高考数学总复习 4.3 三角函数的图象与性质课件 文 新人教A版
高中数学第五章三角函数5.4三角函数的图象与性质5.4.3正切函数的性质与图象课件新人教A版必修第一
1.运用正切函数单调性比较大小的方法 (1)运用函数的周期性或诱导公式将角化到同一单调区间内. (2)运用单调性比较大小关系. 2.求函数 y=Atan(ωx+φ)(A,ω,φ 都是常数)的单调区间的方法 (1)若 ω>0,由于 y=tan x 在每一个单调区间上都是单调递增,故可 用“整体代换”的思想,令 kπ-π2<ωx+φ<kπ+π2,k∈Z,解得 x 的范围 即可.
3.下列关于函数 y=tan-2x+π3说法正确的是 A.在区间-π3,1π2上单调递增 B.最小正周期是 π C.图象关于点152π,0成中心对称 D.图象关于直线 x=-1π2成轴对称
()
【答案】C 【解析】由-π2+kπ<-2x+π3<π2+kπ,k∈Z,得-1π2-k2π<x<51π2-k2π, 分别令 k=1,k=0,得函数在-172π,-1π2,-1π2,51π2上单调递增,A 错误;函数的最小正周期为 T=|-π2|=π2,B 错误;令-2x+π3=π2+π2·k, 得 x=-1π2-4kπ,令 k=-2,得 x=152π,C 正确;正切函数的图象不是轴 对称图形,D 错误.
由图象可知,函数 y=|tan x|是偶函数; 函数 y=|tan x|的周期 T=π;函数 y=|tan x|的单调递增区间为 kπ,kπ+π2(k∈Z),单调递减区间为kπ-π2,kπ(k∈Z).
1.作出函数y=|f(x)|的图象一般利用图象变换方法,具体步骤是: (1)保留函数y=f(x)图象在x轴上方的部分; (2)将函数y=f(x)图象在x轴下方的部分沿x轴向上翻折. 2.若函数为周期函数,可先研究其一个周期上的图象,再利用周 期性,延拓到定义域上即可.
2.(题型 3)函数 y=3tanωx+π6的最小正周期是π2,则 ω=(
【金版教程】届高考数学总复习 第3章 第3讲 三角函数的图象与性质课件 理 新人教A版
求形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间,基
本思路是把ωx+φ看作一个整体,由-
π 2
+2kπ≤ωx+φ≤
π 2
+
2kπ(k∈Z)求得函数的增区间,由
π 2
+2kπ≤ωx+φ≤
3π 2
+2kπ(k
∈Z)求得函数的减区间.若在y=Asin(ωx+φ)中,ω<0,则应
先利用诱导公式将解析式转化,使x的系数变为正数,再进行
(1)y=cos(x+π3)(x∈[0,π])的值域________. (2)y=tan(4π-x)的单调递减区间__________.
1.f(x+T)=f(x) 最小 最小正周期
想一想:提示:f[(x+2)+2]=-f(x+2)=f(x),即f(x+4)
=f(x),所以f(x)是周期为4的函数.
____
________
________
____
y=tanx
无最值
____ ________ 无对称轴
____
判断以下命题的正误. ①y=sinx在第一象限是增函数.( ) ②y=cosx在[0,π]上是减函数.( ) ③y=tanx在定义域上为增函数.( ) ④y=|sinx|的周期为2π.( ) ⑤y=ksinx+1,x∈R则y的最大值为k+1.( )
Z)
π+2kπ(k∈Z)
奇
偶
奇
(kπ,0),k∈Z
(kπ+
π 2
,
0),k∈Z
(
kπ 2
,0),k∈Z
x=kπ+
π 2
,k∈Z
x=kπ,k∈Z
2π 2π π
判一判:①× ②√ ③× ④× ⑤×
高考数学必修4总复习《三角函数:三角函数的图像与性质》
∴y=sin2x+52π为偶函数.
答案:B
4. (教材改编题)函数 f(x)=tanx+π4的单调递增区间为(
)
A. kπ-2π,kπ+π2(k∈Z)
B. (kπ,(k+1)π)(k∈Z)
C. kπ-34π,kπ+4π(k∈Z)
D. kπ-π4,kπ+34π(k∈Z)
(2)求满足 f(x)=0 的 x 的取值;
(3)求函数 f(x)的单调递减区间.
解 (1) 2sin2x-3π>0⇒
sin2x-π3>0⇒2kπ<2x-π3<2kπ+π,
k
∈
Z
⇒
kπ
+
π 6
<x<kπ
+
2 3
π
,
k
∈
Z.
故
函
数
的
定
义
域
为
kπ+π6,kπ+23π,k∈Z.
(2)∵f(x)=0,∴sin 2x-3π =
第五节 三角函数的图像与性质
1. 理解正弦函数、余弦函数、正切函数的图像和性质,会用 “五点法”画正弦函数、余弦函数的简图. 2. 了解周期函数与最小正周期的意义.
1. 周期函数
(1)周期函数的定义
对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值
时,都有 f(x+T)=f(x,) 那么函数f(x)就叫做周期函数. 非零常数T 叫做这个函数
2 2
⇒2x-
π 3
=2kπ+
π 4
或2kπ+
3 4
π,k∈Z⇒x=kπ+
7 24
π或x=kπ+
13 24
π,k∈Z,故x的取值是
x|x=kπ+274π或x=kπ+1234π,k∈Z. (3)令2kπ+π2≤2x-π3<2kπ+π,k∈Z⇒2kπ+56π≤2x<2kπ+43π,
2024届高考二轮复习数学课件(新高考新教材):三角函数的图象与性质
f(π-x)=sin(π-x)+cos(π-x)sin(π-x)=sin x-cos xsin x≠f(x),因此 f(x)的图象关于直
∴f
4π
3
13π
+
6
=f
π
3
π
2- 6
.
=0,f
7π
-4
=f
π
4
4
13π π
T=3 × 12 - 3
π
=2,∴φ=- +2kπ,k∈Z.
6
=1.
=π, 故 ω=2.
由(f(x)-1)(f(x)-0)>0,得 f(x)<0 或 f(x)>1.
结合题中图象可知,满足 f(x)>1 的 x 离 y 轴最近的正数取值区间为
A.-4
B.4
1
C.3
)
1
D.
3
答案 C
解析 ∵cos
则 tan
π
-
4
π
+
2
=
=2cos(π-α),∴-sin α=-2cos α,即 tan α=2,
1-tan 1
=- .
1+tan 3
规律方法点的坐标与三角函数值的关系
根据三角函数的定义,可以由给定角的终边上一点的坐标,求出该角的各个
三角函数值;反之,当给定
y=sin(ωx-φ).
3.三角函数的周期性
2π
(1)f(x)=Asin(ωx+φ)和 f(x)=Acos(ωx+φ)(Aω≠0)的最小正周期为||.
2020版高考数学复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式课件理新人教A版
2 2 2 2
sin(α+φ)其中tan
b φ=a
· cos(α-φ)其中tan
a φ=b.
[微点提醒] 1.tan α±tan β=tan(α±β)(1∓tan αtan β).
2.二倍角的正弦、余弦、正切公式
2sin αcos α sin 2α=_____________. 1-2sin2α cos2α-sin2α =_____________ 2cos2α-1 =_____________. cos 2α=_____________
2tan α 2 1 - tan α tan 2α=________________ .
多维探究
cos 10° - 3cos(-100° ) 【例 2-1】 (1)计算: =________. 1-sin 10°
解析
cos 10° - 3cos(-100° ) cos 10° + 3cos 80° cos 10° + 3sin 10° = = = 2· sin 40° 1-sin 10° 1-cos 80°
1 A. 2 3 B. 2 1 C.- 2 3 D.- 2
)
解析 由三角函数定义,sin α=cos 47°,cos α=sin 47°, 则sin(α-13°)=sin αcos 13°-cos αsin 13°
=cos 47°cos 13°-sin 47°sin 13° 1 =cos(47° +13° )=cos 60° = . 2 答案 A
解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α.
高中数学 第一章 三角函数 1.4.3 正切函数的性质与图象讲义3 新人教A版必修4
知识点2 正切函数的图象 观察图形,回答下列问题:
问题1:画正切曲线的关键点和关键线分别是什么? 问题2:正切曲线是轴对称图形吗?是中心对称图形吗?
【总结提升】
1.正切函数图象的两种作法
(1)几何法:利用单位圆中的正切线作图,该方法较为精确,但画图时
较烦琐. (2)三点两线法:“三点”是指(-
lo g 1 x lo g 1 4,
2
2
tanx 1,
所以0<x< 或3 ≤x≤4.
所以所求定2 义域4 为(0, )∪[ 3, 4].
2
4
2在【.解[(变析0,换】π条由]件ta上、n的改x≠图变0象问,.法x∈),[将0本,题π]函,数解改得为x“≠0y , st且ainnxxx≠”试且 画x≠出π此. 函数
4
2
,xk∈kZ,
28
所以所求直线方程为x= k , k∈Z.
28
2.(变换条件)将本例函数改为“ y
么?
t a n x 1,
tan tan (x
x 1
”,其定义域又是什
)
6
【解析】根据题意,得
ta
n
(
x
) 6
0,
4
解得 x
2
(3)解形如tan x>a的不等式的步骤
【变式训练】函数 y 2log1x tanx 的定义域是______.
2
【解析】x应满足 2 lo g 1 x 0,
2
ta n x 0,
所以 0kxx4, k所2(以k0Z<), x<
2025版高考数学一轮总复习第4章三角函数解三角形第4讲三角函数的图象与性质课件
(2)y=3tanπ6-4x=-3tan4x-π6, 由 kπ-π2<4x-π6<kπ+π2, 解得 4kπ-43π<x<4kπ+83π(k∈Z). ∴函数的单调递减区间为 4kπ-34π,4kπ+83π(k∈Z).无增区间.
(3)画图知单调递减区间为kπ-π4,kπ+π4(k∈Z).
2.(2023·洛阳模拟)若 f(x)=2sin ωx(ω>0)在区间-π2,23π上是增函数, 则 ω 的取值范围是_____0_,__34_ ___.
[解析] 依题意可知 f(x)=cos2 x-sin2x=cos 2x,对于 A 选项,因为 x ∈-π2,-6π,所以 2x∈-π,-π3,函数 f(x)=cos 2x 在-π2,-6π上单 调递增,所以 A 选项不正确;对于 B 选项,因为 x∈-π4,1π2,所以 2x∈ -π2,π6,函数 f(x)=cos 2x 在-π4,1π2上不单调,所以 B 选项不正确;对于 C 选项,因为 x∈0,π3,所以 2x∈0,23π,函数 f(x)=cos 2x 在0,π3上单 调递减,所以 C 选项正确;对于 D 选项,因为 x∈π4,71π2,所以 2x∈π2,76π, 函数 f(x)=cos 2x 在π4,71π2上不单调,所以 D 选项不正确,故选 C.
y=tan x ___R___
单调性
在____-__π2_+__2_k_π_,__2π_+__2_k_π_ _, 在_[_(_2_k-__1_)_π_,__2_k_π_]_,
k∈Z 上递增;
k∈Z 上递增;
在____π2_+__2_k_π_,__32_π_+__2_k_π_ __,
在_[_2_k_π_,__(2_k_+__1_)_π_]_, k∈Z 上递减
新教材高中数学第五章三角函数4.3正切函数的性质与图象课件新人教A版必修第一册
,2kπ+
2
(k∈Z),
1 π
所以函数 y=tan
-2x+
4
的单调递减区间
π
3π
是2kπ-
2
,2kπ+
2
(k∈Z).
函数y=tan
的单调递减区间
是__4_k_π__-__4_π 3__,__4_k_π__+__8_3π____(k_∈__Z_)______.
【解析】 y=tan π6 -x4 =-tan x4-π6 .
第五章 三角函数
5.4 三角函数的图象与性质 5.4.3 正切函数的性质与图象
[课程目标] 1.了解正切函数图象的画法,理解并掌握正切函数的 性质;
2.能利用正切函数的图象和性质解决有关问题.
知识点 正切函数y=tan x的性质与图象
R 奇函数
[研读]正切函数无单调递减区间,在每一个单调区间内都 是单调递增的,并且每个单调区间均为开区间,不能写成闭区 间.
的值域是( B )
π
π
【解析】 因为- 4 <x< 4 且 x≠0,
所以-1<tan x<1 且 tan x≠0,
所以ta1n x ∈(-∞,-1)∪(1,+∞),故选 B.
(2)求下列函数的定义域.
①y=1+t1an x ;②y=lg ( 3 -tan x).
1+tan x≠0,
1 解:①要使函数 y=1+tan
【思辨】判断正误(请在括号中打“√”或“×”). (1)正切函数的定义域和值域都是R.( × ) (2)正切函数在整个定义域上是增函数.( × ) (3)正切函数在定义域内无最大值和最小值.( √ ) (4)正切函数的图象既是轴对称图形,也是中心对称图形.
(×)
高考数学一轮复习 第4章第3节 三角函数的图象与性质课件 文 新课标版
=sin 2x+ 3cos 2x=2sin2x+3π,所以 T=π.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
解:(1)因为 y=2sin23x+1, 所以周期 T=22π=3π,
3 即 y=2sin23x+1的周期为 3π. (2)因为 y=|cos x|
=c-oscoxs,x,x∈x∈2kπ2-kππ+2,π22,kπ2+kπ2+π3k2π∈Zk∈;Z,
• 所以作出y=|cos x|的图象如图,
• 从图中可以看出y=|cos x|的周期为π.
k∈Z.
所以 2kπ≤x<2kπ+2π(k∈Z). 所以函数 y= cos x+ tan x的定义域是
x2kπ≤x<2kπ+π2,
k∈Z.
2sin x-1>0, (2)由函数式有意义得-tan x-1≥0,
cos2x+π8≠0,
sin
x>12,
所以tan x≤-1,
2x+π8≠kπ+2π,k∈Z,
解得ab==1122-36-32,3.
②当 a<0 时,fxmax=2a×- 23+b=1, fxmin=2a×1+b=-5,
人教版高中总复习一轮数学精品课件 第4章 三角函数与解三角形 4.3 三角函数的图象与性质
f(x)=√3sin ωx+cos
由函数 y=f(x)的图象与直线 y=2 的相邻两个交点的距离为 π,
知函数 y=f(x)的最小正周期 T=π,
又
令
得
2π
ω>0,所以 T= =π,解得 ω=2,即 f(x)=2sin
π
π
π
2kπ- ≤2x+ ≤2kπ+ (k∈Z),
2
6
2
π
π
kπ-3 ≤x≤kπ+6(k∈Z).
(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
【知识巩固】
1.下列说法正确的画“√”,错误的画“×”.
(1)y=cos x是减函数.( × )
(2)若y=ksin x+1(k∈R),则y的最大值是k+1.( × )
(3)若非零实数T是函数f(x)的周期,则kT(k是非零整数)也是函数f(x)的周
3 7
的取值范围是 [2 , 4]
.
函数 y=cos x 的单调递增区间为[-π+2kπ,2kπ](k∈Z),
π π
+
≥
-π
+
2π,
5
1
2
4
则
(k∈Z),解得 4k-2 ≤ ≤2k-4(k∈Z),
π
π + ≤ 2π
又由
所以
4
5
1
4k-2-(2k-4)≤0(k∈Z),且
3 7
ω∈[2 , 4].
③当A>0(A<0)时,所列不等式的方向与y=sin x,y=cos x的单调区间对应的
不等式方向相同(反).
π
(2)对于函数 y=Atan(ωx+φ)(A,ω,φ 为常数),其周期 T=||,利用
§4.3 三角函数的图象与性质
于点( x0 ,0) 中心对称.
( ) 设 f( x) =
4cos
ωx-
π 6
sin ωx - cos ( 2ωx + π) , 其 中 ω
>0.
(1)求函数 y = f(x)的值域;
[ ] (2)若 f(x)在区间
- 32π,
π 2
上为增函数,求 ω 的最大值.
( ) 解析 (1)f(x)= 4
.
(2) (2019 成都七中 1 月月考,14) 如图为一弹簧振子作简 谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则 这个振子振动的一个函数解析式是 .
解析
( 1) 由
T 4
=
11 12
π-
2 3
π=
π 4
,得
T
=
π,
∵
T=
2π ,∴
ω
ω = 2,∴
f( x) =
对称性
对称轴:x = kπ+
π 2
( k∈Z) ;
对称中心:( kπ,0) ( k∈Z)
周期
2π
单调性
单调增区间:
[ ] 2kπ-
π 2
,2kπ+
π 2
( k∈Z) ;
单调减区间:
[ ] 2kπ+
π 2
,2kπ+
3π 2
( k∈Z)
奇偶性
奇函数
[ -1,1]
对称轴:x = kπ( k∈Z) ;
( ) 对称中心:
换,设
z
=
ωx+φ,由
z
取
0,
π 2
3π ,π, ,2π
2
来求出相
应的
x,通过列
表、计算得出五点坐标,描点连线后得出图象.
新教材人教A版5.4三角函数的图像和性质课件(18张)
y
余弦函数的图象 叫做余弦曲线
正弦函数的图象 叫做正弦曲线
如何作出三角函数的图象
(3)如何利用周期性得到y=sinx,x∈R的图象
-
-
-
1
-1
正弦函数的图象 叫做正弦曲线
三角函数的图象
三角函数
正弦函数
余弦函数
图象
定义域
值域
R
R
[-1,1]
[-1,1]
五点作图法
【回顾】 作出y=sinx,x∈[0,2π]的图象
12等分x轴上区间[0,2π] 在x轴负半轴上取一点O1,以此为圆心作半径为1的圆 12等分圆周角,作出各角的正弦线 把角x的正弦线向右平移,使它的起点与x轴上表示数x的点重合 用光滑的曲线把这些平移后的正弦线的终点连结起来
-
-
-1
1
-
-
-1
-
-
如何作出三角函数的图象
(4)如何利用正弦曲线得到y=cosx,x∈R的图象
x
0
π
2π
y
0
0
0
1
-1
列表
描点连线
如何作出三角函数的图象
(1)列表描点法
用Excel软件绘制y=sinx,x∈[0,2π]的图象
如何作出三角函数的图象
(2)三角函数线法——几何法
O
P
M
y
.
x
如何作出三角函数的图象
(2)三角函数线法——几何法
问题2 如何借助前面的几何法作出 y=sinx,x∈[0,2π]的图象?
【方法总结】 在精确度要求不高时,先作出函数y=sinx和y=cosx的五个关键点,再用光滑的曲线将它们顺次连结起来,就得到函数的简图。这种作图法叫做“五点(画图)法”。
高中数学 三角函数正切函数的性质与图象讲义 新人教A版必修一第一册
5.4.3 正切函数的性质与图象知识点 函数y =tan x 的图象与性质 解析式y =tan x图象定义域 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z值域 R 周期 π 奇偶性 奇函数单调性在开区间⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z 上都是增函数状元随笔 如何作正切函数的图象 (1)几何法就是利用单位圆中的正切线来做出正切函数的图象,该方法作图较为精确,但画图时较烦琐.(2)“三点两线”法 “三点”是指⎝ ⎛⎭⎪⎫-π4,-1,(0,0),⎝ ⎛⎭⎪⎫π4,1;“两线”是指x =-π2和x =π2. 在“三点”确定的情况下,类似于“五点法”作图,可大致画出正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的简图,然后向右、向左扩展即可得到正切曲线. [教材解难]1.教材P 209思考有了前面的知识准备,我们可以换个角度,即从正切函数的定义出发研究它的性质,再利用性质研究正切函数的图象.2.教材P 210思考可以先考察函数y =tan x ,x ∈⎣⎢⎡⎭⎪⎫0,π2的图象与性质,然后再根据奇偶性、周期性进行拓展.[基础自测]1.下列说法正确的是( ) A .y =tan x 是增函数B .y =tan x 在第一象限是增函数C .y =tan x 在某一区间上是减函数D .y =tan x 在区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上是增函数 解析:由正切函数的图象可知D 正确. 答案:D2.函数y =tan ⎝⎛⎭⎪⎫x +π4的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π4 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π-π4,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈Z解析:由x +π4≠k π+π2,k ∈Z ,得x ≠k π+π4,k ∈Z .答案:D3.已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3,则函数f (x )的最小正周期为( )A.π4 B.π2C .π D.2π解析:解法一 函数y =tan(ωx +φ)的周期T =π|ω|,可得T =π|2|=π2.解法二 由诱导公式可得tan ⎝ ⎛⎭⎪⎫2x +π3=tan ⎝ ⎛⎭⎪⎫2x +π3+π=tan ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2+π3, 所以f ⎝ ⎛⎭⎪⎫x +π2=f (x ),所以周期为T =π2.答案:B4.比较大小:tan 135°________tan 138°.(填“>”或“<”)解析:因为90°<135°<138°<270°,又函数y =tan x 在区间(90°,270°)上是增函数,所以tan 135°<tan 138°.答案:<题型一 求函数的定义域 例1 求下列函数的定义域: (1)y =11+tan x;(2)y =lg(3-tan x ). 【解析】 (1)要使函数y =11+tan x有意义,需使⎩⎪⎨⎪⎧1+tan x ≠0,x ≠k π+π2(k ∈Z ),所以函数的定义域为 {xx ∈R 且x ≠k π-π4,x ≠k π+π2,k ∈Z }.(2)要使y =lg(3-tan x )有意义,需使⎩⎪⎨⎪⎧3-tan x >0x ≠k π+π2(k ∈Z ),所以函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π-π2<x <k π+π3,k ∈Z. 求函数的定义域注意函数中分母不等于0,真数大于0,正切函数中的x≠k π+π2 k∈Z等问题.方法归纳求正切函数定义域的方法求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义即x ≠π2+k π,k ∈Z .而对于构建的三角不等式,常利用三角函数的图象求解.跟踪训练1 (1)函数y =1tan x的定义域为( ) A.{x |x ≠0}B .{x |x ≠k π,k ∈Z }C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2,k ∈Z(2)求函数y =tan x +1+lg(1-tan x )的定义域. 解析:(1)函数y =1tan x 有意义时,需使⎩⎪⎨⎪⎧tan x ≠0x ≠k π+π2(k ∈Z ),所以函数的定义域为{x {x ≠k π+π2,且x ≠k π,k ∈Z}={x {x ≠k π2,k ∈Z }.(2)由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.在⎝⎛⎭⎪⎫-π2,π2内,满足上述不等式的x 的取值范围是-π4,π4. 又y =tan x 的周期为π,所以所求函数的定义域是⎣⎢⎡⎭⎪⎫k π-π4,k π+π4(k ∈Z ).答案:(1)D (2)见解析 (1)分母不等于0(2)偶次根式被开方数大于等于0 (3)真数大于0(4)正切函数x≠k π+π2,k∈Z题型二 正切函数的单调性及其应用 例2 求函数y =tan ⎝ ⎛⎭⎪⎫-3x +π4的单调区间. 【解析】 y =tan ⎝ ⎛⎭⎪⎫-3x +π4=-tan ⎝⎛⎭⎪⎫3x -π4. 由-π2+k π<3x -π4<π2+k π(k ∈Z ),得-π12+k π3<x <π4+k π3(k ∈Z ).所以函数y =tan ⎝ ⎛⎭⎪⎫-3x +π4的单调递减区间为(-π12+k π3,π4+k π3)(k ∈Z ).状元随笔 先利用诱导公式将函数转化为y =-tan ⎝ ⎛⎭⎪⎫3x -π4,再由-π2+k π<3x -π4<π2+k π(k∈Z)解出x 即可.方法归纳(1)运用正切函数单调性比较大小的方法①运用函数的周期性或诱导公式将角化到同一单调区间内. ②运用单调性比较大小关系.(2)求函数y =A tan(ωx +φ)(A ,ω,φ都是常数)的单调区间的方法①若ω>0,由于y =tan x 在每一个单调区间上都是增函数,故可用“整体代换”的思想,令k π-π2<ωx +φ<k π+π2,k ∈Z ,解得x 的范围即可.②若ω<0,可利用诱导公式先把y =A tan(ωx +φ)转化为y =A tan[-(-ωx -φ)]=-A tan(-ωx -φ),即把x 的系数化为正值,再利用“整体代换”的思想,求得x 的范围即可.跟踪训练2 本例(2)函数变为y =tan ⎝ ⎛⎭⎪⎫-12x +π4,求该函数的单调区间.解析:y =tan ⎝ ⎛⎭⎪⎫-12x +π4=-tan ⎝ ⎛⎭⎪⎫12x -π4,由k π-π2<12x -π4<k π+π2,k ∈Z ,得2k π-π2<x <2k π+32π,k ∈Z ,所以函数y =tan ⎝ ⎛⎭⎪⎫-12x +π4的单调递减区间是(2k π-π2,2k π+32π),k ∈Z .题型三 正切函数图象与性质的综合应用[教材P 212例6] 例3 求函数y =tan ⎝⎛⎭⎪⎫π2x +π3的定义域、周期及单调区间. 【解析】 自变量x 的取值应满足 π2x +π3≠k π+π2,k ∈Z , 即x ≠2k +13,k ∈Z .所以,函数的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k +13,k ∈Z .设z =π2x +π3,又tan(z +π)=tan z ,所以tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2x +π3+π=tan ⎝ ⎛⎭⎪⎫π2x +π3,即tan ⎣⎢⎡⎦⎥⎤π2(x +2)+π3=tan ⎝ ⎛⎭⎪⎫π2x +π3.因为∀x ∈{x |x ≠2k +13,k ∈Z }都有tan ⎣⎢⎡⎦⎥⎤π2(x +2)+π3=tan ⎝ ⎛⎭⎪⎫π2x +π3, 所以,函数的周期为2.由-π2+k π<π2x +π3<π2+k π,k ∈Z 解得-53+2k <x <13+2k ,k ∈Z . 因此,函数在区间⎝ ⎛⎭⎪⎫-53+2k ,13+2k ,k ∈Z 上单调递增.利用正切函数的性质,通过代数变形可以得出相应的结论. 教材反思解答正切函数图象与性质问题应注意的两点(1)对称性:正切函数图象的对称中心是⎝⎛⎭⎪⎫k π2,0(k ∈Z ),不存在对称轴.(2)单调性:正切函数在每个⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z )区间内是单调递增的,但不能说其在定义域内是递增的.跟踪训练3 设函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π3.(1)求函数f (x )的定义域、最小正周期、单调区间及对称中心; (2)求不等式-1≤f (x )≤3的解集.解析:(1)由x 2-π3≠π2+k π(k ∈Z ).得x ≠5π3+2k π(k ∈Z ).所以f (x )的定义域是{xx ≠5π3+2k π,k ∈Z } 因为ω=12,所以最小正周期T =πω=π12=2π.由-π2+k π<x 2-π3<π2+k π(k ∈Z ),得-π3+2k π<x <5π3+2k π(k ∈Z ).所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-π3+2k π,5π3+2k π(k ∈Z ).由x 2-π3=k π2(k ∈Z ),得x =k π+23π(k ∈Z ),故函数f (x )的对称中心是⎝ ⎛⎭⎪⎫k π+23π,0,k ∈Z .(2)由-1≤tan ⎝ ⎛⎭⎪⎫x 2-π3≤3,得-π4+k π≤x 2-π3≤π3+k π(k ∈Z ),解得π6+2k π≤x ≤4π3+2k π(k ∈Z ).所以不等式-1≤f (x )≤3的解集是{xπ6+2k π≤x ≤4π3+2k π,k ∈Z }. 由此不等式确定函数的单调区间是关键一步,也是易误点. 由tan ⎝ ⎛⎭⎪⎫x 2-π3的范围确定x 2-π3的范围是本题的难点.思想方法 与三角函数相关的函数零点问题例 当x ∈⎝ ⎛⎭⎪⎫-32π,32π时,确定方程tan x -sin x =0的根的个数.【分析】 tan x -sin x =0的根即为tan x =sin x 的根,也就是y =tan x 与y =sinx 交点的横坐标,所以可根据图形进行分析.【解析】 在同一平面直角坐标系内画出y =tan x 与y =sin x 在⎝ ⎛⎭⎪⎫-3π2,3π2上的图象,如图,由图象可知它们有三个交点,∴方程有三个根.【点评】 数形结合思想,是高中数学的一类重要的数学思想方法,其核心是以形助数和以数析形.解决函数问题通常会用到数形结合的思想方法.课时作业 36一、选择题1.函数f (x )=tan ⎝ ⎛⎭⎪⎫-4x +π6的最小正周期为( ) A.π4 B.π2C .π D.2π解析:方法一 函数f (x )=tan(ωx +φ)的周期是T =π|ω|,直接利用公式,可得T =π|-4|=π4. 方法二由诱导公式可得tan ⎝ ⎛⎭⎪⎫-4x +π6=tan ⎝ ⎛⎭⎪⎫-4x +π6-π=tan ⎣⎢⎡⎦⎥⎤-4⎝⎛⎭⎪⎫x +π4+π6,所以f ⎝ ⎛⎭⎪⎫x +π4=f (x ),所以周期T =π4. 答案:A2.函数y =1tan x (-π4<x <π4)的值域是( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,1)D .(-1,+∞)解析:∵-π4<x <π4,∴-1<tan x <1,∴1tan x ∈(-∞,-1)∪(1,+∞),故选B.答案:B3.已知a =tan 2,b =tan 3,c =tan 5,不通过求值,判断下列大小关系正确的是( ) A .a >b >c B .a <b <c C .b >a >c D .b <a <c解析:tan 5=tan[π+(5-π)]=tan(5-π),由正切函数在⎝ ⎛⎭⎪⎫π2,π上为增函数且π>3>2>5-π>π2可得tan 3>tan 2>tan(5-π).答案:C4.函数y =3tan 2x 的对称中心为( ) A.⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π4,0(k ∈Z )C.⎝⎛⎭⎪⎫k π2+π4,0(k ∈Z ) D.()k π,0(k ∈Z )解析:令2x =k π2(k ∈Z ),得x =k π4(k ∈Z ),则函数y =3tan 2x 的对称中心为⎝⎛⎭⎪⎫k π4,0(k ∈Z ),故选B.答案:B 二、填空题 5.函数y =tan ⎝⎛⎭⎪⎫π4+6x 的定义域为________.解析:由π4+6x ≠k π+π2(k ∈Z ),得x ≠k π6+π24(k ∈Z ).答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π6+π24,k ∈Z6.函数y =3tan(π+x ),-π4<x ≤π6的值域为________.解析:函数y =3tan(π+x )=3tan x ,因为正切函数在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以-3<y ≤3,所以值域为(-3,3].答案:(-3,3]7.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期为________,图象的对称中心为________. 解析:最小正周期T =π2;由k π2=2x -π4(k ∈Z )得x =k π4+π8(k ∈Z ). ∴对称中心为⎝⎛⎭⎪⎫k π4+π8,0(k ∈Z ).答案:π2;⎝ ⎛⎭⎪⎫k π4+π8,0(k ∈Z ) 三、解答题8.求函数y =tan ⎝ ⎛⎭⎪⎫12x -π6的定义域、周期及单调区间.解析:由12x -π6≠π2+k π,k ∈Z ,得x ≠4π3+2k π,k ∈Z ,所以函数y =tan ⎝ ⎛⎭⎪⎫12x -π6的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠4π3+2k π,k ∈Z,T =π12=2π,所以函数y =tan ⎝ ⎛⎭⎪⎫12x -π6的周期为2π.由-π2+k π<12x -π6<π2+k π,k ∈Z ,得-2π3+2k π<x <4π3+2k π,k ∈Z ,所以函数y =tan ⎝ ⎛⎭⎪⎫12x -π6的单调递增区间为⎝ ⎛⎭⎪⎫-2π3+2k π,4π3+2k π(k ∈Z ).9.不通过求值,比较下列各组中两个三角函数值的大小: (1)tan 13π4与tan 17π5;(2)tan ⎝ ⎛⎭⎪⎫-13π4与tan ⎝⎛⎭⎪⎫-16π5.解析:(1)因为tan 13π4=tan π4,tan 17π5=tan 2π5,又0<π4<2π5<π2,y =tan x 在⎣⎢⎡⎭⎪⎫0,π2内单调递增,所以tan π4<tan 2π5,即tan 13π4<tan 17π5.(2)因为tan ⎝ ⎛⎭⎪⎫-13π4=-tan π4,tan ⎝ ⎛⎭⎪⎫-16π5=-tan π5,又0<π5<π4<π2,y =tan x 在⎣⎢⎡⎭⎪⎫0,π2内单调递增,所以tan π4>tan π5,所以-tan π4<-tan π5,即tan ⎝ ⎛⎭⎪⎫-13π4<tan ⎝ ⎛⎭⎪⎫-16π5.[尖子生题库]10.画出函数y =|tan x |的图象,并根据图象判断其单调区间和奇偶性. 解析:由函数y =|tan x |得y =⎩⎪⎨⎪⎧tan x ,k π≤x <k π+π2(k ∈Z )-tan x ,k π-π2<x <k π(k ∈Z ),根据正切函数图象的特点作出函数的图象,图象如图.11由图象可知,函数y =|tan x |是偶函数.函数y =|tan x |的单调增区间为⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,单调减区间为⎝ ⎛⎦⎥⎤-π2+k π,k π,k ∈Z .。
2022届高考数学统考一轮复习第四章三角函数的图象与性质学案文含解析新人教版
高考数学统考一轮复习:第三节三角函数的图象与性质【知识重温】一、必记2个知识点1.周期函数(1)周期函数的定义对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有①________________,那么函数f(x)就叫做周期函数.②________________叫做这个函数的周期.(2)最小正周期,如果在周期函数f(x)的所有周期中存在一个③________________,那么这个④________________就叫做f(x)的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易受基本函数影响,遗漏问题的多解,同时也可能忽视“k∈Z”这一条件.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)y =sin x 在第一、第四象限是增函数.( ) (2)余弦函数y =cos x 的对称轴是y 轴.( ) (3)正切函数y =tan x 在定义域内是增函数.( )(4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (5)y =sin|x |是偶函数.( )(6)若sin x >22,则x >π4.( )二、教材改编2.下列关于函数y =4sin x ,x ∈[0,2π]的单调性的叙述,正确的是( ) A .在[0,π]上单调递增,在[π,2π]上单调递减B .在[0,π2]上单调递增,在[3π2,2π]上单调递减C .在[0,π2]及[3π2,2π]上单调递增,在[π2,3π2]上单调递减D .在[π2,3π2]上单调递增,在[0,π2]及[3π2,2π]上单调递减3.函数y =-32cos(12x -π6)的最大值为________,此时x 的集合为________.三、易错易混4.关于三角函数的图象,有下列说法: ①y =sin|x |与y =sin x 的图象关于y 轴对称; ②y =cos(-x )与y =cos|x |的图象相同;③y =|sin x |与y =sin(-x )的图象关于x 轴对称; ④y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中正确的是________.(写出所有正确说法的序号)5.函数y =1+2sin(π6-x )的单调增区间是________.四、走进高考6.[2019·全国卷Ⅱ]下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos |x |D .f (x )=sin |x |考点一 三角函数的定义域[自主练透型]1.y =cos x -12的定义域为________.2.函数y =1tan x -1的定义域为________.3.函数y =lg(sin x )+ cos x -12的定义域为________.悟·技法求与三角函数有关的函数定义域的基本方法是“数形结合”,也就是在求这类函数定义域时,往往需要解有关的三角不等式,而解三角不等式的方法是:要么利用正、余弦曲线,正切曲线,要么利用单位圆等图形的直观形象来解决问题.考点二 三角函数的值域与最值[互动讲练型][例1] (1)[2019·全国卷Ⅰ]函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________. (2)函数y =sin x -cos x +sin x ·cos x ,x ∈[0,π]的值域为________. 悟·技法三角函数最值或值域的三种求法(1)直接法:利用sin x ,cos x 的值域.(2)化一法:化为y =A sin(ωx +φ)+k 的形式,确定ωx +φ的范围,根据正弦函数单调性写出函数的值域.(3)换元法:把sin x 或cos x 看作一个整体,转化为二次函数,求给定区间上的值域(最值)问题.[变式练]——(着眼于举一反三)1.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0C .-1D .-1- 32.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 考点三 三角函数的性质[互动讲练型] 考向一:三角函数的周期性[例2] 函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2 D .2π考向二:三角函数的对称性[例3] 已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( ) A .关于直线x =π4对称 B .关于直线x =π8对称C .关于点⎝⎛⎭⎫π4,0对称D .关于点⎝⎛⎭⎫π8,0对称 考向三:三角函数的单调性[例4] 已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. 悟·技法1.奇偶性与周期性的判断方法(1)奇偶性:由正、余弦函数的奇偶性可判断y =A sin ωx 和y =A cos ωx 分别为奇函数和偶函数.(2)周期性:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.2.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[变式练]——(着眼于举一反三)3.[2021·贵阳市监测考试]已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )4.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π5.若函数f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.第三节 三角函数的图象与性质【知识重温】①f (x +T )=f (x ) ②T ③最小正数 ④最小正数 ⑤{y |-1≤y ≤1} ⑥{y |-1≤y ≤1}⑦R ⑧⎣⎡⎦⎤-π2+2k π,π2+2k π ⑨⎣⎡⎦⎤π2+2k π,3π2+2k π ⑩[(2k -1)π,2k π] ⑪[2k π,(2k +1)π] ⑫⎝⎛⎭⎫-π2+k π,π2+k π ⑬π2+2k π ⑭-π2+2k π ⑮2k π ⑯π+2k π ⑰奇函数 ⑱偶函数 ⑲奇函数 ⑳(k π,0),k ∈Z ○21⎝⎛⎭⎫k π+π2,0,k ∈Z ○22⎝⎛⎭⎫k π2,0,k ∈Z ○23x =k π+π2,k ∈Z ○24x =k π,k ∈Z ○252π ○262π ○27π 【小题热身】1.答案:(1)× (2)× (3)× (4)× (5)√ (6)×2.解析:结合正弦函数y =sin x ,x ∈[0,2π]的图象可知C 正确. 答案:C3.解析:当cos(12x -π6)=-1,即12x -π6=π+2k π,k ∈Z ,即x =4k π+7π3,k ∈Z 时,函数y 有最大值32.答案:32 {x |x =4k π+7π3,k ∈Z }4.解析:对于②,y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同;对于④,y =cos(-x )=cos x ,故其图象关于y 轴对称;由图象(图略)可知①③均不正确.故正确的说法是②④.答案:②④5.解析:y =1+2sin(π6-x )=1-2sin(x -π6).令u =x -π6,根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,解π2+2k π≤x -π6≤3π2+2k π(k ∈Z ),得2π3+2k π≤x ≤5π3+2k π(k ∈Z ),故函数y =1+2sin(π6-x )的单调递增区间是[2π3+2k π,5π3+2k π](k ∈Z ).答案:[2π3+2k π,5π3+2k π](k ∈Z )6.解析:当x ∈(π4,π2)时,2x ∈(π2,π),由于f 1(x )=cos 2x 在x ∈(π4,π2)上单调递减,且cos2x <0,故f (x )=|cos 2x |在(π4,π2)上单调递增.f 1(x )=cos 2x 的周期为π,f (x )=|cos 2x |的周期为π2,故A 符合题意.而f (x )=|sin 2x |以π2为周期,在(π4,π2)上单调递减;f (x )=cos|x |=cos x 的周期为2π;f (x )=sin|x |不是周期函数,故选A.答案:A 课堂考点突破考点一1.解析:要使函数有意义,则cos x ≥12,由三角函数图象可得:-π3+2k π≤x ≤π3+2k π,k ∈Z .故函数y 的定义域为{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }.答案:{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }2.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z故函数的定义域为{x |x ≠π4+k π,且x ≠π2+k π,k ∈Z }.答案:{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }3.解析:要使函数有意义,则⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12, 解得⎩⎪⎨⎪⎧2k π<x <π+2k π,k ∈Z ,-π3+2k π≤x ≤π3+2k π,k ∈Z . 所以2k π<x ≤π3+2k π(k ∈Z ).所以函数的定义域为{x |2k π<x ≤2k π+π3,k ∈Z }.答案:{x |2k π<x ≤2k π+π3,k ∈Z }考点二例1 解析:(1)f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1, 令cos x =t ,则t ∈[-1,1]. f (t )=-2t 2-3t +1=-2⎝⎛⎭⎫t +342+178, 易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t 22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时y min =-1 ∴函数的值域为[-1,1]. 答案:(1)-4 (2)[-1,1] 变式练1.解析:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. 答案:A2.解析:由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π4上的最小值为-22. 答案:-22考点三例2 解析:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x=2sin ⎝⎛⎭⎫2x +π3, ∴T =2π2=π.故选B.答案:B例3 解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π4的最小正周期为π, ∴2πω=π,ω=2, ∴f (x )=sin ⎝⎛⎭⎫2x +π4.当x =π4时,2x +π4=3π4, ∴A 、C 两项错误;当x =π8时,2x +π4=π2,∴B 项正确,D 项错误. 答案:B例4 解析:由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z .又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4. 答案:⎣⎡⎦⎤0,π4 变式练3.解析:f (x )=cos 2x + 3 sin 2x =2sin(2x +π6),则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z ),故选A.答案:A4.解析:y =tan ⎝⎛⎭⎫2x -π3是非奇非偶函数,A 错误;y =tan ⎝⎛⎭⎫2x -π3在区间⎝⎛⎭⎫0,π3上单调递增,B 错误;由2x -π3=k π2得x =k π4+π6(k ∈Z ),得函数y =tan ⎝⎛⎭⎫2x -π3的对称中心为⎝⎛⎭⎫k π4+π6,0,k ∈Z ,故C 正确;函数y =tan ⎝⎛⎭⎫2x -π3的最小正周期为π2,D 错误. 答案:C5.解析:解法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.解法二 由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k=0时,ω=32.答案:32。
高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.3 正切函数的性质与图像习题课件 新人教A版必修4
(2)y=|tanx|=t-antxa,nx,x∈x[∈kπ(,kπkπ-+π2π,2 )kπ(]k(∈kZ∈)Z.).
可作出其图像(如图),由图像知函数 y=|tanx|的单调递减区 π
间 为 (k π - 2 , k π ](k∈Z) , 单 调 递 增 区 间 为 [k π , k π + π 2 )(k∈Z).
π 是[0,+∞);单调递增区间是[kπ,kπ+ 2 )(k∈Z);周期 T=
π.
课后巩固
1.函数
y=ta1nx(-π4
π <x< 4
)的值域是(
)
A.[-1,1]
B.(-∞,-1)∪(1,+∞)
C.(-∞,1]
D.[-1,+∞)
答案 B
2.函数 y=tanx+sinx-|tanx-sinx|在区间(π2 ,3π2 )内的图 像大致是( )
π
⇒kπ-
x≠kπ+ 2 (k∈Z)
2
<x<kπ+
3
,
π
π
∴定义域为(kπ- 2 ,kπ+ 3 )(k∈Z),值域为 R.
题型二 正切函数的奇偶性 例 2 判断下列函数的奇偶性: (1)y=tanx(-π4 ≤x<π4 ); (2)y=xtan2x+x4; (3)y=sinx+tanx.
【思路分析】 先分别求出各个函数的定义域,看是否关于原点
思考题 4 作出函数 y=tanx+|tanx|的图像,并求其定义 域、值域、单调区间及最小正周期.
【解析】 y=tanx+|tanx|= 2tanx,tanx≥0,且x≠kπ+π2 ,k∈Z. 0,tanx<0,且x≠kπ+π2 ,k∈Z.
其图像如图所示,
π
人教高中数学A版必修一 《正切函数的性质与图象》三角函数PPT
π
2
,0 ,k∈Z
无
第七页,共三十二页。
一
二
3.做一做
π
(1)函数 y=tan 2 + 3 的定义域是 ;
π
(2)函数 y=tan - 的单调递增区间是
4
π
π
解析:(1)由 2x+3≠kπ+2,k∈Z,
π
π
解得 x≠ + (k∈Z),
2
12
π
π
所以函数定义域为 ≠ + ,∈Z
π π
2 2
在 - ,
所以函数 y=
π
,∈Z
3
π
2
π
π- 2 <
π
3
上,满足 tan x≤ 3的角 x 应满足- <x≤ ,
3-tan的定义域为
,其值域为[0,+∞).
第十一页,共三十二页。
≤ π +
探究一
探究二
探究三
思维辨析
随堂演练
反思感悟 求正切函数定义域的方法及注意点:
求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还
探究三
1 π
2 3
思维辨析
随堂演练
π
2
解:(1)依题意得 x- ≠kπ+ ,k∈Z,
5π
所以 x≠2kπ+ 3 ,k∈Z.
所以函数的定义域是 ≠
5π
2π + 3 ,∈Z
.
由正切函数的值域可知该函数的值域是(-∞,+∞).
(2)依题意 3-tan x≥0,所以 tan x≤ 3.
结合 y=tan x 的图象可知,
高考数学总复习第4章三角函数解三角形第4讲三角函数的图象与性质考点3三角函数的周期性奇偶性对称性
三角函数的周期性、奇偶性、对称性角度1 周期性求下列函数的最小正周期:(1)y =2sin ⎝ ⎛⎭⎪⎫23x +π3;(2)y =3⎪⎪⎪⎪⎪⎪cos ⎝ ⎛⎭⎪⎫2x -π12; (3)y =|tan x |;(4)y =-2sin ⎝⎛⎭⎪⎫2x +π4+6sin x cos x -2cos 2x +1.[解析] (1)∵y =2sin ⎝ ⎛⎭⎪⎫23x +π3,∴T =2π23=3π,即y =2sin ⎝ ⎛⎭⎪⎫23x +π3的最小正周期为3π.(2)画图知y =|cos x |的最小正周期是y =cos x 的周期的一半,∴y =3⎪⎪⎪⎪⎪⎪cos ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是y =3cos ⎝⎛⎭⎪⎫2x -π12的最小正周期的一半,即T =12×2π2=π2.(3)画出y =|tan x |的图象. 如图所示.由图象易知T =π.∴y =|tan x |的最小正周期与y =tan x 的最小正周期相同.(4)y =-2sin 2x ·cos π4-2cos 2x ·sin π4+3sin 2x -cos 2x =2sin 2x -2cos2x =22sin ⎝⎛⎭⎪⎫2x -π4,所以y 的最小正周期T =2π2=π.角度2 奇偶性1.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+φ是偶函数,则φ的值可以是( A )A .5π6B .π2C .π3D .-π2[解析] 因为当-π3+φ=k π+π2时,f (x )为偶函数,即φ=k π+56π,当k =0时,φ=56π,故选A .2.(多选题)已知f (x )=sin(x +φ)+cos(x +φ)为奇函数,则φ的一个取值可以是( CD )A .π2B .-π2C .3π4D .-π4[解析] 由题意,f (x )=sin(x +φ)+cos(x +φ)=2sin ⎝ ⎛⎭⎪⎫x +φ+π4为奇函数,所以φ+π4=k π,k ∈Z ,即φ=k π-π4,k ∈Z .因此,选项CD 正确.角度3 对称性已知函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为π,则该函数图象( A )A .关于点⎝ ⎛⎭⎪⎫π6,0对称B .关于直线x =π6对称C .关于点⎝ ⎛⎭⎪⎫π3,0对称 D .关于直线x =π3对称[解析] 由已知可得ω=2πT =2ππ=2,所以f (x )=cos ⎝⎛⎭⎪⎫2x +π6. 因为f ⎝ ⎛⎭⎪⎫π6=0.所以点⎝ ⎛⎭⎪⎫π6,0是该函数图象的对称中心,所以A 正确,B 错误;因为f ⎝ ⎛⎭⎪⎫π3≠0,所以点⎝ ⎛⎭⎪⎫π3,0不是该函数图象的对称中心,所以C 错误; 因为f ⎝ ⎛⎭⎪⎫π3=-32≠±1,所以直线x =π3不是该函数图象的对称轴,所以D 错误.名师点拨:1.求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ)或y =A cos(ωx +φ)或y =A tan(ωx +φ)(A ,ω,φ为常数,A ≠0)的形式,再分别应用公式T=2π|ω|或T =π|ω|求解. 2.三角函数型奇偶性判断除可以借助定义外,还可以借助其图象与性质,对y =A sin(ωx +φ)代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).3.求函数y =A sin(ωx +φ)的对称中心、对称轴问题往往转化为解方程问题. (1)∵y =sin x 的对称中心是(k π,0)(k ∈Z ),∴y =A sin(ωx +φ)的对称中心,由方程ωx +φ=k π解出x =k π-φω,故对称中心为⎝⎛⎭⎪⎫k π-φω,0(k ∈Z ).(2)∵y =sin x 的对称轴是x =k π+π2(k ∈Z ),∴ωx +φ=k π+π2解出x =k π+π2-φω,即x =k π+π2-φω为函数y =A sin(ωx +φ)的对称轴方程.(3)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A ≠0)图象的对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数图象的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.4.注意y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ).【变式训练】1.(角度1)①y =cos ⎝ ⎛⎭⎪⎫2x +π6,②y =tan ⎝ ⎛⎭⎪⎫2x -π4,③y =|sin x |,④y =cos|2x |中,最小正周期为π的函数为( B )A .①②③B .①③④C .②④D .①③[解析] ①y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期,T =2π2=π;②y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2;③由函数图象知y =|sin x |的最小正周期为π; ④y =cos|2x |=cos 2x ,最小正周期为π.故选B .2.(角度2)(2022·威海三模)已知函数f (x )=sin x cos(2x +φ)(φ∈[0,π])为偶函数,则φ=( C )A .0B .π4C .π2D .π[解析] ∵f (x )的定义域为R ,且为偶函数,∴f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫-π2⇒cos(π+φ)=-cos(-π+φ)⇒-cos φ=cos φ⇒cos φ=0,∵φ∈[0,π],∴φ=π2.当φ=π2时,f (x )=-sin x sin 2x 为偶函数,满足题意,故选C .3.(角度3)下列关于函数f (x )=1-2sin 2⎝ ⎛⎭⎪⎫x -π4的说法错误的是( C )A .最小正周期为πB .最大值为1,最小值为-1C .函数图象关于直线x =0对称D .函数图象关于点⎝ ⎛⎭⎪⎫π2,0对称[解析] 将三角函数化简变形为标准形式,即可求出对应的周期,最值,对称轴,对称中心等,函数f (x )=1-2sin 2⎝ ⎛⎭⎪⎫x -π4=cos ⎝ ⎛⎭⎪⎫2x -π2=sin 2x ,函数的最小正周期T =π,A正确;最大值为1,最小值为-1,B 正确;由2x =k π+π2⇒x =k π2+π4,k ∈Z ,得函数图象关于直线x =k π2+π4,k ∈Z 对称,C 不正确;由2x =k π⇒x =k π2,k ∈Z ,得函数图象关于点⎝⎛⎭⎪⎫k π2,0,k ∈Z 对称,D 正确.故选C .。
【走向高考】(2013春季发行)高三数学第一轮总复习 4-3三角函数的图象与性质 新人教A版
4-3三角函数的图象与性质基础巩固强化1.(文)(2011·大纲全国卷理)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13 B .3 C .6 D .9[答案] C[解析] 由题意知,π3=2πω·k (k ∈Z ),∴ω=6k ,令k =1,∴ω=6.(理)(2012·浙江诸暨质检)函数f (x )=sin2x +3cos2x 的图象可以由函数y =2sin2x 的图象经哪种平移得到( )A .向左平移π12个单位B .向左平移π6个单位C .向右平移π12个单位D .向右平移π6个单位[答案] B[解析] ∵f (x )=sin2x +3cos2x =2sin(2x +π3=2sin2(x +π6),∴f (x )的图象可以由函数y =2sin2x 向左平移π6个单位得到,故应选B.2.(文)(2012·福建文,8)函数f (x )=sin(x -π4)的图象的一条对称轴是( ) A .x =π4B .x =π2 C .x =-π4D .x =-π2[答案] C[解析] 本题考查了正弦型函数图象的对称轴问题. 函数f (x )=sin(x -π4)的图象的对称轴是 x -π4=k π+π2,k ∈Z ,即x =k π+3π4,k ∈Z . 当k =-1时,x =-π+3π4=-π4.[点评] 正弦(余弦)型函数图象的对称轴过图象的最高点或最低点. (理)(2011·海淀模拟)函数f (x )=sin(2x +π3)图象的对称轴方程可以为( ) A .x =π12 B .x =5π12 C .x =π3D .x =π6[答案] A [解析] 令2x +π3=k π+π2得x =k π2+π12,k ∈Z , 令k =0得x =π12,故选A.[点评] f (x )=sin(2x +π3)的图象的对称轴过最高点将选项代入检验,∵2×π12+π3=π2,∴选A. 3.(文)(2011·唐山模拟)函数y =sin(2x +π6)的一个递减区间为( ) A .(π6,2π3) B .(-π3,π6) C .(-π2,π2) D .(π2,3π2)[答案] A [解析] 由2k π+π2≤2x +π6≤2k π+3π2得, k π+π6≤x ≤k π+2π3(k ∈Z ), 令k =0得,π6≤x ≤2π3,故选A.(理)(2012·新课标全国理,9)已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12]D .(0,2][答案] A[解析] 本题考查了三角函数y =A sin(ωx +φ)的性质及间接法解题.ω=2⇒ωx +π4∈[5π4,9π4]不合题意,排除D ,ω=1⇒(ωx +π4)∈[3π4,5π4]合题意,排除B ,C.4.(2011·大连模拟)已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值为( )A.23 B.32 C .2 D .3[答案] B[解析] ∵f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值为-2,∴T 4≤π3,即π2ω≤π3, ∴ω≥32,即ω的最小值为32.5.(文)(2011·吉林一中月考)函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图,则( )A .ω=π2,φ=π4 B .ω=π3,φ=π6 C .ω=π4,φ=π4 D .ω=π4,φ=5π4[答案] C[解析] ∵T 4=3-1=2,∴T =8,∴ω=2πT =π4.令π4×1+φ=π2,得φ=π4,∴选C. (理)函数y =xsin xx ∈(-π,0)∪(0,π)的图象可能是下列图象中的( )[答案] C[解析] 依题意,函数y =xsin x,x ∈(-π,0)∪(0,π)为偶函数,排除A ,当x ∈(0,π)时,直线y =x 的图象在y =sin x 上方,所以y =xsin x>1,故选C.6.(文)(2011·课标全国文)设函数f (x )=sin(2x +π4)+cos(2x +π4),则( ) A .y =f (x )在(0,π2)单调递增,其图象关于直线x =π4对称 B .y =f (x )在(0,π2)单调递增,其图象关于直线x =π2对称 C .y =f (x )在(0,π2)单调递减,其图象关于直线x =π4对称 D .y =f (x )在(0,π2)单调递减,其图象关于直线x =π2对称 [答案] D[解析] f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2=2cos2x . 则函数在⎝⎛⎫0,π2单调递减,其图象关于直线x =π2对称. (理)(2011·河南五校联考)给出下列命题:①函数y =cos(23x +π2)是奇函数;②存在实数α,使得sin α+cos α=32;③若α、β是第一象限角且α<β,则tan α<tan β;④x =π8y =sin(2x +5π4)的一条对称轴方程;⑤函数y =sin(2x +π3)的图象关于点(π12,0)成中心对称图形. 其中正确命题的序号为( ) A .①③ B .②④ C .①④ D .④⑤[答案] C[解析] ①y =cos(23x +π2)⇒y =-sin 23x 是奇函数;②由sin α+cos α=2sin(α+π4)的最大值为2<32,所以不存在实数α,使得sin α+cos α=32;③α,β是第一象限角且α<β.例如:45°<30°+360°,但tan45°>tan(30°+360°),即tan α<tan β不成立; ④把x =π8代入y =sin(2x +5π4)得y =sin 3π2=-1, 所以x =π8是函数y =sin(2x +5π4)的一条对称轴; ⑤把x =π12代入y =sin(2x +π3)得y =sin π2=1, 所以点(π12,0)不是函数y =sin(2x +π3)的对称中心. 综上所述,只有①④正确.[点评] 作为选择题,判断①成立后排除B 、D ,再判断③(或④)即可下结论. 7.(文)函数y =cos x 的定义域为[a ,b ],值域为[-12,1],则b -a 的最小值为________.[答案]2π3[解析] cos x =-12时,x =2k π+2π3或x =2k π+4π3,k ∈Z ,cos x =1时,x =2k π,k ∈Z .由图象观察知,b -a 的最小值为2π3.(理)(2011·江苏南通一模)函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=-2,f (β)=0,且|α-β|的最小值等于π2,则正数ω的值为________.[答案] 1[解析] f (x )=sin ωx +3cos ωx =2sin(ωx +π3), 由f (α)=-2,f (β)=0,且|α-β|的最小值等于π2可知,T 4=π2,T =2π,所以ω=1.8.已知关于x 的方程2sin 2x -3sin2x +m -1=0在x ∈(π2,π)上有两个不同的实数根,则m 的取值范围是________.[答案] -2<m <-1[解析] m =1-2sin 2x +3sin2x =cos2x +3sin2x =2sin(2x +π6), ∵x ∈(π2,π)时,原方程有两个不同的实数根, ∴直线y =m 与曲线y =2sin(2x +π6),x ∈(π2,π)有两个不同的交点,∴-2<m <-1.9.(2011·济南调研)设函数y =2sin(2x +π3)的图象关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________. [答案] -π6[解析] ∵函数y =2sin(2x +π3)的对称中心是函数图象与x 轴的交点,∴2sin(2x 0+π3)=0, ∵x 0∈[-π2,0]∴x 0=-π6.10.(文)(2011·北京文)已知函数f(x)=4cos x sin(x+π6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π6,π4]上的最大值和最小值.[解析] (1)因为f(x)=4cos x sin(x+π6)-1=4cos x(32sin x+12cos x)-1=3sin2x+2cos2x-1=3sin2x+cos2x=2sin(2x+π6 ).所以f(x)的最小正周期为π.(2)因为-π6≤x≤π4,所以-π6≤2x+π6≤2π3.于是,当2x+π6=π2,即x=π6时,f(x)取得最大值2;当2x+π6=-π6,即x=-π6时,f(x)取得最小值-1.(理)(2011·天津南开中学月考)已知a=(sin x,-cos x),b=(cos x,3cos x),函数f(x)=a·b+32.(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当0≤x≤π2时,求函数f(x)的值域.[解析] (1)f(x)=sin x cos x-3cos2x+3 2=12sin2x-32(cos2x+1)+32=12sin2x-32cos2x=sin(2x-π3),所以f(x)的最小正周期为π.令sin(2x-π3)=0,得2x-π3=kπ,∴x=kπ2+π6,k∈Z.故所求对称中心的坐标为(kπ2+π6,0)(k∈Z).(2)∵0≤x ≤π2,∴-π3≤2x -π3≤2π3. ∴-32x -π3)≤1,即f (x )的值域为[-32,1]. 能力拓展提升11.(文)(2011·苏州模拟)函数y =sin x ·|cos x sin xx <π)的图象大致是( )[答案] B[解析] y =sin x ·|cos xsin x|=⎩⎪⎨⎪⎧cos x ,0<x <π20,x =π2-cos x ,π2<x <π.(理)(2011·辽宁文)已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图,则f (π24)=( )A.2+ 3 B. 3C.33D.2- 3[答案] B[解析] 由图可知:T=2×(38π-π8)=π2,∴ω=πT=2,又∵图象过点(38π,0),∴A·tan(2×38π+φ)=A·tan(34π+φ)=0,∴φ=π4.又∵图象还过点(0,1),∴A tan(2×0+π4=A=1,∴f(x)=tan(2x+π4 ),∴f(π24)=tan(2×π24+π4)=tan(π12+π4)=tanπ3= 3.12.(文)为了使函数y=cosωx(ω>0)在区间[0,1]上至多出现50次最小值,则ω的最大值是( )A .98π B.1972C .99πD .100π[答案] C[解析] 由题意至多出现50次最小值即至多需用4912个周期,∴992·2πω≥1,∴ω≤99π,故选C.(理)有一种波,其波形为函数y =sin ⎝⎛⎭⎫π2的图象,若在区间[0,t ](t >0)上至少有2个波谷(图象的最低点),则正整数t 的最小值是( )A .5B .6C .7D .8 [答案] C[解析] ∵y =sin ⎝⎛⎭⎫π2x 的图象在[0,t ]上至少有2个波谷,函数y =sin ⎝⎛⎭⎫π2x 的周期T=4,∴t ≥74T =7,故选C.13.(文)(2011·南昌调研)设函数y =sin(ωx +φ)(ω>0,φ∈(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点(π4,0)对称; ②图象关于点(π3,0)对称; ③在[0,π6上是增函数; ④在[-π6,0]上是增函数中, 所有正确结论的编号为________. [答案] ②④[解析] 由最小正周期为π得,2πω=π,∴ω=2;再由图象关于直线x =π12对称,∴2×π12+φ=π2,∴φ=π3, ∴f (x )=sin(2x +π3),当x =π4时,f (π4)=12≠0,故①错;当x =π3时,f (π3)=0,故②正确;由2k π-π2≤2x +π3≤2k π+π2 (k ∈Z )得,k π-5π12≤x ≤k π+π12,令k =0得,-5π12≤x ≤π12,故③错,④正确,∴正确结论为②④.(理)(2011·南京模拟)已知函数f (x )=x sin x ,现有下列命题:①函数f (x )是偶函数;②函数f (x )的最小正周期是2π;③点(π,0)是函数f (x )的图象的一个对称中心;④函数f (x )在区间[0,π2]上单调递增,在区间[-π2,0]上单调递减.其中真命题是________(写出所有真命题的序号). [答案] ①④[解析] ∵y =x 与y =sin x 均为奇函数,∴f (x )为偶函数,故①真;∵f (π2)=π2,f (π2+2π)=π2+2π≠π2, ∴②假;∵f (π2)=π2,f (3π2)=-3π2,π2+3π2=2π,π2+(-3π2)≠0,∴③假;设0≤x 1<x 2≤π2,则f x 1f x 2=x 1x 2·sin x 1sin x 2<1,∴f (x 1)<f (x 2)(f (x 2)>0),∴f (x )在[0,π2]上为增函数,又∵f (x )为偶函数,∴f (x )在[-π2,0]上为减函数,∴④真. 14.函数f (x )=2a cos 2x +b sin x cos x 满足:f (0)=2,f (π3)=12+32.(1)求函数f (x )的最大值和最小值;(2)若α、β∈(0,π),f (α)=f (β),且α≠β,求tan(α+β)的值.[解析] (1)由⎩⎪⎨⎪⎧f 0=2,f π3=12+32,得⎩⎪⎨⎪⎧2a =2,12a +34b =12+32.解得a =1,b =2,∴f (x )=sin2x +cos2x +1=2sin(2x +π4)+1, ∵-1≤sin(2x +π4)≤1, ∴f (x )max =2+1,f (x )min =1- 2. (2)由f (α)=f (β)得,sin(2α+π4=sin(2β+π4).∵2α+π4、2β+π4∈(π4,9π4),且α≠β, ∴2α+π4=π-(2β+π4)或2α+π4=3π-(2β+π4), ∴α+β=π4或α+β=5π4,故tan(α+β)=1. 15.(文)(2011·长沙一中月考)已知f (x )=sin x +sin(π2-x ). (1)若α∈[0,π],且sin2α=13,求f (α)的值;(2)若x ∈[0,π],求f (x )的单调递增区间. [解析] (1)由题设知f (α)=sin α+cos α. ∵sin2α=13=2sin α·cos α>0,α∈[0,π],∴α∈(0,π2),sin α+cos α>0. 由(sin α+cos α)2=1+2sin α·cos α=43,得sin α+cos α=233,∴f (α)=233. (2)由(1)知f (x )=2sin(x +π4),又0≤x ≤π, ∴f (x )的单调递增区间为[0,π4]. (理)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(b,2a -c ),n =(cos B ,cos C ),且m ∥n .(1)求角B 的大小;(2)设f (x )=cos ⎝⎛⎭⎫ωx -B 2+sin ωx (ω>0),且f (x )的最小正周期为π,求f (x )在区间[0,π2]上的最大值和最小值. [解析] (1)由m ∥n 得,b cos C =(2a -c )cos B , ∴b cos C +c cos B =2a cos B .由正弦定理得,sin B cos C +sin C cos B =2sin A cos B , 即sin(B +C )=2sin A cos B .又B +C =π-A ,∴sin A =2sin A cos B .又sin A ≠0,∴cos B =12.又B ∈(0,π),∴B =π3.(2)由题知f (x )=cos(ωx -π6)+sin ωx =32cos ωx +32sin ωx =3sin(ωx +π6), 由已知得2πω=π,∴ω=2,f (x )=3sin(2x +π6),当x ∈[0,π2]时,(2x +π6)∈[π6,7π6], sin(2x +π6∈[-12,1]. 因此,当2x +π6=π2,即x =π6时,f (x )取得最大值 3. 当2x +π6=7π6,即x =π2时,f (x )取得最小值-32. 16.(文)(2011·福建四地六校联考)已知函数f (x )=-1+23sin x cos x +2cos 2x . (1)求f (x )的单调递减区间;(2)求f (x )图象上与原点最近的对称中心的坐标;(3)若角α,β的终边不共线,且f (α)=f (β),求tan(α+β)的值. [解析] f (x )=3sin2x +cos2x =2sin(2x +π6, (1)由2k π+π2≤2x +π6≤2k π+3π2k ∈Z ) 得k π+π6≤x ≤k π+2π3(k ∈Z ), ∴f (x )的单调减区间为[k π+π6,k π+2π3](k ∈Z ). (2)由sin(2x +π6=0得2x +π6=k π(k ∈Z ), 即x =k π2-π12(k ∈Z ), ∴f (x )图象上与原点最近的对称中心坐标是(-π12,0). (3)由f (α)=f (β)得: 2sin(2α+π6)=2sin(2β+π6), 又∵角α与β的终边不共线, ∴(2α+π6+(2β+π6)=2k π+π(k ∈Z ),即α+β=k π+π3(k ∈Z ),∴tan(α+β)= 3. (理)(2011·浙江文)已知函数f (x )=A sin(π3+φ),x ∈R ,A >0,0<φ<π2.y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.[解析] (1)由题意得,T =2ππ3=6, 因为P (1,A )在y =A sin(π3x +φ)的图象上,所以sin(π3+φ)=1. 又因为0<φ<π2,所以φ=π6. (2)设点Q 的坐标为(x 0,-A ),由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).连接PQ ,在△PRQ 中,∠PRQ =23π,由余弦定理得,cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-9+4A 22A ·9+A 2=-12,解得A 2=3 又A >0,所以A = 3.1.(2012·河北郑口中学模拟)已知函数f (x )=A sin(x +φ)(A >0,-π2<φ<0)在x =5π6处取得最大值,则f (x )在[-π,0]上的单调增区间是( )A .[-π,-5π6] B .[-5π6,-π6] C .[-π3,0] D .[-π6,0] [答案] D[解析] ∵f (x )=A sin(x +φ)在x =5π6处取得最大值,A >0,-π2<φ<0,∴φ=-π3,∴f (x )=A sin(x -π3),由2k π-π2≤x -π3≤2k π+π2(k ∈Z )得2k π-π6≤x ≤2k π+5π6,令k =0得-π6≤x ≤0,故选D.2.(2011·长沙二模)若将函数y =sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π4个单位长度后,与函数y =sin ⎝⎛⎭⎫ωx +π3的图象重合,则ω的最小值为( ) A .1 B .2 C.112D.233[答案] D[解析] y =sin ⎝⎛⎭⎫ωx +π4y =sin ⎣⎢⎡⎦⎥⎤ω⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫ωx +π3,∴π4-π4ω+2k π=π3,∴ω=8k -13(k ∈Z ),又∵ω>0,∴ωmin =233.3.(2011·北京大兴区模拟)已知函数f (x )=3sinπxR图象上相邻的一个最大值点与一个最小值点恰好都在圆x 2+y 2=R 2上,则f (x )的最小正周期为( )A .1B .2C .3D .4 [答案] D[解析] f (x )的周期T =2ππR=2R ,f (x )的最大值是3,结合图形分析知R >3,则2R >23>3,只有2R =4这一种可能,故选D.4.(2012·河北保定模拟)已知向量a =(cos θ,sin θ)与b =(cos θ,-sin θ)互相垂直,且θ为锐角,则函数f (x )=sin(2x -θ)的图象的一条对称轴是直线( )A .x =πB .x =7π8 C .x =π4D .x =π2[答案] B[解析] a ·b =cos 2θ-sin 2θ=cos2θ=0, ∵θ为锐角,∴θ=π4,∴f (x )=sin(2x -π4). 由2x -π4=k π+π2得,x =k π2+3π8令k =1得x =7π8 B.5.(2011·北京西城模拟)函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,则tan ∠APB =( )A .10B .8 C.87 D.47[答案] B[分析] 利用正弦函数的周期、最值等性质求解.[解析] 如图,过P 作PC ⊥x 轴,垂足为C ,设∠APC =α,∠BPC =β,∴∠APB =α+β,y =sin(πx +φ),T =2ππ=2,tan α=AC PC =121=12,tan β=BC PC =321=32,则tan(α+β)=tan α+tan β1-tan α·tan β=12+321-12×32=8,∴选B.6.对任意x 1,x 2∈⎝⎛⎭⎫0,π2,x 2>x 1,y 1=1+sin x 1x 1,y 2=1+sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 [答案] B[解析] 取函数y =1+sin x ,则1+sin x 1x 1的几何意义为过原点及点(x 1,1+sin x 1)的直线斜率,1+sin x 2x 2的几何意义为过原点及点(x 2,1+sin x 2)的直线斜率,由x 1<x 2,观察函数y =1+sin x 的图象可得y 1>y 2.选B.7.(2011·菏泽模拟)对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos xcos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值是-1; ③该函数的图象关于直线x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22其中正确命题的序号是________(请将所有正确命题的序号都填上) [答案] ③④[解析] 画出函数f (x )的图象,易知③④正确. 8.已知函数f (x )=3sin(2x -π6)+2sin 2(x -π12)(x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. [解析] (1)f (x )=3sin(2x -π6)+1-cos2(x -π12)=2⎣⎢⎡⎦⎥⎤32sin ⎝⎛⎭⎫2x -π6-12cos ⎝⎛⎭⎫2x -π6+1 =2sin(2x -π3)+1. 所以最小正周期为T =π.(2)当f (x )取最大值时,只要sin(2x -π3=1,得出x =k π+5π12(k ∈Z ),∴x 值的集合为{x |x =k π+5π12,k ∈Z }. [点评] 差异分析是解答数学问题的有效方法.诸如:化复杂为简单,异角化同角,异名化同名,高次化低次,化为一个角的同名三角函数的形式等等.。