3;答:小明、小丽与舞台C的距离分别为20√3m和30+10√3m.点评本题考查解直角三角形、锐角三角函数等知识;解题的关键是学会添加常用辅助线;构造直角三角形解决问题;属于中考常考题型.五、解答题本大题共1小题;共12分23.12分2017 铁岭如图;AB是半圆O的直径;点C是半圆上一点;连接OC;BC;以点C为顶点;CB为边作∠BCF=12∠BOC;延长AB交CF于点D.1求证:直线CF是半圆O的切线;2若BD=5;CD=5√3;求BĈ的长.考点ME:切线的判定与性质;MN:弧长的计算.分析1欲证明CF是切线;只要证明OC⊥CF即可.2由△DCB∽△DAC;可得DC:DA=DB:DC;设AB=x;则有75=55+x;推出x=10;再证明∠COB=60°即可解决问题.解答解:1作OH ⊥BC 于H .∵OC=OB;OH ⊥BC;∴∠COH=∠BOH;∵∠BCF=12∠BOC; ∴∠BCF=∠COH;∵∠COH +∠OCH=90°;∴∠BCF +∠OCH=90°;∴∠OCF=90°;即OC ⊥CF;∴CF 是⊙O 的切线.2连接AC .∵∠DCB=∠A;∠CDB=∠ADC;∴△DCB ∽△DAC;∴DC :DA=DB :DC;设AB=x;则有75=55+x;∴x=10;∴OC=5;OD=10;∴OD=2OC;∵∠OCD=90°;∴∠CDO=30°;∴∠COB=60°;∴BC ̂的长=60?π?5180=53π. 点评本题考查切线的判定、勾股定理、相似三角形的判定和性质、弧长公式等知识;解题的关键是学会添加常用辅助线;灵活运用所学知识解决问题;属于中考常考题型.六、解答题本大题共1小题;共12分24.12分2017 铁岭铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食;每盒售价为50元;由于食材需要冷藏保存;导致成本逐日增加;第x 天1≤x ≤15且x 为整数时每盒成本为p 元;已知p 与x 之间满足一次函数关系;第3天时;每盒成本为21元;第7天时;每盒成本为25元;每天的销售量为y 盒;y 与x 之间的关系如下表所示:第x 天 1≤x ≤6 6<x≤15每天的销售量y/盒10 x+6 1求p 与x 的函数关系式;2若每天的销售利润为w 元;求w 与x 的函数关系式;并求出第几天时当天的销售利润最大;最大销售利润是多少元3在“荷花美食”厨艺秀期间;共有多少天小张每天的销售利润不低于325元 请直接写出结果.考点HE :二次函数的应用.分析1设p=kx +bk ≠0;然后根据第3天和第7天的成本利用待定系数法求一次函数解析式解答即可;2根据销售利润=每盒的利润×盒数列出函数关系式;再根据一次函数的增减性和二次函数的最值问题求解;3根据2的计算以及二次函数与一元二次方程的关系求解.解答解:1设p=kx +bk ≠0;∵第3天时;每盒成本为21元;第7天时;每盒成本为25元;∴{3k +b =217k +b =25; 解得{k =1b =18; 所以;p=x +18;21≤x ≤6时;w=1050﹣x +18=﹣10x +320;。
2015年辽宁省铁岭市中考数学一模试卷
2015年辽宁省铁岭市中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)(2012•衢州)下列四个数中,最小的数是()A.2 B.﹣2 C.0 D.﹣2.(3分)(2012•泰安)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为()A.21×10﹣4千克B.2.1×10﹣6千克C.2.1×10﹣5千克D.2.1×10﹣4千克3.(3分)(2015•铁岭一模)某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)4.(3分)(2015•铁岭一模)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁5.(3分)(2011•苏州)已知,则的值是()A.B.﹣C.2 D.﹣26.(3分)(2011•绵阳校级自主招生)如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM 为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个7.(3分)(2015•铁岭一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+bm<m(am+b);④(a+c)2<b2;⑤a>1.其中正确的是()A.①⑤B.①②⑤ C.②⑤D.①③④8.(3分)(2015•铁岭一模)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)(2015•铁岭一模)2﹣2的平方根是.10.(3分)(2004•潍坊)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了道题.11.(3分)(2015•铁岭一模)已知一组数据:﹣3,﹣3,4,﹣3,x,2;若这组数据的平均数为1,则这组数据的中位数是.12.(3分)(2011•陕西)如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=.13.(3分)(2015•铁岭一模)从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为.14.(3分)(2010•淮安)如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB为半径画弧,交AC于点D,则阴影部分的面积是.15.(3分)(2015•铁岭一模)侧棱长为15cm的直三棱柱的三个侧面面积分别为cm2、cm2和cm2,则该棱柱上底面的面积为cm2.16.(3分)(2015•铁岭一模)在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2015的坐标为.三、解答题(每小题8分,共16分)17.(8分)(2011•恩施州)先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.18.(8分)(2015•铁岭一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.四、解答题(每小题10分,共20分)19.(10分)(2008•内江)某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.请你回答:(1)本次活动共有件作品参赛;(2)上交作品最多的组有作品件;(3)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(4)对参赛的每一件作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出一张卡片,抽到第四组作品的概率是多少?20.(10分)(2015•红河州一模)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣2,﹣3和﹣4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=﹣x﹣2上的概率.五、解答题(每小题10分,共20分)21.(10分)(2015•铁岭一模)已知反比例函数y=的图象经过A(m,m+1),B(m+3,m﹣1)两点,C为x轴上一点,D为y轴上一点,以点A、B、C、D为顶点的四边形是平行四边形,求直线CD的解析式.22.(10分)(2015•铁岭一模)一辆货车在公路BC上由B向C行驶,一辆小汽车在公路l上由A沿AO方向行驶.已知两条公路互相垂直,A到BC的距离为100米,两条公路的交点O位于A的南偏西32°方向上,点B位于A的南偏西77°方向上,点C位于A的南偏东28°方向上.设两车同时开出且小汽车的速度是货车速度的2倍,求两车在行驶过程中的最近距离.六、解答题(每小题10分,共20分)23.(10分)(2013•太原)如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.(2)若cosB=,BP=6,AP=1,求QC的长.24.(10分)(2009•呼和浩特)某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?七、解答题(12分)25.(12分)(2015•铁岭一模)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,判断BD与CF的数量关系,并证明你的结论.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①判断BD与CF的位置关系,并证明你的结论;②当AB=4,AD=时,求线段BG的长.八、解答题(14分)26.(14分)(2009•莆田)已知,如图1,过点E(0,﹣1)作平行于x轴的直线l,抛物线y=x2上的两点A、B的横坐标分别为﹣1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF.(1)求点A、B、F的坐标;(2)求证:CF⊥DF;(3)点P是抛物线y=x2对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴于点Q,是否存在点P使得△OPQ 与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.。
2015年辽宁省大连市中考数学试题及解析
2015年辽宁省大连市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)D2.(3分)(2015•大连)某几何体的三视图如图所示,则这个几何体是())x=28.(3分)(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()﹣1 +1 C﹣1 D+1二、填空题(本题共8小题,每小题3分,满分24分)9.(3分)(2015•大连)比较大小:3﹣2.(填“>”、“<”或“=”)10.(3分)(2015•大连)若a=49,b=109,则ab﹣9a的值为.11.(3分)(2015•大连)不等式2x+3<﹣1的解集为.12.(3分)(2015•大连)如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为.13.(3分)(2015•大连)一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.14.(3分)(2015•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB= cm.15.(3分)(2015•大连)如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,则楼BC的高度约为m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)16.(3分)(2015•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12,共39分)17.(9分)(2015•大连)计算:(+1)(﹣1)+﹣()0.18.(9分)(2015•大连)解方程:x2﹣6x﹣4=0.19.(9分)(2015•大连)如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.20.(12分)(2015•大连)某地区共有1800名初三学生,为了解这些学生的体质健康状况,开学之初随机选取部(1)本次测试学生体质健康成绩为良好的有人,达到优秀的人数占本次测试总人数的百分比为%.(2)本次测试的学生数为人,其中,体质健康成绩为及格的有人,不及格的人数占本次测试总人数的百分比为%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?22.(9分)(2015•大连)如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.23.(10分)(2015•大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2015•大连)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.25.(12分)(2015•大连)在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).26.(12分)(2015•大连)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE,设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c.(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0,﹣3),求该抛物线的解析式;(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出点P的坐标;若不存在,说明理由.2015年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)D2.(3分)(2015•大连)某几何体的三视图如图所示,则这个几何体是()1+)x=28.(3分)(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()﹣1 +1 C﹣1 D+1DB=DA==+1二、填空题(本题共8小题,每小题3分,满分24分)9.(3分)(2015•大连)比较大小:3>﹣2.(填“>”、“<”或“=”)10.(3分)(2015•大连)若a=49,b=109,则ab﹣9a的值为4900.11.(3分)(2015•大连)不等式2x+3<﹣1的解集为x<﹣2.12.(3分)(2015•大连)如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为29°.13.(3分)(2015•大连)一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.==故答案为.14.(3分)(2015•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=cm.OA=OC=ACAC==6==;故答案为:.15.(3分)(2015•大连)如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,(参考数据:sin32°≈0.5,cos32°≈0.8,观测点与楼的水平距离AD为31m,则楼BC的高度约为50m(结果取整数).tan32°≈0.6)16.(3分)(2015•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为≤m≤1.,解得的取值范围为三、解答题(本题共4小题,其中17、18、19题各9分,20题12,共39分)17.(9分)(2015•大连)计算:(+1)(﹣1)+﹣()0.1+21+2.18.(9分)(2015•大连)解方程:x2﹣6x﹣4=0.±=3+19.(9分)(2015•大连)如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.20.(12分)(2015•大连)某地区共有1800名初三学生,为了解这些学生的体质健康状况,开学之初随机选取部根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有36人,达到优秀的人数占本次测试总人数的百分比为70%.(2)本次测试的学生数为200人,其中,体质健康成绩为及格的有18人,不及格的人数占本次测试总人数的百分比为3%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.不及格的人数占本次测试总人数的百分比是:人,四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?=22.(9分)(2015•大连)如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.)经过点×..,﹣),23.(10分)(2015•大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.,=2x=OG=DG=DE=DG=,=,=,即=,,EF=五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2015•大连)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.x=PQ=时,×x<x=PQ=,,n=S=(×.×x<AP﹣,﹣,,AG=2+AP﹣()2)﹣)(xx故答案为:.25.(12分)(2015•大连)在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).,利用相似三角形对应边成比例得到===.EF====.26.(12分)(2015•大连)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE,设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c.(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0,﹣3),求该抛物线的解析式;(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出点P的坐标;若不存在,说明理由.MF=CD=(mmm(==,,,+2=,,(,)代入得:,,,),或(,MF=EA,)的坐标为()PM=,),)。
辽宁省铁岭市中考数学测试卷有答案
辽宁省铁岭市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分。
在每小题给出的四个选项中只有个是符合题目要求的)1.(3分)(2013•铁岭)﹣的绝对值是()A.B.﹣C.D.﹣考点:实数的性质.分析:根据负数的绝对值等于它的相反数解答.解答:解:|﹣|=.故选A.点评:本题考查了实数的性质,主要利用了负数的绝对值是它的相反数.2.(3分)(2013•铁岭)下列各式中,计算正确的是()A.2x+3y=5xy B.x6÷x2=x3C.x2•x3=x5D.(﹣x3)3=x6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、由于2x和3y不是同类项,不能合并,故本选项错误;B、由于x6÷x2=x4≠x3,故本选项错误;C、由于x2•x3=x2+3=x5,故本选项正确;D、由于(﹣x3)3=﹣x9≠x6,故本选项错误.故选C.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.(3分)(2013•铁岭)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选B.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)(2013•铁岭)如图,在数轴上表示不等式组的解集,其中正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:求出不等式的解集,表示在数轴上即可.解答:解:,由①得:x<1,由②得:x≥﹣1,则不等式的解集为﹣1≤x<1,表示在数轴上,如图所示:故选C点评:此题考查了在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2013•铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个考点:利用频率估计概率.分析:由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.解答:解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故选:D.点评:此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解6.(3分)(2013•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.解答:解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图有一层3个,另一层1个,所以主视图是:故选:D.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.(3分)(2013•铁岭)如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(3分)(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.解答:解:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得:=15,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.9.(3分)(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5C.4.5 D.4考点:三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系.分析:首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l的一半,从而求得中点三角形的周长的范围,从而确定.解答:解:解方程x2﹣8x+15=0得:x1=3,x2=5,则第三边c的范围是:2<c<8.则三角形的周长l的范围是:10<l<16,∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8.故满足条件的只有A.故选A.点评:本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.10.(3分)(2013•铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD 重合部分的面积为S,运动时间为t,则S与t的图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:设GE=a,EF=b,AE=m,AB=c,Rt△EFG向右匀速运动的速度为1,分类讨论:当E点在点A左侧时,S=0,其图象为在x轴的线段;当点G在点A左侧,点E在点A 右侧时,AE=t﹣m,GA=a﹣(t﹣m)=a+m﹣t,易证得△GAP∽△GEF,利用相似比可表示PA=(a+m﹣t),S为图形PAEF的面积,则S=[(a+m﹣t)]•(t﹣m),可发现S是t的二次函数,且二次项系数为负数,所以抛物线开口向下;当点G在点A右侧,点E在点B左侧时,S为定值,定义三角形GEF的面积,其图象为平行于x 轴的线段;当点G在点B左侧,点E在点B右侧时,和前面一样运用相似比可表示出PB=(a+m+c﹣t),S为△GPB的面积,则S=(t﹣a﹣m﹣c)2,则S是t的二次函数,且二次项系数为,正数,所以抛物线开口向上.解答:解:设GE=a,EF=b,AE=m,AB=c,Rt△EFG向右匀速运动的速度为1,当E点在点A左侧时,S=0;当点G在点A左侧,点E在点A右侧时,如图,AE=t﹣m,GA=a﹣(t﹣m)=a+m﹣t,∵PA∥EF,∴△GAP∽△GEF,∴=,即=∴PA=(a+m﹣t),∴S=(PA+FE)•AE=[(a+m﹣t)]•(t﹣m)∴S是t的二次函数,且二次项系数为负数,所以抛物线开口向下;当点G在点A右侧,点E在点B左侧时,S=ab;当点G在点B左侧,点E在点B右侧时,如图,GB=a+m+c﹣t,∵PA∥EF,∴△GBP∽△GEF,∴=,∴PB=(a+m+c﹣t),∴S=GB•PB=(a+m+c﹣t)•(a+m+c﹣t)=(t﹣a﹣m﹣c)2,∴S是t的二次函数,且二次项系数为,正数,所以抛物线开口向上,综上所述,S与t的图象分为四段,第一段为x轴上的一条线段,第二段为开口向下的抛物线的一部分,第三段为与x轴平行的线段,第四段为开口先上的抛物线的一部分.故选D.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二.填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2013•铁岭)地球上陆地的面积约为149 000 000平方千米,把数据149 000 000用科学记数法表示为 1.49×108.考点:科学记数法—表示较大的数.专题:计算题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将149 000 000用科学记数法表示为1.49×108.故答案为:1.49×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2013•铁岭)在综合实践课上.五名同学做的作品的数量(单位:件)分别是:5,7,3,6,4,则这组数据的中位数是5件.考点:中位数.分析:根据中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.解答:解:按从小到大的顺序排列是:3,4,5,6,7.中间的是5,故中位数是5.故答案是:5.点评:本题主要考查了中位数的定义,理解定义是关键.13.(3分)(2013•铁岭)函数y=有意义,则自变量x的取值范围是x≥1且x≠2.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故答案为:x≥1且x≠2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.14.(3分)(2013•铁岭)甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,,则成绩比较稳定的是甲(填“甲”或“乙”)考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵,,∴<,∴成绩比较稳定的是甲;故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2013•铁岭)某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格为0.945元(结果用含m的代数式表示)考点:列代数式.分析:先算出加价50%以后的价格,再求第一次降价30%的价格,最后求出第二次降价10%的价格,从而得出答案.解答:解:根据题意得:m(1+50%)(1﹣30%)(1﹣10%)=0.945m(元);故答案为:0.945元.点评:此题考查了列代数式,解决问题的关键是读懂题意,列出代数式,是一道基础题.16.(3分)(2013•铁岭)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是2.考点:反比例函数系数k的几何意义;等腰直角三角形.分析:过P作PB⊥OA于B,根据一次函数的性质得到∠POA=45°,则△POA为等腰直角三角形,所以OB=AB,于是S△POB=S△POA=×2=1,然后根据反比例函数y=(k≠0)系数k的几何意义即可得到k的值.解答:解:过P作PB⊥OA于B,如图,∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,∴S△POB=S△POA=×2=1,∴k=1,∴k=2.故答案为2.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.17.(3分)(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6.考点:旋转的性质.分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.解答:解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.点评:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.18.(3分)(2013•铁岭)如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是(﹣×4n﹣1,4n).考点:一次函数综合题;平行四边形的性质.专题:规律型.分析:先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n).解答:解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).点评:本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三.解答题(第19题10分,第20题12分,共22分)19.(10分)(2013•铁岭)先化简,再求值:(1﹣)÷,其中a=﹣2.考点:分式的化简求值.分析:先把括号中通分后,利用同分母分式的减法法则计算,同时将除式的分子分解因式后,再利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后得到最简结果,再把a=﹣2代入进行计算即可.解答:解:(1﹣)÷=()=×=,把a=﹣2代入上式得:原式==.点评:此题考查了分式的化简求值,关键是通分,找出最简公分母,分式的乘除运算关键是约分,约分的关键是找公因式,化简求值题要将原式化为最简后再代值.20.(12分)(2013•铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.考点:矩形的判定;正方形的判定.分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而理由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.解答:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.点评:此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.四.解答题(第21题12分,第22题12分,共24分)21.(12分)(2013•铁岭)为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共查了200名学生:(2)请补全两幅统计图:(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)根据A类的人数和所占的百分比,即可求出总人数;(2)用整体1减去A、C、D类所占的百分比,即可求出B所占的百分比;用总人数乘以所占的百分比,求出C的人数,从而补全图形;(3)根据题意采用列举法,举出所有的可能,注意要做到不重不漏,再根据概率公式即可得出答案.解答:解:调查的总学生是=200(名);故答案为:200.(3)B所占的百分比是1﹣15%﹣20%﹣30%=35%,C的人数是:200×30%=60(名),补图如下:(3)用A1,A2,A3表示3名喜欢毽球运动的学生,B表示1名跳绳运动的学生,则从4人中选出2人的情况有:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B),共计6种,选出的2人都是最喜欢毽球运动的学生有(A1,A2),(A1,A3),(A2,A3)共计3种,则两人均是最喜欢毽球运动的学生的概率=.点评:此题考查了扇形图与概率的知识,综合性比较强,解题时要注意认真审题,理解题意;在用列举法求概率时,一定要注意不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.考点:切线的判定与性质.分析:(1)AF为为圆O的切线,理由为:练级OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.解答:解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,则AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=5,∵S△AOF=•OA•AF=•OF•AE,∴AE=,则AC=2AE=.点评:此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.五.解答题(满分12分)23.(12分)(2013•铁岭)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=320,进而求出PE=60,AE=120,然后在△APE中利用三角函数的定义即可求解.解答:解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD•tan∠BPD=PD•tan26.6°;在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD•tan∠CPD=PD•tan37°;∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=80,∴0.75PD﹣0.50PD=80,解得PD=320,∴BD=PD•tan26.6°≈320×0.50=160,∵OB=220,∴PE=OD=OB﹣BD=60,∵OE=PD=320,∴AE=OE﹣OA=320﹣200=120,∴tanα===0.5,∴α≈26.6°.点评:本题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.六.解答题(满分12分)24.(12分)(2013•铁岭)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:销售单价x(元/件)…55 60 70 75 …一周的销售量y(件)…450 400 300 250 …(1)直接写出y与x的函数关系式:y=﹣10x+1000(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?考点:二次函数的应用.分析:(1)设y=kx+b,把点的坐标代入解析式,求出k、b的值,即可得出函数解析式;(2)根据利润=(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过10000元,求出进货量,然后求最大销售额即可.解答:解:(1)设y=kx+b,由题意得,,解得:,则函数关系式为:y=﹣10x+1000;(2)由题意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为x=70,∴当40≤x≤70时,销售利润随着销售单价的增大而增大;(3)当购进该商品的贷款为10000元时,y==250(件),此时x=75,由(2)得当x≥70时,S随x的增大而减小,∴当x=70时,销售利润最大,此时S=9000,即该商家最大捐款数额是9000元.点评:本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.。
辽宁省大连市2015年中考数学试题含答案解析(word版)
2015辽宁省大连市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分24分) 1、﹣2的绝对值是( )A . 2B .-2C .21 D .-21 2、如图是某几何体的三视图,则该几何体是( ) A .球 B .圆柱 C .圆锥 D .三棱柱 3、下列长度的三条线段能组成三角形的是( )A 、1,2,3B 、1,2,3C 、3,4,8D 、4,5,64、在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( ) A 、(1,2) B 、(3,0) C 、(3,4) D 、(5,2)5、方程4)1(2x 3=-+x 的解是( )A 、52=x B 、 65=x C 、2=x D 、1=x6、计算()2x 3-的结果是( )A. 2x 6 B.2x 6- C.2x 9 D.2x 9- 7、某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.38、如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B,AD=5,则BC 的长为( )A.3-1B.3+1C.5-1D.5+1二、填空题(本大题共8小题,每小题3分,满分24分.) 9、比较大小:3__________ -2(填>、<或=)10、若a=49,b=109,则ab-9a 的值为:__________. 11、不等式2x+3<-1的解集是:__________.12、如图,已知AB ∥CD ,∠A =56°,∠C =27°则∠E 的度数为__________.13、一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,将这枚骰子连续掷两次,其点数之和为7的概率为:__________.14、在□ABCD 中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且AB=10cm , AD=8cm ,则OB=___________cm .15、如图,从一个建筑物的A 处测得对面 楼BC 的顶部B 的仰角为32°,底部C 的 俯角为45°,观测点与楼的水平距离AD为31cm ,则楼BC 的高度约为_______m(结果取整数)。
辽宁省铁岭市中考数学试卷及答案
辽宁省铁岭市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。
2012-2019年辽宁省铁岭市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2012—2019年辽宁省铁岭市中考数学试题汇编(含参考答案与解析)1、2012年辽宁省铁岭市中考数学试题及参考答案与解析 (2)2、2013年辽宁省铁岭市中考数学试题及参考答案与解析 (28)3、2014年辽宁省铁岭市中考数学试题及参考答案与解析 (53)4、2015年辽宁省铁岭市中考数学试题及参考答案与解析 (78)5、2017年辽宁省铁岭市中考数学试题及参考答案与解析 (103)6、2018年辽宁省铁岭市中考数学试题及参考答案与解析 (124)7、2019年辽宁省铁岭市中考数学试题及参考答案与解析 (148)2012年辽宁省铁岭市中考数学试题及参考答案与解析一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A.3 B.﹣3 C.13D.132.下列图形中,不是中心对称的是()A.B.C.D.3.计算(﹣2a3)2的结果是()A.2a5B.4a5C.﹣2a6D.4a64.如图,桌面上是由长方体的茶叶盒与圆柱体的茶叶盒组成的一个立体图形,其左视图是()A.B.C.D.5.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:A.4小时B.4.5小时C.5小时D.5.5小时6.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.14B.13C.12D.357.如图,⊙O中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是()A.1 B.43C.53D.28.矩形纸片ABCD中,AB=4,AD=8,将纸片沿EF折叠使点B与点D重合,折痕EF与BD相交于点O,则DF的长为()A.3 B.4 C.5 D.69.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x 轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.610.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.2011年10月20日,为更好地服务我国367 000 000未成年人,在团中央书记处领导下,团中央网络影视中心开通面向全国未成年人的专属网站﹣﹣未来网.将367 000 000用科学记数法表示为.12.如果+|y﹣2|=0,那么xy=.13.如图,已知∠1=∠2,∠B=40°,则∠3=.14.从﹣2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是.15.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.16.如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行海里.17.如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为.18.如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形A n B n C n D n 的面积为.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,在求值:,其中=3tan30°+1.20.(12分)已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有人,女生有人;(2)扇形统计图中a=,b=;(3)补全条形统计图(不必写出计算过程);(4)若本校500名毕业生中随机抽取一名学生,这名学生该项测试成绩在8分以下的概率是多少?22.(12分)如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.(1)求证:直线EF是⊙O的切线;(2)若点C是弧AB的中点,sin∠DAB=,求△CBD的面积.五、解答题(满分12分)23.(12分)为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?六、解答题(满分12分)24.(12分)周末,王爷爷骑自行车随“夕阳红自行车队”到“象牙山”游玩.早上从市区出发,1小时50分钟后,到达“象牙山”,3小时后王爷爷的儿子小王打电话告诉王爷爷去接他,同时,小王驾车从市区同一地点出发沿相同路线去接王爷爷.王爷爷在接到电话10分钟后,随自行车队一起沿原路按原速返回.如图,是“自行车队”离市区的距离y(千米)和所用时间x(时)的函数图象及小王驾车出发到接到王爷爷时离市区的距离y(千米)和所用时间x(时)的函数图象,其解析式为y EC=60x ﹣290.(1)王爷爷骑车的速度是千米∕时,点D的坐标为;(2)求小王接到王爷爷时距“象牙山”有多远?七、解答题(满分26分)25.(12分)已知△ABC是等边三角形.(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.①如图a,当θ=20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;②当△ABC旋转到如图b所在位置时,求∠BOE的度数;(2)如图c,在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.26.(14分)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.参考答案与解析一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A.3 B.﹣3 C.13D.13【知识考点】相反数.【思路分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答过程】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列图形中,不是中心对称的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答过程】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选C.【总结归纳】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.计算(﹣2a3)2的结果是()A.2a5B.4a5C.﹣2a6D.4a6【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方与幂的乘方的运算法则求解即可求得答案;注意幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答过程】解:(﹣2a3)2=(﹣2)2•(a3)2=4a6.故选D.【总结归纳】此题考查了积的乘方与幂的乘方的性质.此题比较简单,注意掌握(a m)n=a mn(m,n 是正整数)与(ab)n=a n b n(n是正整数)的应用是解此题的关键.4.如图,桌面上是由长方体的茶叶盒与圆柱体的茶叶盒组成的一个立体图形,其左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】圆柱体形状的茶叶盒的左视图是圆,长方体的茶叶盒的左视图是矩形,且圆位于矩形的上方,由此可以得到结论.【解答过程】解:圆柱体形状的茶叶盒的左视图是圆,长方体的茶叶盒的左视图是矩形,且圆位于矩形的上方,故选D.【总结归纳】本题考查了简单组合体的三视图,解题时不但要具有丰富的数学知识,而且还应有一定的生活经验.5.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:A.4小时B.4.5小时C.5小时D.5.5小时【知识考点】中位数.【思路分析】中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数是的平均数即为中位数.【解答过程】解:由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C.【总结归纳】本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.6.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.14B.13C.12D.35【知识考点】几何概率.【思路分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可.【解答过程】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为;故选A.【总结归纳】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.7.如图,⊙O中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是()A.1 B.43C.53D.2【知识考点】圆锥的计算.【思路分析】利用扇形的半径以及以及在圆中所占比例,得出圆心角的度数,再利用圆锥底面圆周长等于扇形弧长求出即可.【解答过程】解:∵⊙O中,半径OA=4,∠AOB=120°,∴扇形弧长为:l==π,则由圆锥的底面圆的周长为:c=2πr=π.解得:r=.故选B.【总结归纳】此题主要主要考查了扇形组成圆锥后各部分对应情况,根据题意得出圆锥底面圆周长等于扇形弧长是解决问题的关键.8.矩形纸片ABCD中,AB=4,AD=8,将纸片沿EF折叠使点B与点D重合,折痕EF与BD相交于点O,则DF的长为()A.3 B.4 C.5 D.6【知识考点】翻折变换(折叠问题).【思路分析】设DF=x,则BF=x,CF=8﹣x,在RT△DFC中利用勾股定理可得出x的值,继而得出答案.【解答过程】解:设DF=x,则BF=x,CF=8﹣x,在RT△DFC中,DF2=CF2+DC2,即x2=(8﹣x)2+42,解得:x=5,即DF的长为5.故选C.【总结归纳】此题考查了翻折变换的知识,设出DF的长度,得出CF的长,然后在RT△DFC中利用勾股定理是解答本题的关键.9.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x 轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为()A.12 B.10 C.8 D.6【知识考点】反比例函数系数k的几何意义.【思路分析】先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线y=上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE﹣S矩形AEOD即可得出k的值.【解答过程】解:∵双曲线y=(k≠0)上在第一象限,∴k>0,延长线段BA,交y轴于点E,∵AB∥x轴,∴AE⊥y轴,∴四边形AEOD是矩形,∵点A在双曲线y=上,∴S矩形AEOD=4,同理S矩形OCBE=k,∵S矩形ABCD=S矩形OCBE﹣S矩形AEOD=k﹣4=8,∴k=12.故选A.【总结归纳】本题考查的是反比例函数系数k的几何意义,即反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y与x之间的函数关系式,然后根据二次函数图象解答.【解答过程】解:∵四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,∴阴影部分的面积等于一个小平行四边形的面积,∵小平行四边形与▱ABCD相似,∴=()2,整理得y=x2,又0<x≤8,纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象.故选D.【总结归纳】本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.二、填空题(本题共8小题,每小题3分,共24分)11.2011年10月20日,为更好地服务我国367 000 000未成年人,在团中央书记处领导下,团中央网络影视中心开通面向全国未成年人的专属网站﹣﹣未来网.将367 000 000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于367 000 000有9位,所以可以确定n=9﹣1=8.【解答过程】解:367 000 000=3.67×108.故答案为:3.67×108.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.12.如果+|y﹣2|=0,那么xy=.【知识考点】非负数的性质:算术平方根;非负数的性质:绝对值.【思路分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答过程】解:根据题意得,x+1=0,y﹣2=0,解得x=﹣1,y=2,所以,xy=(﹣1)×2=﹣2.故答案为:﹣2.【总结归纳】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.如图,已知∠1=∠2,∠B=40°,则∠3=.【知识考点】平行线的判定与性质.【思路分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答过程】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.【总结归纳】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.14.从﹣2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是.【知识考点】列表法与树状图法;实数的运算.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是无理数的情况,再利用概率公式即可求得答案.【解答过程】解:画树状图得:∵共有6种等可能的结果,积是无理数的有4种情况,∴小强和小红同时入选的概率是:==.故答案为:.【总结归纳】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.【知识考点】由实际问题抽象出分式方程.【思路分析】利用“甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成”这一等量关系列出方程即可.【解答过程】解:∵甲、乙两工程队合作施工20天可完成;∴合作的工作效率为:设乙工程队单独完成此工程需要x天,则可列方程+=1,故答案为:+=1。
2015年中考真题精品解析 数学(辽宁锦州卷)精编word版(原卷版)
一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)2015的相反数是( ) A .2015 B .﹣2015 C .12015 D .12015- 2.(3分)下列事件中,属于必然事件的是( ) A .明天我市下雨 B .抛一枚硬币,正面朝下C .购买一张福利彩票中奖了D .掷一枚骰子,向上一面的数字一定大于零 3.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为( ) 4.(3分)下列二次根式中属于最简二次根式的是( ) A .24 B .36 C .abD .4a + 5.(3分)在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( ) 6.(3分)如图,不等式组2020x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程2210x x -+=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根8.(3分)如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( ) A .(2,2),(3,2) B .(2,4),(3,1) C .(2,2),(3,1) D .(3,1),(2,2)二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知地球上海洋面积约为316000000km 2,316000000这个数用科学记数法可表示为.10.(3分)数据4,7,7,8,9的众数是 .11.(3分)如图,已知l 1∥l 2,∠A =40°,∠1=60°,∠2= . 12.(3分)分解因式:22m n mn n -+=.13.(3分)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到). 投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m ) 28 60 78 104 123 152 251 投中频率(m/n ) 0.560.600.520.520.490.510.5014.(3分)如图,点A 在双曲线ky x=上,AB ⊥x 轴于点B ,且△AOB 的面积是2,则k 的值是 . 15.(3分)制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x 个零件,则可列方程为 .16.(3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数12y x =的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则第4个正方形的边长是 ,S 3的值为 .三、解答题(本大题共2小题,每小题8分,共16分)17.(8分)先化简,再求值:21(1)11xx x +÷--,其中:323x =-. 18.(8分)如图,在平面直角坐标系中,线段AB 的两个端点是A (﹣5,1),B (﹣2,3),线段CD 的两个端点是C (﹣5,﹣1),D (﹣2,﹣3).(1)线段AB 与线段CD 关于直线对称,则对称轴是 ;(2)平移线段AB 得到线段A 1B 1,若点A 的对应点A 1的坐标为(1,2),画出平移后的线段A 1B 1,并写出点B 1的坐标为 .四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图: 根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?20.(10分)育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.五、解答题(本大题共2小题,每小题10分,共20分)21.(10分)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=12AB,连接EF,判断四边形ADEF的形状,并加以证明.22.(10分)如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:2≈,结果精确到)六、解答题(本大题共2小题,每小题10分,共20分)23.(10分)如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.24.(10分)开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.(1)图中线段AB所表示的实际意义是;(2)请直接写出y与x之间的函数关系式;(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?七、解答题(本题12分)25.(12分)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P 旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=12AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN 的边PQ 与射线AD 交于点E ,其他条件不变,探究在整个运动变化过程中,DE ,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.八、解答题(本题14分)26.(14分)如图,在平面直角坐标系中,抛物线22y ax bx =++经过点A (﹣1,0)和点B (4,0),且与y 轴交于点C ,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点,连接CA ,CD ,PD ,PB .(1)求该抛物线的解析式;(2)当△PDB 的面积等于△CAD 的面积时,求点P 的坐标;(3)当m >0,n >0时,过点P 作直线PE ⊥y 轴于点E 交直线BC 于点F ,过点F 作FG ⊥x 轴于点G ,连接EG ,请直接写出随着点P 的运动,线段EG 的最小值.一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)2015的相反数是( ) A .2015 B .﹣2015 C .12015 D .12015- 【答案】B . 考点:相反数.2.(3分)下列事件中,属于必然事件的是( ) A .明天我市下雨 B .抛一枚硬币,正面朝下C .购买一张福利彩票中奖了D .掷一枚骰子,向上一面的数字一定大于零 【答案】D .考点:随机事件.3.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为( ) 【答案】A .考点:简单组合体的三视图.4.(3分)下列二次根式中属于最简二次根式的是( ) A .24 B .36 C .abD .4a + 【答案】D .考点:最简二次根式.5.(3分)在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( ) 【答案】C .考点:1.二次函数的图象;2.一次函数的图象. 6.(3分)如图,不等式组2020x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】B . 【解析】试题分析:由①得,x >﹣2,由②得,x ≤2,故此不等式组的解集为:﹣2<x ≤2.故选B . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组. 7.(3分)一元二次方程2210x x -+=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根 【答案】A .考点:根的判别式.8.(3分)如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( ) A .(2,2),(3,2) B .(2,4),(3,1) C .(2,2),(3,1) D .(3,1),(2,2) 【答案】C .考点:1.位似变换;2.坐标与图形性质.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知地球上海洋面积约为316000000km 2,316000000这个数用科学记数法可表示为. 【答案】×108.考点:科学记数法—表示较大的数.10.(3分)数据4,7,7,8,9的众数是 . 【答案】7. 考点:众数.11.(3分)如图,已知l 1∥l 2,∠A =40°,∠1=60°,∠2= . 【答案】100°.考点:平行线的性质.12.(3分)分解因式:22m n mn n -+=.【答案】2(1)n m -.考点:提公因式法与公式法的综合运用.13.(3分)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到).投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m ) 28 60 78 104 123 152 251 投中频率(m/n ) 0.560.600.520.520.490.510.50【答案】.考点:1.利用频率估计概率;2.图表型. 14.(3分)如图,点A 在双曲线ky x=上,AB ⊥x 轴于点B ,且△AOB 的面积是2,则k 的值是 . 【答案】﹣4.考点:反比例函数系数k 的几何意义.15.(3分)制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x 个零件,则可列方程为 . 【答案】22018020x x=+. 考点:由实际问题抽象出分式方程.16.(3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数12y x =的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则第4个正方形的边长是 ,S 3的值为 . 【答案】272、656132.考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.三、解答题(本大题共2小题,每小题8分,共16分)17.(8分)先化简,再求值:21(1)11xx x +÷--,其中:323x =-. 【答案】1x +,322-.考点:分式的化简求值.18.(8分)如图,在平面直角坐标系中,线段AB 的两个端点是A (﹣5,1),B (﹣2,3),线段CD 的两个端点是C (﹣5,﹣1),D (﹣2,﹣3).(1)线段AB 与线段CD 关于直线对称,则对称轴是 ;(2)平移线段AB 得到线段A 1B 1,若点A 的对应点A 1的坐标为(1,2),画出平移后的线段A 1B 1,并写出点B 1的坐标为 .【答案】(1)x 轴;(2)作图见试题解析,(4,4).考点:1.作图-平移变换;2.作图-轴对称变换.四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?【答案】(1)120,作图见试题解析;(2)360.【解析】试题分析:(1)用70分的人数除以占的百分比,得出抽取的总份数,补全统计图即可;(2)用优秀作品份数占的百分比,乘以900即可得到结果.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.20.(10分)育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.【答案】(1)不同意;(2)23.考点:1.列表法与树状图法;2.可能性的大小.五、解答题(本大题共2小题,每小题10分,共20分)21.(10分)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=12AB,连接EF,判断四边形ADEF的形状,并加以证明.【答案】四边形ADEF是平行四边形.考点:1.平行四边形的判定;2.三角形中位线定理;3.探究型.22.(10分)如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:2≈,结果精确到)【答案】.考点:解直角三角形的应用-方向角问题.六、解答题(本大题共2小题,每小题10分,共20分)23.(10分)如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.【答案】(1)证明见试题解析;(2)9.【解析】试题分析:(1)由圆内接四边形性质以及邻补角的定义得出∠FED=∠A,进而得出∠B+∠A=90°,求出答案;(2)由相似三角形的判定与性质得出△FED∽△F AC,进而可求出直径.考点:1.切线的判定;2.相似三角形的判定与性质;3.综合题.24.(10分)开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y (元/本)与购买数量x (本)之间的函数关系如图所示.(1)图中线段AB 所表示的实际意义是 ;(2)请直接写出y 与x 之间的函数关系式;(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W (元)最大?最大利润是多少?【答案】(1)购买不超过10本此种笔记本时售价为5元/本;(2) 5 (010)0.1 6 (1020)4 (20)x y x x x <≤⎧⎪=-+<≤⎨⎪>⎩;(3)当小明购买15本时,该文具批发部在这次买卖中所获的利润最大,最大利润是元.所以y 与x 之间的函数关系式0.16y x =-+;考点:1.一次函数的应用;2.二次函数的最值;3.最值问题;4.分段函数;5.分类讨论;6.综合题.七、解答题(本题12分)25.(12分)如图①,∠QPN 的顶点P 在正方形ABCD 两条对角线的交点处,∠QPN =α,将∠QPN 绕点P 旋转,旋转过程中∠QPN 的两边分别与正方形ABCD 的边AD 和CD 交于点E 和点F (点F 与点C ,D 不重合).(1)如图①,当α=90°时,DE ,DF ,AD 之间满足的数量关系是 ; (2)如图②,将图①中的正方形ABCD 改为∠ADC =120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE +DF =12AD ,请给出证明; (3)在(2)的条件下,若旋转过程中∠QPN 的边PQ 与射线AD 交于点E ,其他条件不变,探究在整个运动变化过程中,DE ,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.【答案】(1)DE +DF =AD ;(2)证明见试题解析;(3)①当点E 落在AD 上时,DE +DF =12AD ,②当点E 落在AD 的延长线上时,即12AD <DE +DF ≤32A D . 【解析】试题分析:(1)证明△APE ≌△DPF ,得到AE =DF ,即可得出结论DE +DF =AD ,(2)取AD 的中点M ,连接PM ,可证明△MDP 是等边三角形,△MPE ≌△FPD ,得到ME =DF ,由DE +ME =12AD ,即可得出DE +DF =12AD , 考点:1.四边形综合题;2.分类讨论;3.和差倍分;4.探究型;5.压轴题.八、解答题(本题14分)26.(14分)如图,在平面直角坐标系中,抛物线22y ax bx =++经过点A (﹣1,0)和点B (4,0),且与y 轴交于点C ,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点,连接CA ,CD ,PD ,PB .(1)求该抛物线的解析式;(2)当△PDB 的面积等于△CAD 的面积时,求点P 的坐标;(3)当m >0,n >0时,过点P 作直线PE ⊥y 轴于点E 交直线BC 于点F ,过点F 作FG ⊥x 轴于点G ,连接EG ,请直接写出随着点P 的运动,线段EG 的最小值.【答案】(1)20.5 1.52y x x =-++;(2)点P 的坐标是(1,3)或(2,3)或(-2,﹣3)或(5,﹣3);(345. 考点:1.二次函数综合题;2.分类讨论;3.二次函数的最值;4.最值问题;5.压轴题.。
2015年中考数学试题及答案(Word版)
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
2015中考数学铁岭数学试卷及答案
铁岭市初中毕业生学业考试数学试卷※ 考试时间120分钟 试卷满分150分考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是A.3B.-3C.D. 2.下列图形中,不是..中心对称的是A. B. C. D. 3.计算 的结果是A. B. C. D. 4.如图,桌面上是由长方体的茶叶盒与圆柱体的茶叶盒组成的一个立体图形,其左视图是A. B. C. D.5.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的中位数是A.4小时B.4.5小时C.5小时D.5.5小时3131-23)2(a -52a 54a 62a -64a6.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内 的概率为A. B.C. D. 7.如图,⊙O 中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥 底面圆的半径长是 A.1 B. C. D.28.矩形纸片ABCD 中,AB=4,AD=8,将纸片沿EF 折叠使点B 与 点D 重合,折痕EF 与BD 相交于点O ,则DF 的长为A.3B.4C.5D.69.如图,点A 在双曲线 上,点B 在双曲线 (k ≠0)上,AB ∥ 轴,分别过点A 、B 向 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是8,则k 的值为A.12B.10C.8D.610.如图, ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与 ABCD 的各边分别平行,且与 ABCD 相似.若小平行四边形的一边长为,且0< ≤8,阴影部分的面积的和为 ,则 与 之间的函数关系的大致图象是A. B. C. D.第二部分 非选择题(共120分)二、填空题(本题共8小题,每小题3分,共24分)11.2011年10月20日,为更好地服务我国367 000 000未成年人,在团中央书记处领导下,团中央网络影视中心开通面向全国未成年人的专属网站——未来网.将367 000 000用科学记数法表示为 △ .12.如果,那么△ . 413121533435x y 4=xk y =x x x x y y x 021=-++y x =xy数学试卷(供铁岭市考生使用) 第3页(共6页)13.如图,已知∠1=∠2,∠B=40°,则∠3= △ . 14.从-2、1、这三个数中任取两个不同的数相乘,积是无理数 的概率是 △ .15.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成; 若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可 完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要天,可列方程为 △ .16.如图,在东西方向的海岸线上有A 、B 两个港口,甲货船从A 港 沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船 从B 港沿西北方向出发,2小时后相遇在点P 处,问乙货船每小 时航行 △ 海里.17.如图,在平面直角坐标系中,△ABC 经过平移后点A 的对应点为点A ′,则平移后点B 的对应点B ′的坐标为 △ .18.如图,点E 、F 、G 、H 分别为菱形A 1B 1C 1D 1各边的中点,连接A 1F 、B 1G 、C 1H 、D 1E 得四边形A 2B 2C 2D 2,以此类推得四边形A 3B 3C 3D 3…,若菱形A 1B 1C 1D 1的面积为S ,则四边形A n B n C n D n 的面积为 △ .三、解答题(第19题10分,第20题12分,共22分)19.先化简,在求值: ,其中 =3tan30°+1. 20.已知:在直角梯形ABCD 中,AD ∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE ⊥BD, 垂足为E.(1) 求证:△ABE ∽△DBC; (2) 求线段AE 的长.2x )9153(9122----÷--x x x x x x x四、解答题(第21题12分,第22题12分,共24分)21.某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有 △ 人,女生有 △ 人; (2)扇形统计图中 = △ , = △ ; (3)补全条形统计图(不必写出计算过程);(4)若本校500名毕业生中随机抽取一名学生,这名学生该项测试成绩在8分以下的概率是多少?第21题图22.如图,⊙O 的直径AB 的长为10,直线EF 经过点B 且∠CBF=∠CDB.连接AD. (1)求证:直线EF 是⊙O 的切线;(2)若点C 是弧AB 的中点,sin ∠DAB= ,求△CBD 的面积.五、解答题(满分12分)23.为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元.(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?六、解答题(满分12分)ab53数学试卷(供铁岭市考生使用) 第5页(共6页)24.周末,王爷爷骑自行车随“夕阳红自行车队”到“象牙山”游玩.早上从市区出发,1 小时50分钟后,到达“象牙山”,3小时后王爷爷的儿子小王打电话告诉王爷爷去接 他,同时,小王驾车从市区同一地点出发沿相同路线去接王爷爷.王爷爷在接到电话 10分钟后,随自行车队一起沿原路按原速返回.如图,是“自行车队”离市区的距离(千米)和所用时间 (时)的函数图象及小王驾车出发到接到王爷爷时离市区的 距离(千米)和所用时间 (时)的函数图象,其解析式为 . (1)王爷爷骑车的速度是 △ 千米∕时,点D 的坐标为 △ ; (2)求小王接到王爷爷时距“象牙山”有多远?七、解答题(满分12分) 25.已知△ABC 是等边三角形.(1)将△ABC 绕点A 逆时针旋转角 (0°<<180°),得到△ADE ,BD 和EC 所在直线相交于点O.①如图 ,当 =20°时,△ABD 与△ACE 是否全等? △ (填“是”或“否”),∠BOE= △ 度;②当△ABC 旋转到如图 所在位置时,求∠BOE 的度数;(2)如图 ,在AB 和AC 上分别截取点B ′和C ′,使AB= AB ′,AC= AC ′,连接B ′C ′,将△AB ′C ′绕点A 逆时针旋转角 (0°< <180°),得到△ADE , BD 和EC 所在直线相交于点O ,请利用图探索∠BOE 的度数,直接写出结果,不必说明理由.第25题图八、解答题(满分14分)x y y x 29060-=x y EC θθa θb c 33θθc26.如图,已知抛物线经过原点O 和 轴上一点A (4,0),抛物线顶点为E ,它的对称轴与 轴交于点D.直线 经过抛物线上一点B (-2,m )且与轴交于点C , 与抛物线的对称轴交于点F.(1)求m 的值及该抛物线对应的解析式;(2)P 是抛物线上的一点,若S △ADP =S △ADC ,求出所有符合条件的点P 的坐标; (3)点Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M 的运动时间为t 秒,是否能使以Q 、A 、E 、M 四点为顶点的四边形是菱形.若能,请直接写出点M 的运动时间t 的值;若不能,请说明理由.第26题图 备用图年铁岭市初中毕业生学业考试x x 12--=x y y ),(yx数学试卷(供铁岭市考生使用) 第7页(共6页)数学试题参考答案及评分标准一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本题共8小题,每小题3分,共24分)三、解答题(第19题10分,第20题12分,共22分)19.解:┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 3分┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 6分∵130tan 3+︒=x ∴131333+=+⨯=x ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 8分 33311-131==+=原式 ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 10分 20.(1)证明:∵AB=AD=2511)1(991)912(919159)3(91)9153(9122222222222-=--⋅--=-+-÷--=⎥⎦⎤⎢⎣⎡----+÷--=----÷--x x x x x x x x x x x x x x x x x x x x x x x∵AD ∥BC ∴∠ADB=∠DBC∴∠ABD=∠DBC ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 3分 ∵AE ⊥BD ∴∠AEB=∠C=90°∴△ABE ∽△DBC ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 6分(2)∵AB=AD 又∵AE ⊥BD ∴BE=DE∴BD=2BE ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 8分由△ABE ∽△DBC 得BC BEBD AB = ∵AB=AD=25,BC=32 ∴32225BEBE = ∴BE=20 ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 10分 ∴AE=1520252222=-=-BE AB ┅┅┅┅┅┅┅┅┅ 12分四、解答题(第21题12分,第22题12分,共24分)21.解 (1)300,200 ┅┅┅┅┅┅┅ 4分 (2)62,12==b a ┅┅┅┅┅┅ 6分 (3)如图,补图正确 ┅┅┅┅┅ 8分 (4)随机抽取的学生的测试成绩在8分以下的概率是101┅┅┅┅┅┅ 12分 22.(1)证明:∵AB 是⊙O 的直径数学试卷(供铁岭市考生使用) 第9页(共6页)即∠ADC+∠CDB=90° ∵∠ADC=∠ABC,∠CBF=∠CDB∴∠ABC+∠CBF=90°即∠ABF=90°┅┅┅┅┅┅┅┅┅┅┅┅┅ 2分 ∴AB ⊥EF∴EF 是⊙O 的切线 ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分(2)解:作BG ⊥CD ,垂足是G ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 6分在Rt △ABD 中 ∵AB=10,sin ∠DAB=53 又∵sin ∠DAB=ABBD∴BD=6∵C 是弧AB 的中点 ∴∠ADC=∠CDB=45° ∴BG=DG=BDsin45°=23226=⨯ ┅┅┅┅┅┅┅┅┅┅┅┅ 9分 ∵∠DAB=∠DCB ∴tan ∠DCB=43=CG BG ∴CG=24∴CD=CG+DG=272324=+ ┅┅┅┅┅┅┅┅┅┅┅┅┅ 11分∴212232721=⨯=⋅=BG CD S CBD △ ┅┅┅┅┅┅┅┅ 12分五、解答题(满分12分)23.解:(1)设每个笔记本元,每支钢笔 元 ┅┅┅┅┅┅┅┅┅┅┅┅┅ 1分 依题意得: ⎩⎨⎧=+=+3152183y x y x ┅┅┅┅┅┅┅┅┅┅┅┅┅ 3分解得:⎩⎨⎧==53y x答:设每个笔记本3元,每支钢笔5元 ┅┅┅┅┅┅┅┅┅ 5分(2)设购买笔记本m 个,则购买钢笔(24-m )个 ┅┅┅┅┅┅┅┅┅ 6分依题意得: ⎩⎨⎧-≤≤-+m m m m 24100)24(53 ┅┅┅┅┅┅┅┅┅ 8分解得:1012≥≥m ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 10分 ∵m 取正整数 ∴m=10或11或12∴有三种购买方案:①购买笔记本10个,则购买钢笔14个.②购买笔记本11个,则购买钢笔13个.③购买笔记本12个,则购买钢笔12个. ┅┅┅┅┅ 12分六、解答题(满分12分) 24.解:(1)12,),或(0641)0,656( ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分 (2)设BD 的关系式为b kx y BD +=∵上在BD B D )22,5(),0,641(∴⎪⎩⎪⎨⎧=+=+0641225b k b k解得:⎩⎨⎧=-=8212b k ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 7分∴8212+-=x y BDxy数学试卷(供铁岭市考生使用) 第11页(共6页)∴29060-=x y EC∴⎩⎨⎧-=+-=290608212x y x y 解得;⎪⎩⎪⎨⎧==20615y x ┅┅┅┅ 9分∵22-20=2千米∴小王接到王爷爷时距“象牙山”有2千米. ┅┅┅┅┅┅┅┅┅ 12分七、解答题(满分12分)25.(1)是 ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 1分 ∠BOE=120° ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 3分(2)由已知得:△ABC 和△ADE 是全等的等边三角形∴AB=AD=AC=AE∵△ADE 是由△ABC 绕点A 旋转 得到的∴∠BAD=∠CAE= ∴△BAD ≌△CAE ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 5分 ∴∠ADB=∠AEC∵∠ADB+∠ABD+∠BAD=180°∴∠AEC+∠ABO+∠BAD=180°∵∠ABO+∠AEC+∠BAE+∠BOE=360°∵∠BAE=∠BAD+∠DAE∴∠DAE+∠BOE=180°又∵∠DAE=60°∴∠BOE=120° ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 9分(3)当0°< <30°时,∠BOE=60°当30°< <180°时,∠BOE=120° ┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 12分θθθθ八、解答题(满分14分)26.解:(1)∵点B(-2,m)在直线12--=x y 上∴m=3 即B (-2,3)┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 1分 又∵抛物线经过原点O∴设抛物线的解析式为bx ax y +=2∵点B (-2,3),A (4,0)在抛物线上∴⎩⎨⎧=+=-0416324b a b a 解得:⎪⎩⎪⎨⎧-==141b a ∴设抛物线的解析式为x x y -=241 ┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分 (2)∵),(y x P 是抛物线上的一点∴)41,(2x x x P - 若ADC ADP S S ∆∆=∵OC AD S ADC ⋅=∆21 y AD S ADP ⋅=∆21 ┅┅┅┅┅┅┅┅ 6分 又∵点C 是直线12--=x y 与y 轴交点∴C(0,1) ∴OC=1∴1412=-x x , 即1412=-x x 或1412-=-x x 解得:2,222,2224321==-=+=x x x x∴点P 的坐标为 )1,2(),1,222(),1,222(321--+P P P ┅┅┅ 10分 (3)存在: ,541-=t ,62=t ,543+=t ,2134=t┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 14分数学试卷(供铁岭市考生使用)第13页(共6页)。
辽宁铁岭中考数学试.doc
2015年辽宁铁岭中考数学试题-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2015年中考数学试题(含答案)
2015年河南初中学业水平暨高级中等学校招生考试试题数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。
1. 下列各数中最大的数是( )A. 5B.3C. πD. -8 2. 如图所示的几何体的俯视图是( )3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( )6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )C DB A 正面 第2题dc ba第4题-52 0 -520 -52 0 -520 CDBAA. 4B. 6C. 8D. 108. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A.(2014,0)B.(2015,-1)C. (2015,1)D. (2016,0)二、填空题(每小题3分,共21分) 9.计算:(-3)0+3-1=.10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,若DB =4,DA =2,BE =3,则EC = . 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点 A (1,a ),则k = .12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 . 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再 背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数 字不同的概率是 .14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,若OA =2,则阴影部分的面积为 .15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .E FCDBGA第7图第8题E CDBA第14题EFCDBA 第15题B ′三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .17.(9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A 、B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ≌△POB ; (2)填空:① 若AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。
2015年辽宁省铁岭市中考数学试题(word版,含解析)
2015年辽宁省铁岭市中考数学试卷一选择题(每小题3分,共30分,每小题四个选项只有一个是符合题意的)1.3的相反数是()A.﹣3 B.3C.﹣D.考点:相反数.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解答:解:根据相反数的含义,可得3的相反数是:﹣3.故选:A.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形与轴对称图形的概念对各选项进行逐一分析即可.解答:解:A、是轴对称图形,但不是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,但不是中心对称图形,故本选项错误.故选C.点评:本题考查的是中心对称图形,熟知中心对称图形与轴对称图形的概念是解答此题的关键.3.如图,由两个相同的小正方体和一个圆锥组成的几何体,其左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义即可得出.解答:解:该几何体的左视图是一个正方形与三角形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的几何体的视图.4.下列各式运算正确的是()A.a3+a2=2a5B.a3﹣a2=a C.(a3)2=a5D.a6÷a3=a3考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,合并同类项的法则,对各选项计算后利用排除法求解.解答:解:A、a3与a2不是同类项的不能合并,故本选项错误;B、a3与a2不是同类项的不能合并,故本选项错误;C、(a3)2=a6,故本选项错误;D、a6÷a3=a3,正确.故选D.点评:本题考查了同底数幂的除法,幂的乘方的性质,合并同类项,熟练掌握运算性质是解题的关键.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:解不等式①得:x≥﹣2,解不等式②得:x<4,故不等式组的解集是:﹣2≤x<4.故选B.点评:此题考查不等式的解集问题,关键是根据不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.6.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:比赛日期2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣282015﹣5﹣202015﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒) 1019 1006 1010 1006 999则苏炳添这五次比赛成绩的众数和平均数分别为()A.1006秒,1006秒B.1010秒,1006秒C.1006秒,1008秒D.1008秒,1006秒考点:众数;算术平均数.分析:根据众数和平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:999,1006,1006,1010,1019,则众数为:1006,平均数为:=1008.点评:本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.7.如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.E F=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.8.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.考点:几何概率.分析:根据正方形的性质求出阴影部分占整个面积的,进而得出答案.解答:解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 ‘C.162(1+x)2=200 D.162(1﹣x)2=200考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.解答:解:由题意可列方程是:200×(1﹣x)2=168.故选A.点评:此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的15倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D. 4个考点:一次函数的应用.分析:根据函数图象直接得出甲乙两地之间的距离;根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/h,快车速度为4xkm/h,由(3x+4x)×4=560,可得x=20,从而得出快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了7小时后,快车已到达甲地,可求出此时两车之间的距离即可.解答:解:由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大知直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,故③正确.点评:此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,读懂图,获取正确信息是解题关键.二填空题(每小题3分,共24分)11.据《2014年国民经济和社会发展统计公报》显示,2014年我国教育科技和文化体育事业发展较快,其中全年普通高中招生7966000人,将7966000用科学记数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7966000用科学记数法表示为7966×106.故答案为:7966×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为.考点:坐标与图形性质.分析:根据点的坐标求得正方形的边长,然后根据第三个点的坐标的特点将第四个顶点的坐标求出来即可.解答:解:∵正方形两个顶点的坐标为A(﹣1,1),B(﹣1,﹣1),∴AB=1﹣(﹣1)=2,∵点C的坐标为:(1,﹣1),∴第四个顶点D的坐标为:(1,1).故答案为:(1,1).点评:本题考查了坐标与图形的性质,解决本题的关键是弄清当两个点的横坐标相等时,其两点之间的距离为纵坐标的差.13.在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.考点:利用频率估计概率.分析:根据多次试验发现摸到红球的频率是20%,则可以得出摸到红球的概率为20%,再利用红色小球有4个,黄、白色小球的数目相同进而表示出黑球概率,得出答案即可.解答:解:设黑色的数目为x,则黑、白色小球一共有2x个,∵多次试验发现摸到红球的频率是20%,则得出摸到红球的概率为20%,∴=40%,解得:x=3,∴黑色小球的数目是3个.故答案为:3.点评:本题考查了利用频率估计概率,根据题目中给出频率可知道概率,从而可求出黑色小球的数目是解题关键.14.如图,AB∥CD,AC⊥BC,∠ABC=35°,则∠1的度数为.考点:平行线的性质;垂线.分析:首先根据平行线的性质可得∠ABC=∠BCD=35°,再根据垂线的定义可得∠ACB=90°,再利用平角的定义计算出∠1的度数.解答:解:∵AB∥CD,∴∠ABC=∠BCD=35°,∵AC⊥BC,∴∠ACB=90°,∴∠1=180°﹣90°﹣35°=55°,故答案为:55°.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.15.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是.考点:根的判别式.专题:计算题.分析:由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.解答:解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1点评:此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程根的关系是解本题的关键.16.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.考点:正多边形和圆.分析:连接OB,则OB=OA,得出∠BAO=∠ABO,再求出正五边形ABCDE的中心角∠AOB的度数,由等腰三角形的性质和内角和定理即可得出结果.解答:解:连接OB,则OB=OA,∴∠BAO=∠ABO,∵点O是正五边形ABCDE的中心,∴∠AOB==72°,∴∠BAO=(180°﹣72°)=54°;故答案为:54°.点评:本题考查了正五边形的性质、等腰三角形的性质、正五边形中心角的求法;熟练掌握正五边形的性质,并能进行推理计算是解决问题的关键.17.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.考点:反比例函数系数k的几何意义;平移的性质.分析:利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.解答:解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.点评:此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.18.如图,将一条长度为1的线段三等分,然后取走其中的一份,称为第一次操作;再将余下的每一条线段三等分,然后取走其中一份,称为第二次操作;…如此重复操作,当第n次操作结束时,被取走的所有线段长度之和为.考点:规律型:图形的变化类.分析:易得第一次操作后余下的线段为1﹣,进而得到每次操作后有几个1﹣的积,即可得到第n次操作时,余下的所有线段的长度之和,进而求得被取走的所有线段长度之和.解答:解:第一次操作后余下的线段之和为1﹣,第二次操作后余下的线段之和为(1﹣)2,…第n次操作后余下的线段之和为(1﹣)n=,则被取走的所有线段长度之和为1﹣.故答案是:1﹣.点评:本题考查图形的变化规律;得到第n次操作后有n个是解决本题的关键.三解答题19.先化简÷(a﹣2+),然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=,根据分式有意义的条件,把a=2代入计算即可.解答:解:原式=÷=•=,当a=2时,原式==3.点评:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.考点:矩形的性质;平行四边形的判定;菱形的性质.分析:(1)首先根据矩形的性质可得AB平行且等于CD,然后根据DE=BF,可得AF平行且等于CE,即可证明四边形AFCE是平行四边形;(2)根据四边形AFCE是菱形,可得AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x 的值,继而可求得菱形的边长及周长.解答:解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,解得:x=,则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.点评:本题考查了矩形的性质和菱形的性质,解答本题的关键是则矩形对边平行且相等的性质以及菱形四条边相等的性质.21.某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:(1)求本次被调查的人数;(2)将上面的两幅统计图补充完整;(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.考点:条形统计图;用样本估计总体;扇形统计图.专题:数形结合.分析:(1)用喜欢乒乓球项目的人数除以它所占的百分比即可得到本次被调查的人数;(2)用总人数分别减去其它项目的人数即可得到喜欢足球项目的人数,然后分别计算项目足球和棒球项目的百分比,再补全统计图;(3)利用样本根据总体,用4000乘以样本中喜欢羽毛球项目的百分比即可估计该社区喜爱羽毛球运动项目的人数.解答:解:(1)本次被调查的人数=24÷12%=200(人);(2)喜欢足球项目的人数=200﹣24﹣46﹣60﹣30=40(人),所以喜欢足球项目的百分比=×100%=20%,喜欢棒球项目的百分比=×100%=15%,如图,(3)4000×30%=1200,所以估计该社区喜爱羽毛球运动项目的人数约为1200人.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(2)特点:从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体和扇形统计图.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO并延长至E,使得OE=OB,连接AE.(1)求证:AE是⊙O的切线;(2)若BD=AD=4,求阴影部分的面积.考点:切线的判定;扇形面积的计算.分析:(1)证明△BOD≌△EOA,得到∠OAE=90°,根据切线的判定定理得到答案;(2)求出∠AOE=45°,根据三角形的面积公式和扇形的面积公式计算得到答案.解答:解:(1)∵AB=AC,AD是BC边上的中线,∴∠ODB=90°,在△BOD和△EOA中,,∴△BOD≌△EOA,∴∠OAE=∠ODB=90°,∴AE是⊙O的切线;(2)∵∠ODB=90°,BD=OD,∴∠BOD=45°,∴∠AOE=45°,则阴影部分的面积=×4×4﹣=8﹣.点评:本题考查的是切线的性质和判定和扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键.23如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈173,≈141)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,首先求出DF的长,进而可求出DH的长,在直角三角形ADH中,可求出AH的长,进而可求出AN的长,在直角三角形CNB中可求出BN的长,利用AB=AH﹣BN计算即可.解答:解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,∵DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(30+30)米,∴AN=AH+EF=(40+30)米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=20+30≈71米,答:条幅的长度是71米.点评:此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.24.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:…25 60 75 90 …蔬菜的批发量(千克)…所付的金额(元)…125 300300 360[来源:ZxxkCom](2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?考点:二次函数的应用;一次函数的应用.分析:(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×08=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.解答:解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×08=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×08)=﹣30(x﹣6)2+120,当x=6时,当日可获得利润最大,最大利润为120元.点评:此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.25.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.考点:几何变换综合题.分析:(1)根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据旋转性质可得AD=AE,∠DAE=90°,然后利用同角的余角相等求出∠BAD=∠CAE,然后利用“边角边”证明△BAD和△CEF全等,从而得证;(2)将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.与(1)同理可得CE=BD,CE⊥BD,根据勾股定理即可求得2AD2=BD2+CD2;(3)分两种情况分别讨论即可求得.解答:(1)证明:如图1,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵∠DAE=90°,∴∠DAE=∠CAE+∠DAC=90°,∵∠BAC=∠BAD+∠DAC=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABC=45°.∴∠BCE=∠ACB+∠ACE=90°,∴BD⊥CE;(2)2AD2=BD2+CD2,理由:如图2,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.与(1)同理可证CE=BD,CE⊥BD,∵∠EAD=90°AE=AD,∴ED=AD,在RT△ECD中,ED2=CE2+CD2,∴2AD2=BD2+CD2.(3)如图3,①当D在BC边上时,将线段AD1绕点A顺时针方向旋转90°得到线段AE,连接BE,与(1)同理可证△ABE≌△ACD1,∴BE=CD1,BE⊥BC,∵BD=CD,∴BD1=BE,∴tan∠BD1E==,∴∠BD1E=30°,∵∠EAD1=EBD1=90°,∴四边形A、D1、B、E四点共圆,∴∠EAB=∠BD1E=30°,∴∠BAD1=90°﹣30°=60°;②将线段AD绕点A逆时针方向旋转90°得到线段AF,连接CF.同理可证:∠CFD2=30°,∵∠FAD2=FCD2=90°,∴四边形A、F、D2、C四点共圆,∴∠CAD2=∠CFD2=30°,∴∠BAD2=90°+30°=120°,综上,∠BAD的度数为60°或120°.点评:本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,勾股定理的应用,四点共圆的判定,圆周角定理等,通过旋转得出全等三角形是本题的关键.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.考点:二次函数综合题.分析:(1)直接代入求得函数解析式即可,由点D与C对称求得点D坐标即可;(2)由特殊角的三角函数值得出∠DAP=60°,则点Q一直在直线AD上运动,分别探讨当点P在线段AO 上;点Q在AD的延长线上,点P在线段OB上以及点Q在AD的延长线上,点P在线段OB上时的重叠面积,利用三角形的面积计算公式求得答案即可;(3)由于OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形,分两种情况探讨:当△AMO以∠AMO为直角的直角三角形时;当△AMO以∠OAM为直角的直角三角形时;得出答案即可.解答:解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•sin60°=t,∴S=×t×t=t2.②当2<t≤3时,如图:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.③当3<t≤4时,如图:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t﹣3)2,∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=t2+4t﹣.综上所述,S与t之间的函数关系式为S=.(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图:∵以M、O、A为顶点的三角形与△OAC相似,∴=,或=,∵OA=3,∴AM=或AM=3,∵AM⊥OA,且点M在第二象限,∴点M的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).点评:此题考查二次函数的综合运用,图形的运动,待定系数法求函数解析式,特殊角的三角函数,三角形的面积,分类讨论是解决问题的关键.。
2015-2016学年辽宁省铁岭市铁岭县九年级(上)期末数学试卷与答案
A.点 P 在⊙O 内 B.点 P 在⊙O 上
5. (3 分)抛物线 y=2(x﹣1)2﹣3 的顶点坐标是( A. (﹣1,﹣3) B. (1,﹣3) C. (1,3)
6. (3 分)如图,⊙O 是△ABC 的外接圆,∠BOC=110°,则∠A 的度数为(
A.110°
B.60°
C.55°
D.50°
7. (3 分)如图,一座石拱桥是圆弧形,其跨度(AB 长)为 24 米,半径为 13 米,则拱高(CD 长)为( )
Байду номын сангаас
第 3 页(共 26 页)
21. (12 分)李老师对全班同学最喜欢的球类项目(A:足球,B:篮球;C:排 球;D:羽毛球;E:乒乓球)进行问卷调查,学生只选择最喜欢的一类球, 制成了两幅不完整的统计图. (1)将两个统计图补充完整(不要求写出计算过程) ; (2)若该校共有学生 3500 名,请估计有多少人最喜欢足球? (3)该班班委 5 人中,1 人选篮球,3 人选足球,1 人选排球,李老师要从这 5 人中任选 2 人了解他们对学校开展体育活动的看法,请你用列表法或画树状 图的方法,求选出的 2 人恰好 1 人选篮球,1 人选足球的概率.
二、填空题(共 8 小题,每小题 3 分,满分 24 分) 11. (3 分) 已知点 P (3, a) 关于坐标原点的对称点为 Q (﹣3, ﹣2) , 则 a= .
12 . ( 3 分)若方程 2x2 ﹣ 3x ﹣ m=0 两个不相等的实数根,则 m 的取值范围 是 .
13. (3 分)已知二次函数 y=(x﹣1)2+5,若 y 随 x 的增大而减小,此时自变量
第 4 页(共 26 页)
24. (12 分)九年级某数学兴趣小组通过市场调查,得到某种运动服每月的销量 与售价的相关信息如表: 售价(元/ 件) 月销量 (件) 200 180 160 140 … 100 110 120 130 …
2015年中考数学试题及答案(解析版)
中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。
)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省铁岭市2015年中考数学试卷一.选择题(每小题3分,共30分,每小题四个选项只有一个是符合题意的)1..3的相反数是()A.﹣3 B.3C.﹣D.2..下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3..如图,由两个相同的小正方体和一个圆锥组成的几何体,其左视图是()A.B.C.D.4..下列各式运算正确的是()A.a3+a2=2a5B.a3﹣a2=a C.(a3)2=a5D.a6÷a3=a35..不等式组的解集在数轴上表示正确的是()A.B.C.D.6..2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:比赛日期2012﹣8﹣4 2013﹣5﹣21 2014﹣9﹣282015﹣5﹣202015﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒) 10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为()A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.08秒D.10.08秒,10.06秒7..如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.E F=AB C.S△ABD=S△ACD D.AD平分∠BAC8..一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为()A.B.C.D.9..某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 ‘10..一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D. 4个二.填空题(每小题3分,共24分)11..据《2014年国民经济和社会发展统计公报》显示,2014年我国教育科技和文化体育事业发展较快,其中全年普通高中招生7966000人,将7966000用科学记数法表示为.12..在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为.13..在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.14..如图,AB∥CD,AC⊥BC,∠ABC=35°,则∠1的度数为.15..已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是.16..如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.17..如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.18..如图,将一条长度为1的线段三等分,然后取走其中的一份,称为第一次操作;再将余下的每一条线段三等分,然后取走其中一份,称为第二次操作;…如此重复操作,当第n次操作结束时,被取走的所有线段长度之和为.三.解答题19.先化简÷(a﹣2+),然后从﹣2,﹣1,1,2四个数中选择一个合适的数作为a的值代入求值.20.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.21.某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:(1)求本次被调查的人数;(2)将上面的两幅统计图补充完整;(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO并延长至E,使得OE=OB,连接AE.(1)求证:AE是⊙O的切线;(2)若BD=AD=4,求阴影部分的面积.23.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)24.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:…25 60 75 90 …蔬菜的批发量(千克)所付的金额(元)…125 300 …(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?25.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.26.(14分)(2015•铁岭)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B (1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.2015年辽宁省铁岭市中考数学试卷一.选择题1.A.2.C.3.. D.4.. D.5.. B.6.C.7.C.8.. B.9.. A.10.B.二.填空题11.7.966×106.12..(1,1).13..3个.14..15.a≤1.16.54°.17..2.18..1﹣.三.解答题19.原式=,当a=2时,原式==3.20.解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,周长为:4×=25,21.(1)本次被调查的人数=24÷12%=200(人);(2)喜欢足球项目的人数=200﹣24﹣46﹣60﹣30=40(人),(3)4000×30%=1200,22.求阴影部分的面积.8﹣.23条幅的长度是71米.24.(1)根据题意,填写如表:…25 60 75 90 …蔬菜的批发量(千克)所付的金额(元)…125 300300 360…(2该一次函数解析式为:y=﹣30x+240;(3当x=6时,当日可获得利润最大,最大利润为120元.25.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.(3)分两种情况分别讨论即可求得.解答:(1)证明:如图1,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∴∠DAE=∠CAE+∠DAC=90°,∵∠BAC=∠BAD+∠DAC=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABC=45°.∴∠BCE=∠ACB+∠ACE=90°,∴BD⊥CE;(2)2AD2=BD2+CD2,理由:如图2,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.与(1)同理可证CE=BD,CE⊥BD,∵∠EAD=90°AE=AD,∴ED=AD,在RT△ECD中,ED2=CE2+CD2,∴2AD2=BD2+CD2.(3)如图3,①当D在BC边上时,将线段AD1绕点A顺时针方向旋转90°得到线段AE,连接BE,与(1)同理可证△ABE≌△ACD1,∴BE=CD1,BE⊥BC,∵BD=CD,∴BD1=BE,∴tan∠BD1E==,∴∠BD1E=30°,∵∠EAD1=EBD1=90°,∴四边形A、D1、B、E四点共圆,∴∠EAB=∠BD1E=30°,∴∠BAD1=90°﹣30°=60°;②将线段AD绕点A逆时针方向旋转90°得到线段AF,连接CF.同理可证:∠CFD2=30°,∵∠FAD2=FCD2=90°,∴四边形A、F、D2、C四点共圆,∴∠CAD2=∠CFD2=30°,∴∠BAD2=90°+30°=120°,综上,∠BAD的度数为60°或120°.点评:本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,勾股定理的应用,四点共圆的判定,圆周角定理等,通过旋转得出全等三角形是本题的关键.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.考点:二次函数综合题.分析:(1)直接代入求得函数解析式即可,由点D与C对称求得点D坐标即可;(2)由特殊角的三角函数值得出∠DAP=60°,则点Q一直在直线AD上运动,分别探讨当点P在线段AO 上;点Q在AD的延长线上,点P在线段OB上以及点Q在AD的延长线上,点P在线段OB上时的重叠面积,利用三角形的面积计算公式求得答案即可;(3)由于OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形,分两种情况探讨:当△AMO以∠AMO为直角的直角三角形时;当△AMO以∠OAM为直角的直角三角形时;得出答案即可.解答:解:(1)∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,∴,解得,∴抛物线解析式为y=﹣x2﹣x+;则D点坐标为(﹣2,).(2)∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,∴∠DAP=60°,又∵△APQ为等边三角形,∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:AP=AD==2.①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.AP=t,∵∠QAP=60°,∴点Q的纵坐标为t•sin60°=t,∴S=×t×t=t2.②当2<t≤3时,如图:此时点Q在AD的延长线上,点P在OA上,设QP与DC交于点H,∵DC∥AP,∴∠QDH=∠QAP=∠QHD=∠QPA=60°,∴△QDH是等边三角形,∴S=S△QAP﹣S△QDH,∵QA=t,∴S△QAP=t2.∵QD=t﹣2,∴S△QDH=(t﹣2)2,∴S=t2﹣(t﹣2)2=t﹣.③当3<t≤4时,如图:此时点Q在AD的延长线上,点P在线段OB上,设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,∵OP=t﹣3,∠FPO=60°,∴OF=OP•tan60°=(t﹣3),∴S△FOP=×(t﹣3)(t﹣3)=(t﹣3)2,∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.∴S=t﹣﹣(t﹣3)2=t2+4t﹣.综上所述,S与t之间的函数关系式为S=.(3)∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.①当△AMO以∠AMO为直角的直角三角形时;如图:过点M2作AO的垂线,垂足为N,∵∠M2AO=30°,AO=3,∴M2O=,又∵∠OM2N=M2AO=30°,∴ON=OM2=,M2N=ON=,∴M2的坐标为(﹣,).同理可得M1的坐标为(﹣,).②当△AMO以∠OAM为直角的直角三角形时;如图:∵以M、O、A为顶点的三角形与△OAC相似,∴=,或=,∵OA=3,∴AM=或AM=3,∵AM⊥OA,且点M在第二象限,∴点M的坐标为(﹣3,)或(﹣3,3).综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).点评:此题考查二次函数的综合运用,图形的运动,待定系数法求函数解析式,特殊角的三角函数,三角形的面积,分类讨论是解决问题的关键.。