量子力学讲义vi 含时微扰论与量子跃迁
量子力学第9章-含时微扰
ˆ ˆ H(t) = H0 + H′(t)
量与时间有关, 因为 Hamilton 量与时间有关,所以体系波函数须由含时 方程解出。但是精确求解这种问题通常是很困难的, Schrodinger 方程解出。但是精确求解这种问题通常是很困难的, 而定态微扰法在此又不适用, 而定态微扰法在此又不适用,这就需要发展与时间有关的微扰理 论。 含时微扰理论可以通过 含时微扰理论可以通过 H0 的定态波函数近似地求出微扰存 在情况下的波函数,从而可以计算无微扰体系在加入含时微扰后, 在情况下的波函数,从而可以计算无微扰体系在加入含时微扰后, 体系由一个量子态到另一个量子态的跃迁几率。 体系由一个量子态到另一个量子态的跃迁几率。
比较等式两边得
(0 (1 δnk = an )(0) +λan )(0) +⋯
(0 an )(0 =δnk ) (1 (2 an )(0 = an )(0 =⋯ 0 ) ) =
n
幂次项得: 比较等号两边同 λ 幂次项得:
不随时间变化,所以a 因 an(0)不随时间变化,所以an(0)(t) = an(0)(0) = δnk。 后加入微扰,则第一级近似: t ≥ 0 后加入微扰,则第一级近似:
(0 (1 (2 an = an ) +λan ) +λ2an ) +⋯
∑
n
n
n
n
m n
零级近似波函数 am 不随时 d m) a(0 间变化, = 0 间变化,它由未微扰时体系 (4)解这组方程 解这组方程, (4)解这组方程,我们可得到关于 所处的初始状态所决定。 所处的初始状态所决定。 t d 的各级近似解, an 的各级近似解,从而得到波函 d (1) am (0 ˆ ′ 的近似解。实际上, 数 Ψ 的近似解。实际上,大多数 iℏ n = ∑ an )H neiωm t m d t 情况下,只求一级近似就足够了。 情况下,只求一级近似就足够了。 n a(2 1, (最后令 λ = 1,即用 H’mn代替 d m) (1 ˆ ′ n iℏ = ∑ an )H neiωm t m d t n λ H’mn,用a m (1)代替 λa m (1)。) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ = ⋯ ⋯
第5章 微扰理论-量子跃迁
§6.含时微扰论前面,我们解决的是H ˆ与t 无关,但不能直接求解,而利用020V m2P H ˆ+=有解析解,并且01V V H ˆ-=较小,通过微扰法求解)r (E )r ()p ˆ,r (H ˆψψ=的近似结果。
有时也能用试探波函数,通过变分来获得。
现在要处理的问题是:体系原处于0H ˆ的本征态(或叠加),而有一与t 有关的微扰)t (H ˆ1附加到该体系。
显然,这时体系的能量不是运动常数,其状态并不处于定态(即使1H ˆ在一段时间中不变),在0H ˆ的各定态中的几率并不是常数,而是随时间变化的。
而且无法获得解析结果。
有时附加作用在一段时间之后结束,这时体系处于0H ˆ的本征态的几率又不随时间变化。
当然,这与作用前的几率已有所不同。
也就是,体系可以从一个态以一定几率跃迁到另一态,这称为量子跃迁。
这就需要利用含时间的微扰论。
总之,含时间的微扰论就是处理体系所处的位势随时间发生变化时,或变化后,体系所处状态发生的变化。
H ˆ与t 有关,体系原处于)P ˆ,r (H ˆ0,随t 加一微动)t (V ψψH ˆti =∂∂ , )t (V H ˆ)t (H ˆ0+= 因0H ˆ不显含t ,而有 )r (E )r (H ˆn0n n 0ϕϕ= 则 ψψ0H ˆti =∂∂的通解为 ∑-=ψnt iEn n 0nea )t ,r (ϕ 0H 的定态∑=nn )t ,r (a ψt iEn ne )r ()t ,r (ϕψ=而 n a 是常数))0,r (),r (())t ,r (),t ,r ((a n n n ψ=ψ=ϕψ 不随t 变当nk n a δ=时,即0t =,处于)r (k ϕ时)t ,r (e )r ()t ,r (k t iEk kψϕ==ψ-即微扰不存在时,体系处于定态)t ,r (k ψ上。
当微扰存在时,特别是与t 有关时,则体系处于0H ˆ的各本征态(或定态) 的几率将可能随时间发生变化。
量子力学微扰理论
量子力学微扰理论量子力学微扰理论是量子力学中一个重要的理论工具,它可以用来研究体系在外加微弱扰动下的行为。
这个理论被广泛应用于各个领域,如原子物理、固体物理和量子化学等。
在本文中,我们将介绍微扰理论的基本原理、应用以及一些相关的研究进展。
一、量子力学微扰理论的基本原理量子力学微扰理论的基本原理是基于微扰理论的思想,通过将体系的哈密顿量拆分为一个容易求解的部分和一个微弱扰动部分,从而简化求解复杂问题的过程。
根据微扰的性质,我们可以将微扰分为两类:一类是无简并微扰,即体系本身的能级是非简并的;另一类是简并微扰,即体系本身的能级是简并的。
对于无简并微扰,我们可以使用微扰理论的一阶近似来计算体系的能级和波函数的改变。
一阶微扰理论的基本公式可以表示为:E_n^{(1)} = E_n^{(0)} + \langle n^{(0)}|V|n^{(0)}\rangle其中,E_n^{(1)}为包含微扰的能级修正,E_n^{(0)}为无微扰的能级,|n^{(0)}\rangle为无微扰下的波函数,V为微弱扰动的哈密顿量。
对于简并微扰,由于在简并态上的微扰能级修正不再是一个确定的值,我们需要使用微扰理论的高阶近似来计算体系的能级和波函数的改变。
高阶微扰理论的计算过程更加复杂,需要考虑简并态之间的耦合效应。
二、量子力学微扰理论的应用1. 原子物理领域在原子物理领域中,微扰理论广泛应用于计算原子的能级结构和跃迁概率。
通过引入微弱的扰动,我们可以计算原子能级的微小变动,并且预测产生的光谱线的频率和强度。
这对于原子吸收光谱和发射光谱的解释具有重要意义。
2. 固体物理领域在固体物理领域中,微扰理论被用来研究固体中的电子能级和电子态密度。
通过引入微弱的外电场或者磁场,我们可以计算固体材料的电子能级的变化,并且研究外界扰动对电子输运性质的影响。
3. 量子化学领域在量子化学领域中,微扰理论被广泛用于计算分子的能谱和分子反应的速率常数。
高等量子力学-理论方法-3量子跃迁理论
1. 对于常微扰,在作用时间相当长的情况下, 跃迁速率将与时间无关,且仅在能量εm ≈εk ,即 在初态能量的小范围内才有较显著的跃迁概率。 在常微扰下,体系将跃迁到与初态能量相同的末态, 也就是说末态是与初态不同的状态,但能量是相同的。 2. 式中的δ(εm -εk) 反映了跃迁过程的能量守恒。 3. 黄金规则 设体系在εm 附近dεm 范围内的能态数目是ρ(εm) dεm , 则跃迁到εm附近一系列可能末态的跃迁速率为:
ˆ | [e it e it ] F [e it e it ] m | F mk k
(1) ( t ) am
Fmk i
t
0
t
[e it e it ]e i mk t dt
Fmk i
0
[e i[mk ]t e i[mk ]t ]dt
H mk i
i
mk
1 t i mk t H e dt mk 0 i
1
mk H mk
t
t
0
e i m kt dt
H mk i
mk
mk H mk
H mk
i mk
e
i mk t
t 0
e
1
mk
H mk
n
代 入
定态波函数 n 构成正交完备系, 整个体系的波函数 可按 n 展开:
i
t
n
ˆ (t ) an ( t )n H an (t )n
n
d i an ( t ) n i an ( t ) n t n dt n ˆ ˆ ( t ) a ( t ) H a ( t ) H n 0 n n n 相 ˆ i n H 0 n n n 消 t
高中物理竞赛量子力学第20讲 量子跃迁的微扰理论
初始时刻的能量本征态 ,这种量子态为定态。 ˆ t 0,若 (0) ,则体系的 2、即使 H
k
状态由(5)式描述 非定态。
5
返
二、定态下量子态的跃迁(1)
ˆ t 0 且 (0) , 则 若 H k | (t ) e
iEk t /
| k
ˆ H ˆ ) | (t ) (8) i | (t ) ( H 0 t iEn t / iEn t / 左边 i Cnk (t )e | n E n Cnk e | n
n n
右边 E n Cnk e
n
iEn t /
(iEnt / ) k 利用(3)式,有 | (t ) an | n k! n k | (t ) an e iEnt / | n
n
(5) (6)
4
注意在(4)式中,an n | (0)
一、量子态随时间的演化(3) | (t ) an e iEnt / | n
n
(9)
在初始条件为| (0) | k 下求解(9)式。 由(8)式,即| (t ) Cnk (t )e
n n iEn t /
| n
| (0) Cnk (0) | n | k n | Cmk (0) | m n | k
| n Cnk e
n
iEn t /
ˆ | H n
8
二、定态下量子态的跃迁(4) iEn t / iEn t / ˆ i Cnk (t )e | n Cnk e H | n
n n
量子力学讲义第十章(讲义)
第10章 微扰论到现在为止,我们利用薛定谔方程求出了六大体系的本征值和本征函数 1、一维自由粒子体系:2ˆˆ2x p H m=, x p ip x x ex ⋅=πψ21)(, 22xp E m= )(∞<<-∞x p , 1=f2、一维无限深势阱222,0ˆ200a x x d H m dx x a ⎧∞<>⎪=-+⎨≤≤⎪⎩ , x an a n πψsin 2=,22222n n E ma π= ,3,2,1=n ,1=f3、一维线性谐振子体系:2222021ˆ,22d H m x dx ωμ=-+ ,)()(2221x H e N x n x n n αψα-=,α=ω )21(+=n E n , ,3,2,1,0=n ,1=f4、平面刚性转子2ˆˆ2z l H I=, ϕπϕim m e21)(=Φ, Im E m 222 =,,2,1,0±±=m ,5、空间刚性转子2ˆˆ2l H I=, ϕθϕθim n l lm lm e P N Y )(cos ),(=, I l l E l 2)1(2 +=,,2,1,0=l , l m ±±±=,,2,1,0 ,12+=l f6、氢原子与类氢原子222ˆ2ze H r μ=-∇-, ),()(),,(ϕθϕθψlm nl nlm Y r R r =, 242222222n z e z e E n a μμ=-=- , ,3,2,1=n ,1,,2,1,0-=n l ,l m ±±±=,,2,1,0 ,2n f =微扰论是从简单问题的精确解出发来求较复杂问题的近似解。
一般分为两大类:一类是体系的哈密顿算符是时间的显函数的情况),ˆ,ˆ(ˆˆt p r H H=,这叫含时微扰,可以用来解释有关跃迁的问题;另一类是体系的哈密顿算符不是时间的显函数,)ˆ,ˆ(ˆˆp r H H=,这叫定态微扰,用来决定体系的定态能级和相应的波函数至所需要的精确度。
量子力学导论Chap11-1
§11.1 量子态随时间的演化
1、量子态问题的分类 (1) 体系可能状态 力学量本征态与本征值问题 量子力学基本假定之一:力学量的观测值与力学 量相应算符的本征值对应。 例如,能量本征态和本征值问题,假设哈密顿量 不显含时间 t, 能量本征方程
H E
但能级往往有简并,必须找到一组含哈密顿量在 内的力学量完全集,得到共同本征态,用一组量 子数才能标记清楚简并的各态。
第十一章 量子跃迁
内容提要
1、量子态随时间的演化 量子态问题的分类 哈密顿量不含时的体系 2、量子跃迁几率,含时微 扰论 量子跃迁 含时微扰论 3、量子跃迁理论与不含时 微扰论的关系 不含时微扰论的分类 常微扰
4、能量-时间测不准关系 能量-时间测不准关系 的引入 普遍情形
5、光的吸收和辐射的半经 典处理 光的吸收与受激辐射 自发辐射的爱因斯坦理 论
t
2
i n 0 t
2
n0
(En E0 )
n x 0
2
n1
所以跃迁只发生在 |0> 到 |1>即第一激发态之间
C10 ( )
(1)
q i 1 2
2 2
2
e
t
2
i t
2
dt
iq
e
2
C k ' k ( t ) const .
(0)
C k ' k ( t ) C k ' k (0) C k ' k (0) k ' k
(0) (0)
2)一级近似
i C k k
e
n
i k n t
量子力学-含时间的微扰论-量子跃迁 Ⅱ. 微扰引起的跃迁 Ⅲ. 磁共振 Ⅳ. 绝热近似
a( 2) n
n'
)
则有
i
d dt
a(n0)
(
t)
0
i
d dt
a
(1) n
(
t
)
n'
Vnn
'einn'
ta
(0) n'
(t)
i
d dt
a
(2) n
(t)
n'
Vnn
'einn'
ta
(1) n'
(
t
)
于是有解 a(n0)(t) An ,它 与 t 无关。
由初条件 t t0 时,体系处于 Hˆ 0 的定
可,则
a
k(1) n
(t)
1 i
tt0
Vnk
( t1 )eiω nk t1
dt1
这表明,体系在 t0 时刻处于 Hˆ 0定态
k (r, t0)。在 t 时刻,体系可处于 Hˆ 0 的
定态
n (r, t)
, 而其概率幅为
a
k(1) n
(t)
( n k )。
因此,我们在 t 时刻,测量发现体系处于
这一态的概率为
Pkn
akn(1) (t) 2
1 2
tt0 Vnk (t1)einkt1dt1 2
例1 处于基态( t )的氢原
子,受位势
V(t) e x E0e t
( 0 为实参数)扰动,
① 求 t 时,处于态 nlm 的
概率
Pnlm
1 2
eE0 nlm x 100 e t ei(EnE1)t dt 2
n1n2nm1
t
第11章 量子跃迁
(t ) aneiEnt / n
特例: (0) k , an nk 定态
n
(4)
(5)
(t ) k e
iEk t /
(6)
5
如果体系在初始时刻并不处于能量的本征态,则以 后也不处于该本征态,而是若干个能量本征态的叠 加,如 (4)所示,叠加系数如(2)式由初态决定。 例1 设一个定域电子处于沿x方向的均匀磁场B中(不 考虑电子的轨道运动),电子内禀磁矩与外磁场的作 用为 eB eB H s B Sx x L x (7) c 2c
dan (t ) * * ˆ i Φ Φ d τ a ( t ) Φ k' n n k ' H ' Φ n dτ dt n n 利用正交归一性得
dak ' (t ) ˆ ' eik ' nt i an (t )H k 'n dt n (6)
10
ˆ 'φ ) 其中 H 'k 'n (φk ' , H n
0
8
的定态波函数近似的计算出有微扰时的波函数,
从而可以计算无微扰体系在微扰的作用下由一个
量子态跃迁到另一个量子态的跃迁几率。并用这
些结果讨论原子对光的发射和吸收等问题。 体系波函数所满足的薛定谔方程是
ˆ i H ( 2) t ˆ 的本征函数 n 为已知: 设H 0
ˆ H 0 n n n
2
H'
0
t
k 'k
e
ik ' k t '
2
dtБайду номын сангаас'
( 9)
量子力学第五章微扰理论
量子力学第五章微扰理论量子力学微扰理论第五章微扰理论在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数。
因此,引入各种近似方法以求解薛定谔方程的问题就显得十分重要。
常用的近似方法有微扰论、变分法等。
不同的近似方法有不同的适用范围。
在本章中将讨论分立谱的微扰理论、变分法。
由于体系的哈密顿算符既可以显含时间,又可以不显含时间,因此,近似方法也可以分为适用于定态的和适用于非定态的两类。
本章将先讨论定态的微扰理论、变分法,然后再讨论含时间的微扰理论以及光的发射和吸收等问题。
__167;5. 1 非简并定态微扰理论近似方法的精神是从已知的简单问题的准确解出发,近似地求较复杂一些的问题的解。
当然,我们还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。
本节将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。
假定体系的哈密顿量H不显含t,能量的本征方程:Hψ=Eψ (5.1.1)满足下述条件:(1) H可分解为H(0)和H’两部分,而且H’远小于H(0)H=H(0) + H’ (5.1.2)H’_lt;_lt;H(0)(5.1.3)(5.1.3)式表示,H与H(0)的差别很小,H’可视为加于H(0)上的微扰。
(5.1.3)式的严格意义将在后面再详细说明。
由于H不显含t,因此,无论H(0)或是H’均不显含t。
(2) H(0) 的本征值和本征函数已经求出,即H(0)的本征方程(0)(0)(0)H(0)ψn=Enψn (5.1.4)中,能级En及波函数ψn都是已知的。
微扰论的任务就是从H(0)的本征值和本征函数出发,近似求出经过微扰后,H的本征值和本征函数。
(3) H(0)的能级无简并。
严格说来,是要求通过微扰论来计算它的修正的那个能级无简并,例如,要通过微扰论计算H’对H(0)的第n个能级En的修正,就要求En不简并,它相应的波函数(0)ψn只有一个。
量子力学 中科大课件 Q11讲稿 第十一章 含时问题与量子跃迁
量子力学中科大课件 Q11讲稿第十一章含时问题与量子跃迁第三部分开放体系问题第十一章含时问题与量子跃迁本章讨论量子力学中的时间相关现象。
它们包括:含时问题求解的一般讨论、含时微扰论、量子跃迁也即辐射的发射和吸收问题。
如果说,以前各章主要研究量子力学中的稳态问题,本章则专门讨论非稳态问题。
根据第五章中有关叙述,由于我们所处时空结构的时间轴固有的均匀性,孤立量子体系的Hamilton量必定不显含时间,从而遵守不显含时间的Schrödinger方程。
因此,这里含时Schrödinger方程所表述的量子体系必定不是孤立的量子体系,而是某个更大的可以看作孤立系的一部分,是这个孤立系的一个子体系。
当这个子体系和孤立系的其他部分存在着能量、动量、角动量、甚至电荷或粒子的交换时,便导致针对这个子体系的各类含时问题。
在了解本章(以及下一章)内容的时候,有时需要注意这一点。
§11.1 含时Schrödinger方程求解的一般讨论1, 时间相关问题的一般分析量子力学中,时间相关问题可以分为两类:i, 体系的Hamilton量不依赖于时间。
这时,要么是散射或行进问题,要么是初始条件或边界条件的变化使问题成为与时间相关的现象。
“行进问题”例如,中子以一定的自旋取向进入一均匀磁场并穿出,这是一个自旋沿磁场方向进动的时间相关问题;258259“初始条件问题”比如,波包的自由演化,这是一个与时间相关的波包弥散问题。
更一般地说,初态引起的含时问题可以表述为:由于Hamilton 量中的某种相互作用导致体系初态的不稳定。
例如Hamilton 量中的弱相互作用导致初态粒子的β 衰变等;最后,“边界条件变动”也能使问题成为一个与时间相关的现象。
例如阱壁位置随时间变动或振荡的势阱问题等。
ii, 体系的Hamilton 量依赖于时间。
这比如,频率调制的谐振子问题或是时间相关受迫谐振子问题,交变外电磁场下原子中电子的状态跃迁问题等等。
第十一章-含时微扰与量子跃迁
例题6 设原子处于激发态,它通过自发辐射而衰变到基态, 寿命为τ。这是一个非定态,其能量不确定度是ΔE,称为 能级宽度Γ。由于寿命的限制,自发辐射光子相应的辐射波 列的长度是Δx~cτ,因此光子动量的不确定度是
p ~ / x ~ / c
光子能量的不确定度是 E cp ~ /
因此原子激发态能量也有一个相应的不确定度,即能级宽度
eB
2c
设初始时刻电子的自旋态为sz的本征态,sz=Ћ/2
(0) 10
求t时刻电子的自旋波函数 (t)
解法一: 设t时刻电子的波函数是 代入薛定谔方程得
(t )
a(t) b(t)
i
d dt
a(t) b(t)
L
0 1
10 ba((tt))
初始条件:a(0)=1, b(0)=0
则 a iLb, b iLa
P
Cm (t) 2
Cm
(t)
2
(m)d m
(7)
m
即
P
4
Hm k
2 (m)
sin2 (mkt 2
mk
/
2)
dmk
(8)
利用公式
lim
t
sin2 xt
πtx 2
δ (x)
,并作变量代换, x ωmk
2
则
P
2t
Hm k
2 (m)
(mk )dmk
(9)
近似地
P
2t
H m k
2 (m)
(10)
单位时间内的跃迁概率(跃迁速率)为
w
P
/
t
2
Hm k 2 (m)
费米黄金规则 (11)
§11.4 能量-时间不确定度关系
量子力学微扰理论
量子力学微扰理论
汇报人:
目录
PRT One
添加目录标题
PRT Three
量子力学微扰理论 的数学基础
PRT Five
量子力学微扰理论 的近似方法
PRT Two
量子力学微扰理论 的基本概念
PRT Four
量子力学微扰理论 的具体应用
PRT Six
量子力学微扰理论 的扩展和展望
单击添加章节标题
微扰项的应用:微扰项在量子力学中有广泛的应用例如在量子力学中微扰项可以用来描 述系统的能量、波函数等物理量的变化也可以用来描述系统的微小变化。
量子力学中的微扰计算方法
微扰理论:量子力学中处理微小扰动的理论 微扰计算方法:通过计算微扰项来求解量子力学问题 微扰项:量子力学中微小扰动的表示 微扰计算步骤:确定微扰项、求解微扰方程、计算微扰结果 微扰计算应用:在量子力学、量子场论、量子光学等领域有广泛应用
微扰理论在量子力学中的具体应用实例
量子力学中的微扰理论可以用于求解量子系统的 能量和波函数
微扰理论在量子力学中的具体应用实例包括:求 解氢原子的能级和波函数、求解电子在磁场中的 运动、求解光子的散射等
微扰理论在量子力学中的具体应用实例还 包括:求解量子系统的能量和波函数、求 解电子在磁场中的运动、求解光子的散射 等
添加标题
微扰理论在量子力学中广泛应用于 求解量子系统的能量和波函数
微扰理论在量子光学中也有应用用 于求解量子光学中的各种物理量
量子力学微扰理论 的数学基础
线性代数和矩阵运算
线性代数:研究线性方程组、向量空间、线性变换等 矩阵运算:矩阵的加法、减法、乘法、转置等 矩阵的特征值和特征向量:求解矩阵的特征值和特征向量 矩阵的逆矩阵:求解矩阵的逆矩阵用于求解线性方程组
第10章 含时微扰法与量子跃迁
i t ˆ 0 H mk exp imk t dt
10
在一级近似下
am t a m
1
i t ˆ t 0 H mk exp imk t dt
亦即,体系在微扰作用下,由态k跃迁到态m的概率为
Wk m am t
2
0
dt
dam t
1
0 i 0 ˆ an t H mn exp imnt n i 1 ˆ an t H mn exp imnt n
dt
dam t
2
dt
8
当t=0时,体系处于定态k,即
振动态的耦合->跃迁概率
17
电子振动跃迁的选律 电子跃迁矩正比于电子跃迁矩, 并正比于相应两电子态的振动 波函数之间的重叠积分. 由于振 动基态在中间(平衡位置)有最 大概率,而激发态在位能曲线附 近都有较大的概率.
1, 2, 3,
18
两个态所对应的波函数的直积,至少与x,y,z所属的不可约 表示之一相同时,则跃迁是允许的。
15
Franck-Condon原理
E Ee Ev
e v
mk e ke kv d v ke kv d me mv me mv mk
J 1
2. 双原子振动光谱的选择定则 1 E ( )h e (=0,1,2,3, ) 2 d , q q q d dr 1 and 0 跃迁允许 若考虑偶极矩的高幂次展开,则 也是跃迁允许 2, 3,
电偶极跃迁矩
跃迁矩x方向分量,决定吸收或发射吸收,跃迁选择定律。
量子跃迁理论与不含时微扰论的关系
量子跃迁理论与不含时微扰论的关系量子跃迁是指量子系统中电子在两个能级之间的转化,这个转化是突然的,而非连续的。
而在量子力学中,不含时微扰论是一种广泛应用于计算量子系统中电子能量和态的方法。
虽然这两种概念在本质上不同,但它们之间有着紧密的联系。
本文将深入探讨量子跃迁理论与不含时微扰论的关系。
1. 量子跃迁理论的基本概念在量子力学中,系统的态可以用波函数来表示。
而该波函数是由薛定谔方程决定的。
假设该系统处于一个由波函数Ψ1表示的状态,而它可以发生跃迁到一个由波函数Ψ2表示的状态。
在该系统内部,发生了一个量子跃迁。
在量子力学中,系统中某个粒子的能量可以用哈密顿量来表示。
系统从状态Ψ1到Ψ2的跃迁,需要发生能量的转化。
这种能量的转化可以使用斯托克斯定理和费马黄金定律来计算。
这表明跃迁的能够与所处的能态有关系,因此,量子力学将其称为量子跃迁。
在某些情况下,一个电子可以通过受激辐射来发生跃迁。
这种现象叫做激光诱导量子跃迁,即通过垂直于电子发射方向的激光,使电子发生跃迁。
量子跃迁还可以分为有辐射跃迁和无辐射跃迁。
辐射跃迁是指在电子跃迁过程中,它向外部辐射光子并传播的现象。
而无辐射跃迁则是电子在出射态和入射态之间跃迁的过程,没有任何辐射产生。
2. 不含时微扰论的基本概念在量子力学中,我们往往需要计算出一些物理量的期望值 即平均值)。
不含时微扰论是一种广泛应用于计算量子系统中电子能量和态的方法。
它的主要思想是,在薛定谔方程的哈密顿量中添加一个微弱的扰动,然后在该体系中求解电子的波函数和能级。
具体来说,假设系统的哈密顿量为H0,并向其添加一个微弱的扰动H1。
则新的哈密顿量为:H=H0 + λH1其中,λ是微弱扰动的系数。
我们可以把H视为一个完整的哈密顿算符,并计算出其对应的本征值和本征函数。
然后,我们将结果展开成幂级数,来近似计算电子的波函数和能级。
这一过程将导致所谓的级数散度,也就是说,随着级数的增加,计算误差将会不断增加。
第5章 2与时间有关的微扰-量子跃迁
i Ent ˆ 0 ˆ i e n (r ) (r , t ) n (r ) e ( H H (t )) (r , t ) t i Ent i Ent ˆ n (r ) e E n (r , t ) n (r ) e H (t ) (r , t )
3 0
0
2
0
Y
* 11
1 Y10 sin d d 0 3
* ˆ H 211,100 211 H 100 d
e (t ) R21r R10 dr
3 0
0
2
0
Y cosY00 sin d d
* 11
e (t ) R21r R10dr
i E t n ie n (r ) (r , t ) e E n n (r ) (r , t t i Ent ˆ n (r ) e H (t ) m (r , t ) m (r , t ) (r , t i E t n
ˆ ˆ ˆ H (t ) A cost F (e it e it )
从t=0开始作用于体系,求体系从k态跃迁到n 态的概率。 ˆ ˆ 解:H nk n* H k d n* F k d (e it e it ) Fnk (e it e it )
展开,则第n项的展开系数为
a n (t ) n (r , t ) (r , t )
i Ent 而| a n (t ) | 即t时刻体系处于 n (r , t ) n (r ) e
2
态的概率。
式(5.22)左乘
i Et n
量子力学讲义第1112章
第四篇 跃迁问题和散射问题量子跃迁 ~ 初态 −→−'H末态:几率?弹性散射 ~ 初态 −−→−)(r U 末态:散射截面(几率)?第十一章 量子跃迁量子态的两类问题:① 体系的可能状态问题,即力学量的本征态和本征值问题。
② 体系状态随时间演化问题ψψH ti =∂∂。
11.1 跃迁与跃迁几率设 )0().()(),()(0)0()0()0(00=∂∂='+=tH r E r H t H H t H n nnψψ → 定态波函数 ,......2,1,)(),()0()0()0(==-n e r t r t E in nn ψψ。
将)(t H ' 作微扰,t =0时加入。
本节讨论在)(t H '作用下,由初态)0(k ψ−→−'H末态)0(m ψ的几率?=→m k W一、体系由)0(k ψ→)0(m ψ的几率将),(t r ψ按}{)0(n ψ展开:)()(),()0(r t C t r n nn ψψ∑=。
由0H 的定态波函数知,0H 引起的变化由tE i n e )0(-反映,故可令t E i n n n et a t C )0()()(-=,)(t H '引起的变化由)}({t a n 反映。
),()()()(),()0()0()0(t r t a r e t a t r n nn n t E in n nψψψ∑∑==→-。
)(~)(2t a t a W m m m k =∴→称为几率幅。
二、)(t a n 的运动方程利用含时S-方程,有∑∑∑∑'+=∂∂+nnn n n n n n n n n n t r H t a t r H t a t r t t a i dt t da t r i ),()(),()(),()()(),()0()0(0)0()0(ψψψψ 由 ∑∑'=→=∂∂nn n n n n n n t r H t a dt t da t r i t r H t r t i ),()()(),(),(),()0()0()0(0)0(ψψψψ用),()*0(t r m ψ左乘,并积分得∑'=nt i mnn m mn e H t a dt t da i ω)()(, 式中 )(1,)()()0()0()0()*0(n m mn n m mnE E d r H r H -='='⎰ωτψψ~玻尔频率。
量子力学课件:第11章 量子跃迁
振子仍然停留在基态的几率为1 —《Joo)。可以看出,如r — oo,即 微扰无限缓慢地加进来,则R()(OO)= 0,粒子将保持在基态,即不发生 跃迁。
例
设体系受到一个突发的(但有限的)微扰作用
, W,t<^/2,+
")= I '0TO+)(2。)
①无限缓慢地引进微扰设
=(-00< r <0)(2)
式中参数丁表征微扰加进来的快慢。丁 T 8
表示微扰无限缓慢地引进来。
设t = —g时体系处于H()的非简并态B〉( ~能量Ek),按微扰论一 级近似,,=0时刻体系跃迁到|kf)态(k‘。k)的波幅为
.
C?(0) = -d《[H仆)exp ; +讪皿t
了。因此C,N)的变化只能来自H'。此即相互作用表象。
当然,对于一般的H'(r),问题求解是困难的。但如很微弱(从 经典力学来讲h,« H°), |C,派。)「随时间很缓慢地变化,体系仍有很 大的几率停留在原来状态,即|C以(,)「<<1,(〃壬A)。在此情况下, 可以用微扰逐级近似方法,即含时微扰论来求解。
rule)»
陋■利用H'的厄密性,H\k = H、,可以看出,在一级近似下, 从人态到I态的跃迁几率4久,等于从$态到&态的几率(kJ k)。但 应注意,由于能级一般有简并,而且简并度不尽相同,所以不能一般地 讲:从能级到能级£;的跃迁几率等于从能级己《到能级功的跃迁几 率。如要计算跃迁到能级•,的跃迁几率,则需要把到能级的诸简并 态的跃迁几率都考虑进去。如果体系的初态(由于•能级有简并)未完 全确定,则从诸简并态出发的各种跃迁几率都要逐个计算,然后进行平 均(假设各简并态出现的几率相同)。简单说来,应对初始能级诸简并 态求平均,对终止能级诸简并态求和。例如,一般中心力场中粒子能级Enl的简并度为(2/ + 1)(磁量子数m = l,l-l,・・・,—/)。所以从E试能级到E〃t能级的跃迁几率为
物理学相关 第9章 含时微扰与量子跃迁
(9.1-16)
4
Hm k 2
2
sin2 mkt 2
mk
2
可以证明 sin2 (mkt
2)
/
2 mk
在
t
足够大时为
函数的形式。首先证明公式
lim sin2 xt (x) t tx2 当 x 0 时,上式左边的极限为零;当 x 0 时
(9.1-17)
因而有
sin xt 1 xt
lim
t
sin2 xt tx2
含时薛定谔方程 9.1-2 式的等价表示形式。如果我们能够解出 9.1-8 式(当然需要给定初始
条件cn (0) ),我们问题就得到解决。但是在大多数情况下,9.1-8 式的严格解很难得到,
需要利用近似方法。
设 t 0 时 , 体 系 处 于 Hˆ (0) 的 第 k 个 定 态 k , 即 初 始 条 件 为 , ck (0) 1 , 其 余
第9章 含时微扰与量子跃迁
当体系哈密顿量中的势能部分不显含时间时,即V (r,t) V (r) ,含时薛定谔方程的一般解
可表示为定态的叠加
(r, t) cneiEnt/ n (r) n
其中叠加系数 cn 不依赖时间,因此对这个一般态测量能量时,它坍缩到某个定态的概率不 随时间改变,它完全是由初始波函数 (r, 0) 所确定。用更通俗的语言来说,粒子处于某个
i
n
n
dcn (t) dt
i
n
cn
(t
)
t
n
n
cn (t)Hˆ
(0) n
n
cn (t)Hˆ n
(9.1-5)
由 Hˆ (0) 满足的定态方程,上式的左边第二项和右边第一项相互抵消,这样 5.6-5 式变为
量子跃迁理论
Equation Chapter 9 Section 1 §9.1 含时微扰理论(量子跃迁理论)第八章讨论了分立能级的能量和波函数的修正,所讨论体系的ˆH不含时间,因而求解的是定态薛定谔方程。
本章主要讨论体系哈密顿算符含有时间的微扰理论。
1、适用情况体系()ˆH t 由0ˆH 和()ˆH t '这两部分组成:()()0ˆˆˆH t H H t '=+ (9.1.1)其中0ˆH 为与时间无关,无微扰哈密顿算符,其本征值与本征函数为已知,本征方程为()()0ˆn n n H r E r φφ=,n E 为分立能级,第n 个定态波函数为()(),n iE tn n r t r eφ-Φ=⋅,薛定谔方程为()()0ˆ,,n nir t H r t t∂Φ=Φ∂。
()ˆH t '显含时间,且要求()0ˆˆ""Ht H ',并且()ˆH t 随时间变化,此时体系能量不是守恒量,体系不存在严格的定态。
此时求解定态薛定谔方程是很困难的,要求解含时薛定谔方程()()()ˆ,,ir t Ht r t tψψ∂=∂ (9.1.2)这时体系能量随时间变化,我们不再讨论能量,主要讨论跃迁几率 2、跃迁几率与跃迁几率(振)幅t 时刻将(),r t ψ按0ˆH 的本征函数系()n r φ完全展开()()()()()()(),,n n n niE tn n n n n nr t c t r a t er a t r t ψφφ-=≡⋅⋅=⋅Φ∑∑∑(9.1.3)相当于选取了能量表象。
上式相当于将体系波函数(),r t ψ按0ˆH 的定态波函数(),n r t Φ做完全展开,展开系数()()(),,n n a t r t r t ψΦ。
根据展开假设()()()222n iE tn n n c t a t ea t -==,表示t 时刻,测量能量值为n E 的几率。
即体系()()2,,n r t r t ψ=Φ,处于()n r φ态的几率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VI. 含时微扰论与量子跃迁
1.定态微扰问题与量子跃迁问题在研究目标与处理方法上有何不同?
答:定态微扰与量子跃迁,是量子力学中两个不同类型的问题,它们的研究目标与手段都不一样.定态微扰是定态问题,它考虑加入微扰作用之后,如何求出体系总哈密顿量的本征值与本征函数的修正项.其出发点为定态波动方程.量子跃迁问题是考虑体系在微扰作用下,波函数随时间变化的问题,是依据含时波方程
实际计算量子态间跃迁概率的问题.一般说来,这两类问题都需应用近似方法求解.
2.含时微扰在含时情况不同时,对体系产生的效果有何不同?
答:如果微扰作用平缓稳定,则将产生定态扰动效果,如能级与量子态偏移,简并消除等.如果扰动作用是以淮
静态方式加于体系的(即变化极其缓慢),将不会产生跃迁效应.相反,若扰动作用时间不长,则只可能发生跃迁而不会发生定态扰功效应.对于一般情况,两种效应都可能发生.这里,扰动时间长短,或变化快慢,是相对体系本身的所谓特征
时间而言的.如对于原子,其特征时间为(秒)。
因此人为施加的宏观扰动都可视为定态扰动·(
为体系能级间距所对应的角频率).
3.非相对论量子力学中是如何处理光的吸收和辐射问题的?
答:在通常量子力学(非相对论量子力学)中,处理光的吸收与辐射问题采用的是半经典方法.这种方法将入射光用经典的电磁被来描述,光与原于(主要与原子中的电子)的相互作用也用经典电动力学的方法来表示.例如将量子电磁体系展开为为电偶极矩.电四极矩、磁偶极矩等多极结构.以电磁波与不同近似的多极结构的相互作用为周期件微扰,以便以后使用量子跃迁方法求出相应的跃迁概率与跃迁速率.由于这种方法综合运用了经典电动力学理论与量子跃迁理论,故称之为半经典方法.这类方法在非相对论量子力学中经常应用.
4.用沿正方向传播的右旋圆偏振光照射原子,造成原子中电子的受激跃迁.求选择定则.
解:右旋偏振光中的电场的旋转方向符合右手螺旋法则.因波长远大于原于半径,可以略去电场的空间变化(相当于只考虑电偶极跃迁).如以表示光波电场的振幅,则电场的时间变化为
(1)
光波对原子的作用势为:
(2)
(a)电子由态态,。
电子由高能级跃迁到低能级(放出光子),这时式(2)中项对跃迁产生主要贡献
,跃迁矩阵元为.根据球谐函数的递推关系,易得选择定则为:
(3)
(b)电子由态态,。
电子由低能级跃迁到高能级(吸收光子),这时式(2)中项对跃迂产生贡献
,跃迁矩阵元为,选择定则为
(4)
以上结果可以用角动量守恒定律解释如下.光子自旋为,其分量为.沿正方向传播的右旋偏振光,光子自旋的
分量为,当电子吸收一个光子后,其角动量的分量增加,故有选择定则.反之,在受激辐射中,电子放出一
个右旋偏振光子后。
角动量分量减少,故选择定则为
量子数的选择定则也可以用电子—光于角动量耦合的矢量模型(三角形法则)结合宇称考虑而得到解释.
注:被电子吸收或放出的光子,其轨道角动量为,理由如下:光子动量为波长.轨道角动量约为
为玻尔半径.由于,所以,即.所以只需要考虑光子的自旋.
电子科技大学光电信息学院Copyright © 2005。