2019年天津高考理科数学真题及答案(Word版,精校版)

合集下载

2019年天津市高考理科数学试卷及答案解析【word版】

2019年天津市高考理科数学试卷及答案解析【word版】

绝密★ 启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件,互斥,那么•如果事件,相互独立,那么.•圆柱的体积公式. •圆锥的体积公式.其中表示圆柱的底面面积,其中表示圆锥的底面面积,表示圆柱的高. 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)是虚数单位,复数()(2)设变量,满足约束条件则目标函数的最小值为()(A)2 (B)3 (C)4 (D)5(3)阅读右边的程序框图,运行相应的程序,输出的的值为()(A)15 (B)105(C)245 (D)945(4)函数的单调递增区间是()(A)(B)(C)(D)(5)已知双曲线的一条渐近线平行于直线:,双曲线的一个焦点在直线上,则双曲线的方程为()(A)(B)(C)(D)(6)如图,是圆的内接三角形,的平分线交圆于点,交于点,过点的圆的切线与的延长线交于点.在上述条件下,给出下列四个结论:①平分;②;③;④.则所有正确结论的序号是()(A)①②(B)③④(C)①②③(D)①②④(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形的边长为2,,点分别在边上,,.若,,则( )(A ) (B ) (C ) (D ) 第Ⅱ卷 注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

2019年天津市高考数学试卷(理科)及答案(Word版)

2019年天津市高考数学试卷(理科)及答案(Word版)

2019年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D) (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭ (D) ⎛- ⎝⎭∞ 2019年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = . (10) 6x⎛ ⎝ 的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为6, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

2019年高考天津卷理数真题试题(word版,含答案与解析)

2019年高考天津卷理数真题试题(word版,含答案与解析)

2019年高考理数真题试卷(天津卷)原卷+解析一、选择题:本卷共8小题,每小题5分,共40分。

1.(2019•天津)设集合,则()A. B. C. D.【答案】 D【考点】交、并、补集的混合运算【解析】【解答】,故答案为:D【分析】利用集合交并运算性质即可得出答案。

2.(2019•天津)设变量满足约束条件则目标函数的最大值为()A. 2B. 3C. 5D. 6【答案】 C【考点】简单线性规划的应用【解析】【解答】作出不等式对应的平面区域,由得,平移直线,可知当直线经过直线与的交点时,直线的截距最大,此时最大由解得此时直线与的交点为此时的最大值为故答案为:C【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可得出的最大值。

3.(2019•天津)设,则“ ”是“ ”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】 B【考点】必要条件、充分条件与充要条件的判断【解析】【解答】由得,由得由“小范围”推出“大范围”得出可推出故“ ”是“ ”的必要而不充分条件。

故答案为:B【分析】根据集合的包含关系以及充分必要条件的定义,再由“小范围”推出“大范围”判断即可。

4.(2019•天津)阅读下边的程序框图,运行相应的程序,输出的值为()A. 5B. 8C. 24D. 29【答案】 B【考点】程序框图【解析】【解答】该程序框图共运行3次:第1次,,1非偶数,,;第2次,,2是偶数,,,;,3非偶数,,成立,结束循环,故输出。

故答案为:B【分析】本题考查当型循环结构的程序框图,由算法的功能判断值的变化规律以及对应的赋值语句即可得出答案。

5.(2019•天津)已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为()A. B. C. D.【答案】 D【考点】圆锥曲线的综合【解析】【解答】抛物线的准线:抛物线的准线为F,∵抛物线的准线与双曲线的两条渐近线分别交于A,B两点,且,∴ ,,将A点坐标代入双曲线渐近线方程得,∴ ,∴ ,即,∴ .故答案为:D.【分析】求出抛物线的准线方程,双曲线的渐近线方程,而得出A、B的坐标,得出弦长|AB|的值,将A点坐标代入双曲线渐近线方程结合的关系式得出出的关系,即可求得离心率。

2019年高考理科数学天津卷真题理数(附参考答案及详解)

2019年高考理科数学天津卷真题理数(附参考答案及详解)

文档说明绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

2、选择题的作答:选出每小题答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{1,1,2,3,5}A=-,{2,3,4}B=,{|13}C x x=∈≤<R,则()A C B=I U()A.{2}B.{2,3}C.{1,2,3}- D.{1,2,3,4}2.设变量x y⋅满足约束条件20,20,1,1,x yx yxy+-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y=-+的最大值为()A.2B.3C.5D.63.设x ∈R ,则“250x x -<”是“|1|1x -<”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读如图的程序框图,运行相应的程序,输出S 的值为( )A.5B.8C.24D.29 5.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( )C.26.已知52log a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( ) A.a c b << B.a b c << C.b c a << D.c a b <<7.已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( )A.2-B. D.28.已知a ∈R ,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤⎪=⎨->⎪⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( )A.[0,1]B.[0,2]C.[0,e]D.[1,e]第Ⅱ卷二、填空题:本题共6小题,每小题5分。

2019年天津理科数学高考真题(含答案)

2019年天津理科数学高考真题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B =+U . ·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I U A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为 A .5 B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A .2B .3C .2D .56.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭A .2-B .2-C .2D .28.已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2C .[]0,eD .[]1,e绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数 学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2019年天津市高考理科数学试卷及答案解析【word版】

2019年天津市高考理科数学试卷及答案解析【word版】

绝密 ★ 启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷 注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,复数734i i( )(A )1i (B )1i (C )17312525i (D )172577i (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945FED CBA (4)函数212log 4f x x 的单调递增区间是()(A )0, (B ),0(C )2,(D ),2(5)已知双曲线22221x y a b 0,0ab 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y (C )2233125100x y (D )2233110025x yD ,交(6)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CEBE DE ;④AF BD AB BF .则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a bR ,则|“a b ”是“a a b b ”的( )(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BE BC ,DFDC .若1AE AF ,23CE CF,则( )(A )12 (B )23 (C )56 (D )712第Ⅱ卷 注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

2019高考天津卷数学(理)试卷及答案(word版)

2019高考天津卷数学(理)试卷及答案(word版)

2019年普通高等学校招生全国统一考试(天津卷)理科数学第Ⅰ卷参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =( ) A.{}2 B.{}2,3 C.{}1,2,3- D.{}1,2,3,4则目标函数4z x y =-+的最大值为( )2.设变量,x y 满足约束条件A.2B.3C.5D.6 3.设∈x R ,则“250x x -<”是“|1|1x -<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为( )A.5B.8C.24D.295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( )C.2 6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为( ) A.a c b << B.a b c << C.b c a <<D.c a b << 7.已知函数()sin()(0,0,||π)ωϕωϕ=+>><f x A x A 是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且π4⎛⎫=⎪⎝⎭g 3π8⎛⎫= ⎪⎝⎭f ( )A.2-B. D.28.已知∈a R ,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A.[]0,1B.[]0,2C.[]0,eD.[]1,e第Ⅱ卷二.填空题:本大题共6小题,每小题5分,共30分. 9.i 是虚数单位,则5i1i-+的值为 . 10.83128x x ⎛⎫- ⎪⎝⎭是展开式中的常数项为 .11.的正方形,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .12.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为 . 13.设0,0,25x y x y >>+=的最小值为 .14.在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB的延长线上,且AE BE =,则BD AE ⋅= .三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =. (Ⅰ)求cos B 的值; (Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.16.(本小题满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.17.(本小题满分13分)如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值; (Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.18.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为5. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.19.(本小题满分14分)设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .20.(本小题满分14分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当ππ,42⎡⎤∈⎢⎥⎣⎦x 时,证明π()()02⎛⎫+- ⎪⎝⎭f xg x x ;(Ⅲ)设n x 为函数()()1u x f x =-在区间ππ2,2π42⎛⎫++ ⎪⎝⎭m m 内的零点,其中∈n N ,证明2π00e π2π2sin cos -+-<-n n n x x x .【参考答案】一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分.1.D2.C3.B4.B5.D6.A7.A 8.C二.填空题:本题考查基本知识和基本运算.每小题5分,满分30分.9. 10.28 11.π4 12.3413. 14.1- 三.解答题15.(Ⅰ)解:在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B a a +-+-===-⋅⋅.(Ⅱ)解:由(Ⅰ)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故πππ717sin 2sin 2cos cos 2sin 666828216+⎛⎫+=+=-⨯-⨯=- ⎪⎝⎭B B B , 16.(Ⅰ)解:因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321(),0,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (Ⅱ)解:设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭,且{3,1}{2,0}M X Y X Y =====.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(Ⅰ)知()({3,1}{2,0})(3,1)(2,0)P M P X Y X Y P X Y P X Y ========+==824120(3)(1)(2)(0)279927243P X P Y P X P Y ===+===⨯+⨯=. 17. (Ⅰ)证明:依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (Ⅱ)解:依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)n x y z =为平面BDE 的法向量,则0,0,n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)n =.因此有4cos ,9||||CE n CE n CE n ⋅==-.所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)解:设(,,)m x y z =为平面BDF 的法向量,则0,0,m BD m BF ⎧⋅=⎪⎨⋅=⎪⎩即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,m h ⎛⎫=-⎪⎝⎭. 由题意,有||1cos ,||||3m n m n m n ⋅〈〉===,解得87h =.经检验,符合题意.所以,线段CF 的长为87.18.(Ⅰ)解:设椭圆的半焦距为c ,依题意,24,c b a ==又222a b c =+,可得a =,2,b =1c =.所以,椭圆的方程为22154x y +=. (Ⅱ)解:由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P kx k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k -=-.在2y kx =+中,令0y =,得2M x k =-.由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而5k =±所以,直线PB或. 19.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )解:()()()()22211321321941n n x n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )解:()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n n n ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑ ()()2124143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .20.(Ⅰ)解:由已知,有'()(cos sin )xf x e x x =-.因此,当π5π2π,2π44⎛⎫∈++ ⎪⎝⎭x k k ()k ∈Z 时,有sin cos x x >,得()'0f x <,则()f x 单调递减;当3ππ2π,2π44⎛⎫∈-+ ⎪⎝⎭x k k ()k ∈Z 时,有sin cos x x <,得()'0f x >,则()f x 单调递增. 所以,()f x 的单调递增区间为3ππ2π,2π(),()44⎡⎤-+∈⎢⎥⎣⎦k k k f x Z 的单调递减区间为π5π2π,2π()44⎡⎤++∈⎢⎥⎣⎦k k k Z . (Ⅱ)证明:记π()()()2⎛⎫=+-⎪⎝⎭h x f x g x x .依题意及(Ⅰ),有()e (cos sin )=-xg x x x ,从而'()2e sin =-xg x x .当ππ,42⎛⎫∈⎪⎝⎭x 时,()'0g x <, 故ππ'()'()'()()(1)'()022⎛⎫⎛⎫=+-+-=-<⎪ ⎪⎝⎭⎝⎭h x f x g x x g x g x x . 因此,()h x 在区间ππ,42⎡⎤⎢⎥⎣⎦上单调递减,进而ππ()022⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭h x h f .所以,当ππ,42⎡⎤∈⎢⎥⎣⎦x 时,π()()02⎛⎫+- ⎪⎝⎭f xg x x .(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos 1n xn e x =.记2π=-n n y x n ,则ππ,42⎛⎫∈⎪⎝⎭n y ,且()()()2π2πe cos e cos 2πe --==∈=-n n y x n n n n n f y x n n y N .第 11 页 共 11 页 由()()e 20e 1-==n n f y f y 及(Ⅰ),得0n y y .由(Ⅱ)知,当ππ,42⎛⎫∈ ⎪⎝⎭x 时,()'0g x <,所以()g x 在ππ,42⎡⎤⎢⎥⎣⎦上为减函数,因此()()0π04⎛⎫<= ⎪⎝⎭n g y g y g .又由(Ⅱ)知,()()π02⎛⎫+- ⎪⎝⎭n n n f y g y y , 故()()()()()02π2π2π2π0000π2sin cos sin c e e e e e os ------=-=<--n n n n n n y n n f y y g y g y g y x x y y . 所以,2π00e π2π2sin cos -+-<-n n n x x x .。

2019年高考理科数学试题(天津卷)及参考答案

2019年高考理科数学试题(天津卷)及参考答案

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 A 2B 3C .2D 56.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .2C 2D .28.已知a ∈R ,设函数222,1,()ln , 1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2019年天津市高考理科数学试卷及答案解析【word版】

2019年天津市高考理科数学试卷及答案解析【word版】

高考数学精品复习资料2019.5绝密 ★ 启用前普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.E D CBA (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945(4)函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥(D )(),2-?(5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (6)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA =?;③AE CE BE DE ??;④AF BDAB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m +=( ) (A )12 (B )23 (C )56 (D )712第Ⅱ卷注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

2019年天津卷理数高考试题(含答案)

2019年天津卷理数高考试题(含答案)

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3-5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B .·如果事件A 、B 相互独立,那么()()()P AB P A P B .·圆柱的体积公式V Sh ,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13VSh ,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C xx R ,,则()A C BA.2 B.2,3C.1,2,3 D.1,2,3,42.设变量,x y 满足约束条件20,20,1,1,xy xyx y ……则目标函数4z x y 的最大值为A.2B.3C.5D.63.设xR ,则“250xx”是“|1|1x ”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出S 的值为A.5B.8C.24D.295.已知抛物线24yx 的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b ab的两条渐近线分别交于点A 和点B ,且||4||AB OF (O 为原点),则双曲线的离心率为A.2B.3C.2D.56.已知5log 2a ,0.5og 2.l 0b,0.20.5c,则,,a b c 的大小关系为A.a c bB.ab cC.bc aD.c a b7.已知函数()sin()(0,0,||)f x A x A 是奇函数,将y f x 的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为g x .若g x 的最小正周期为2π,且24g ,则38fA.2B.2C.2 D.28.已知a R ,设函数222,1,()ln ,1,x ax a x f x xa x x ,若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A.0,1B.0,2C.0,eD.1,e第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2019年天津卷理科数学高考真题及答案解析(word精编)

2019年天津卷理科数学高考真题及答案解析(word精编)

2019年天津卷理科数学高考真题及答案解析(word精编)xx年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3-5页。

答卷前,考生务必将自己的姓名.准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件.互斥,那么. ·如果事件.相互独立,那么. ·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高. ·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则A.B.C.D.2.设变量满足约束条件则目标函数的最大值为A.2B.3C.5D.63.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出的值为A.5B.8C.24D.295.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为A.B.C.D.6.已知,,,则的大小关系为A.B.C.D.7.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则A.B.C.D.8.已知,设函数若关于的不等式在上恒成立,则的取值范围为A.B.C.D.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分.9.是虚数单位,则的值为 .10.是展开式中的常数项为 .11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .12.设,直线和圆(为参数)相切,则的值为 .13.设,则的最小值为 .14.在四边形中,,点在线段的延长线上,且,则 . 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在中,内角所对的边分别为.已知,. (Ⅰ)求的值;(Ⅱ)求的值.16.(本小题满分13分)设甲.乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲.乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.17.(本小题满分13分)如图,平面,,. (Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角的余弦值为,求线段的长.18.(本小题满分13分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上.下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.19.(本小题满分14分)设是等差数列,是等比数列.已知. (Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中. (i)求数列的通项公式;(ii)求.20.(本小题满分14分)设函数为的导函数. (Ⅰ)求的单调区间;(Ⅱ)当时,证明;(Ⅲ)设为函数在区间内的零点,其中,证明. xx年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考答案一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分.1.D2.C3.B4.B5.D6.A7.A8.C 二.填空题:本题考查基本知识和基本运算.每小题5分,满分30分.9.10.11.12.13.14. 三.解答题15.本小题主要考查同角三角函数的基本关系,两角和正弦公式,二倍角的正弦与余弦公式,以及正弦定理.余弦定理等基础知识.考查运算求解能力,满分13分. (Ⅰ)解:在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得. (Ⅱ)解:由(Ⅰ)可得,从而,,故,16.本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故,从而. 所以,随机变量的分布列为 0123 随机变量的数学期望. (Ⅱ)解:设乙同学上学期间的三天中7:30之前到校的天数为,则,且.由题意知事件与互斥,且事件与,事件与均相互独立,从而由(Ⅰ)知 .17.本小题主要考查直线与平面平行.二面角.直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力.运算求解能力和推理论证能力.满分13分. 依题意,可以建立以为原点,分别以的方向为轴,轴,轴正方向的空间直角坐标系(如图),可得,.设,则. (Ⅰ)证明:依题意,是平面的法向量,又,可得,又因为直线平面,所以平面. (Ⅱ)解:依题意,. 设为平面的法向量,则即不妨令,可得.因此有. 所以,直线与平面所成角的正弦值为. (Ⅲ)解:设为平面的法向量,则即不妨令,可得. 由题意,有,解得.经检验,符合题意. 所以,线段的长为.18.本小题主要考查椭圆的标准方程和几何性质.直线方程等基础知识。

2019年高考真题——理科数学(天津卷)附答案解析

2019年高考真题——理科数学(天津卷)附答案解析

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B ⋃=+. ·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =A. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】D 【解析】 【分析】先求A B ⋂,再求()A C B 。

【详解】因为{1,2}A C =,所以(){1,2,3,4}AC B =.故选D 。

【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设变量,x y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≥+≤+,,,,1-y 1-x 02y -x 02-y x ,则目标函数4z x y =-+的最大值为A. 2B. 3C. 5D. 6【答案】D 【解析】 【分析】画出可行域,用截距模型求最值。

【详解】已知不等式组表示的平面区域如图中的阴影部分。

目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值。

由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -, 所以max 4(1)15z =-⨯-+=。

故选C 。

2019年高考真题理科数学(天津卷含解析)

2019年高考真题理科数学(天津卷含解析)

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B ⋃=+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<… ,则()A C B =I UA. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】D【解析】【分析】先求A B ⋂,再求()A C B I U 。

【详解】因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U .故选D 。

【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设变量,x y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≥+≤+,,,,1-y 1-x 02y -x 02-y x ,则目标函数4z x y =-+的最大值为 A. 2B. 3C. 5D. 6【答案】D【解析】【分析】 画出可行域,用截距模型求最值。

【详解】已知不等式组表示的平面区域如图中的阴影部分。

目标函数的几何意义是直线4y x z =+在y 轴上的截距,故目标函数在点A 处取得最大值。

由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -, 所以max 4(1)15z =-⨯-+=。

2019年天津市高考数学试卷(理科)及答案(word版)

2019年天津市高考数学试卷(理科)及答案(word版)

高考数学精品复习资料
2019.5
普通高等学校招生全国统一考试(天津卷)
理科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上
, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上
, 答在试卷上的无效
. 考试结束后, 将本试卷和答题卡一并交回
. 祝各位考生考试顺利! 第Ⅰ卷
注意事项:
1.每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑
. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号
. 2.本卷共8小题, 每小题5分, 共40分.
参考公式:
·如果事件A, B 互斥, 那么
)()()
(B P A P A P B ·棱柱的体积公式
V=Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.
·如果事件A, B 相互独立, 那么
)()(()
B P A A P P B ·球的体积公式34
.3V
R 其中R 表示球的半径.。

2019年高考理科数学试题(天津卷)及参考答案

2019年高考理科数学试题(天津卷)及参考答案

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B =+ .·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A B C .2D 6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b c a <<D .c a b<<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭A .2-B .CD .28.已知a ∈R ,设函数222,1,()ln , 1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e 2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3-5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A.{}2 B.{}2,3 C.{}1,2,3-D.{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩则目标函数4z x y =-+的最大值为A.2B.3C.5D.63.设x R ∈,则“250x x -<”是“|1|1x -<”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出S 的值为 A.5 B.8 C.24 D.295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 2 3 C.2 56.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A.a c b <<B.a b c <<C.b c a <<D.c a b << 7.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫=⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A.2-B. D.28.已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为A.[]0,1B.[]0,2C.[]0,eD.[]1,e第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分. 9.i 是虚数单位,则51ii-+的值为 . 10.83128x x ⎛⎫- ⎪⎝⎭是展开式中的常数项为 .11.的正方形,侧棱长均为若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .12.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为 . 13.设0,0,25x y x y >>+=的最小值为 .14.在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB的延长线上,且AE BE =,则BD AE ⋅= .三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =. (Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.16.(本小题满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.17.(本小题满分13分)如图,AE ⊥平面ABCD,,CF AE AD BC∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值; (Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.18.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.19.(本小题满分14分)设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .20.(本小题满分14分) 设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间; (Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭; (Ⅲ)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++⎪⎝⎭内的零点,其中n N ∈,证明20022sin cos n n n x x e x πππ-+-<-.2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分.1.D2.C3.B4.B5.D6.A7.A8.C二.填空题:本题考查基本知识和基本运算.每小题5分,满分30分.9.10.28 11.π4 12.3413. 14.1- 三.解答题15.本小题主要考查同角三角函数的基本关系,两角和正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力,满分13分. (Ⅰ)解:在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B a a +-+-===-⋅⋅.(Ⅱ)解:由(Ⅰ)可得sin B ==,从而sin 22sin cos B B B ==227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=-⨯= ⎪⎝⎭, 16.本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321(),0,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=.(Ⅱ)解:设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭,且{3,1}{2,0}M X Y X Y =====.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(Ⅰ)知()({3,1}{2,0})(3,1)(2,0)P M P X Y X Y P X Y P X Y ========+==824120(3)(1)(2)(0)279927243P X P Y P X P Y ===+===⨯+⨯=. 17.本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(Ⅰ)证明:依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)解:依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)n x y z =为平面BDE 的法向量,则0,0,n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)n =.因此有4cos ,9||||CE n CE n CE n ⋅==-.所以,直线CE 与平面BDE 所成角的正弦值为49.(Ⅲ)解:设(,,)m x y z =为平面BDF 的法向量,则0,0,m BD m BF ⎧⋅=⎪⎨⋅=⎪⎩即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,m h ⎛⎫=-⎪⎝⎭. 由题意,有224||1cos ,||||3432m n hm n m n h-⋅〈〉===+,解得87h =.经检验,符合题意.所以,线段CF 的长为87.18.本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识。

相关文档
最新文档