土木工程专业英语论文

合集下载

土木工程英语作文

土木工程英语作文

土木工程英语作文Civil engineering is an exciting and diverse field that involves the design, construction, and maintenance of infrastructure projects. It's a career path that requires creativity, problem-solving skills, and a deep understanding of math and physics.For me, the best part about civil engineering is seeing the impact of my work on people's lives. Whether it's building a new bridge that connects two communities or designing a safe and efficient water supply system, civil engineers make a significant contribution to society.One challenge that civil engineers often face is dealing with unexpected obstacles. Whether it's a geological surprise underground or a sudden change in weather conditions, we need to be able to adapt and find solutions quickly. This requires a lot of flexibility and resourcefulness.Another aspect of civil engineering that I find fascinating is the use of technology. With the advancementof tools like BIM (Building Information Modeling) and drones, we can now design and construct projects more efficiently and accurately than ever before. It's excitingto see how technology is shaping the future of our industry.Overall, civil engineering is a rewarding and challenging career choice. It's a field that offers endless opportunities to learn, grow, and make a positive.。

土木工程专业英语的认识英语作文

土木工程专业英语的认识英语作文

土木工程专业英语的认识英语作文全文共10篇示例,供读者参考篇1Hey guys, do you know what is civil engineering? Let me tell you about it!Civil engineering is a super cool major that deals with designing, building, and maintaining infrastructure like roads, bridges, dams, and buildings. It's like playing with Lego blocks, but on a much bigger scale!In civil engineering, we learn about different materials like concrete, steel, and asphalt, and how to use them to create strong and safe structures. We also learn about concepts like forces, loads, and stresses, which help us make sure our buildings can stand up to all kinds of conditions.One of the coolest things about civil engineering is that we get to see our designs come to life. We work with architects, contractors, and other professionals to turn our ideas into real, tangible structures that people use every day. It's amazing to think that something we designed could be used by so many people!Civil engineering is also important for keeping people safe. We have to make sure that our buildings and infrastructure are built to withstand earthquakes, floods, and other natural disasters. It's a big responsibility, but it's also really rewarding to know that our work is making a difference in people's lives.So, if you like building things, solving problems, and making the world a better place, then civil engineering might be the perfect major for you. It's challenging, it's fun, and it's a great way to use your creativity and skills to create something amazing. Give it a try!篇2Yo guys! Today I wanna talk about something super interesting - Civil Engineering! Have you guys heard about it before? Well, if not, don't worry because I'm here to tell you all about it.So basically, Civil Engineering is all about designing and building stuff like bridges, roads, buildings, and dams. Pretty cool, right? It's like playing with giant Lego blocks but in real life! Civil engineers use their knowledge of math, science, and technology to make sure everything is strong, safe, and works the way it's supposed to. They have to think about things likehow much weight a bridge can hold or how deep a foundation needs to be for a tall building. It's a lot of hard work but also super fun!One of the cool things about Civil Engineering is that you get to see your projects come to life. Imagine driving over a bridge that you helped design or walking into a building that you helped build - how cool is that? And not only that, but Civil Engineering is also important for keeping people safe and improving our communities. So if you like being creative, solving problems, and making a difference in the world, then Civil Engineering might be the perfect job for you!In conclusion, Civil Engineering is an awesome field that involves designing and building things like bridges, roads, and buildings. It requires a lot of hard work and thinking but it's also super rewarding. If you're interested in math, science, and technology and want to make a positive impact on the world, then you should definitely consider a career in Civil Engineering. Who knows, maybe one day you'll be the one designing the next iconic landmark in your city!篇3Title: My Understanding of Civil Engineering in a Fun and Simple WayHey guys, have you ever heard of civil engineering? It may sound a bit boring, but trust me, it's super cool and important! Let me tell you all about it in a fun and simple way.So, what is civil engineering? Well, it's all about building stuff like roads, bridges, and buildings. Civil engineers design and plan these things to make sure they are safe, strong, and can last for a long time. They also make sure everything is built in the right place and follows the rules and regulations.One of the coolest things about civil engineering is that you get to use math and science to solve real-life problems. For example, when building a bridge, civil engineers have to calculate the right size and shape of the materials to make sure the bridge can support the weight of cars and trucks.Another fun fact about civil engineering is that it's not just about building stuff. Civil engineers also help protect the environment by designing projects that are sustainable and eco-friendly. They also work to improve the quality of life for people by creating safe and efficient infrastructure.In conclusion, civil engineering is an amazing field that combines creativity, problem-solving skills, and a passion for making the world a better place. If you love building things and want to make a positive impact on society, then civil engineering might be the perfect career for you. So, next time you see a building or a bridge, remember that it was probably designed and built by a team of awesome civil engineers!篇4Oh my gosh, have you guys heard about this thing called Civil Engineering? It sounds super cool and interesting! Let me tell you all about it in a fun and easy way!So, Civil Engineering is basically all about building stuff like bridges, roads, buildings, and all sorts of cool structures. It's like being a real-life Lego master! You get to use your creativity and problem-solving skills to design and construct things that help people in their everyday lives.One of the things that Civil Engineers do is make sure that structures are safe and sturdy. They have to think about things like the materials they use, the environment they're building in, and how to make everything strong and durable. It's like being asuperhero, but instead of fighting bad guys, you're saving the day with your awesome building skills!Another cool thing about Civil Engineering is that you get to work with a bunch of different people. You'll collaborate with architects, construction workers, and other engineers to bring your designs to life. It's like being part of a big team where everyone has a special role to play.So, if you love building things, solving puzzles, and working with others, then Civil Engineering might be the perfect career for you. Who knows, maybe one day you'll design the next amazing skyscraper or build a bridge that connects two cities. The possibilities are endless!In conclusion, Civil Engineering is an exciting and rewarding field that lets you be creative, solve problems, and make a real impact on the world around you. So, if you're up for a fun and challenging adventure, then why not give it a try? You could be the next big Civil Engineer superstar!篇5Oh! Hi everyone! Today I want to talk about something super cool - Civil Engineering!So, like, civil engineering is all about building and stuff. It's like, using science and math to design and construct things like buildings, bridges, roads, and even airports! It's, like, super important because without civil engineers, we wouldn't have all the awesome buildings and structures that we use every day.I learned that civil engineers have to be really good at math and science. They have to study things like physics, chemistry, and calculus. It's, like, really hard work but also super fun because you get to build things and make them safe for everyone to use.One of the things that civil engineers have to think about is, like, making sure that buildings and bridges are strong and won't fall down. They have to use materials like concrete and steel to make sure everything is safe and sturdy. They also have to think about things like the environment, making sure that their projects are good for the earth.I think civil engineering is, like, so cool because you get to use your brain to create amazing things that help people every day. I hope to be a civil engineer one day and build awesome stuff for everyone to enjoy!So, yeah, that's my super fun and cool essay about civil engineering. I hope you liked it! Thank you for reading!篇6Title: My Understanding of Civil EngineeringHey guys! Today I want to talk about this super cool and important thing called civil engineering. I know it sounds like a big word, but trust me, it's not that hard to understand once you get the hang of it.So, what is civil engineering? Basically, it's all about designing and building stuff like roads, bridges, buildings, and even dams. Civil engineers are like the superheroes of the construction world, making sure everything is safe and strong for us to use.One of the things I find really fascinating about civil engineering is how it combines science and creativity. You have to use math and physics to calculate loads and stresses, but you also get to be creative and come up with cool designs that look good and work well.Another important aspect of civil engineering is making sure that the things we build are safe for the environment. We have to think about things like how our structures will affect the land, water, and air around them. It's like being a guardian of the planet!In conclusion, civil engineering is all about making the world a better place by building things that help people and protect the environment. It's a super important job, and I think it's really cool that people get to do it every day. Who knows, maybe one day I'll become a civil engineer too!篇7Hello everyone, today I want to talk about civil engineering in a fun and easy way. So, what is civil engineering? It's like building stuff, like houses, bridges, and roads. It's a super cool job because you get to make things that people use every day.Civil engineers have to know a lot of stuff to do their job right. They have to learn about math, science, and how materials work. They also have to think about the environment and how their projects will affect it. That's why civil engineers are like superheroes, they save the day by building things that make our lives better!One of the most important things civil engineers do is designing structures that are safe and strong. They have to make sure buildings won't fall down in an earthquake or that bridges can hold up lots of cars. It's really important work because people's lives depend on it.Civil engineering is a great career choice for anyone who likes to be creative and solve problems. Plus, it's a job where you get to see the results of your hard work every day. So, if you like building things and making a difference in the world, maybe civil engineering is the job for you!篇8Oh wow, do you know what a civil engineering major is? Let me tell you all about it!Civil engineering is all about building stuff like bridges, roads, and buildings. It's like being a super cool architect who actually gets to make the stuff they design. You get to use all kinds of tools and machines to make sure everything is strong and safe.One really important thing civil engineers do is make sure everything is built in a way that won't fall down or break. They use math and science to make sure the buildings are strong enough to handle everything that comes their way.Another cool thing about civil engineering is that you get to work on all different kinds of projects. One day you might be designing a new highway and the next day you could be working on a skyscraper. It's always something new and exciting!Overall, civil engineering is all about making the world a better and safer place to live. It's a super important job and I think it would be really fun to do someday. Who knows, maybe one day I'll be the one designing a giant bridge that everyone uses!篇9Hey guys! Today I'm gonna talk to you about Civil Engineering! It's a super cool field where people design and build things like bridges, roads, and buildings. It's like playing with giant Lego blocks, but way more serious!So, what exactly do civil engineers do? Well, they use math, science, and technology to come up with plans for all kinds of structures. They have to make sure everything is safe, strong, and will last a long time. It's a big responsibility, but it's also really exciting!One of the coolest things about civil engineering is that you get to see your ideas come to life. You work with a team of professionals to bring projects from the planning stage to actually building them. It's like being a superhero, but instead of fighting bad guys, you're creating amazing things that help people every day.And if you're into the environment, civil engineering is a great choice. Engineers are always looking for ways to build things that are eco-friendly and sustainable. They want to protect the planet while still making sure we have all the things we need to live comfortably.So, if you're interested in math, science, and making the world a better place, maybe civil engineering is the right career for you! It's a challenging but rewarding field that lets you use your brainpower to create awesome stuff. So go out there and start building your future in civil engineering!篇10Hi everyone, today I want to talk about Civil Engineering, which is a very cool field in the world!First of all, what is Civil Engineering? Well, it's all about building things like roads, bridges, buildings, and even big dams! Civil engineers make sure that everything is safe and strong. They also make sure that our environment is protected while building these things.One of the most important things in Civil Engineering is math. You have to be good at math to make sure all themeasurements are right and everything fits perfectly. You also have to be creative and think of new ways to solve problems.Civil engineers work with a lot of different tools and machines. They use things like computers, surveying equipment, and even big cranes! It's like being a superhero but with cool gadgets.Another important thing in Civil Engineering is teamwork. You have to work together with other engineers, architects, and construction workers to make sure everything is done perfectly. It's like being part of a big family where everyone helps each other.In conclusion, Civil Engineering is a super cool field where you get to build amazing things and make the world a better place. If you like math, science, and working with others, then this might be the perfect job for you! So, let's all become future Civil Engineers and make the world a safer and more beautiful place!。

土木工程英文文献及翻译-英语论文.doc

土木工程英文文献及翻译-英语论文.doc

土木工程英文文献及翻译-英语论文土木工程英文文献及翻译in Nanjing, ChinaZhou Jin, Wu Yezheng *, Yan GangDepartment of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi’an Jiao Tong University,Xi’an , PR ChinaReceived 4 April 2005; accepted 2 October 2005Available online 1 December 2005AbstractThe bin method, as one of the well known and simple steady state methods used to predict heating and cooling energyconsumption of buildings, requires reliable and detailed bin data. Since the long term hourly temperature records are notavailable in China, there is a lack of bin weather data for study and use. In order to keep the bin method practical in China,a stochastic model using only the daily maximum and minimum temperatures to generate bin weather data was establishedand tested by applying one year of measured hourly ambient temperature data in Nanjing, China. By comparison with themeasured values, the bin weather data generated by the model shows adequate accuracy. This stochastic model can be usedto estimate the bin weather data in areas, especially in China, where the long term hourly temperature records are missingor not available.Ó 2005 Elsevier Ltd. All rights reserved.Keywords: Energy analysis; Stochastic method; Bin data; China1. IntroductionIn the sense of minimizing the life cycle cost of a building, energy analysis plays an important role in devel-oping an optimum and cost effective design of a heating or an air conditioning system for a building. Severalmodels are available for estimating energy use in buildings. These models range from simple steady state mod-els to comprehensive dynamic simulation procedures.Today, several computer programs, in which the influence of many parameters that are mainly functionsof time are taken into consideration, are available for simulating both buildings and systems and performinghour by hour energy calculations using hourly weather data. DOE-2, BLAST and TRNSYS are such* Corresponding author. Tel.: +86 29 8266 8738; fax: +86 29 8266 8725.E-mail address: yzwu@ (W. Yezheng).0196-8904/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved.doi:10.1016/NomenclatureZ. Jin et al. / Energy Conversion and Management 47 (2006) 1843–1850number of daysfrequency of normalized hourly ambient temperatureMAPE mean absolute percentage error (%)number of subintervals into which the interval [0, 1] was equally dividednumber of normalized temperatures that fall in subintervalprobability densityhourly ambient temperature (°C)normalized hourly ambient temperature (dimensionless)weighting factorSubscriptscalculated valuemeasured valuemax daily maximummin daily minimumprograms that have gained widespread acceptance as reliable estimation tools. Unfortunately, along withthe increased sophistication of these models, they have also become very complex and tedious touse [1].The steady state methods, which are also called single measure methods, require less data and provideadequate results for simple systems and applications. These methods are appropriate if the utilization ofthe building can be considered constant. Among these methods are the degree day and bin data methods.The degree-day methods are the best known and the simplest methods among the steady state models.Traditionally, the degree-day method is based on the assumption that on a long term average, the solarand internal gains will offset the heat loss when the mean daily outdoor temperature is 18.3 °C and thatthe energy consumption will be proportional to the difference between 18.3 °C and the mean daily tempera-ture. The degree-day method can estimate energy consumption very accurately if the building use and theefficiency of the HVAC equipment are sufficiently constant. However, for many applications, at least oneof the above parameters varies with time. For instance, the efficiency of a heat pump system and HVAC equip-ment may be affected directly or indirectly by outdoor temperature. In such cases, the bin method can yieldgood results for the annual energy consumption if different temperature intervals and time periods areevaluated separately. In the bin method, the energy consumption is calculated for several values of the outdoortemperature and multiplied by the number of hours in the temperature interval (bin) centered around thattemperature. Bin data is defined as the number of hours that the ambient temperature was in each of a setof equally sized intervals of ambient temperature.In the United States, the necessary bin weather data are available in the literature [2,3]. Some researchers[4–8] have developed bin weather data for other regions of the world. However, there is a lack of informationin the ASHRAE handbooks concerning the bin weather data required to perform energy calculations in build-ings in China. The practice of analysis of weather data for the design of HVAC systems and energy consump-tion predictions in China is quite new. For a long time, only the daily value of meteorological elements, such asdaily maximum, minimum and average temperature, was recorded and available in most meteorologicalobservations in China, but what was needed to obtain the bin weather data, such as temperature bin data,were the long term hourly values of air temperature. The study of bin weather data is very limited in China.Only a few attempts [9,10] in which bin weather data for several cities was given have been found in China.Obviously, this cannot meet the need for actual use and research. So, there is an urgent need for developing binweather data in China. The objective of this paper, therefore, is to study the hourly measured air temperaturedistribution and then to establish a model to generate bin weather data for the long term daily temperaturedata.2. Data usedZ. Jin et al. / Energy Conversion and Management 47 (2006) 1843–1850In this paper, to study the hourly ambient temperature variation and to establish and evaluate the model, aone year long hourly ambient temperature record for Nanjing in 2002 was used in the study. These data aretaken from the Climatological Center of Lukou Airport in Nanjing, which is located in the southeast of China(latitude 32.0°N, longitude 118.8°E, altitude 9 m).In addition, in order to create the bin weather data for Nanjing, typical weather year data was needed.Based on the long term meteorological data from 1961 to 1989 obtained from the China MeteorologicalAdministration, the typical weather year data for most cities in China has been studied in our former research[11] by means of the TMY (Typical Meteorological Year) method. The typical weather year for Nanjing isshown in Table 1. As only daily values of the meteorological elements were recorded and available in China,the data contained in the typical weather year data was also only daily values. In this study, the daily maxi-mum and minimum ambient temperature in the typical weather year data for Nanjing was used.3. Stochastic model to generate bin dataTraditionally, the generation of bin weather data needs long term hourly ambient temperature records.However, in the generation, the time information, namely the exact time that such a temperature occurredin a day, was omitted, and only the numerical value of the temperature was used. So, the value of each hourlyambient temperature can be treated as the independent random variable, and its distribution within the dailytemperature range can be analyzed by means of probability theory.3.1. Probability distribution of normalized hourly ambient temperatureSince the daily maximum and minimum temperatures and temperature range varied day by day, the con-cept of normalized hourly ambient temperature should be introduced to transform the hourly temperatures ineach day into a uniform scale. The new variable, normalized hourly ambient temperature is defined by^ ¼ttmintmaxtminwhere ^ may be termed the normalized hourly ambient temperature, tmaxand tminare the daily maximum andminimum temperatures, respectively, t is the hourly ambient temperature. Obviously, the normalized hourly ambient temperature ^ is a random variable that lies in the interval [0, 1].To analyze its distribution, the interval [0, 1] can be divided equally into several subintervals, and by means ofthe histogram method [12]iin each subinterval can be calculated by1137土木工程英文文献及翻译Based on the one year long hourly ambient temperature data in Nanjing, China, the probability density piwas calculated for the whole day and the 08:00–20:00 period, where the interval [0, 1] was equally divided into50 subintervals, namely n equals 50. The results are shown in Fig. 1.According to the discrete probability density data in Fig. 1, the probability density function of ^ can beobtained by a fitting method. In this study, the quadratic polynomialswere used to fit the probability density data, where a, b and c are coefficients. According to the property of theprobability density function, the following equation should be satisfiedAs shown in Fig. 1, the probability density curve obtained according to the probability density data pointsis also shown. The probability densit y functions that are fitted are described byp ¼ 2:7893^23:1228^ þ 1:6316 for the whole day periodp ¼ 2:2173^20:1827^ þ 0:3522 for the 08 : 00–20 : 00 period3.2. The generation of hourly ambient temperatureAs stated in the beginning of this paper, the objective of this study is to generate the hourly ambient tem-perature needed for bin weather data generation in the case that only the daily maximum and minimum tem-peratures are known. To do this, we can use the obtained probability density function to generate thenormalized hourly ambient temperature and then transform it to hourly temperature. This belongs to theproblem of how to simulate a random variable with a prescribed probability density function and can be doneon a computer by the method described in the literature [13]. For a given probability density function f ð^Þ, ifits distribution function F ð^Þ can be obtained and if u is a random variable with uniform distribution on [0, 1],thenF, we need only setAs stated above, the probability density function of the normalized ambient temperature was fitted using aone year long hourly temperature data. Based on the probability density function obtained, the random nor-malized hourly temperature can be generated. When the daily maximum and minimum temperature areknown, the normalized hourly temperature can be transformed to an actual temperature by the followingequationWhen the hourly temperature for a particular period of the day has been generated using the above method,the bin data can also be obtained. Because the normalized temperature generated using the model in this studyis a random variable, the bin data obtained from each generation shows somedifference, but it has much sim-ilarity. To obtain a stable result of bin data, the generation of the bin data can be performed enough times,and the bin data can be obtained by averaging the result of each generation. In this paper, 50 generations wereaveraged to generate the bin weather data.Z. Jin et al. / Energy Conversion and Management 47 (2006) 1843–18503.4. Methods of model evaluationThe performance of the model was evaluated in terms of the following statistical error test:土木工程英文文献及翻译一种产生bin气象数据的随机方法——中国南京周晋摘要:bin方法是一种众所周知且简捷的稳态的计算方法,可以用来预计建筑的冷热能耗。

土木工程英语作文模板及范文

土木工程英语作文模板及范文

土木工程英语作文模板及范文英文回答:Civil Engineering Essay Template and Sample。

Introduction。

Hook: Begin with a captivating fact or question related to the topic of civil engineering.Thesis statement: State your main argument or purpose for writing the essay.Body Paragraph 1: Importance of Civil Engineering。

Discuss the critical role of civil engineers in society.Provide examples of essential infrastructure projects (e.g., bridges, roads, buildings).Explain how these projects enhance quality of life and economic growth.Body Paragraph 2: Challenges in Civil Engineering。

Identify common challenges faced by civil engineers, such as environmental concerns, design complexities, and cost constraints.Discuss how these challenges require innovative solutions and collaboration.Body Paragraph 3: Technological Advancements。

Describe emerging technologies that are transforming civil engineering practices.Examples could include BIM (Building Information Modeling), drone surveys, and advanced materials.Explain how these advancements enhance efficiency,accuracy, and sustainability.Body Paragraph 4: Case Study。

土木工程英语作文

土木工程英语作文

土木工程英语作文Civil engineering is a critical branch of engineering that deals with the design, construction, and maintenance of the physical and naturally built environment. This includes the construction of public works, such as roads, bridges, canals, dams, and buildings. In this essay, we will explore the significance of civil engineering in shaping our modern society and the various ways it impacts our daily lives.Firstly, civil engineering plays a pivotal role in the development of infrastructure, which is the backbone of any thriving economy. The construction of roads, railways, and airports facilitates transportation and connectivity, which is essential for the movement of goods and people. This, in turn, promotes trade, tourism, and economic growth. Without civil engineers, the efficient transportation systems we rely on would not be possible.Secondly, civil engineering is responsible for the construction of buildings that provide shelter and workspace for the population. From residential homes to commercial skyscrapers, the safety and functionality of these structures are paramount. Civil engineers must ensure that buildings are designed to withstand natural disasters such as earthquakes and hurricanes, safeguarding the lives of the occupants.Thirdly, the field of civil engineering is integral to environmental sustainability. Engineers are tasked withfinding solutions to challenges such as climate change, water scarcity, and pollution. They develop systems for clean water supply, wastewater management, and sustainable energy production, which are crucial for the well-being of ourplanet and its inhabitants.Moreover, civil engineering contributes to the enhancement of public health and safety. By designing and overseeing the construction of hospitals, schools, and public facilities,civil engineers help create environments that are conduciveto the health and well-being of the community. They also play a role in disaster management by designing structures thatcan withstand extreme weather events and by planning for emergency response infrastructure.In addition, the advancement of technology has led to innovative approaches in civil engineering. The use of computer-aided design (CAD) software, 3D printing, and smart materials has revolutionized the way civil engineers design and construct projects. These technologies not only improve efficiency and accuracy but also open up new possibilitiesfor the future of construction.Lastly, civil engineering is a profession that offers numerous opportunities for personal and professional growth. As a civil engineer, one can work on a wide range of projects, from small-scale local developments to large-scaleinternational infrastructure. This diversity ensures that the work remains engaging and challenging, providing a sense of accomplishment and the opportunity to make a tangible difference in society.In conclusion, civil engineering is a multifaceted discipline that is fundamental to the progress and well-being of modern society. It is through the efforts of civil engineers that we enjoy the infrastructure, safety, and quality of life that we often take for granted. As our world continues to evolve, the role of civil engineering will remain as critical as ever, shaping the future of our built environment for the betterment of all.。

对土木工程的认识英语作文

对土木工程的认识英语作文

对土木工程的认识英语作文Civil engineering is one of the oldest and most crucial branches of engineering. It plays a vital role in shaping the infrastructure and environment of our world. As societies evolve and grow, the demand for sustainable and resilient structures increases, making civil engineering an indispensable field. This essay aims to explore the significance, challenges, and future of civil engineering.Firstly, civil engineering encompasses a wide array of disciplines including structural, environmental, geotechnical, transportation, and water resources engineering. Each ofthese sub-disciplines focuses on different aspects of construction and infrastructure. For instance, structural engineers design buildings and bridges that can withstand various loads and forces, ensuring safety and durability. Environmental engineers work to address issues such aspollution and waste management, developing systems that protect natural resources while accommodating urban development.One of the primary challenges civil engineers face today is balancing the needs of infrastructure development with environmental sustainability. As populations grow, there is an increasing need for new roads, bridges, and buildings. However, the impact of these developments on the environment and ecosystems cannot be overlooked. Civil engineers are tasked with designing projects that minimize harm to the environment. This includes incorporating green technologies and sustainable materials, as well as considering the long-term effects of their designs on the surrounding landscape.Additionally, the growing effects of climate change present significant challenges for the civil engineering field. Rising sea levels, increased flooding, and severe weather conditions require innovative solutions and adaptivedesigns. Civil engineers must develop infrastructure that is resilient to these changes, ensuring safety and functionality even in the face of extreme conditions. This requires notonly technical skills but also a deep understanding of environmental science and policy.Looking towards the future, the integration of technology in civil engineering is set to transform the field. Theadvent of Building Information Modeling (BIM), drones, and artificial intelligence is revolutionizing how projects are designed, managed, and executed. These technologies allow for improved accuracy, efficiency, and collaboration among engineers, architects, and contractors. As the industry continues to evolve, learning and adapting to these advancements will be essential for future civil engineers.In conclusion, civil engineering is a vital field that significantly impacts our daily lives and the world around us. By addressing current challenges and embracing technologicaladvancements, civil engineers can contribute to a sustainable future. The discipline not only requires technicalproficiency but also a commitment to improving the quality of life for communities and protecting our environment. As we face unprecedented challenges, the role of civil engineering will undoubtedly become more important in shaping a resilient and sustainable world.。

土木工程专业英语论文

土木工程专业英语论文

Take the road of sustainable development civil engineeringAbstract: Civil Engineering is the oldest in human history "technical science" as a system of industrial activity, the essence of civil engineering production process, is a technical process摘要:土木工程是人类历史上年代最久远的“技术科学”,作为一种系统的产业活动,土木工程的实质是生产的过程,是一种技术过程。

Civil engineering is the construction of various facilities in science and technology, collectively, both refer to the construction of the object, that is built on the ground, underground, water facilities, a variety of projects, but also refers to the application of materials, equipment and carried out survey and design , construction, maintenance, repair and other technology.As an important basis for discipline, civil engineering has its important attributes: a comprehensive, social, practical, technical and economic and artistic unity. With the progress of human society and development, civil engineering has already evolved into large-scale comprehensive subject, and has many branches, such as: construction, railroad engineering, road engineering, bridge engineering, specialty engineering structures, water supply and drainage projects, port engineering, hydraulic engineering, environmental engineering and other disciplines. There are six professional civil engineering: architecture, urban planning, civil engineering, built environment and equipment engineering, water supply and drainage works and road and bridge projects. Introduction to Engineering through a semester course of study, I have been deeply impressed by the Civil Engineering covers a wide range, appreciate the achievements of their predecessors, but also understand that as a civil engineer of great responsibility. Of course, we can not have been immersed in the brilliant achievements, stalled. We should also advance with the times, to dig, to discover, to think, to imagine, to be innovative. In this, China's future as a civil engineer, I would like to combine the history of civil engineering, combined with China's national conditions and the world situation, to talk about civil engineering and sustainable development.My knowledge about civil engineering has been broadened since I became a student of Tongji University.Civil engineering is a form of human activity. Human beings pursued it to change the natural environment for their own benefit. Buildings, transportations, facilities, infrastructures are all included in civil engineering.The development of civil engineering has a long history. Our seniors had left a lot of great constructions to us. For example, Zhao Zhou Bridge is the representative of our Chinese civil engineering masterpieces. It has a history of more than 1300 years and is still service at present. Civil engineering has been so rapid development of the period. A lot of new bridges have been constructed, and many greater plans are under discussion. China is a large county. And she is still well developing. So this era will be both exciting and rewarding for the Chinese Civil Engineers. And of course, civil engineering’s futu re is promising.However, civil engineers will be facing more complex problems. We should pay attention to the growing population and a lot of deteriorating infrastructures. We should prepare for the possibility of natural disasters. To meet grow needs in the future; we should also try to update all the transportation systems.To deal with these problems, we will have to develop innovative and enterprising skills. And we should choose a way that we can go continuously. Hazard Mitigation may be a great choice. Not only can it save money in the long run, but also avoid getting into an embarrassing situation in which we have to rebuild all the broken buildings. And we should also use more environmentally friendly materials when designing or constructing new buildings.Well, to be a brilliant civil engineer is not easy. Today, engineering is a synthetic system. It not only depends on traditional mechanics, but also closely related to advanced science. So Physics, Chemistry, Material Science, Computer Science and perhaps more are all in our civil engineering program.To be a good civil engineer, we should have the ability to apply the knowledge, to design a system, a component, or a procedure of construction. We should also be able to conduct experiments and explain the results. Furthermore, an engineer never works alone, so we shall cooperate with working team, and try our best to communicate effectively.I’m very glad to be a student in this wonderful field. And I will try my best to be a successful civil engineer, to make contributions to our motherland.1. Of civil engineering history, current situation and future development of knowledge 1.1.1 Ancient Civil EngineeringAncient Civil Engineering has a very long time span, it is roughly from 5000 BC to the Neolithic Age to the mid-17th century, around about 7000 years. In housing construction, bridge engineering, hydraulic engineering, tower engineering have made brilliant achievements. Some of the masterpieces of ancient civilization handed down a lot, so far stand tall. For example, China's Great Wall, Egyptian pyramids and so on. Built in the 6th century arch bridge, is the world's first open shoulder arch bridge, in 1991, American Society of Civil Engineers was selected as the world in 12 civil engineering landmark. 1.1.2 Modern Civil EngineeringThe time span of the modern civil engineering from the mid-17th century to the mid-20th century, after about 300 years. In the meantime, construction materials mainly from a shift to natural materials mainly man-made materials, the construction of theory building from the main to sum up the experience long-term experience to take into account the importance of scientific change. Construction techniques, some of the performance of large machinery along with a variety of highly effective methods of construction there, so people began to construct the complex structure or a poor environment in which civil engineering. During the completion of the Eiffel Tower, Empire State Building and Golden Gate suspension bridge, is still regarded as the great civil engineering.1.1.3 Modern Civil EngineeringModern civil engineering began in the mid-20th century. Development to date,civil engineering in building materials, structural theory and constructiontechniques have made very great progress.Building materials, high-strength concrete, high strength low alloy steel,polymers, glass more and more appear in the buildings. Structure theory, theuse of powerful computing and computer graphics, mechanical analysis and theresults more in line with the results of the calculation of the actual situation inwhich the design is more reliable. For building technology, have been developedto machine - electrical - computer integration, the construction process, whetherit is God, and crosses into the earth or the sea, are not the construction of thebarrier; and the widespread use of welding technology, but also makes the steelstructure development has entered a new stage.Created by world-renowned modern civil engineering construction are: China'sTaipei International Financial Center, Shanghai Jin Mao T ower, Kuala Lumpur,Malaysia's oil and building the twin towers, the French Normandy cable-stayedbridge and so on.1.2 pairs of understanding of the status of civil engineeringToday's civil engineering, are increasingly using the same function or itsproduction process closely.Requirements of public and residential buildings in the architectural, structural,water supply and drainage, heating, ventilation for gas, electricity and othermodern technical equipment increasingly integrated as a whole.Industrial buildings require constant temperature and humidity, anti-vibration,anti-corrosion, radiation, fire, explosion, magnetic, dust, high (low) temperature,resistance to high (low) wet, to a large span, ultra-heavy-duty, flexible spacedirection.In addition, a growing number of high-rise buildings, underground engineeringhigh-speed development, urban elevated highways, overpasses appeared inlarge numbers, and the progressive realization of high-speed transportation,large-scale water conservancy projects.It is worth mentioning that China's reform and opening up, the comprehensivenational strength has greatly improved, and already has more large-scaledevelopment and use of water conditions, such as the Three Gorges Dam,water diversion project are all world-class large-scale water project.1.3 pairs of understanding the future development of Civil EngineeringWith the constant deepening of China's reform and opening up and rapideconomic development, China will face a more massive building boom. We cansay that we are faced with a leap of civil engineering along with the greatdevelopment of the national economy a good period. And such a gooddevelopment environment has been and will continue to be the West's urgentattention.As a cross-century generation, this situation provides us with excellent rareShizhancaigan unprecedented, the impact to the international standards of goodopportunities. At the same time, we feel deeply that this is an "opportunity" and"challenge" coexist, "cooperation" and "competition" intertwined, "innovation"and "follow the old" era of competing, how to grasp the turn of the century whenthe Civil disciplines, trends, and create with Chinese characteristics, world-classnew era of civil engineering disciplines, a generation of our century's challenges.2. My feelings and understanding: China's Civil Engineering to go the road of sustainabledevelopmentChina's civil engineering has its own particularity."China is the world's most populous country, a great resource in addition to that by 13 $ 110 to become negligible, while a small problem multiplied by 1.3 billion becomes a big problem." Professor Liu Xila this language effectively tells our the difficulty lies.China's coal, oil, gas, water, forests are living in the world total, and per capita, but all below the world average. Population, energy, education, pollution problems have become severe problems faced by the four. Path of sustainable development is imminent. And civil engineering, also will be when a long-term, out of a sustainable development.World, the modernization process of the United States can be described as advanced, and now data indicate that: the future of the United States to invest $ 1.6 trillion construction projects to address the unsafe condition, for example, chloride-induced corrosion of buildings and so on. As a contemporary civil engineer, in the tradition of the brilliant achievements of our predecessors, but also have a lot of the lessons learned have been an accident, in future work to improve innovation and achieve sustainable development.2.1 the development of high-tech, structural health monitoring applications, toachieve sustainable developmentCivil Engineering in actual use, there will be varying degrees of damage orperformance degradation, since this will affect the carrying capacity anddurability, and even lead to serious construction accidents, caused significantcasualties and economic losses, resulting in serious social impact . Therefore,from the moment of completion of construction, we must make health monitoring,repair and reinforcement of the preparation.With modern sensor technology, computer and communications technology,signal processing techniques and structural analysis and dynamic analysis ofthe rapid development of the theory, it is proposed the concept of structuralhealth monitoring, to revolutionize the development of civil engineering changes.Structural health monitoring system installed in the structure through a variety ofsensors, automatic, real-time measurement of the structure of the environment,load, response, etc., on the structure of health status assessment, scientific andeffective conservation and management structure to provide basis for decisionmaking, to ensure the structural safety of the operation to extend the structurallife.In recent years, large-scale civil engineering structures, especially large-spanbridge health monitoring domestic and international engineering and technologyas the focus of attention in the academic community through research andengineering and technical personnel research efforts have yielded fruitful results.Home and abroad in recent years, new bridges were installed in many largestructural health monitoring systems, such as China's Shanghai Xupu Bridge,Jiangyin Yangtze River Highway Bridge, the Donghai Bridge, Hong Kong's TsingMa Bridge, the bridge and Youngjong Korea Seohae bridge, U.S. CommodoreBarry Bridge and Canada Confedration bridges.Like this, through the development of structural health monitoring and safetywarning, the first time found that the construction problems that may arise,timely repair and reinforcement, both to avoid the possible constructionaccidents, construction has been largely solved the rapid aging of damage, haveRemove the restoration of the embarrassing situation, and the resulting largenumber of economic resources, a waste of time to achieve the sustainabledevelopment of building use.2.2 The rational use of natural resources, focusing on re-use of existing civilengineering infrastructure, to achieve sustainable development"Sustainable development is achieved without sacrificing the ability of futuregenerations to meet their needs and conditions, to meet current needs."Rational use of natural resources, will have in the civil engineering construction,use and maintenance process, the civil engineer to take the initiative to besaving energy, and maximize the role of both civil engineering facilities.For example, we can take advantage of building green, gray brick walls in thesummer, reduce the surface temperature, thereby reducing air conditioning use;can use energy-saving type of brick or insulation composite wall as the wallmaterial, to the role of thermal insulation in winter ; also solar energy, groundheat and other new energy sources, reducing the amount of non-renewableresources to reduce.In addition, the reuse of existing buildings is also an important means ofsustainable development. This regard, Shanghai has made a lot of successfulexperience: do not plant a lot, a lot has been transformed into exhibition halls,offices, artists studios. This transformation of re-use, consistent with therequirements of modern use, but also save energy, avoid waste, is an effective 2.3 Development and utilization of renewable resources and green resources toachieve sustainable developmentRemoval of waste each year the world of concrete, concrete waste generated byconstruction etc will have a huge amount of construction waste. China's annualconstruction of the building construction waste generated by 4,000 tons, haveproduced 13.6 million tons of waste concrete, removal processing a largeamount of environmental pollution. In addition, China is the world's cementproduction 20 years of superpower, which in itself is a high consumption ofresources, high energy consumption, pollution of the environment industry.Compared with other materials, steel and recycled concrete is more in line withgreen building standards, this should be to develop the green building materials.In this regard, Japan's Aichi World Expo, give us a vivid lesson: materials, theExpo will be a variety of construction materials on the surface is very high, butmany are recycling. Many plank wood construction waste by processing, placedaround the chair, TV cabinet is made of crush. Toyota Pavilion wall is made fromrecycled waste paper processing, long-term venue Japan Pavilion, only thepursuit of harmony between man and nature, but also saves the expenditure,the use of most of the steel and wood, can be recycled. At the same time, theadvantages of bamboo wall to September 3 Aichi summer also showedexhaustive. Bamboo greatly reduces the performance of their indoortemperature, air-conditioning use is also significantly reduced. This gave me anumber of thought: in the building material selection, the appropriate place in theapplication of renewable natural resources, save money, but also to achieve aharmonious and sustainable ecological development and architecture, why not?In addition, the World Expo in Aichi Japan Nagakute, Japan Pavilion cocoon-likein order to reduce heat load, the use of green walls, bio-degradable plasticmaterials and thinning wood (forest wood to be cut fine) to achieve theenvironmental protection function. "Nature's Wisdom" as the theme of the AichiWorld Expo, pavilion building large-scale application of modern scientific andtechnological achievements, highlighting the environmental and functional,reflecting the natural beauty of the human diligently pursuing. This should alsobe the future civil engineers to learn and develop.China's building, Professor Li Guohao Yangpu Bridge is also designed classic.Approach part of the spiral structure, saving several hundred million RMB, is acivil and sustainable economic development model.Of course, sustainable development, by no means blind pursuit of savings, butthe most reasonable to seek a middle state, we must ensure there is enoughcreative architecture, but also the pursuit of the perfect technical and economicindicators, with minimum investment for maximum benefits. We still still want tocreate classic, but must not be built on the squandering of money, based onconsuming more resources and energy basis. T oday, building the world hasentered an era of eco-aesthetics, focusing on culture, ecology, engineering andenvironmental relationship between the human-oriented, energy saving andsustainable development, the focus is the direction of contemporary engineers.3.Civil Engineering expertise should have the qualityA good civil engineer, must have the "four elements", that is, knowledge structure,practical skills, ability to structure and the overall quality and innovation.Knowledge structure, including: public basic knowledge, professional knowledge and expertise.First, the good civil engineer must have a solid basic knowledge of the public, and, in the familiar basis of natural science, a good psychological and moral humanities, social science-based knowledge is also essential.Second, the best engineers must also have excellent professional knowledge. Ofengineering mathematics, fluid mechanics, geotechnical engineering, structural engineering and so have a solid understanding and ability to apply strong.Third, also in-depth expertise. Whether engaged in railway engineering, tunnels, underground works or construction projects, each engineer has to be advanced for the emphasis on industry expertise. The only way to make our civil engineering business, walking in the forefront of the world.Inseparable from the practice of Civil Engineering. Therefore, engineers have to have superb practical skills. For example: drawing skills, computer application skills, measurement skills and structural engineering testing skills.As a Civil Engineering undergraduate students, I will be four years of college learning process, and strive to master the computer language and programming skills, treasure every opportunity to practice on the machine, and in college physics experiments, material testing and structural experiments The general structure of the experiment to master the basic method, with the structure of the initial test of skills, and providing technical training, curriculum design, structural design for the contest winners.In addition, the difference between engineers and scientists not only by the constraints of the laws of nature, will be bound by the laws of society. Engineering and technical personnel complete each project is a program of "social activities" may not rely on a person in the room alone. Therefore, to have sufficient capacity to deal with social, follow the laws of good society.In school life, I will continue to improve their learning ability, from the engineering capabilities to enhance learning, students work to enhance the management capacity, and gradually improve their own knowledge structure, from which to develop a science and technology development capabilities and skills and the ability of public relations to do more.However, these skills also help to constitute a truly sustainable development of China's civil engineer. Because the engineer is the most important cultural enrichment with high moral and intellectual quality. In order to state and national interests, dedicated to the cause of the motherland. For the country's honor, to have a strong sense of competition. With dialectical materialist way of thinking, there is step on solid, rigorous, hard working style. The only way to be a qualified civil engineer in China.We should also note that China's civil engineering industry with world-class level there is a gap. For example, many domestic high-rise buildings (including the Shanghai World Financial Center), almost all of its engineering design borne from abroad, almost all steel products imported from abroad, the general contractor were mostly borne by the foreign countries, only the steel structure fabrication and installation work by domestic unit commitment. Be completely independent intellectual property rights, engineering and construction to achieve the localization, catch up with international standards, we need the young generation to complete!附录:参考资料:《土木工程》(英)斯科特(Scott,J.S.)撰中国建筑工业出版社《土木建筑文献检索与利用》肖友瑟主编大连理工大学出版社《土木工程总论》丁大钧,蒋永生编中国建筑工业出版社《土木建筑工程概论》王继明主编高等教育出版社《土木工程学报》中国土木工程学会土木工程学报编辑部《土木工程》中国土木工程学会科学出版社《土木工程概论》上海交通出版社《土木系统工程》机械工业出版社《INTRODUCTION OF CIVIL ENGINEERING》中国建筑工业出版社。

【设计】土木工程毕业设计英语论文及翻译

【设计】土木工程毕业设计英语论文及翻译

【关键字】设计土木工程毕业设计英语论文及翻译篇一:土木工程毕业设计外文文献翻译外文文献翻译Reinforced ConcreteConcrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope.Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In a plain concrete beam, the moments about the neutral axis due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beam fails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the concrete in such a way that the tension forces needed for moment equilibrium after the concrete cracks can be developed in the bars.The construction of a reinforced concrete member involves building a from of mold in the shape of the member being built. The form must be strong enough to support both the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies, wind, and so on. The reinforcement is placed in this form and held in place during the concreting operation. After the concrete has hardened, the forms are removed. As the forms are removed, props of shores are installed to support the weight of the concrete until it has reached sufficient strength to support the loads by itself.The designer must proportion a concrete member for adequate strength to resist the loads and adequate stiffness to prevent excessive deflections. In beam must be proportioned so that it can be constructed. For example, the reinforcement must be detailed so that it can be assembled in the field, and since the concrete is placed in the form after the reinforcement is in place, theconcrete must be able to flow around, between, and past the reinforcement to fill all parts of the form completely.The choice of whether a structure should be built of concrete, steel, masoy, or timber depends on the availability of materials and on a number of value decisions. The choice of structural system is made by the architect of engineer early in the design, based on the following considerations:1. Economy. Frequently, the foremost consideration is the overall const of the structure. This is, of course, a function of the costs of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time since the contractor and owner must borrow or otherwise allocate money to carry out the construction and will not receive a return on this investment until the building is ready for occupancy. In a typical large apartment of commercial project, the cost of construction financing will be a significant fraction of the total cost. As a result, financial savings due to rapid construction may more than offset increased material costs. For this reason, any measures the designer can take to standardize the design and forming will generally pay off in reduced overall costs.In many cases the long-term economy of the structure may be more important than the first cost. As a result, maintenance and durability are important consideration.2. Suitability of material for architectural and structural function.A reinforced concrete system frequently allows the designer to combine the architectural and structural functions. Concrete has the advantage that it is placed in a plastic condition and is given the desired shapeand texture by means of the forms and the finishing techniques. This allows such elements ad flat plates or other types of slabs to serve as load-bearing elements while providing the finished floor and / or ceiling surfaces. Similarly, reinforced concrete walls can provide architecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Finally, the choice of size of shape is governed by the designer and not by the availability of standard manufactured members.3. Fire resistance. The structure in a building must withstand the effects of a fire and remain standing while the building is evacuated and the fire is extinguished. A concrete building inherently has a 1- to 3-hour fire rating without special fireproofing or other details. Structural steel or timber buildings must be fireproofed to attain similar fire ratings.4. Low maintenance. Concrete members inherently require less maintenance than do structural steel or timber members. This is particularly true if dense, air-entrained concrete has been used for surfaces exposed to the atmosphere, and if care has been taken in the design to provide adequate drainage off and away from the structure. Special precautions must be taken for concrete exposed to salts such as deicing chemicals.5. Availability of materials. Sand, gravel, cement, and concrete mixing facilities are verywidely available, and reinforcing steel can be transported to most job sites more easily than can structural steel. As a result, reinforced concrete is frequently used in remote areas.On the other hand, there are a number of factors that may cause one to select a material other than reinforced concrete. These include:1. Low tensile strength. The tensile strength concrete is much lower than its compressive strength ( about 1/10 ), and hence concrete is subject to cracking. In structural uses this is overcome by using reinforcement to carry tensile forces and limit crack widths to within acceptable values. Unless care is taken in design and construction, however, these cracks may be unsightly or may allow penetration of water. When this occurs, water or chemicals such as road deicing salts may cause deterioration or staining of the concrete. Special design details are required in such cases. In the case of water-retaining structures, special details and / of prestressing are required to prevent leakage.2. Forms and shoring. The construction of a cast-in-place structure involves three steps not encountered in the construction of steel or timber structures. These are ( a ) the construction of the forms, ( b ) the removal of these forms, and (c) propping or shoring the new concrete to support its weight until its strength is adequate. Each of these steps involves labor and / or materials, which are not necessary with other forms of construction.3. Relatively low strength per unit of weight for volume. The compressive strength of concrete is roughly 5 to 10% that of steel, while its unit density is roughly 30% that of steel. As a result, a concrete structure requires a larger volume and a greater weight of material than does a comparable steel structure. As a result, long-span structures are often built from steel.4. Time-dependent volume changes. Both concrete and steel undergo-approximately the same amount of thermal expansion and contraction. Because there is less mass of steel to be heated or cooled, and because steel is a better concrete, a steel structure is generally affected by temperature changes to a greater extent than is a concrete structure. On the other hand, concrete undergoes frying shrinkage, which, if restrained, may cause deflections or cracking. Furthermore, deflections will tend to increase with time, possibly doubling, due to creep of the concrete under sustained loads.In almost every branch of civil engineering and architecture extensive use is made of reinforced concrete for structures and foundations. Engineers and architects requires basic knowledge of reinforced concrete design throughout their professional careers. Much of this text is directly concerned with the behavior and proportioning of components that make up typical reinforced concrete structures-beams, columns, and slabs. Once the behavior of these individual elements is understood, the designer will have the background to analyze and design a wide range of complex structures, such as foundations, buildings, and bridges, composed of these elements.Since reinforced concrete is a no homogeneous material that creeps, shrinks, and cracks, its stresses cannot be accurately predicted by the traditional equations derived in a course instrength of materials forhomogeneous elastic materials. Much of reinforced concrete design in therefore empirical, i.e., design equations and design methods are based on experimental and time-proved results instead of being derived exclusively from theoretical formulations.A thorough understanding of the behavior of reinforced concrete will allow the designer to convert an otherwise brittle material into tough ductile structural elements and thereby take advantage of concrete’s desirable characteristics, its high compressive strength, its fire resistance, and its durability.Concrete, a stone like material, is made by mixing cement, water, fine aggregate ( often sand ), coarse aggregate, and frequently other additives ( that modify properties ) into a workable mixture. In its unhardened or plastic state, concrete can be placed in forms to produce a large variety of structural elements. Although the hardened concrete by itself, i.e., without any reinforcement, is strong in compression, it lacks tensile strength and therefore cracks easily. Because ueinforced concrete is brittle, it cannot undergo large deformations under load and fails suddenly-without warning. The addition fo steel reinforcement to the concrete reduces the negative effects of its two principal inherent weaknesses, its susceptibility to cracking and its brittleness. When the reinforcement is strongly bonded to the concrete, a strong, stiff, and ductile construction material is produced. This material, called reinforced concrete, is used extensively to construct foundations, structural frames, storage takes, shell roofs, highways, walls, dams, canals, and innumerable other structures and building products. Two other characteristics of concrete that are present even when concrete is reinforced are shrinkage and creep, but the negative effects of these properties can be mitigated by careful design.A code is a set technical specifications and standards that control important details of design and construction. The purpose of codes it produce structures so that the public will be protected from poor of inadequate and construction.Two types f coeds exist. One type, called a structural code, is originated and controlled by specialists who are concerned with the proper use of a specific material or who are involved with the safe design of a particular class of structures.篇二:土木工程毕业设计中英文翻译附录:中英文翻译英文部分:LOADSLoads that act on structures are usually classified as dead loads or live loads.Dead loads are fixed in location and constant in magnitude throughout the life of the ually the self-weight of a structure is the most important part of the structure and the unit weight of the material.Concrete density varies from about 90 to 120 pcf (14 to 19 KN/m2)for lightweight concrete,and is about 145 pcf (23 KN/mKN/m2)for normal concrete.In calculating the dead load of structural concrete,usually a 5pcf (1 )increment is included with the weight of the concrete to account for the presence of the 2 reinforcement.Live loads are loads such as occupancy,snow,wind,or traffic loads,or seismic forces.They may be either fully or partially in place,or not present at all.They may also change in location.Althought it is the responsibility of the engineer to calculate dead loads,live loads are usually specified by local,regional,or national codes and specifications.Typical sources are the publications of the American National Standards Institute,the American Association of State Highway and Transportation Officials and,for wind loads,the recommendations of the ASCE Task Committee on Wind Forces.Specified live the loads usually include some allowance for overload,and may include measures such as posting of maximum loads will not be exceeded.It is oftern important to distinguish between the specified load,and what is termed the characteristic load,that is,the load that actually is in effect under normal conditions of service,which may be significantly less.In estimating the long-term deflection of a structure,for example,it is the characteristic load that is important,not the specified load.The sum of the calculated dead load and the specified live load is called the service load,because this is the maximum load which may reasonably be expected to act during the service resisting is a multiple of the service load.StrengthThe strength of a structure depends on the strength of the materials from which it is made.Minimum material strengths are specified in certain standardized ways.The properties of concrete and its components,the methods of mixing,placing,and curing to obtain the required quality,and the methods for testing,are specified by the American Concrete Insititue(ACI).Included by refrence in the same documentare standards of the American Society for Testing Materials(ASTM)pertaining to reinforcing and prestressing steels and concrete.Strength also depends on the care with which the structure is built.Member sizes may differ from specified dimensions,reinforcement may be out of position,or poor placement of concrete may result in voids.An important part of the job of the ergineer is to provide proper supervision of construction.Slighting of this responsibility has had disastrous consequences in more than one instance.Structural SafetySafety requires that the strength of a structure be adequate for all loads that may conceivably act on it.If strength could be predicted accurately and if loads were known with equal certainty,then safely could be assured by providing strength just barely in excess of the requirements of the loads.But there are many sources of uncertainty in the estimation of loads as well as in analysis,design,and construction.These uncertainties require a safety margin.In recent years engineers have come to realize that the matter of structural safety isprobabilistic in nature,and the safety provisions of many current specifications reflect this view.Separate consideration is given to loads and strength.Load factors,larger than unity,are applied to the calculated dead loads and estimated or specified service live loads,to obtain factorde loads that the member must just be capable of sustaining at incipient failure.Load factors pertaining to different types of loads vary,depending on the degree of uncertainty associated with loads of various types,and with the likelihood of simultaneous occurrence of different loads.Early in the development of prestressed concrete,the goal of prestressing was the complete elimination of concrete ternsile stress at service loads.The concept was that of an entirely new,homogeneous material that woukd remain uncracked and respond elastically up to the maximum anticipated loading.This kind of design,where the limiting tensile stressing,while an alternative approach,in which a certain amount of tensile amount of tensile stress is permitted in the concrete at full service load,is called partial prestressing.There are cases in which it is necessary to avoid all risk of cracking and in which full prestressing is required.Such cases include tanks or reservious where leaks must be avoided,submerged structures or those subject to a highly corrosive envionment where maximum protection of reinforcement must be insured,and structures subject to high frequency repetition of load where faatigue of the reinforcement may be a consideration.However,there are many cses where substantially improved performance,reduced cost,or both may be obtained through the use of a lesser amount of prestress.Full predtressed beams may exhibit an undesirable amount of upward camber because of the eccentric prestressing force,a displacement that is only partially counteracted by the gravity loads producing downward deflection.This tendency is aggrabated by creep in the concrete,which magnigies the upward displacement due to the prestress force,but has little influence on the should heavily prestressed members be overloaded and fail,they may do so in a brittle way,rather than gradually as do beams with a smaller amount of prestress.This is important from the point of view of safety,because suddenfailure without warning is dangeroud,and gives no opportunity for corrective measures to be taken.Furthermore,experience indicates that in many cases improved economy results from the use of a combination of unstressed bar steel and high strength prestressed steel tendons.While tensile stress and possible cracking may be allowed at full service load,it is also recognized that such full service load may be infrequently applied.The typical,or characteristic,load acting is likely to be the dead load plus a small fraction of the specified live load.Thus a partially predtressed beam may not be subject to tensile stress under the usual conditions of loading.Cracks may from occasionally,when the maximum load is applied,but these will close completely when that load is removed.They may be no more objectionable in prestressed structures than in ordinary reinforced.They may be no more objectionable in prestressed structures than in ordinary reinforced concrete,in which flexural cracks alwaysform.They may be considered a small price for the improvements in performance and economy that are obtained.It has been observed that reinforced concrete is but a special case of prestressed concrete in which the prestressing force is zero.The behavior of reinforced and prestressed concrete beams,as the failure load is approached,is essentially the same.The Joint European Committee on Concrete establishes threee classes of prestressed beams.Class 1:Fully prestressed,in which no tensile stress is allowed in the concrete at service load.Class 2:Partially prestressed, in which occasional temporary cracking is permitted under infrequent high loads.Class 3:Partially prestressed,in which there may be permanent cracks provided that their width is suitably limited.The choise of a suitable amount of prestress is governed by a variety of factors.These include thenature of the loading (for exmaple,highway or railroad bridged,storage,ect.),the ratio of live to dead load,the frequency of occurrence of loading may be reversed,such as in transmission poles,a high uniform prestress would result ultimate strength and in brittle failure.In such a case,partial prestressing provides the only satifactory solution.The advantages of partial prestressing are important.A smaller prestress force will be required,permitting reduction in the number of tendons and anchorages.The necessary flexural strength may be provided in such cases either by a combination of prestressed tendons and non-prestressed reinforcing bars,or by an adequate number of high-tensile tendons prestredded to level lower than the prestressing force is less,the size of the bottom flange,which is requied mainly to resist the compression when a beam is in the unloaded stage,can be reduced or eliminated altogether.This leads in turn to significant simplification and cost reduction in the construction of forms,as well as resulting in structures that are mor pleasing esthetically.Furthermore,by relaxing the requirement for low service load tension in the concrete,a significant improvement can be made in the deflection characteristics of a beam.Troublesome upward camber of the member in the unloaded stage fan be avoeded,and the prestress force selected primarily to produce the desired deflection for a particular loading condition.The behavior of partially prestressed beamsm,should they be overloaded to failure,is apt to be superior to that of fully prestressed beams,because the improved ductility provides ample warning of distress.英译汉:荷载作用在结构上的荷载通常分为恒载或活载。

土木工程的英语作文

土木工程的英语作文

土木工程的英语作文Civil engineering is all about building stuff. You know, like bridges, roads, buildings, and all that jazz. It's pretty cool because you get to use math and science to design and construct things that people use every day. Plus, you get to work outdoors a lot of the time, which is abonus if you're not into being cooped up in an office all day.One thing that's super important in civil engineeringis making sure that whatever you're building is safe and sturdy. I mean, you don't want a bridge collapsing or a building falling down, right? So, you have to really know your stuff when it comes to materials, structures, and all the technical details that go into construction.Another cool thing about civil engineering is that you get to be creative. I know, I know, you probably think of engineers as super logical and all about numbers, butthere's actually a lot of creativity involved in coming upwith designs that are not only functional but also look good. I mean, who wants to drive over an ugly bridge, right?Of course, being a civil engineer isn't all sunshineand rainbows. There's a lot of hard work involved, and sometimes you have to deal with tight deadlines and demanding clients. But hey, that's just part of the job,and if you're passionate about building stuff and makingthe world a better place, then it's totally worth it.So, yeah, civil engineering is pretty awesome. It's a mix of math, science, creativity, and hard work, and at the end of the day, you get to see the tangible results of your efforts standing tall and proud. And that's a pretty great feeling, if you ask me.。

土木工程专业英文汇总范文

土木工程专业英文汇总范文

土木工程专业英文汇总范文Title: The Essence of Civil Engineering: A Comprehensive Overview.Civil engineering, a vast and diverse field, encompasses the design, construction, and maintenance of the infrastructure that shapes our world. It is the backbone of modern society, responsible for creating the environments where we live, work, and play. From thetallest skyscrapers to the deepest underwater tunnels, the impact of civil engineering is felt everywhere.Origins and Evolution.The roots of civil engineering can be traced back to ancient times, when early civilizations constructed irrigation systems, roads, and bridges. However, it was during the Industrial Revolution that the field truly began to take shape. With the advent of new materials and technologies, engineers were able to build larger and morecomplex structures, leading to the creation of the modern-day infrastructure we know today.Core Components.Civil engineering can be broken down into several key components:1. Structural Engineering: This branch deals with the design and analysis of structures that support and resist loads. It involves the study of materials, forces, and the behavior of structures under different conditions.2. Transportation Engineering: This field focuses on the planning, design, and operation of transportation systems, including roads, bridges, airports, and railroads. It aims to ensure the safe and efficient movement of people and goods.3. Environmental Engineering: This branch deals with the impact of engineering projects on the environment. It involves the study of water and air pollution, wastemanagement, and sustainable development practices.4. Geotechnical Engineering: This field deals with the engineering properties of soil and rock. It involves the study of soil mechanics, rock mechanics, and geohydrology, among other areas.5. Water Resources Engineering: This branch deals with the planning, development, and management of water resources. It involves the study of dams, reservoirs, canals, and other water-related structures.Challenges and Opportunities.Civil engineering faces numerous challenges in the 21st century. Climate change, urbanization, and population growth are placing increasing demands on infrastructure. Engineers must find innovative solutions to ensure the sustainability and resilience of our built environment.At the same time, new technologies and materials are presenting exciting opportunities. Advancements in digitalmodeling and simulation, 3D printing, and smart materials are revolutionizing the way we design and construct infrastructure. These technologies have the potential to make projects more efficient, cost-effective, and sustainable.Conclusion.Civil engineering is a crucial discipline that shapes the fabric of our society. As we face new challenges and opportunities in the coming decades, it is important that we continue to invest in the education and training of future engineers. By doing so, we can ensure that our infrastructure remains safe, efficient, and sustainable, supporting the needs of future generations.。

土木工程专业英语论文

土木工程专业英语论文

土木工程专业英语论文文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]Building construction concrete crack of prevention and processingAbstractThe crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to alittle bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure.Keyword: Concrete crack prevention processingForewordConcrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of tiny crack is a kind of harmless crack and accept concrete heavy, defendShen and a little bit other use function not a creation to after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the aid of instruments of macro view the crack be also the crack that the concrete often say in the engineering. Concrete building and Gou piece usually all take sewer to make of, because of crack of existence and development usually make inner part of reinforcing bar etc. material creation decay, lower reinforced concrete material of loading ability, durable and anti- Shen ability, influence building of external appearance, service life, severity will threat arrive people's life and property lot of all of crash of engineerings is because of the unsteady development of the crack with the result age science research with a great deal of of the concrete engineering practice certificate, in the concrete engineering crack problem is ineluctable, also acceptable in certainly of the scope just need to adopt valid of measure will it endanger degree control at certain of scope reinforced concrete norm is alsoexplicit provision:Some structure at place ofdissimilarity under the condition allow existence certain the crack of at under construction should as far as possible adopt a valid measure control crack creation, make the structure don't appear crack possibly or as far as possible decrease crack of amount and width, particularly want to as far as possible avoid harmful crack of emergence, insure engineering quality thus.Concrete crack creation of the reason be a lot of and have already transformed to cause of crack:Such as temperature variety, constringency, inflation, the asymmetry sink to sink etc. reason cause of crack;Have outside carry the crack that the function cause;Protected environment not appropriate the crack etc. caused with chemical differentiation to treat in the actual engineering, work°out a problem according to the actual circumstance.In the concrete engineering the familiar crack and the preventionSuo crack and preventionStem the Suo crack much appear after the concrete protect be over of a period of time or concrete sprinkle to build to complete behind of around a the cement syruphumidity of evaporate would creation stem Suo, and this kind of constringency is can't Suo crack of the creation be main is because of concrete inside outside humidity evaporate degree dissimilarity but cause to transform dissimilarity of result:The concrete is subjected to exterior condition of influence, surface humidity loss lead quick, transform bigger, inner part degree of humidity variety smaller transform smaller, bigger surface stem the Suo transform to be subjected to concrete inner part control, creation more big pull should dint but creation relative humidity is more low, cement syrup body stem Suo more big, stem the Suo crack be more easy the Suo crack is much surface parallellines form or the net shallow thin crack, width many between mm, the flat surface part much see in the big physical volume concrete and follow it more in thinner beam plank short Suo crack usually the anti- Shen of influence concrete, cause the durable of the rust eclipse influence concrete of reinforcing bar, under the function of the water pressure dint would creation the water power split crack influence concrete of loading dintetc..Concrete stem the Suo be main with water ash of theconcrete ratio, the dosage of the composition, cement of cement, gather to anticipate of the dosage of theproperty and dosage, in addition etc. relevant.Main prevention measure:While being to choose to usethe constringency quantity smaller cement, general lowhot water mire and powder ash from stove cement in the adoption, lower the dosage of is a concrete of stem the Suo be subjected to water ash ratio of influence more big, water ash ratio more big, stem Suo more big, so in the concrete match the ratio the design should as far as possible control good water ash ratio of choose to use,the Chan add in the meantime accommodation of reduce is strict control concrete mix blend with under construction of match ratio, use of concrete water quantity absolute can't big in match ratio design give settle of use water is the earlier period which strengthen concrete to protect, and appropriate extension protect of concrete construction want to be appropriate extension concrete heat preservation to overlay time, and Tu2 Shua protectto is a constitution the accommodation is in theconcrete structure of the constringency sew.Su constringency crack and preventionSu constringency is the concrete is before condense, surface because of lose water quicker but creation of Su constringency crack is general at dry heat or strong wind the weather appear, crack's much presenting in the center breadth, both ends be in the centerthin and the length be different, with each other not coherent crack general long 20-30 cm, the longer crack can reach to a 2-3 m, breadth 1-5 creation of main reason is:The concrete is eventually almost having no strength or strength before the Ning very small, perhaps concrete just eventually Ning but strength very hour, be subjected to heat or compare strong wind dint of influence, the concrete surface lose water to lead quick, result in in the capillary creation bigger negative press but make a concrete physical volume sharply constringency, but at this time the strength of concrete again can't resist its constringency, therefore creation influence concrete Su constringency open the main factor of crack to have water ash ratio, concrete of condense time, environment temperature, wind velocity, relative humidity...etc..Main prevention measure:One is choose to use stem the Suo value smaller higher Huo sour salt of the earlierperiod strength or common the Huo sour brine is strictthe control water ash ratio, the Chan add to efficiently reduce water to increment the collapse of concrete fall a degree and with easy, decrease cement and water of is to sprinkle before building concrete, water basic level and template even to soak is in time to overlay the perhaps damp grass mat of the plastics thin film, hemp slice etc., keep concrete eventually before the Ning surface is moist, perhaps spray to protect etc. to carry on protect in the concrete is in the heat and strong wind the weather to want to establish to hide sun and block breeze facilities, protect in time.and prevention that the chemical reaction causeAlkali bone's anticipating the crack that reactioncrack and reinforcing bar rust eclipse cause is the most familiar in the reinforced concrete structure of becauseof chemical reaction but cause of crack.The concrete blend a future reunion creation some alkalescence ion, these ion with some activity the bone anticipate creation chemical reaction and absorb surroundings environment in of water but the physical volume enlarge, make concrete crisp loose, inflation openthis kind of crack general emergence concrete structure usage period, once appear very difficult remediable, so should at under construction adopt valid the measurecarry on of prevention measure:While being to choose to anticipate with the alkali activity small freestone isthe in addition which choose to use low lye mire with low alkali or have no is the Chan which choose to use accommodation with anticipate to repress an alkali boneto anticipate reaction.Because the concrete sprinkle to build, flap Dao bad perhaps is a reinforcing bar protection layer thinner,the harmful material get into concrete to makereinforcing bar creation rust eclipse, the reinforcingbar physical volume of the rust eclipse inflation, cause concrete bulge crack, the crack of this kind type much is a crack lengthways, follow the position of reinforcingbar of prevent measure from have:One is assurance reinforcing bar protection the thickness of the is a concrete class to go together with to want is a concrete to sprinkle to note and flap Dao airtight is areinforcing bar surface layer Tu2 Shua antisepsis coating. Crack processingThe emergence of the crack not only would influence structure of whole with just degree, return will cause the rust eclipse of reinforcing bar, acceleration concrete of carbonization, lower durable and anti- of concrete tired, anti- Shen according to the property of crack and concrete circumstance we want differentiation to treat, in time processing, with assurance building of safety usage.The repair measure of the concrete crack is main to have the following some method:Surface repair method, infuse syrup, the Qian sew method, the structurereinforce a method, concrete displacement method, electricity chemistry protection method and imitate to living from heal method.Surface repair the method be a kind of simple, familiar of repair method, it main be applicable to stability and to structure loading the ability don't have the surface crack of influence and deep enter crack of processing measure that is usually is a surface in crack daubery cement syrup, the wreath oxygen gum mire or at concrete surface Tu2 Shua paint, asphalt etc. antisepsis material, at protection of in the meantime for keeping concretefrom continue under the influence of various function to open crack, usually can adoption the surface in crack glue to stick glass fiber cloth etc. measure.1, infuse syrup, the Qian sew methodInfuse a syrup method main the concrete crack been applicable to have influence or have already defend Shen request to the structure whole of repair, it is make use of pressure equipments gum knot the material press into the crack of concrete, gum knot the material harden behind and concrete formation one be whole, thus reinforce of in common use gum knot material has the cement the syrup, epoxy, A JiC Xi sour ester and gather ammonia ester to equalize to learn material.The Qian sew a method is that the crack be a kind of most in common use method in, it usually is follow the crack dig slot, the Qian fill Su in the slot or rigid water material with attain closing crack of in common use Su material has PVC gum mire, plastics ointment, the D Ji rubber etc.;In common use rigid water material is the polymer cement sand syrup.2, the structure reinforce a methodWhen the crack influence arrive concrete structure of function, will consideration adopt to reinforce a method to carry on processing to the concrete structure reinforce medium in common use main have the following a few method:The piece of enlargement concrete structure in every aspect accumulate, outside the Cape department of the Gou piece pack type steel, adoption prepare should the dint method reinforce, glue to stick steel plate to reinforce, increase to establish fulcrum to reinforce and jet the concrete compensation reinforce.3, concrete displacement methodConcrete displacement method is processing severity damage concrete of a kind of valid method, this method be first will damage of the concrete pick and get rid of, then again displacement go into new of concrete or other in common use displacement material have:Common concrete or the cement sand syrup, polymer or change sex polymer concrete or sand syrup.ConclusionThe crack is widespread in the concrete structure existence of a kind of phenomenon, it of emergence not only will lower the anti- Shen of building ability, influence building of usage function, and will cause the rust eclipse of reinforcing bar, the carbonization of concrete, lower the durable of material, influence building of loading ability, so want to carry on to theconcrete crack earnest research, differentiation treat, adoption reasonable of the method carry on processing, and at under construction adopt various valid of prevention measure to prevention crack of emergence and development, assurance building and Gou piece safety, stability work.From《CANADIAN JOURNAL OF CIVIL ENGINEERING》。

土木工程-毕业设计-论文-外文翻译-中英文对照

土木工程-毕业设计-论文-外文翻译-中英文对照

英文原文:Concrete structure reinforcement designSheyanb oⅠWangchenji aⅡⅠFoundation Engineering Co., Ltd. Heilongjiang DongyuⅡHeilongjiang Province, East Building Foundation Engineering Co., Ltd. CoalAbstract:structure in the long-term natural environment and under the use environment's function, its function is weaken inevitably gradually, our structural engineering's duty not just must finish the building earlier period the project work, but must be able the science appraisal structure damage objective law and the degree, and adopts the effective method guarantee structure the security use, that the structure reinforcement will become an important work. What may foresee will be the 21st century, the human building also by the concrete structure, the steel structure, the bricking-up structure and so on primarily, the present stage I will think us in the structure reinforcement this aspect research should also take this as the main breakthrough direction.Key word:Concrete structure reinforcement bricking-up structure reinforcement steel structure reinforcement1 Concrete structure reinforcementConcrete structure's reinforcement divides into the direct reinforcement and reinforces two kinds indirectly, when the design may act according to the actual condition and the operation requirements choice being suitable method and the necessary technology.1.1the direct reinforcement's general method1)Enlarges the section reinforcement lawAdds the concretes cast-in-place level in the reinforced concrete member in bending compression zone, may increase the section effective height, the expansion cross sectional area, thus enhances the component right section anti-curved, the oblique section anti-cuts ability and the section rigidity, plays the reinforcement reinforcement the role.In the suitable muscle scope, the concretes change curved the component right section supporting capacity increase along with the area of reinforcement and the intensity enhance. In the original component right section ratio of reinforcement not too high situation, increases the main reinforcement area to be possible to propose the plateau component right section anti-curved supporting capacity effectively. Is pulled in the section the area to add the cast-in-place concrete jacket to increase the component section, through new Canada partial and original component joint work, but enhances the component supporting capacity effectively, improvement normal operational performance.Enlarges the section reinforcement law construction craft simply, compatible, and has the mature design and the construction experience; Is suitable in Liang, the board, the column, the wall and the general structure concretes reinforcement; But scene construction's wet operating time is long, to produces has certain influence with the life, and after reinforcing the building clearance has certain reduction.2) Replacement concretes reinforcement lawThis law's merit with enlarges the method of sections to be close, and after reinforcing, does not affect building's clearance, but similar existence construction wet operating time long shortcoming; Is suitable somewhat low or has concretes carrier's and so on serious defect Liang, column in the compression zone concretes intensity reinforcement.3) the caking outsourcing section reinforcement lawOutside the Baotou Steel Factory reinforcement is wraps in the section or the steel plate is reinforced component's outside, outside the Baotou Steel Factory reinforces reinforced concrete Liang to use the wet outsourcing law generally, namely uses the epoxy resinification to be in the milk and so on methods with to reinforce the section the construction commission to cake a whole, after the reinforcement component, because is pulled with the compressed steel cross sectional area large scale enhancement, therefore right section supporting capacity and section rigidity large scale enhancement.This law also said that the wet outside Baotou Steel Factory reinforcement law, the stress is reliable, the construction is simple, the scene work load is small, but is big with the steel quantity, and uses in above not suitably 600C in the non-protection's situation the high temperature place; Is suitable does not allow in the use obviously to increase the original component section size, but requests to sharpen its bearing capacity large scale the concrete structure reinforcement.4) Sticks the steel reinforcement lawOutside the reinforced concrete member in bending sticks the steel reinforcement is (right section is pulled in the component supporting capacity insufficient sector area, right section compression zone or oblique section) the superficial glue steel plate, like this may enhance is reinforced component's supporting capacity, and constructs conveniently.This law construction is fast, the scene not wet work or only has the plastering and so on few wet works, to produces is small with the life influence, and after reinforcing, is not remarkable to the original structure outward appearance and the original clearance affects, but the reinforcement effect is decided to a great extent by the gummy craft and the operational level; Is suitable in the withstanding static function, and is in the normal humidity environment to bend or the tension member reinforcement.5) Glue fibre reinforcement plastic reinforcement lawOutside pastes the textile fiber reinforcement is pastes with the cementing material the fibre reinforcement compound materials in is reinforced the component to pull the region, causes it with to reinforce the section joint work, achieves sharpens the component bearing capacity the goal. Besides has glues the steel plate similar merit, but also has anticorrosive muddy, bears moistly, does not increase the self-weight of structure nearly, durably, the maintenance cost low status merit, but needs special fire protection processing, is suitable in each kind of stress nature concrete structure component and the general construction.This law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.6) Reeling lawThis law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.7) Fang bolt anchor lawThis law is suitable in the concretes intensity rank is the C20~C60 concretes load-bearing member transformation, the reinforcement; It is not suitable for already the above structure which and the light quality structure makes decent seriously. 1.2The indirect reinforcement's general method1)Pre-stressed reinforcement law(1)Thepre-stressed horizontal tension bar reinforces concretes member in bending,because the pre-stressed and increases the exterior load the combined action, in the tension bar has the axial tension, this strength eccentric transmits on the component through the pole end anchor (, when tension bar and Liang board bottom surface close fitting, tension bar can look for tune together with component, this fashion has partial pressures to transmit directly for component bottom surface), has the eccentric compression function in the component, this function has overcome the bending moment which outside the part the load produces, reduced outside the load effect, thus sharpened component's anti-curved ability. At the same time, because the tension bar passes to component's pressure function, the component crack development can alleviate, the control, the oblique section anti-to cut the supporting capacity also along with it enhancement.As a result of the horizontal lifting stem's function, the original component's section stress characteristic by received bends turned the eccentric compression, therefore, after the reinforcement, component's supporting capacity was mainly decided in bends under the condition the original component's supporting capacity 。

土木工程毕业论文中英文翻译

土木工程毕业论文中英文翻译

外文翻译班级:xxx学号:xxx姓名:xxx一、外文原文:Structural Systems to resist lateral loadsCommonly Used structural SystemsWith loads measured in tens of thousands kips, there is little room in the design of high-rise buildings for excessively complex thoughts. Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression.It does not follow that there is no room for grand thoughts. Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved. Perhaps more important, the new concepts of but a few years ago have become commonplace in today’ s technology.Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise buildings can be categorized as follows:1.Moment-resisting frames.2.Braced frames, including eccentrically braced frames.3.Shear walls, including steel plate shear walls.4.Tube-in-tube structures.5.Core-interactive structures.6.Cellular or bundled-tube systems.Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-rise buildings have structural systems built up of combinations of frames, braced bents, shear walls, and related systems. Further, for the taller buildings, the majorities are composed of interactive elements in three-dimensional arrays.The method of combining these elements is the very essence of the design process for high-rise buildings. These combinations need evolve in response to environmental, functional, and cost considerations so as to provide efficient structures that provoke the architectural development to new heights. This is not to say that imaginative structural design can create great architecture. To the contrary, many examples of fine architecture have been created with only moderate support from thestructural engineer, while only fine structure, not great architecture, can be developed without the genius and the leadership of a talented architect. In any event, the best of both is needed to formulate a truly extraordinary design of a high-rise building.While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here .The essence of the design process is distributed throughout the discussion.Moment-Resisting FramesPerhaps the most commonly used system in low-to medium-rise buildings, the moment-resisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints. Such frames are used as a stand-alone system or in combination with other systems so as to provide the needed resistance to horizontal loads. In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizing sufficient stiffness under lateral forces.Analysis can be accomplished by STRESS, STRUDL, or a host of other appropriate computer programs; analysis by the so-called portal method of the cantilever method has no place in today’s technology.Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame in the preliminary analysis. Of course, in the latter phases of design, a realistic appraisal in-joint deformation is essential.Braced Frame sThe braced frame, intrinsically stiffer than the moment –resisting frame, finds also greater application to higher-rise buildings. The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their joints. It is used commonly in conjunction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings.While the use of structural steel in braced frames is common, concrete frames are more likely to be of the larger-scale variety.Of special interest in areas of high seismicity is the use of the eccentric braced frame.Again, analysis can be by STRESS, STRUDL, or any one of a series of two –or three dimensional analysis computer programs. And again, center-to-center dimensions are used commonly in the preliminary analysis.Shear wallsThe shear wall is yet another step forward along a progression of ever-stiffer structural systems. The system is characterized by relatively thin, generally (but not always) concrete elements that provide both structural strength and separation between building functions.In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends to be large compared to their width. Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element. Limited to a narrowoverturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requirement for windows is kept small.Structural steel shear walls, generally stiffened against buckling by a concrete overlay, have found application where shear loads are high. The system, intrinsically more economical than steel bracing, is particularly effective in carrying shear loads down through the taller floors in the areas immediately above grade. The system has the further advantage of having high ductility a feature of particular importance in areas of high seismicity.The analysis of shear wall systems is made complex because of the inevitable presence of large openings through these walls. Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program designed to consider the interaction, or coupling, of shear walls.Framed or Braced TubesThe concept of the framed or braced or braced tube erupted into the technology with the IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings .The system is characterized by three –dimensional frames, braced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration. Because those columns that resist lateral forces are placed as far as possible from the cancroids of the system, the overall moment of inertia is increased and stiffness is very high.The analysis of tubular structures is done using three-dimensional concepts, or by two- dimensional analogy, where possible, whichever method is used, it must be capable of accounting for the effects of shear lag.The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes. The concept has limited recent applications of framed tubes to the shear of 60 stories. Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses. This system finds application in buildings perhaps 40stories and higher. However, except for possible aesthetic considerations, belt trusses interfere with nearly every building function associated with the outside wall; the trusses are placed often at mechanical floors, mush to the disapproval of the designers of the mechanical systems. Nevertheless, as a cost-effective structural system, the belt truss works well and will likely find continued approval from designers. Numerous studies have sought to optimize the location of these trusses, with the optimum location very dependent on the number of trusses provided. Experience would indicate, however, that the location of these trusses is provided by the optimization of mechanical systems and by aesthetic considerations, as the economics of the structural system is not highly sensitive to belt truss location.Tube-in-Tube StructuresThe tubular framing system mobilizes every column in the exterior wall in resisting over-turning and shearing forces. The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or braced tube. The purpose of the second tube is to increase resistance to overturning and to increase lateral stiffness. The tubes need not be of the same character; that is, one tube could be framed, while the other could be braced.In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy. In a framed tube, the shear component of deflection is associated with the bending deformation of columns and girders (i.e, the webs of the framed tube) while the flexural component is associated with the axial shortening and lengthening of columns (i.e, the flanges of the framed tube). In a braced tube, the shear component of deflection is associated with the axial deformation of diagonals while the flexural component of deflection is associated with the axial shortening and lengthening of columns.Following beam analogy, if plane surfaces remain plane (i.e, the floor slabs),then axial stresses in the columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube. However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as high, or even higher, than the axial stresses in the outer ring. This seeming anomaly is associated with differences in the shearing component of stiffness between the two systems. This is easiest to under-stand where the inner tube is conceived as a braced (i.e, shear-stiff) tube while the outer tube is conceived as a framed (i.e, shear-flexible) tube.Core Interactive StructuresCore interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame. Indeed, the system is used often wherein the shear stiffness of the outer tube is zero. The United States Steel Building, Pittsburgh, illustrates the system very well. Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if they were considered as systems passing in a straight line from the “hat” structure. Note that the exterior columns would be improperly modeled if they were considered as systems passing in a straight line from the “hat” to the foundations; these columns are perhaps 15% sti ffer as they follow the elastic curve of the braced core. Note also that the axial forces associated with the lateral forces in the inner columns change from tension to compression over the height of the tube, with the inflection point at about 5/8 of the height of the tube. The outer columns, of course, carry the same axial force under lateral load for the full height of the columns because the columns because the shear stiffness of the system is close to zero.The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels in the building. The AT&T headquarters is an example of an astonishing array of interactive elements:1.The structural system is 94 ft (28.6m) wide, 196ft(59.7m) long, and 601ft (183.3m) high.2.Two inner tubes are provided, each 31ft(9.4m) by 40 ft (12.2m), centered 90 ft (27.4m) apart in the long direction of thebuilding.3.The inner tubes are braced in the short direction, but with zero shear stiffness in the long direction.4. A single outer tube is supplied, which encircles the building perimeter.5.The outer tube is a moment-resisting frame, but with zero shear stiffness for the center50ft (15.2m) of each of the longsides.6. A space-truss hat structure is provided at the top of the building.7. A similar space truss is located near the bottom of the building8.The entire assembly is laterally supported at the base on twin steel-plate tubes, because the shear stiffness of the outertube goes to zero at the base of the building.Cellular structuresA classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate tubes. While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not uncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system.This special weakness of this system, particularly in framed tubes, has to do with the concept of differential column shortening. The shortening of a column under load is given by the expression△=ΣfL/EFor buildings of 12 ft (3.66m) floor-to-floor distances and an average compressive stress of 15 ksi (138MPa), the shortening of a column under load is 15 (12)(12)/29,000 or 0.074in (1.9mm) per story. At 50 stories, the column will have shortened to 3.7 in. (94mm) less than its unstressed length. Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between .the two systems need to have this differential deflection reconciled.Major structural work has been found to be needed at such locations. In at least one building, the Rialto Project,Melbourne, the structural engineer found it necessary to vertically pre-stress the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher columns.二、原文翻译:抗侧向荷载的结构体系常用的结构体系若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。

土木专业相关作文英文

土木专业相关作文英文

土木专业相关作文英文英文:As a civil engineering major, I have learned a lot about the design, construction, and maintenance of infrastructure, such as buildings, roads, bridges, and water systems. Civil engineering is a challenging and rewarding field, and I am proud to be a part of it.One of the most important skills I have developed as a civil engineering student is problem-solving. Whether it's figuring out how to design a structure that can withstand earthquakes or determining the best way to repair a damaged road, civil engineers must be able to think critically and creatively to find solutions to complex problems.Another key aspect of civil engineering is teamwork. Many projects require collaboration between architects, contractors, and engineers of various specialties, and being able to communicate effectively and work togethertowards a common goal is essential. I have had the opportunity to work on several group projects in my classes, and I have learned a lot about the importance of clear communication and delegation of tasks.In addition to technical skills, civil engineers must also have a strong understanding of the ethical and social implications of their work. For example, designing abuilding that is energy-efficient and environmentally friendly can have a positive impact on the community, while ignoring these factors can have negative consequences. Itis important for civil engineers to consider the long-term effects of their projects and strive to create sustainable and equitable solutions.Overall, studying civil engineering has been a challenging and rewarding experience. I am excited to continue learning and growing in this field, and I hope to make a positive impact on the world through my work.中文:作为一名土木工程专业的学生,我学习了很多关于基础设施设计、建设和维护的知识,如建筑物、道路、桥梁和水系统等。

土木工程英语作文

土木工程英语作文

土木工程英语作文As a civil engineering student, I have always been fascinated by the challenge of designing and constructing infrastructure that can withstand the test of time. From bridges to skyscrapers, the field of civil engineeringoffers endless opportunities to make a lasting impact onthe world around us.One of the most rewarding aspects of civil engineeringis the opportunity to work on projects that directlyimprove the lives of people in communities around the world. Whether it's designing a new water treatment facility or developing sustainable transportation solutions, civil engineers have the chance to make a real difference in the world.In addition to the technical aspects of civil engineering, there is also a strong emphasis oncollaboration and communication. Civil engineers often work closely with architects, urban planners, and governmentofficials to ensure that projects meet the needs of the community while also adhering to strict safety and environmental standards.Another exciting aspect of civil engineering is the constant innovation and advancement in the field. From new materials to cutting-edge construction techniques, there is always something new to learn and explore in the world of civil engineering.Overall, civil engineering is a dynamic and rewarding field that offers endless opportunities for creativity, problem-solving, and making a positive impact on the world. Whether it's designing a sustainable building or developing new infrastructure for a growing city, civil engineers play a crucial role in shaping the world around us.。

土木工程类专业英文文献及翻译

土木工程类专业英文文献及翻译

土木工程类专业英文文献及翻译第一篇:土木工程类专业英文文献及翻译PAVEMENT PROBLEMS CAUSEDBY COLLAPSIBLE SUBGRADESBy Sandra L.Houston,1 Associate Member, ASCE(Reviewed by the Highway Division)ABSTRACT: Problem subgrade materials consisting of collapsible soils are com-mon in arid environments, which have climatic conditions and depositional and weathering processes favorable to their formation.Included herein is a discussion of predictive techniques that use commonly available laboratory equipment and testing methods for obtaining reliable estimates of the volume change for these problem soils.A method for predicting relevant stresses and corresponding collapse strains for typical pavement subgrades is presented.Relatively simple methods of evaluating potential volume change, based on results of familiar laboratory tests, are used.INTRODUCTION When a soil is given free access to water, it may decrease in volume,increase in volume, or do nothing.A soil that increases in volume is called a swelling or expansive soil, and a soil that decreases in volume is called a collapsible soil.The amount of volume change that occurs depends on the soil type and structure, the initial soil density, the imposed stress state, and the degree and extent of wetting.Subgrade materials comprised of soils that change volume upon wetting have caused distress to highways since the be-ginning of the professional practice and have cost many millions of dollars in roadway repairs.The prediction of the volume changes that may occur in the field is the first step in making an economic decision for dealing withthese problem subgrade materials.Each project will have different design considerations, economic con-straints, and risk factors that will have to be taken into account.However, with a reliable method for making volume change predictions, the best design relative to the subgrade soils becomes a matter of economic comparison, and a much more rational design approach may be made.For example, typical techniques for dealing with expansive clays include:(1)In situ treatments with substances such as lime, cement, or fly-ash;(2)seepage barriers and/ or drainage systems;or(3)a computing of the serviceability loss and a mod-ification of the design to “accept” the anticipated expansion.In order to make the most economical decision, the amount of volume change(especially non-uniform volume change)must be accurately estimated, and the degree of road roughness evaluated from these data.Similarly, alternative design techniques are available for any roadway problem.The emphasis here will be placed on presenting economical and simple methods for:(1)Determining whether the subgrade materials are collapsible;and(2)estimating the amount of volume change that is likely to occur in the 'Asst.Prof., Ctr.for Advanced Res.in Transp., Arizona State Univ., Tempe, AZ 85287.Note.Discussion open until April 1, 1989.To extend the closing date one month,a written request must be filed with the ASCE Manager of Journals.The manuscriptfor this paper was submitted for review and possible publication on February 3, 1988.This paper is part of the Journal of Transportation.Engineering, Vol.114, No.6,November, 1988.ASCE, ISSN 0733-947X/88/0006-0673/$1.00 + $.15 per page.Paper No.22902.673field for the collapsible soils.Then this information will place the engineerin a position to make a rational design decision.Collapsible soils are fre-quently encountered in an arid climate.The depositional process and for-mation of these soils, and methods for identification and evaluation of theamount of volume change that may occur, will be discussed in the followingsections.COLLAPSIBLE SOILSFormation of Collapsible SoilsCollapsible soils have high void ratios and low densities and are typicallycohesionless or only slightly cohesive.In an arid climate, evaporation greatlyexceeds rainfall.Consequently, only the near-surface soils become wettedfrom normal rainfall.It is the combination of the depositional process andthe climate conditions that leads to the formation of the collapsible soil.Although collapsible soils exist in nondesert regions, the dry environment inwhich evaporation exceeds precipitation is very favorable for the formationof the collapsible structure.As the soil dries by evaporation, capillary tension causes the remainingwater to withdraw into the soil grain interfaces, bringing with it soluble salts,clay, and silt particles.As the soil continues to dry, these salts, clays, andsilts come out of solution, and “tack-we ld” the larger grains together.Thisleads to a soil structure that has high apparent strength at its low, naturalwater content.However, collapse of the “cemented” structure may occurupon wetting because the bonding material weakens and softens, and the soilis unstable at any stress level that exceeds that at which the soil had beenpreviously wetted.Thus, if the amount of water made available to the soilis increased above that which naturally exists, collapse can occur at fairlylow levels of stress, equivalent only to overburden soil pressure.Additionalloads, such as traffic loading or the presence of a bridge structure, add tothe collapse, especially of shallow collapsible soil.The triggering mechanismfor collapse, however, is the addition of water.Highway Problems Resulting from Collapsible SoilsNonuniform collapse can result from either a nonhomogeneous subgradedeposit in which differing degrees of collapse potential exist and/or fromnonuniform wetting of subgrade materials.When differential collapse ofsubgrade soils occurs, the result is a rough, wavy surface, and potentiallymany miles of extensively damaged highway.There have been several re-ported cases for which differential collapse has been cited as the cause ofroadway or highway bridge distress.A few of these in the Arizona and NewMexico region include sections of 1-10 near Benson, Arizona, and sectionsof 1-25 in the vicinity of Algadonas, New Mexico(Lovelace et al.1982;Russman 1987).In addition to the excessive waviness of the roadway sur-face, bridge foundations failures, such as the Steins Pass Highway bridge,1-10, in Arizona, have frequently been identified with collapse of foundationsoils.Identification of Collapsible SoilsThere have been many techniques proposed for identifying a collapsiblesoil problem.These methods range from qualitative index tests conducted on4disturbed samples, to response to wetting tests conducted on relatively un-disturbed samples, to in situ meausrement techniques.In all cases, the en-gineer must first know if the soils may become wetted to a water contentabove their natural moisture state, and if so, what the extent of the potentialwetted zone will be.Most methods for identifying collapsible soils are onlyqualitative in nature, providing no information on the magnitude of the col-lapse strain potential.These qualitative methods are based on various func-tions of dry density, moisture content, void ratio, specific gravity, and At-terberg limits.In situ measurement methods appear promising in some cases, in that manyresearchers feel that sample disturbance is greatly reduced, and that a morenearly quantitative measure of collapse potential is obtainable.However,in situ test methods for collapsible soils typically suffer from the deficien-cy of an unknown extent and degree of wetting during the field test.Thismakes a quantitative measurement difficult because the zone of materialbeing influenced is not well-known, and, therefore, the actual strains, in-duced by the addition of stress and water, are not well-known.In addition,the degree of saturation achieved in the field test is variable and usuallyunknown.Based on recently conducted research, it appears that the most reliablemethod for identifying a collapsible soil problem is to obtain the best qualityundisturbed sample possible and to subject this sample to a response to wet-ting test in the laboratory.The results of a simple oedometer test will indicatewhether the soil is collapsible and, at the same time, give a direct measureof the amount of collapse strain potential that may occur in the field.Potentialproblems associated with the direct sampling method include sample distur-bance and the possibility that the degree of saturation achieved in the fieldwill be less than that achieved in the laboratory test.The quality of an undisturbed sample is related most strongly to the arearatio of the tube that is used for sample collection.The area ratio is a measureof the ratio of the cross-sectional area of the sample collected to the cross-sectional area of the sample tube.A thin-walled tube sampler by definitionhas an area ratio of about 10-15%.Although undisturbed samples are bestobtained through the use of thin-walled tube samplers, it frequently occursthat these stiff, cemented collapsible soils, especially those containing gravel,cannot be sampled unless a tube with a much thicker wall is used.Samplershaving an area ratio as great as 56% are commonly used for Arizona col-lapsible soils.Further, it may take considerable hammering of the tube todrive the sample.The result is, of course, some degree of sample distur-bance, broken.bonds, densification, and a correspondingly reduced collapsemeasured upon laboratory testing.However, for collapsible soils, which arecompressive by definition, the insertion of the sample tube leads to localshear failure at the base of the cutting edge, and, therefore, there is lesssample disturbance than would be expected for soils that exhibit general shearfailure(i.e., saturated clays or dilative soils).Results of an ongoing studyof sample disturbance for collapsible soils indicate that block samples some-times exhibit somewhat higher collapse strains compared to thick-walled tubesamples.Block samples are usually assumed to be the very best obtainableundisturbed samples, although they are frequently difficult-to-impossible toobtain, especially at substantial depths.The overall effect of sample distur-bance is a slight underestimate of the collapse potential for the soil.675译文:湿陷性地基引起的路面问题作者:...摘要:在干旱环境中,湿陷性土壤组成的路基材料是很常见的,干旱环境中的气候条件、沉积以及风化作用都有利于湿陷性土的形成。

土木工程英文论文

土木工程英文论文

Buried tunnel project on the environmentAbstract: a deeply buried tunnel far-reaching impact on the environment through the waterways with the sinking pipe related. Under the tunnel on the mainland in the region and the impact of surface water in the tunnel design and construction method of choice to play the most important role. In considering the impact of the recent construction of a problem is the need to trench excavation for the tunnel may appear to be contaminated soil. And transporting the excavated soil up to the specialized equipment in order to receive their storage place is a series of important new technologies and quality control measures for environmental problems. The most common is in any construction project will encounter environmental problems, namely, noise, dust and traffic congestion. In this paper, these issues and the current technology to address these issues and measures are discussed.Key words: tunnel environmentCharacteristics of a Buried deeply buried tunnel tunnel has two fundamental characteristics: (1) It is part of an underground structure of the site, to ensure that heavy traffic conditions, construction, and does not mean that this area is full use of The. Therefore, the construction space is very valuable.Will eventually be installed in the location of the river or canal bottom section of tunnel is very close in other areas to build manufacturing plants, ways, and this condition is unlikely in the field and reached the site. The advantages of planning and construction of pipe manufacture and the site will be ready to separate from the logistical advantages are obvious, there are extremely easy to implement effective quality control advantages.Tunnel work site on the environmental impact is also considerablyless than the construction of the tunnel fully all the circumstances at the scene; such as space requirements and construction of transport, these two issues is greatly easing.Of course, a prerequisite for these benefits is a ready-made for pipe suitable site. It must meet the conditions for a series of environmental impact. In the Netherlands such as densely populated countries, to find a suitable site is not easy, but it is clear that once selected an available position, can be used repeatedly for quite a draw a crowd. Therefore, the overall plan for the tunnel construction is a common topic for discussion.Both ends of the structure of a new underground tunnel link to the original structure to the existing underground, often in fact across the waters to replace an existing facility, such as ferry or bridge. It can also be a complement existing facilities in tunnels or bridges. Whether the decision to build a new tunnel the reason, its location will be in large part by the constraints of existing underground structure layout, and its construction design must also meet the existing transport only by the requirements of minimal interference. This means that the location in the tunnel area designers rarely have a choice, and thus have the position according to the established conditions and requirements to modify the tunnel design.This situation mainly affects the approach roads connecting part of the tunnel itself. However, because the approach road through the water by the formation of sub-components, it may require new measures to control the approaches to the scope of the construction pit drainage impact.Buried Tunnel approach roads are almost always located in the deposition zone, where the tunnel approach road down to the groundwater level below. At its completion, they are impervious structure, the surrounding water can not penetrate, there's just the nature of the environmental impact of a simple structure.However, during construction, environmental issues will play an important role. To build from the structures, construction of foundation must be excavated until the water table following a number of meters deep,the traditional construction method requires the construction period in the continuous draining of the water. Unless further measures, or drainage will definitely lower the water level in the surrounding area, and will lead to a series of undesirable consequences. Subsidence will occur, based on the surrounding buildings and structures will be affected, and even deep pile foundation soil settlement will also be passed by the friction down to the pile on the extra load. Subsidence and elevation of the dam sinking, and agricultural drainage water will be affected.May also result in a completely different nature of environmental problems: the construction area may be contaminated soil. In this case, the construction of the excavation pit special attention to requirements and, if possible, should be used, such as soil mixed with water and water transport by pipeline, special methods. There must also be able to accommodate an approved place of contaminated soil.Number of measures must be taken to prevent the pumping of contaminated water caused by the rapid distribution of the soil to a large area on the ground.Technically speaking, is always possible to eliminate the impact of these kinds. However, it is extremely complex and do take a lot of money and time, therefore, tend to look at present the greatest extent possible the construction of approach roads and tunnels in the water imported methods. Ideally, the empty pit in the construction of a drainage of water should be no impact on the approach roads and the surrounding groundwater single operation.The obvious conclusion is that as far as possible the construction pit designed as part of the final product.Approach a wall can be designed to image the wall of the dam impervious core in the form of a slurry wall, curtain or plastic sheet of steel sheet pile walls common. On the final form (steel sheet pile wall) (off panel through the use of heavy anchor piles and soil) to increase its retaining function, you can save valuable space and can be easily achieved in the water and impermeable floor connection.Water under the concrete floor can be built. This approach hasbeen developed to control the elevation and surface roughness, which completely drained to the approach road after finishing requires less work.Another method is the use of impermeable plastic sheet, add water to the town of emphasis placed on the bottom and cover the pit slope. In the Netherlands, this approach not only for the tunnel approaches, and the groove for the public network segment.Use large plastic sheet, to the soil to the water for the town re-placed by a major highway intersection in the play a long-term good results, it shows that this technology has been widely used. Soon, the Netherlands, the tunnel approach roads may be to show a lush green slope, thereby replacing the gray concrete vertical wall.Approach can also be prefabricated elsewhere and in the form of installation of floating structures. This method only with trench excavation and dredging vessels do not have to drain. But not yet able to adequately address basic problems of buoyancy and appropriate design. Buried tunnel project on the environmentPipe manufacturing approaches to the excavation of underground water and the discussion of the relationship between the way the majority can be used to produce the same pipe excavation of the temporary venues. Expensive solution to bring an unreasonable burden to the project. Moreover, the manufacture of pipe near the site have repeatedly flooded the open waters and open to the precast tunnel segments into the transportation to the dock at the other pipe section in order to make room. Rarely a large enough place for all of the pipe manufacturer.In short, the choice of the location of manufacturing pipe dock not chosen as the location of the tunnel approach roads to be strictly determined by functional requirements, so choose the location of manufacturing pipe dock with the advantages of flexibility. Therefore, the manufacture of docks will be allowed to use the traditional water method, if the reasons listed above that do not allow the use of traditional water law, and the dock had to separate from the surrounding water, this places impermeable plastic plate because of its low cost to have obvious advantages.Another does not affect the drainage around the water table is "pumping recharge Law" This law is the foundation of the water into the pump discharge and pump water through the filter of these tube wells to the water source recharge area. As long as the penetration rate is not too large and can be maintained roughly a constant, the row, when the closed-loop irrigation can be maintained. The new measures, now being expanded in the Netherlands approaches to the construction of a pit, but also because the foundation of the dock as the manufacture of pipe it to be expanded.Construction of foundation trench trough structure deeply buried tunnel excavation method is dredging. In this paper, we only stress the importance of dredging requirements of foundation trench excavation method can achieve high accuracy, and this requires that the work will determine the most suitable type of device. Given the strict positioning tolerances, preferably dredging boat anchor or pile in positioning the dredging equipment. However, because they can not move freely, it could become an obstacle to shipping vessels.If there is water in the dredging area, or the wave of the impact of dredging will become the base slot to carry water along the bottom or sediment accumulation over the place. If the foundation trench excavation in place pipe for long periods, it will soon form a deposition. In these circumstances, the base section of tank excavation and tunnel installation of the interval between the two processes must be as short as possible, and thus the arrangement of the two procedure are to be particularly accurate, you can use a special device to clean the base before the installation of pipe slot. In the Netherlands, this operation has been developed to be used in the East (Eastern Scheldt) anti-dam pier storm waves reach a very high precision installation.Dredging stir up the river sediments, resulting in a certain time a certain area of the water turbidity. Eventually become a suspended fine particles of these substances will spread out and gradually settle down again. Although this process had limited impact on the environment, and harmless, but in a certain range or the increasingly strong criticism.If you want to have dredged soil is contaminated, it is even more complicated, because in such conditions, the dredging operation will cause the spread of contamination. Dredging technology has now developed to the drain by using a special mud head to eliminate this effect. Under the floating boat by hanging curtains from the dredging area will be completely separated from the surrounding method may also reduce the spread of pollution.Further development in this regard we have taken note of the current, most waterways in the Netherlands contain contaminated bottom sediments have been very clear, so dredging the mud is bound to take some special environmental requirements.Currently, these requirements have not been unified to form, but made different for each specific project requirements. Hope that this delay in the development of key technologies of the chaos can be quickly resolved.According to the type and extent of contamination, contaminated soil can be divided into 1 to 4 classes. For dredging mud (including dredging process water in the process) and disposal are subject to strict restrictions by category; particular, 3 and 4 the soil must be isolated, and in possible to be purified.In the Rotterdam area, has built a store of these solid waste and other hazardous substances the center of the dump site. In addition, Type 4 is placed in temporary dredging spoil heap smaller point, let it be purified and then transferred to another isolated place repository. Place in the absence of such facilities to be established by dredging this dump sites. This measure is a clear need to do a lot of work.Transportation and installation of pipe work and dredging the shipping obstacles to transport and install pipe sections are brought about environmental problems. To open the pipe system and installation of marinas and docks to deepen the shallow waters between the points need to channel dredging operations. Some of the previous discussion about dredging also apply to this situation.The installation procedures in a particular area may involve theend of the tunnel-based clean-up slot. To make clean-up and installation of the two processes reduce to a minimum interval of time, placed in the pipe to its final position before the bottom of the sand filling has been successfully used to shoot clean water law section of the base tunnel. With a powerful water jet to remove the last layer of the sediment washed into the suspension, followed by water flow away.Left in the pipe manufacturing dock, anchored at the temporary terminal and leave the temporary pier, floating point and transported to the installation during installation are likely to hinder shipping. Only the last one caused by the shipping process will complete in the short term temporary interruption or partial interruption.In this respect, a deeply buried tunnel across a river and there are differences across a canal. In the latter case, the absence of flow effects to make the sinking and installation of pipe can be better controlled. The advantage of this control to allow the use of more deeply buried sections of the tunnel tube pipe unit, but it must be large enough to create dock.Therefore, in the Netherlands, in the past most deeply buried pipe unit length of the tunnel are varied between 100 ~ 150m, crossing the North Sea Canal between Amsterdam and the Trondheim area tunnel (Hemtunnel) project has also used the unit for up to 268m of pipe . Use a longer pipe unit reduces the number of installation, which will slow down the barriers to shipping.Buried pipe for the tunnel project, it seems to impede the shipping for the environment as a problem, but not a major problem.This process includes filling with sand filling pipe at the base, back to the filling tank, and, if necessary in the pipe at the top of the construction of a scour protection layer.Backfill material must be uncontaminated. Ship in the tunnel construction work will interfere with the above shipping. However, by using a pipe installed in the tunnel were part of the operation of equipment, we can reduce such problems, for example, through the tunnel at the bottom of the holes by pumping sand and water mixture to backfilling.This system has been successfully applied in the Netherlands.Tunnel operation and maintenance operations involving major environmental issue is ventilation.Cleaning and maintenance of the tunnel wall to obstruct the road vehicle operation, they must be in the appropriate period of time quickly. Smooth wall and good coating helps to clean the operating table, thus reducing the time limit traffic through the tunnel.Road construction must be done to minimize future maintenance.。

土木工程专业英文汇总范文

土木工程专业英文汇总范文

土木工程专业英文汇总范文英文回答:Civil Engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings. Civil engineering is the second-oldest engineering discipline after military engineering, and itis defined to distinguish non-military engineering from military engineering. It is traditionally broken into several sub-disciplines including environmental engineering, geotechnical engineering, structural engineering, transportation engineering, municipal or urban engineering, water resources engineering, materials science, and surveying.Civil engineering takes place in the public sector from municipal through to national governments, and in theprivate sector from individual homeowners through tointernational companies.中文回答:土木工程是一门专业工程学科,涉及物理和自然建造环境的设计、建造和维护,包括道路、桥梁、运河、大坝和建筑物等工程。

帮我写一篇关于土木工程的英语作文

帮我写一篇关于土木工程的英语作文

帮我写一篇关于土木工程的英语作文英文回答:Civil engineering is a broad and challenging field that involves the design, construction, and maintenance ofpublic works, such as roads, bridges, dams, and buildings. Civil engineers play a vital role in shaping the built environment and ensuring its safety and sustainability.Civil engineering encompasses a wide range of disciplines, including structural engineering, geotechnical engineering, water resources engineering, transportation engineering, and environmental engineering. Structural engineers design and analyze the load-bearing components of buildings and bridges, ensuring their stability and strength. Geotechnical engineers study the behavior of soil and rock, and design foundations and earthworks that can withstand various loads and environmental conditions. Water resources engineers manage and distribute water resources, designing water treatment plants, dams, and irrigationsystems. Transportation engineers plan and design transportation systems, including roads, highways, airports, and railways. Environmental engineers focus on protecting the environment from the impacts of construction and development, designing systems for waste management, air pollution control, and water treatment.Civil engineering projects require a high level of technical expertise and collaboration. Civil engineers work closely with architects, planners, environmental scientists, and other professionals to ensure that projects meet functional, aesthetic, and environmental requirements. They use advanced software and modeling techniques to analyzeand design structures, and they must have a strong understanding of materials, construction methods, andproject management.Civil engineering is a stimulating and rewarding field that offers opportunities for professional growth and societal impact. Civil engineers have the opportunity to design and build structures that improve the quality oflife for people around the world, and they play a crucialrole in protecting the environment and promoting sustainable development.中文回答:土木工程是一个涉及公共工程(如道路、桥梁、水坝和建筑)的设计、建造和维护的广泛而具有挑战性的领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Building construction concrete crack ofprevention and processingAbstractThe crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword: Concrete crack prevention processingForewordConcrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tinycrack would continuously of expand with connect, end formation we can see without the aid of instruments of macro view the crack be also the crack that the concrete often say in the engineering. Concrete building and Gou piece usually all take sewer to make of, because of crack of existence and development usually make inner part of reinforcing bar etc. material creation decay, lower reinforced concrete material of loading ability, durable and anti- Shen ability, influence building of external appearance, service life, severity will threat arrive people's life and property safety.A lot of all of crash of engineerings is because of the unsteady development of the crack with the result that.Modern age science research with a great deal of of the concrete engineering practice certificate, in the concrete engineering crack problem is ineluctable, also acceptable in certainly of the scope just need to adopt valid of measure will it endanger degree control at certain of scope inside.The reinforced concrete norm is also explicit provision:Some structure at place of dissimilarity under the condition allow existence certain the crack of width.But at under construction should as far as possible adopt a valid measure control crack creation, make the structure don't appear crack possibly or as far as possible decrease crack of amount and width, particularly want to as far as possible avoid harmful crack of emergence,insure engineering quality thus.Concrete crack creation of the reason be a lot of and have already transformed to cause of crack:Such as temperature variety, constringency, inflation, the asymmetry sink to sink etc. reason cause of crack;Have outside carry the crack that the function cause;Protected environment not appropriate the crack etc. caused with chemical effect.Want differentiation to treat in the actual engineering, work°out a problem accor ding to the actual circumstance.In the concrete engineering the familiar crack and the prevention1.Stem Suo crack and preventionStem the Suo crack much appear after the concrete protect be over of a period of time or concrete sprinkle to build to complete behind of around a week.In the cement syrup humidity of evaporate would creation stem Suo, and this kind of constringency is can't negative.Stem Suo crack of the creation be main is because of concrete inside outside humidity evaporate degree dissimilarity but cause to transform dissimilarity of result:The concrete is subjected to exterior condition of influence, surface humidity loss lead quick, transform bigger, inner part degree of humidity variety smaller transform smaller, bigger surface stem the Suo transform to be subjected to concrete inner part control,creation more big pull should dint but creation crack.The relative humidity is more low, cement syrup body stem Suo more big, stem the Suo crack be more easy creation.Stem the Suo crack is much surface parallel lines form or the net shallow thin crack, width many between 0.05-0.2 mm, the flat surface part much see in the big physical volume concrete and follow it more in thinner beam plank short todistribute.Stem Suo crack usually the anti- Shen of influence concrete, cause the durable of the rust eclipse influence concrete of reinforcing bar, under the function of the water pressure dint would creation the water power split crack influence concrete of loading dint etc..Concrete stem the Suo be main with water ash of the concrete ratio, the dosage of the composition, cement of cement, gather to anticipate of the dosage of the property and dosage, in addition etc. relevant. Main prevention measure:While being to choose to use the constringency quantity smaller cement, general low hot water mire and powder ash from stove cement in the adoption, lower the dosage of cement.Two is a concrete of stem the Suo be subjected to water ash ratio of influence more big, water ash ratio more big, stem Suo more big, so in the concrete match the ratio the design should as far as possible control good water ash ratio of choose to use, the Chan add in the meantime accommodation of reduce water.Three is strict control concrete mix blend withunder construction of match ratio, use of concrete water quantity absolute can't big in match ratio design give settle of use water quantity.Four is the earlier period which strengthen concrete to protect, and appropriate extension protect of concrete time.Winter construction want to be appropriate extension concrete heat preservation to overlay time, and Tu2 Shua protect to protect.Five is a constitution the accommodation is in the concrete structure of the constringency sew.2.The Su constringency crack and preventionSu constringency is the concrete is before condense, surface because of lose water quicker but creation of constringency.The Su constringency crack is general at dry heat or strong wind the weather appear, crack's much presenting in the center breadth, both ends be in the centerthin and the length be different, with each other not coherent appearance.Shorter crack general long 20-30 cm, the longer crack can reach to a 2-3 m, breadth 1-5 mm.It creation of main reason is:The concrete is eventually almost having no strength or strength before the Ning very small, perhaps concrete just eventually Ning but strength very hour, be subjected to heat or compare strong wind dint of influence, the concrete surface lose water to lead quick, result in in the capillary creation bigger negative press but make a concretephysical volume sharply constringency, but at this time the strength of concrete again can't resist its constringency, therefore creation cracked.The influence concrete Su constringency open the main factor of crack to have water ash ratio, concrete of condense time, environment temperature, wind velocity, relative humidity...etc..Main prevention measure:One is choose to use stem the Suo value smaller higher Huo sour salt of the earlier period strength or common the Huo sour brine mire.Two is strict the control water ash ratio, the Chan add to efficiently reduce water to increment the collapse of concrete fall a degree and with easy, decrease cement and water of dosage.Three is to sprinkle before building concrete, water basic level and template even to soak through.Four is in time to overlay the perhaps damp grass mat of the plastics thin film, hemp slice etc., keep concrete eventually before the Ning surface is moist, perhaps spray to protect etc. to carry on protect in the concrete surface.Five is in the heat and strong wind the weather to want to establish to hide sun and block breeze facilities, protect in time. 3.Crack and prevention that the chemical reaction causeAlkali bone's anticipating the crack that reaction crack and reinforcing bar rust eclipse cause is the most familiar in the reinforced concrete structure of because of chemical reactionbut cause of crack.The concrete blend a future reunion creation some alkalescence ion, these ion with some activity the bone anticipate creation chemical reaction and absorb surroundings environment in of water but the physical volume enlarge, make concrete crisp loose, inflation open crack.In this kind of crack general emergence concrete structure usage period, once appear very difficult remediable, so should at under construction adopt valid the measure carry on prevention.Main of prevention measure:While being to choose to anticipate with the alkali activity small freestone bone.Two is the in addition which choose to use low lye mire with low alkali or have no alkali.Three is the Chan which choose to use accommodation with anticipate to repress an alkali bone to anticipate reaction.Because the concrete sprinkle to build, flap Dao bad perhaps is a reinforcing bar protection layer thinner, the harmful material get into concrete to make reinforcing bar creation rust eclipse, the reinforcing bar physical volume of the rust eclipse inflation, cause concrete bulge crack, the crack of this kind type much is a crack lengthways, follow the position of reinforcing bar ually of prevent measure from have:One is assurance reinforcing bar protection the thickness of the layer.Two is a concrete class to go together with to wantgood.Three is a concrete to sprinkle to note and flap Dao airtight solid.Four is a reinforcing bar surface layer Tu2 Shua antisepsis coating.Crack processingThe emergence of the crack not only would influence structure of whole with just degree, return will cause the rust eclipse of reinforcing bar, acceleration concrete of carbonization, lower durable and anti- of concrete tired, anti- Shen ability.Therefore according to the property of crack and concrete circumstance we want differentiation to treat, in time processing, with assurance building of safety usage.The repair measure of the concrete crack is main to have the following some method:Surface repair method, infuse syrup, the Qian sew method, the structure reinforce a method, concrete displacement method, electricity chemistry protection method and imitate to living from heal method.Surface repair the method be a kind of simple, familiar of repair method, it main be applicable to stability and to structure loading the ability don't have the surface crack of influence and deep enter crack of processing.The processing measure that is usually is a surface in crack daubery cement syrup, the wreath oxygen gum mire or at concrete surface Tu2 Shua paint, asphalt etc. antisepsis material, at protection of in themeantime for keeping concrete from continue under the influence of various function to open crack, usually can adoption the surface in crack glue to stick glass fiber cloth etc. measure. 1, infuse syrup, the Qian sew methodInfuse a syrup method main the concrete crack been applicable to have influence or have already defend Shen request to the structure whole of repair, it is make use of pressure equipments gum knot the material press into the crack of concrete, gum knot the material harden behind and concrete formation one be whole, thus reinforce of purpose.The in common use gum knot material has the cement the syrup, epoxy, A JiC Xi sour ester and gather ammonia ester to equalize to learn material.The Qian sew a method is that the crack be a kind of most in common use method in, it usually is follow the crack dig slot, the Qian fill Su in the slot or rigid water material with attain closing crack of purpose.The in common use Su material has PVC gum mire, plastics ointment, the D Ji rubber etc.;In common use rigid water material is the polymer cement sand syrup.2, the structure reinforce a methodWhen the crack influence arrive concrete structure of function, will consideration adopt to reinforce a method to carry on processing to the concrete structure.The structure reinforce medium in common use main have the following a few method:The piece of enlargement concrete structure in every aspectaccumulate, outside the Cape department of the Gou piece pack type steel, adoption prepare should the dint method reinforce, glue to stick steel plate to reinforce, increase to establish fulcrum to reinforce and jet the concrete compensation reinforce.3, concrete displacement methodConcrete displacement method is processing severity damage concrete of a kind of valid method, this method be first will damage of the concrete pick and get rid of, then again displacement go into new of concrete or other material.The in common use displacement material have:Common concrete or the cement sand syrup, polymer or change sex polymer concrete or sand syrup.ConclusionThe crack is widespread in the concrete structure existence of a kind of phenomenon, it of emergence not only will lower the anti- Shen of building ability, influence building of usage function, and will cause the rust eclipse of reinforcing bar, the carbonization of concrete, lower the durable of material, influence building of loading ability, so want to carry on to the concrete crack earnest research, differentiation treat, adoption reasonable of the method carry on processing, and at under construction adopt various valid of prevention measure to prevention crack of emergence and development, assurance building and Gou piece safety, stability work.From《CANADIAN JOURNAL OF CIVIL ENGINEERING》。

相关文档
最新文档