17.1勾股定理(第1课时)课时练习 (2)

合集下载

17.1《勾股定理》(第1课时)

17.1《勾股定理》(第1课时)

17.1《勾股定理》(第1课时)教学设计一、教材分析(一)地位和作用本节课是人教版八年级下册第十七章第一节勾股定理第一课时。

本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛。

勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,再到一般的直角三角形,体现了从特殊到一般的探探索、发现和证明的过程。

证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得定理的证明。

(二)教学目标1、知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题。

2、过程与方法(1)经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力。

(2)体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性。

3、情感态度与价值观:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感。

在探究活动中,培养学生的合作交流意识和探索精神。

(三)重点、难点重点:探究并证明勾股定理。

难点:勾股定理的探究和证明。

二、教法分析勾股定理是反映直角三角形三边关系的一个特殊的结论。

在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系。

但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难。

学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积。

因此,在教学中需要先引导学生观察网格背景下的正方形的面积关系,然后思考没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发现和证明勾股定理。

本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.三、学法分析八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.四、教学过程设计(一)、创设情景,引入新课国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2022年在北京召开了第24届国际数学家大会.上图就是大会会徽的图案.你见过这个图案吗?这个图案有什么特别的意义?师生活动:教师引导学生观察,指出这个图案与勾股定理有关,勾股定理是我们要研究的问题.设计意图:从国际数学家大会的会徽说起,设置悬念,引入课题。

17.1勾股定理第一课时 (2)

17.1勾股定理第一课时 (2)

17.1勾股定理太和县倪邱中学王殿卿第课时1.了解勾股定理的文化背景,了解利用拼图验证勾股定理的方法.2.能说出勾股定理,并能应用其进行简单的计算.1.在勾股定理的探索过程中,经历观察——猜想——归纳——验证的数学发现过程.2.发展合情推理的能力,体会数形结合思想、由特殊到一般的数学思想、分类讨论思想.通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增强学习数学的信心,激发学生的民族自豪感和爱国情怀.【重点】探索和验证勾股定理,并能应用其进行简单的计算.【难点】用拼图的方法验证勾股定理.【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、方格纸、三角形模型.导入一:国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2002年在北京召开了第24届国际数学家大会.此图案就是大会会徽的图案.大会的会徽图案有什么特殊含义呢?这个图案与数学中的勾股定理有着密切的关系.中国古代人把直角三角形中较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”.上述图案就揭示了“勾”“股”“弦”之间的特殊关系.我们学习过等腰三角形,知道等腰三角形是两边相等的特殊的三角形,它有许多特殊的性质.研究特例是数学研究的一个方法,直角三角形是有一个角为直角的特殊三角形,等腰直角三角形又是特殊的直角三角形,直角三角形的三边之间存在怎样的关系呢?我们的探究活动就从等腰直角三角形开始吧.[设计意图]勾股定理揭示的是特殊三角形的三边关系,从探索等腰直角三角形三边关系入手,揭示直角三角形的三边关系,体现了由特殊到一般的数学研究方法.导入二:请同学们认真观察课本封面和本章章前彩图,说一说封面和章前彩图中的图形表示什么意思?它们之间有联系吗?封面是我国公元3世纪汉代的赵爽在注解《周髀算经》时给出的“弦图”,章前彩图是2002年世界数学家大会的会徽,大会的会徽使用的主体图案就是“赵爽弦图”.目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的.这个事实可以说明勾股定理的重大意义.尤其是在两千年前,是非常了不起的成就.你知道为什么把这个图案作为这次大会的会徽吗?本节课,我们一起来解读图中的奥秘.[设计意图]以生活课本中的图案、故事导入,增强了趣味性,拉近了数学与生活的距离,激发了学生的民族自豪感和爱国情怀.导入三:如图所示,一座城墙高11.7 m,城墙外有一条宽为9 m的护城河,那么一架长为15 m的云梯能否达到城墙的顶端?这就是我们今天所要学习的内容,一个非常重要的定理——“勾股定理”.[设计意图]以学生熟悉的生活情境作为教学活动的切入点,使学生对问题产生兴趣.让学生主动去分析,发现,亲身体验,产生学习“勾股定理”的主观愿望.1.探索勾股定理成的地面图案反映了直角三角形三边的某种数量关系.这个地面图案中有大大小小、各种“姿势”的正方形.毕达哥拉斯在这些正方形中发现了什么呢材图17.1 - 2)(1)问题提出:在图17.1 - 2中,是以等腰直角三角形三边为边长的三个正方形.这三个正方形面积之间存在怎样的关系?三个正方形之间的面积关系说明了什么?(2)学生活动:质疑、猜测、探索、交流三个正方形面积之间的关系.学生的探索方法可能是:通过数正方形内等腰直角三角形个数的办法,得出两个小正方形的面积之和等于大正方形的面积.(3)教师总结:通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形中的等腰直角三角形补成一个大正方形,得出结论:小正方形的面积之和等于大正方形的面积,也就是等腰直角三角形两条直角边的平方和等于斜边的平方.追问:在图17.1 - 2中,如果选取更大的等腰直角三角形,按照同样的方法作三个正方形,这三个正方形的面积关系还一样吗?如图所示.[设计意图]这个探索活动是学习、探索勾股定理的基础.借助三个正方形面积之间的关系,探索等腰直角三角形三边的数量关系,这是本活动的出发点.提出追问的问题,有助于学生的认识上升到整个直角三角形的一般性的高度,也为学生有个性的创意活动搭建了平台.(2)探索具体边长的非等腰直角三角形三边之间的关系.提出问题:(结合带提示的下图)1.正方形A,B,C的面积分别是多少?它们之间的数量关系说明了什么?2.正方形A',B',C'的面积分别是多少?它们之间的数量关系说明了什么?学生活动:依据教材探究的提示,根据直角三角形的边长,分别计算出正方形A,B,A',B'的面积;再通过建立一个大正方形计算出正方形C,C'的面积.探究提示:正方形A,B的面积分别为4和9,通过建立边长为5的正方形,计算出正方形C的面积为25减去四个小直角三角形面积和,也就是正方形C的面积为13.同理,正方形A',B'的面积分别为9和25,通过建立边长为8的正方形,计算出正方形C'的面积为64减去四个小直角三角形面积和,也就是正方形C'的面积为34.活动总结:直角三角形两条直角边长的平方和等于斜边长的平方.[设计意图]由特殊到一般,借助网格,利用面积割补法计算正方形的面积,探索直角三角形三边之间的关系,为探究无网格背景下直角三角形三边关系打下基础,提供方法.思路二1.画一个两直角边长分别为3 cm和4 cm的直角三角形ABC,用刻度尺量出AB的长.再画一个两直角边长分别为5和12的直角三角形ABC,用刻度尺量AB的长.你是否发现32+42与52的关系,52+122和132的关系?学生计算后发现:32+42=52,52+122=132,那么就有勾2+股2=弦2.学生讨论:对于任意的直角三角形,也有这个性质吗?2.如图所示,每个小方格的面积均为1,请分别算出图中正方形A,B,C的面积,看看能得出什么结论.探究提示:右下图正方形C的面积为13.左上图亦是同样的思考方法.学生计算后发现:小正方形A,B的面积之和等于大正方形C的面积.追问:由以上你能得出什么结论?若直角三角形的两条直角边长分别为a,b,斜边长为c,则a,b,c有什么关系?教师引导学生直接由正方形的面积等于边长的平方归纳出:直角三角形两条直角边长的平方和等于斜边长的平方.数学表达式为:a2+b2=c2.[设计意图]通过学生画、量、算等形式,让学生在探究中发现结论,借助网格,利用面积割补法计算正方形的面积,探索直角三角形三边之间的关系,为探究无网格背景下直角三角形三边关系打下基础,提供方法.2.勾股定理的证明教师提问:对于任意直角三角形三边之间应该有什么关系?教师引导学生猜想:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.追问:以上直角三角形的边长都是具体的数值,一般情况下,如果直角三角形的两直角边长分别为a,b,斜边长为c,我们的猜想仍然成立吗?思路一(出示教材图17.1 - 5)让学生剪4个全等的直角三角形,拼成如图所示的图形,利用面积证明.图中大正方形的面积是c2,直角三角形的面积是ab,中间正方形的面积为(b-a)2,则有c2=ab×4+(b-a)2,即a2+b2=c2.教师适时介绍:这个图案是公元3世纪汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以按如图所示围成一个大正方形,中间部分是一个小正方形(黄实).我们刚才用割的方法证明使用的就是这个图形.教师在学生归纳基础上总结:直角三角形两直角边长的平方和等于斜边长的平方.中国人称它为“勾股定理”,外国人称它为“毕达哥拉斯定理”.[设计意图]通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,发展学生的形象思维,使学生对定理的理解更加深刻,体会数学中数形结合的思想.通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.通过了解勾股定理的证明方法,增强学生学习数学的自信心.思路二学生利用拼图游戏验证定理,并思考:能用右图证明这个结论吗?已知:在△ABC中,∠ACB=90°,∠BAC,∠ABC,∠ACB的对边分别为a,b,c.求证:a2+b2=c2.(1)让学生准备多个三角形模型,最好是有颜色的纸,让学生拼摆不同的形状,利用面积相等进行证明.(2)拼成如图所示,其等量关系为4×ab+(b-a)=c2,化简可证.(3)发挥学生的想象能力拼出不同的图形,进行证明.利用下面这些图也能证明这个结论吗?教师指导学生验证.我们证明了以上结论的正确性,我们就可称之为定理,这就是著名的“勾股定理”.请同学们用不同的表达方式(文字语言、符号语言)表述这一定理.勾股定理的名称介绍:3000多年前,我国古代有一个叫商高的人说:“把一根直尺折成直角,两端连接得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.因为勾股定理内容最早出现在商高的话中,所以又称“商高定理”.一千多年后,西方的毕达哥拉斯证明了此定理,因此又叫“毕达哥拉斯定理”,当时毕达哥拉斯学派为了纪念这一发现,杀了一百头牛庆功,故而还叫“百牛定理”.一个定理有如此多的“头衔”,可见勾股定理的不凡.[设计意图]通过拼图活动,充分调动学生的积极性,进一步激发学生的求知欲;通过借助不同图形探索证明,提高学生思维的活跃性;通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.证明:以a,b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab.把这两个直角三角形拼成如图所示的形状,使A,E,B三点在一条直线上.∵Rt△EAD≌Rt△CBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90°,∴∠AED+∠BEC=90°.∴∠DEC=180°-90°=90°.∴△DEC是一个等腰直角三角形,它的面积等于c2.又∵∠DAE=90°,∠EBC=90°,∴AD∥BC.∴四边形ABCD是一个直角梯形,它的面积等于(a+b)2.∴(a+b)2=2×ab+c2.∴a2+b2=c2.学生思考后,教师再展示证明过程.[设计意图]通过了解勾股定理的不同证明方法,丰富自己的知识;通过了解到古今中外无数人进行证明,激发学生学习数学的热情.[知识拓展]解决直角三角形有关计算和证明的问题时,要注意:(1)求直角三角形斜边上的高常运用勾股定理和面积关系式联合求解.(2)要证明线段的平方关系,首先考虑使用勾股定理,从图中寻找或构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证.(3)由勾股定理的基本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b),b2=c2-a2=(c+a)(c-a)等.(4)在钝角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2>c2.3.例题讲解(补充)在直角三角形中,各边的长如图,求出未知边的长度.引导分析:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.通过对等式变形,可以得出直角三角形三边之间的关系:c=,b=,a=.解:(1)根据勾股定理,得AB===.(2)根据勾股定理,得AB===2.[解题策略]在直角三角形中,已知两边长,求第三边长,应用勾股定理求解,也可建立方程解决问题.(补充)有两边长分别为3 cm,4 cm的直角三角形,其第三边长为cm.〔解析〕分情况讨论:当4 cm为直角边长时,当4 cm为斜边长时,依次求出答案即可.①当4 cm是直角边长时,斜边==5(cm),此时第三边长为5 cm;②当4 cm为斜边长时,第三边==(cm).综上可得第三边的长度为5 cm或cm.故填5或.[解题策略]注意掌握勾股定理的表达式,分类讨论是解决此题的关键,难点在于容易漏解.。

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

八年级数学人教版下册习题课件17.1 勾股定理第1课时 勾股定理

八年级数学人教版下册习题课件17.1 勾股定理第1课时 勾股定理

A.4 B.16 7C..(1襄6 D阳.中25 考)已知 CD 是△ ABC 的边 AB 上的高,若 CD= 3 ,AD
9.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )
D若.A最D=大2正,方=BC形=1与4,直,角则A三ABB角2=+形C的2D面A2=积C_和_,___求___.BC 的长.
2.如图,可以利用两个全等的直角三角形拼出一个梯形.借助这个图 形,你能用面积法来验证勾股定理吗?
解:由图形可知12 (a+b)(a+b)=12 ab+12 ab+12 c2,整理得(a+b)2= 2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2,由此得到勾股定理
知识点2:利用勾股定理进行计算 3.(滨州中考)在直角三角形中,若勾为 3,股为 4,则弦为( A ) A.5 B.6 C.7 D.8
4.如图,在△ ABC 中,AB=AC,AD 是∠BAC 的平分线.已知 AB =5,AD=3,则 BC 的长为( C ) A.5 B.6 C.8 D.10
第4题图
(2)若a∶c=3∶5,b=32,求a,c的值. A.4 B.6 C.16 D.25
1(13).若(b2=02205,·雅.c=安(3)毕对,角求节线a的互中值相;考垂直)的如四图边形,叫做点“垂E美在”四正边形方,形现有A如B图所C示D的的“垂边美”A四B边形上AB,CD若,对角E线BA=C,1B,D交于点O. (知2)识如点果1a:=E勾1C6股,=定c=理22的0,,证则那明b=么___正_.方形 ABCD 的面积为( B )
6.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D, 且AB=4,BD=5,则点D到BC的距离是( ) D
A.6 B.5 C.4 D.3

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

微课堂第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm 6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6. 7.在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.(1)a =7,b =24,求c ; (2)a =4,c =7,求b.解:(1)∵∠C =90°,∴△ABC 是直角三角形.∴a 2+b 2=c 2. ∴72+242=c 2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C) A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C) A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C) A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为13或119.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD =3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15.(1)求AB 的长;(2)求CD 的长.解:(1)∵在Rt △ABC 中,∠ACB =90°,BC =15,AC =20, ∴AB =AC 2+BC 2=202+152=25.(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD .∴20×15=25CD .∴CD =12.17.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程. 作AD ⊥BC 于点D , 设BD =x ,用含x的代数式表示CD.→根据勾股定理,利用 AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2017.习题解析第2课时 勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m 处折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是(D )A .5 mB .12 mC .13 mD .18 m第1题图 第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为15米;(注:BD ⊥CE)②根据手中剩余线的长度计算出风筝线BC 的长为25米; ③牵线放风筝的小明身高1.6米. 求风筝的高度CE.解:在Rt △CDB 中,由勾股定理,得CD =CB 2-BD 2=252-152=20(米).∴CE =CD +DE =20+1.6=21.6(米). 答:风筝的高度CE 为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h 后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C ,1.5 h 后甲船所在位置为A ,乙船所在位置为B ,则 AC 与正北方向的夹角为45°,BC 与正北方向的夹角为45°, ∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.设BD=x m,则树高AD=(10+x)m.由题意知BD+CD=AB+AC,∴x+CD=20+10.∴CD=(30-x)m.在Rt△ACD中,∠A=90°,由勾股定理得AC2+AD2=CD2,∴202+(10+x)2=(30-x)2.∴x=5.∴AD=10+5=15(m).故这棵树有15 m高.知识点3两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B 距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D)A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D) A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.第11题图第12题图习题解析12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO =AP 2-OP 2=2002-1002=1003(m ).在Rt △BOP 中,∠BPO =45°,则BO =OP =100 m .∴AB =AO -BO =1003-100≈73(m ). ∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.03 综合题15.如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度移动,设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.解:(1)在Rt △ABC 中,由勾股定理,得BC 2=AB 2-AC 2=52-32=16. ∴BC =4 cm .(2)由题意,知BP =t cm ,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3) 5.(2017·成都)如图,数轴上点A 所表示的实数是5-1.第5题图 第6题图6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离355.7.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n=n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10. (3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π2+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ).5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ). ∴A 1C 2=52+(17)2=42(cm ). (2)如图1所示,A 2C 1=52+52=52(cm ). 如图2所示,A 2C 1=92+12=82(cm ). 如图3所示,A 2C 1=62+42=213(cm ).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是5 2 cm .17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.解:(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题.知识点2 勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 4.下列各组数是勾股数的是(A )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,155.在△ABC 中,AB =8,AC =15,BC =17,则该三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C )A .1个B .2个C .3个D .4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a =3,b =22,c =5; (2)a =5,b =7,c =9; (3)a =2,b =3,c =7; (4)a =5,b =26,c =1.解:(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理,得AB2=AD2+BD2,AC2=AD2+CD2,又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)△ABC不是直角三角形.理由:∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.13c-10=0,那么下列说法中不正确的是(C) 11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF 的度数为(C)A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5 cm.∵AC2+CD2=52+122=25+144=169,AD2=132=169,即AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).解:(1)连接AC.∵AB=BC=1,∠B=90°,∴∠BAC=∠ACB=45°,AC=AB2+BC2= 2.又∵CD=3,DA=1,∴AC2+DA2=CD2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.03 综合题17.在一次“探究性学习”课中,老师设计了如下数表:(1)请你分别观察a ,b ,c b ,c ,则a =n 2-1,b =2n ,c =n 2+1;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?证明你的结论. 解:以a ,b ,c 为边的三角形是直角三角形.证明:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n 2=(n 2+1)2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形.章末复习(二)勾股定理01基础题知识点1勾股定理1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A. 6 B.6 2C.6 3 D. 12第1题图第2题图2.如图,阴影部分是一个正方形,则此正方形的面积为64.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=2.4.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 mC.16 m D.17 m第5题图第6题图6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B 两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.7.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题与逆定理8.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用9.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形02中档题10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+1第10题图第11题图11.(2016·漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD 长为正整数,则点D的个数共有(C)A.5个B.4个C.3个D.2个12.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为(C) A.90°B.60°C.45°D.30°第12题图第13题图13.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD14.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC .∵∠ADC =90°,∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2,解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2,∴△ACB 是直角三角形,∠ACB =90°∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=12×10×24-12×6×8 =96(m 2).故这块空白地的面积为96 m 2.16.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD =2,求AC 的长.解:∵BD =CD =2,∴BC =22+22=2 2.∴设AB =x ,则AC =2x.∴x 2+(22)2=(2x)2.∴x 2+8=4x 2.∴x 2=83. ∴x =263. ∴AC =2AB =436.03 综合题17.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,CD =PC =2,CD ⊥CP ,求∠BPC 的度数.解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS).∴DB=P A=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8. 又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.。

17.1 勾股定理 第1课时 课件 2021-2022学年人教版八年级数学下册

17.1  勾股定理 第1课时  课件     2021-2022学年人教版八年级数学下册
b c2 - a2 , c a2 b2
自学检测1(5分钟)
B
1. 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;(2)若a=1,c=2,求b
解:(1)据勾股定理得 c a2 b2 52 52 50 5 2;
C
A
(2)据勾股定理得 b c2 a2 22 12 3.
11. 如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1, 求△ABC的周长.
解:∵AD⊥BC,∴∠ADB=∠ADC=90°. 在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°, ∴∠B=∠BAD=45°, ∴BD=AD=1,∴AB= 2 . 在Rt△ADC中,∵∠C=30°,∴AC=2AD=2, ∴CD= 3 ,∴BC=BD+CD=1+ 3 , ∴△ABC的周长=AB+AC+BC= 2 3 3.
(2当) BC为A斜 3边0时,b, 1如5 ,图c,B2Ca. 42 32 5. 因此设a=x,cB=2x,根据勾股定理建B 立方程得
(2x)2-x2=152,解得4 x 5 3 . 3
C 图 A
4a 5 3 ,c 10
A
3 图
C
3.
2. 已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长. A
SA+SB=SC 2
问题3 猜想两直角边a,b与斜边c的关系?
a2+b2=c2
教师点拨
教师点拨(2分钟)
勾股定理 (毕达哥拉斯定理) 直角三角形两直角边的平方和等于斜边的平方.
弦c 股b

勾a
a2+b2=c2
赵爽弦图
教师点拨(2分钟)

17.1第1课时勾股定理及验证

17.1第1课时勾股定理及验证

图 17-1-13
第1课时 勾股定理及验证
解:证明:连接 DB,过点 B 作 DE 边上的高 BF,则 BF=b-a. 1 1 ∵S 五边形 ACBED=S 梯形 ACBE+S△AED= (a+b)b+ ab, 2 2 1 1 2 1 又∵S 五边形 ACBED=S△ACB+S△ADB+S△BED= ab+ c + a(b-a), 2 2 2 1 1 1 1 2 1 ∴ (a+b)b+ ab= ab+ c + a(b-a), 2 2 2 2 2 ∴a2+b2=c2.
第1课时 勾股定理及验证
C拓广探究创新练
15.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其 中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角 三角形如图 17-1-12 或图 17-1-13 摆放时, 都可以用“面积法” 来证明.下面是小聪利用图 17-1-12 证明勾股定理的过程: 将两个全等的直角三角形按图 17-1-12 所示的方式摆放,其中 ∠DAB=90° ,求证:a +b =c .
第1课时 勾股定理及验证
14.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的 一种新的证明方法. 如图 17-1-11 所示, 火柴盒的一个侧面 ABCD 倒下到四边形 AB′C′D′的位置,连接 CC′,AC′,AC,设 AB=a, BC=b,AC=c,请利用四边形 BCC′D′的面积验证勾股定理: a2 +b =c .
图17-1-7
第1课时 勾股定理及验证
10.[2018· 凉山州] 如图 17-1-8,数轴上点 A 对应的数为 2, AB⊥OA 于点 A,且 AB=1,以 O 为圆心,OB 长为半径作弧, 交数轴于点 C,则 OC 的长为( D ) A.3 B. 2 C. 3 D. 5

17.1勾股定理

17.1勾股定理

感悟新知
6-1. 古诗赞美荷花“竹色溪下绿, 荷 花镜里香”. 平静的湖面上,一朵 荷花亭亭玉立,露出水面10 cm, 忽见它随风斜倚,花朵恰好浸入 水面,仔细观察,发现荷花偏离 原地40 cm(如图).请问:水深多少?
知3-练
感悟新知
知3-练
解:设水深CB=x cm,则AC=(x+10) cm, 即CD=(x+10) cm. 在Rt△BCD中,由勾股定理得x2+402=(x+10)2, 解得x=75. 答:水深75 cm.
会改变; 2. 根据同一种图形的面积的不同表示方法列出等式; 3. 利用等式性质变换验证结论成立,即拼出图形→写出图形面
积的表达式→找出等量关系→恒等变形→推导命题结论. 通过拼图,利用求面积来验证,这种方法以数形转换为指导思 想,以图形拼补为手段,以各部分面积之间的关系为依据而达 到目的.
感悟新知
感悟新知
2. 在数轴上作出表示 n 的点
知4-讲
如图17.1-6,构造两条直角边长都是1 的直角三角
形,利用勾股定理得到斜边的长为 2 ,再用圆规截取
的方法画出 2在数轴上的对应点;
感悟新知
知4-讲
构造两直角边长分别为 2 ,1 的直角三角形,利用 勾股定理得到斜边的长为 3 ,再用圆规截取的方法画出
知3-讲
(1)已知直角三角形的任意两边求第三边;
(2)已知直角三角形的任意一边确定另两边的关系;
(3)证明包含有平方(算术平方根)关系的几何问题;
(4)求解几何体表面上的最短路程问题;
(5) 构造方程(或方程组)计算有关线段长度,解决生产、生
活中的实际问题.
感悟新知
特别提醒
知3-讲
运用勾股定理解决实际问题的一般步骤:

《17.1勾股定理》教学设计(第1课时)

《17.1勾股定理》教学设计(第1课时)

《17.1 勾股定理》教学设计(第1课时)一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:假如直角三角形的两条直角边长分别为a、b,斜边长为c,那么.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就能够求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从专门的等腰直角三角形动身,到网格中的直角三角形,再到一样的直角三角形,表达了从专门到一样的探探究、发觉和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探究去发觉图形的性质,提出一样的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,关于勾股定理的研究确实是一个突出的例子.教学中能够介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的奉献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.基于以上分析,确定本节课的教学重点:探究并证明勾股定理.二、目标和目标解析1.教学目标(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定明白得决一些简单问题.2.目标解析(1)学生通过观看直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.明白得赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,明白我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的运算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个专门的结论.在正方形网格中比较容易发觉以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一样直角三角形,提出合理的猜想,学生有较大困难.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积.因此,在教学中需要先引导学生观看网格背景下的正方形的面积关系,然后摸索没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发觉和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学过程设计1. 创设情境复习引入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2021年在北京召开了第24届国际数学家大会.右图确实是大会会徽的图案.你见过那个图案吗?它由哪些我们学过的差不多图形组成?那个图案有什么专门的意义?前面我们学习了有关三角形的知识,我们明白,三角形有三个角和三条边.问题1三个角的数量关系明确吗?三条边的数量关系明确吗?师生活动教师引导,学生回答。

17.1 勾股定理(第一课时 勾股定理的证明)(练习)(解析版)八年级数学下册(人教版)

17.1 勾股定理(第一课时 勾股定理的证明)(练习)(解析版)八年级数学下册(人教版)

第十七章勾股定理17.1 勾股定理(第一课时勾股定理的证明)精选练习答案一、单选题(共10小题)1.(2020·山东青岛市·八年级期中)若实数m、n满足|m﹣3|+4n-=0,且m、n恰好是Rt的两条边长,则的周长是()A.5 B.57C.12 D.12或7【答案】D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】n-0,∵|m﹣4n-0,∴|m﹣3|=04∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当422+5,34则△ABC的周长=3+4+5=12,当422-7,43则△ABC的周长=7=7故选:D.2.(2020·吉林长春市·八年级期末)勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为()A .2B .3C .5D .6【答案】B【分析】 由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .3.(2020·广东清远市·八年级期末)下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12【答案】C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .4.(2020·福建福州市·八年级期末)在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10 B .4 C .22 D .2 【答案】A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=22(10)(30)10--+-=,故选A .5.(2020·吉林长春市·八年级期末)如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .3D 3【答案】C【分析】 根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.6.(2020·张掖市期中)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.C.12或D.以上都不对【答案】C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C7.(2020·江门市期中)在△ABC中,AB=10,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【详解】分两种情况:在图①中,由勾股定理,得==;BD8===;CD2∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得==;BD8===;CD2∴BC=BD―CD=8―2=6.故选C.8.(2020·河北张家口市·八年级期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【答案】C【详解】 如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .9.(2020·山东泰安市·八年级期中)如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11【答案】C【详解】 试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.10.(2020·伊宁市期中)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13119B.13或15 C.13 D.15【答案】C【分析】直角三角形中斜边最长,结合已知数据,利用勾股定理可求出第三边的长.【详解】当12,522+=12513.故第三边的长为13.故选:C.二、填空题(共5小题)11.(2020·南丹县期中)已知直角三角形的两边长分别为3、4.则第三边长为________.【答案】57【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22-=;437②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.∆的周12.(2020·黑龙江绥化市期中)在△ABC中,AB=15,AC=13,高AD=12,则ABC长为_______________.【答案】32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222CD AC AD=-=-=,13125∵∠D=90°,AB=15,AD=12,∴2222BD AB AD=-=-=,15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,13125CD AC AD∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.13.(2020·广西防城港市·八年级期中)如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.【答案】17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面积=49-8-10-14=17(cm2).14.(2020·山东菏泽市·八年级期中)已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.【答案】4.8cm【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==, 得6810CD ⨯=,解得CD =4.8(cm).故答案为4.8cm.15.(2020·广东韶关市·八年级期中)平面直角坐标系中,点()3,4P -到原点的距离是_____.【答案】5【分析】作PA x ⊥轴于A ,则4PA =,3OA =,再根据勾股定理求解.【详解】作PA x ⊥轴于A ,则4PA =,3OA =.则根据勾股定理,得5OP =.故答案为5.三、解答题(共2小题)16.(2020·湖南株洲市期末)如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.【答案】(1)DE=3;(2)ADB S 15∆=.【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 17.(2020·宿州期中)在四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =12,AD =13.(1)求AC 的长;11/1 (2)求四边形ABCD 的面积.【答案】(1)5;(2)36【分析】(1)由勾股定理可得:22AC AB BC =+,从而可得答案;(2)先证明ACD △是直角三角形,再利用四边形的面积等于两个直角三角形的面积和,从而可得答案.【详解】解:(1)∵∠B =90°,AB =4,BC =3,∴2222435AC AB BC =+=+=;(2)由(1)知,AC =5,∵CD =12,AD =13,∴AC 2+CD 2=22251216913+===AD 2,∴ACD △是直角三角形,∠ACD =90°,∵AB =4,BC =3,∠B =90°,AC =5,CD =12,∠ACD =90°,∴四边形ABCD 的面积是,即四边形ABCD 的面积是36.。

《名师学典·数学》人教版八年级下册17.1勾股定理学案(3课时全)

《名师学典·数学》人教版八年级下册17.1勾股定理学案(3课时全)

《名题学典·数学》人教版八年级系列第十七章第十七章勾股定理单元学典勾股定理这一章主要探索并学习直角三角形三边的关系,学习勾股定理的证明方法,以及勾股定理的逆定理.勾股定理这一章有着承上启下的作用,承上:进一步加强对二次根式的运用;启下:为下章要学习的平行边形打下了基础.世纪教育网版权所有课时安排:21世纪教育网版权所有17.1 二次根式…………………………………………………………………………3课时17.2二次根式的乘除…………………………………………………………………1课时本章复习………………………………………………………………………………1课时本章单元测试卷A+B第1课时 17.1勾股定理(1)1.勾股定理的探究:(1)将6个全等的等腰直角三角形如图放置,其中△ABC是直角三角形.可发现:大正方形的面积两个小正方形的面积之和,即大正方形边长的平方两个小正方形边长的平方之和,则可得出结论:,其中和是直角边,是斜边(用Rt△ABC的边表示).(2)探究普通直角三角形:如图所示的网格中,有A,B,C三个正方形,其中每个网格的都是正方形且面积是1.①请求出正方形A,B,C的面积;②可发现:(提示:正方形A,B,C面积的关系)得出结论:命题1:.2.命题1的证明:赵爽证明法方法:分割、拼接;基本思路:把边长为a,b的两个正方形连在一起(如下图),它的面积是;另一方面,上面这个图形可分割成四个全等的直角三角形(其中斜边为c)和一个 .(如下图)然后,把上图中的中左、右两个三角形移到如下图所示图形:基础为本、掌握新知B CAABC最后得到的一个边长为的大正方形的面积为 .综上可得: .3.勾股定理:我们把命题1,称为勾股定理.掌握勾股定理【例1】:正确运用勾股定理(1)在Rt△ABC中,∠C=90°,如果a=3,b=4,则c=________;如果a=6,b=8,则c=________;如果a=5,b=12,则c=________;如果a=15,b=20,则c=________.(2)下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,∠A =90°,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,∠C =90°,则a2+b2=c2分析:(1)题利用勾股定理可得到结论(2)题需要注意的是,要确定哪一条边是斜边,而斜边是直角所对应的边:并不是所有的三角形都适用勾股定理,只能是直角三角形,故A错;B.不确定哪一条是斜边,所以错;C.∠A对应的边为a,即a为斜边,所以错;D符合勾股定理.解:(1)5;10;13;25.(2)D练习1(1)一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20(2)一个直角三角形的两边长分别为5cm和12cm,求第三边的长.正方形面积的求解【例2】如图,在△ABC中,∠ABC=90°,分别以BC、AB、AC为边向外作正方形,面积分别记为S1、S2、S3,若S2=4,S3=6,则S1= .分析:由勾股定理,可得三个正方形的边长的关系,从而可以得到3S.解:10【解析】在Rt△ABC中,∠ABC=90°,由勾股定理可得222ACBCAB=+,即321SSS=+,∴3S=10.一例一练、活用数学点评:例1旨在让学生学会用勾股定理解题.勾股定理是直角形中,两直角边长平方的和等于斜边长的平方.用勾股定理要注意:(1)是直角三角形;(2)确点评:其实根据勾股定理的探究过程中,所得到的三个正方形的面积关系,便可以求出此题.此类题目多在填空题和选择题,当中出现.练习2 (2012•庆阳)在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4= .等腰直角三角形【例3】(1)等腰直角三角形的斜边长为2cm ,则该三角形的面积为 .(2)等腰三角形的腰和底边的长分别为4和2,则腰上的高为 .分析:(1)等腰三角形是一个特殊的等腰三角形,不仅有两边相等,两腰的夹角为直角,可设腰长为x ,根据勾股定理可列得方程求解;(2)题中未明确指出腰长的边长,故要先分析排除,由三角形三边长的关系可得,腰为为4,底边长为2;可先根据勾股定理求出底边的高,再用等面积法求出腰上的高.解:(1)1;(2)215. 【解析】(1)设腰长为x ,由勾股定理可得,422=x ,∴2=x ,则面积:12221=⨯⨯; (2)如图所示,等腰△ABC 中,AD 是底边BC 上的高.由三角形三边长的关系可得AB=AC=4,BC=2BD=2,则在Rt △ABC 中,由勾股定理可得,222AB BC AD =+,∴AD=15,∴21521⨯⨯=∆ABCS =15 ∴AB 上的高为21542=÷⨯∆ABC S .练习3如图,已知AB=BC=CD=DE=1,AB ⊥BC ,AC ⊥CD ,求AE 的长.勾股定理的证明【例4】曾任美国总统的加菲尔德在《新英格兰教育日志》上发表了他提出的一个勾股定理的证明.如图,这就是他用两个全等的直角三角形拼出的图形.上面的图形整体上拼成一个直角梯形.所以它的面积有两种表示方法.既可以表示为 ,又可以表示为 .对比两种表示方法可得 .化简,可得a 2+b 2=c 2.他的这个证明也就成了数学史上的一段佳话.分析:根据题意可得,加菲尔德提出的这种证明方法,主要是利用梯形的面积公式:高下底上底⨯+)(21、三角形的面积公式高底边⨯21来完成的.两个全等直角三角形拼出的,得到一个腰长为c 的等腰直角三角形.解:))((21b a b a ++;221c ab +; 点评:例3就是与等腰三角形结合,会稍微难一点,需要老师点拨;(2)题需要学生理清思维,与图相结合,找到正确的解题方法.))((21b a b a ++=221c ab +.练习4(2008•湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .1.(2004•黄冈)若直角三角形的三边长分别为2,4,x ,则x 的可能值有( )A .1个B .2个C .3个D .4个 2.(2007•连云港)如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4B .6C .16D .55 3.(2010•南宁)如图,每个小正方形的边长为1,△ABC 的三边a ,b ,c 的大小关系式( ) A .a <c <b B .a <b <c C .c <a <b D .c <b <a4.(2012•新疆)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积π8251=S ,π22=S ,则S 3是 .5.(2013•巴中)若直角三角形的两直角边长为a 、b ,且满足962+-a a +|b -4|= 0,则该直角三角形的斜边长为 .6.(2010•淄博)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出以格点为端点、长度为5的线段 条.用时 分数1.一直角三角形的两直角边长为12和16,则斜边长为( )A .12B .16C .18D .202.直角三角形有两边分别为3和4,下列说法错误的是( ) A.斜边一定为5 B.面积可能为6 C.斜边可能为4D.斜边上的高可能为2.43.底边为8cm ,底边上的高为3cm 的等腰三角形的腰长为( ) A.5cmB.6cmC.7D.4cm4.点M (6,8)到原点的距离是( )全真考题、能力拓展课时自测、认清自我点评:例4的勾股定理的证明主要思路是根据等积法来完成,等积法在很多题目都有很好的应用.由此例可鼓励学生,自主探究新事物.A. 6B.8C.10D.145.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a ,b ,那么下列结论正确的有( )个. (1)b ﹣a =2,(2)a 2+b 2=49,(3)4+2ab =49,(4)a +b =94.A .1个B .2个C .3个D .4个6.如图,正方形A 的面积为36,正方形B 的面积为64,则正方形C 的面积是( )A .49B .100C .144D .81 7. 如图是小正方形边长为2cm 的方格图,沿折线从格点A→B→C 所走的路程为( )A.5cm 2B.2cm 5C.4cm 5 C.10cm8.在△ABC 中,∠A 、∠B 、∠C 的对应边分别是a 、b 、c ,若∠A+∠C=90°,则下列等式中成立的是( )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2 D. c 2﹣a 2=b 2 二、填空题(每题3分,共18分)9.已知点P (x ,3)在第二象限内,且OP=5,则x = .10.在△ABC 中,∠C=90°,若a +b =7cm ,c =5cm ,则△ABC 的面积为 . 11.在直角三角形ABC 中,斜边AB=2,则AB 2+AC 2+BC 2= .12.如图,已知AB=BC=CD=DE=1,AB ⊥BC ,AC ⊥CD ,则AE 的长等于 .13.(2011•肇庆)在直角三角形ABC 中,∠C=90°,BC=12,AC=9,则AB= . 14.(2011•齐齐哈尔)已知三角形相邻两边长分别为20cm 和30cm ,第三边上的高为10cm ,则此三角形的面积为 cm 2. 三、解答题(共40分)15.如图,△ABC 中,∠B=∠C ,AD 是BC 上的高,AB=17,BC=16. (1)求△ABC 的面积;(2)求点B 到边AC 的距离.16.已知:CD 为Rt △ABC 的斜边上的高,且BC=a ,AC=b ,AB=c ,CD=h (如图).求证:222111h b a =+.自我评价登陆21世纪教育助您教考全无忧17.已知,一个直角三角形的周长等于4+10,它的斜边长为10,求这个三角形的面积.18.如图,方格纸中小正方形的边长为1,A、B、C都在格点上,求:(1)△ABC的面积;(2)△ABC的周长;(3)点C到AB边的距离.参考答案:基础为本、掌握新知1.(1)等于 222BC AC AB =+ AB AC BC (2)①A 的面积为:4 B 的面积为9 C 的面积为:25-4×21×2×3=13 ②A 的面积+B 的面积=C 的面积 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 2.a 2+b 2 小正方形 c c 2 a 2+b 2=c 2练习2 观察发现,∵AB=BE ,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠BED ,∴△ABC ≌△BDE ,S 1和S 2之间的两个三角形可以证明全等,则S 1+S 2即直角三角形的两条直角边的平方和,根据勾股定理,即S 1+S 2=1, 同理S 3+S 4=3.则S 1+S 2+S 3+S 4=1+3=4.练习3 根据勾股定理可以得出:AE 2=AD 2+DE 2=AD 2+1,AD 2=AC 2+CD 2=AC 2+1, AC 2=BC 2+AB 2=1+1,因此,AE 2=AD 2+1=AC 2+1+1=1+1+1+1=4.∴AE=2.2.C 【解析】由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,∠ABC=∠CED=90°,AC=CD ,∴△ACB ≌△CDE ,∴AB=CE ,BC=DE ;在Rt △ABC中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =11+5=16,故选C .课时自测、认清自我一、1.D 【解析】∵三角形的两直角边长为12和16,∴斜边长为:20121622=+. 2.A 【解析】①当3,4分别是直角边时,则第三边=54322=+,面积=3×4÷2=6,斜边上的高=6×2÷5=2.4;②当3为直角边,4为斜边时,则第三边=73422=-,面积=3×7÷2=723,斜边上的高=723×2÷4=743. 3.A 【解析】∵BC=8cm ,AD=3cm ,AD ⊥BC ,∴BD=21BC=4cm ,∴AB==+22BD AB =54322=+cm .4.C 【解析】∵点M 的坐标为(6,8),∴点M 离原点的距离是108622=+.5.C 【解析】由题意可得小正方形的边长=2,大正方形的边长=7,故可得|b ﹣a |=2,即(1)错误;a 2+b 2=斜边2=大正方形的面积=49,即(2)正确;小正方形的面积+四个直角三角形的面积等于大正方形的面积,即可得4+2ab =49,即(3)正确;根据(3)可得2ab=45,故可得(a +b )2=a 2+b 2+45=94,从而可得a +b =,即(4)正确.6.B 【解析】由勾股定理可得,正方形C 的面积等于正方形A 和B 的面积之和.7.A 【解析】根据勾股定理可得:AB=BC=2224+=2.∴沿折线从格点A→B→C 所走的路程AB+BC=4.8.C 【解析】∵在△ABC 中,∠A+∠C=90°,∴∠B=90°,∴△ABC 为直角三角形, 则根据勾股定理得:a 2+c 2=b 2.二、9.4 【解析】∵OP=5,∴x 2+32=52,∴x =±4,∵点P (x ,3)在第二象限内,∴ x <0,∴x =﹣4.三、15.解:(1)∵∠ABC=∠C ,∴AB=AC=17,∵AD 是BC 上的高,∴BD=DC=8,∵AD=158172222=-=-BD AB ,∴△ABC 的面积=16152121⨯⨯=⋅AD BC =120;(2)设B 到AC 的距离为h ,∵△ABC 的面积=120172121=⨯=⋅h h AC ,∴17240=h .16. 解:在Rt △ABC 中,CD 是AB 上的高,所以hc ab 2121=,∴hc ab =.由勾股定理可得,222c b a =+,∴2222222221)(11h ch c b a b a b a ==+=+,即222111hb a =+. 17.解:设该直角三角形的两直角边分别为a ,b ,由勾股定理得,1022=+b a .∵其周长为4+10,∴4=+b a ,∴162102)(222=+=++=+ab ab b a b a ,∴3=ab ,∴该直角三角形的面积为:321ab .。

勾股定理

勾股定理

第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.①用多媒体课件演示.②小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm,面积为________cm2.【答案】(1)17 (2)7 (3)6 8 (4)6,8,10 (5) 3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24 (2)4 3 (3)3 2 (4)6 (5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】2 3 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.。

人教八年级数学下册-勾股定理(附习题)

人教八年级数学下册-勾股定理(附习题)
错因分析:出错主要原因是没有认真审题,
凭经验认为c 一定是斜边,事实上,题目并无明 确c 是斜边还是直角边,故需要分类讨论.
课堂小结
即c2=a2+b2.
拓展延伸
如图,已知长方形ABCD沿直线BD折叠,使点C落 在C′处,BC′交AD于E,AD=8,AB=4,求DE的长.
解:∵∠A=∠C′=∠C=90°, ∠AEB=∠C′ED,AB=C′D, ∴△AEB≌△C′ED.∴AE=C′E,
解:根据图形正方形E 的边长为:
122 162 92 122 =25,
故E的面积为:252=625.
知识点 2 勾股定理的证明
命题 如果直角三角形两直角边
长分别为a,b,斜边长为c,那 么a2+b2=c2.
如何证明呢?
如图我国古代证明该命题 的“赵爽弦图”.
赵爽指出:按弦图,又可
以勾股相乘为朱实二,倍之为
课堂小结
勾股定理 的应用
化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
拓展延伸
思考 这是我们刚上课时提出的问题,现在你会算了吗?
解:设水深为h尺. 由题意得:AC=3,BC=2,OC=h,
OB OA OC AC h 3.
由勾股定理得:
OB2 OC 2 BC 2 ,即(h 3)2 h2 62 ,
5.如图,要从电线杆离地面5 m处向地面拉一条长 为7 m的钢缆.求地面钢缆固定点A到电线杆底部B 的距离(结果保留小数点后一位).
解:由图可知大正方形的边长为:a+b则面积为
(a+b)2,图中把大正方形的面积分成了四部分,
分别是:边长为a的正方形,边长为b的正方形,
还有两个长为b,宽为a的长方形.

人教版八年级下册数学课时练《17.1 勾股定理》试卷含答案

人教版八年级下册数学课时练《17.1 勾股定理》试卷含答案

《17.1 勾股定理》课时练学校:___________姓名:___________班级:___________考号:___________ 一、选择题1.下列各组数中是勾股数的是( )A .12B .12,16,20C .23,24,25D .0.5,1.2,1.32.在平面直角坐标系中,已知点A (1,3)和点B (3,1),点C 、D 分别是x 轴,y 轴上的动点,则四边形ABCD 的周长最小值为( )A.B .C .D .3.如图,在Rt△ABC 中,△ACB =90°,分别以AB ,AC ,BC 为斜边作三个等腰直角△ABD ,△ACE ,△BCF ,图中阴影部分的面积分别记为S 1,S 2,S 3,S 4,若已知Rt△ABC 的面积,则下列代数式中,一定能求出确切值的代数式是( )A .S 4B .S 1+S 4﹣S 3C .S 2+S 3+S 4D .S 1+S 2﹣S 34.ABC 中,6045A ACB BD AC CE AB D E ∠∠==⊥⊥,,,,、 是垂足,CE 与BD 交于1F EF =,,则()DF =.A 1B 1C D 5.在Rt ABC ∆中,90B ∠=︒,2AB BC ==,AC a =.下列关于a 的四种说法:△a 是无理数;△a 可以用数轴上的一个点来表示;△a 是8的算术平方根;△34a <<.其中,所有正确的说法的序号是( ) A .△△△B .△△△C .△△△D .△△△6.如图,四边形ABCD 中,△B =90°,CD =2,AE 平分△BAD ,DE 平分△ADC ,△AED =120°,设AB =x ,CE =y ,则下列式子可以表示线段AD 长的是( )A .x +yB .x +2C .x +12y +2 D .x +y 7.如图所示,△B =△C =90°,E 是BC 的中点,AE 平分△DAB ,则下列说法正确的个数是( ) (1)DE 平分△CDA ;(2)△EBA △△EDA ;(3)△EBA △△DCE ;(4)AB +CD =AD ;(5)AE 2+DE 2=AD 2A.4个B.3个C.2个D.1个8.如图,在Rt△ABC中,AB=6,BC=8,AD为△BAC的平分线,将△ADC沿直线AD翻折得△ADE,则DE的长为()A.4B.5C.6D.79.如图,在△ABC中,AB=6,AC=9,AD△BC于D,M为AD上任一点,则MC2-MB2等于()A.29B.32C.36D.4510.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m二、填空题11.如图,在平面直角坐标系中,点B、C在y轴上,ΔABC是等边三角形,AB=4,AC与x轴的交点D0),则点A的坐标为____.12.如图所示,长方体ABCD A B C D ''''-中,4cm AB BC ==,2cm AA '=,E 是B C ''的中点,一只蚂蚁从点A 出发,沿长方体表面爬到E 点,则蚂蚁走的最短路径长为______cm .13.在Rt △ABC 中,△C =90º,△B =30º,BC =4,点D 是边BC 的中点,点E 是边AB 上的动点,点F 是边AC 上的动点,则DE +EF 的最小值是______________.14.如图,ABC 的顶点A ,B ,C 都在边长为1的正方形网格的格点上,CD AB ⊥于点D ,则AB 的长为__,CD 的长为__.15.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离()BC 有5米.则旗杆的高度______.三、解答题16.如图所示,点(),A a b ,(),B c d 是平面直角坐标系中的两个点,且AC x ⊥轴于点C ,BD x ⊥轴于点D ,填写下空:(1)CD =_______,DB CA -=______(用含a ,b ,c ,d 的式子表示请注意字母a的正负号)(2)请构造直角三角形,利用勾股定理计算A 、B 两点之间的距离的平方为__________________.(用含a ,b ,c ,d 的式子表示) (3)若()4,5E -,()4,10F -,求E 、F 两点之间的距离.17.如图,两个边长分别为a 、b 、c 的直角三角形和一个两条直角边都是c 的直角三角形拼成了一个梯形.用不同的方法计算梯形的面积,可以得到一个等式:a 2+b 2=c 2. (1)请用两种方法计算梯形的面积,并写出得到等式a 2+b 2=c 2的过程.(2)如果满足等式a 2+b 2=c 2的a 、b 、c 是三个正整数,我们称a ,b ,c 为勾股数.已知m 、n 是正整数且m >n ,证明2mn 、m 2﹣n 2、m 2+n 2是勾股数.18.已知ABC 中,90,8cm,6cm B AB BC ∠=︒==,P 、Q 是ABC 边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,在BC 边上的运动速度是每秒2cm ,在AC 边上的运动速度是每秒1.5cm ,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t 秒.(1)出发2秒后,求PQ 的长.(2)当点Q 在边BC 上运动时,t 为何值时,ACQ 的面积是ABC 面积的13.(3)当点Q 在边CA 上运动时,t 为何值时,PQ 将ABC 周长分为23:25两部分.19.已知ABC ∆中,ACB ∠=90°,如图,作三个等腰直角三角形ACD ∆,EAB ∆,FCB ∆,AB ,AC ,BC 为斜边,阴影部分的面积分别为1S ,2S ,3S ,4S .(1)当AC =6,BC =8时,△求1S 的值; △求4S -2S -3S 的值;(2)请写出1S ,2S ,3S ,4S 之间的数量关系,并说明理由.20.如图,长方形纸片ABCD 中,AB =8,BC =10,折叠纸片的一边AD ,使点D 落在BC 边上的点F 处,AE 为折痕,请回答下列问题: (1)求线段DE 的长度;(2)若点P 为线段AE 上的一个动点,连接BP 和FP ,则线段BP +FP 的最小值是 .21.在Rt △ABC 中,△ACB =90°,AD 平分△CAB ,交BC 于点D ,作DE △AB 于点E . (1)如图1,当AC =6,AB =10时,求△ACD 的面积;(2)如图2,当△B =45°,取AD 中点为F ,连接FC ,EF ,CE ,试判断△CEF 的形状,并说明理由;(3)如图3,取AD 中点为F ,当△B =x °,△CFE =y °,确定两者之间的函数关系式.22.如图,已知OA OB=,数轴上点A表示的数为a.(1)求出数轴上点A所表示的数a.-的大小.(2)比较点A所表示的数a与 2.4(323.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每小时飞行多少千米?参考答案1.B 2.B 3.A 4.A 5.C 6.B 7.B 8.B 9.D 10.C11.(1, 12.13.314 15.12米16.(1)D C CD x x c a =-=-, △B DB y d ==,A CA y b ==, △DB CA d b -=-. 故答案为:c -a ,d -b .(2)如图,过点B 作BE △AC 于E . 则|BE|=|CD|=c -a ,|AE|=|DB|-|CA|=d -b在Rt △ABE 中,由勾股定理得:()()22222||||AB BE AE c a b d =+=-+-.故答案为:()()22c a bd -+-(3)由(2)得:()()222||44105289EF =++--=, 所以17EF =.17.解:(1)根据题意得:S =12(a+b )(a+b ),S =12ab+12ab+12c 2, △12(a+b )(a+b )=12ab+12ab+12c 2,即(a+b )(a+b )=ab+ab+c 2,整理得:a 2+b 2=c 2;(2)证明:△(2mn )2+(m 2﹣n 2)2=4m 2n 2+m 4﹣2m 2n 2+n 4=m 4+2m 2n 2+n 4=(m 2+n 2)2, △m 、n 是正整数且m >n , △2mn 、m 2﹣n 2、m 2+n 2是勾股数.18.(1)解:当出发2秒后,AP =2,BQ =4, △BP=AB -AP =8-2=6,△△B =90°,△PQ =cm ) (2)解:△BQ =2t ,BC =6, △CQ =6-2t ,△11162)868232t ⨯-⨯=⨯⨯⨯(, 得t =2;(3)解:在ABC 中,90,8cm,6cm B AB BC ∠=︒==,△AC ==10,当点Q 在AC 上时, 1.5(3) 1.5 4.5CQ t t =-=-, △BC =6,BP =8-t ,△PQ 分△ABC 的周长中BP+BC+CQ =86 1.5 4.50.59.5t t t -++-=+,AP+AQ =1068(0.59.5)0.514.5t t ++-+=-+,当0.59.5230.514.525t t +=-+时,得t =4;当0.514.5230.59.525t t -+=+时,得t =6;检验可得t 值均符合题意,△t 为4或6时,PQ 将ABC 周长分为23:25两部分. 19.解:(1)△ACD ∆是等腰直角三角形,AC =6,∴AD =CD =1192S ∴=⨯;△ACB ∠=90°,AC =6,BC =8,∴AB =10,EAB ∆和FCB ∆是等腰直角三角形,∴AE BE ==CF BF ==设5BEG S S ∆=()4523542311++922BEA BFC S S S S S S S S S S ∆∆-=+-=--=⨯⨯;(2)设5BEG S S ∆=,如图,等腰直角三角形的面积公式12ABCSAB CD =⋅=214a ,△等腰直角三角形ACD ∆,EAB ∆,FCB ∆, △222111,,444ADC BFC ABE S AC S BC S AB ===△△△, △222AC BC AB +=,△222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△, △451253S S S S S S +=+++, △4123S S S S =++.20.解:(1)长方形纸片ABCD 中,折叠纸片,使点D 落在BC 边上的点F 处, 则AF =AD =BC =10, BF 22221086AB ,FC =BC −BF =10−6=4,△折叠纸片,使点D 落在BC 边上的点F 处,折痕为AE , △DE =EF , 设DE =EF =x , 则EC =DC −DE =8−x , 又△△EFC 为直角三角形, △FC 2+EC 2=FE 2, 即42+(8−x )2=x 2, △x =5, △DE =5;(2)连接BP ,PF ,P D ,BD ,△折叠纸片,使点D 落在BC 边上的点F 处,折痕为AE , △D 、F 关于AE 对称,△PF =PD ,则BP +PF =BP +PD ≥BD , △BP +PF 最小为BD ,BD= △BP+PF 最小值为:故答案为:21.(1)△△ACB =90°,AC =6,AB =10,△BC 8, △AD 平分△CAB ,DE △AB ,△C =90°, △CD =ED ,△DEA =△C =90°, △在Rt △ACD 和Rt △AED 中, CD DEAD AD =⎧⎨=⎩, △Rt △ACD △Rt △AED (HL ), △AD =AE =6,BE =4,令CD =x ,则DE =x ,DB =8﹣x , △DE 2+BE 2=BD 2, △x 2+42=(8﹣x )2, 解得x =3, △DE =3,△S △ACD =12AC •CD =12×6×3=9.(2)解:△CEF 为等腰直角三角形. △DE △AB , △△AED =90°,△△ACB =90°,F 为AD 的中点, △CF =AF =DF =EF =12AD ,△△CAF =△ACF ,△F AE =△AEF , △△B =45°,AD 平分△CAB , △△CAF =△EAF =22.5°,△△CFD =△ACF +△CAF =2△CAF =45°, △EFD =△EAF +△AEF =2△EAF =45°,△△CFE =△CFD +△EFD =2△CAF +2△CAF =90°, △△CEF 为等腰直角三角形.好好学习 加油!加油@11 (3)由(2)知△CFE =2△CAF +2△CAF =2△CAB =2(90°﹣x ), △y =2(90﹣x )=180﹣2x .22.(1)由数轴可知:OA OB =△数轴上点A 所表示的数a为:(2)△25=,22.4 5.76=,5.765>,2.4<,△ 2.4-,即 2.4a >-;(3)32a -<<-,20a +<,|2|(2)a a =+--22a a =---+2a =-=.23.如图,由题意得,AC=4000米,△C=90°,AB=5000米,由勾股定理得3000 (米), 所以飞机飞行的速度为3540203600= (千米/小时)。

《17.1 勾股定理》课件(含习题)

《17.1 勾股定理》课件(含习题)

某学习小组经过合作交流,给出了下面的解题思路,
请你按照他们的解题思路完成解答过程.
A
作AD⊥BC于D, 设BD=x,用含x的 代数式表示CD
根据勾股定理, 利用AD作为“桥 梁”建立方程模 型求出x
B
DC
利用勾股定理求 出AD的长,再计 算三角形面积
解:如图,在△ABC中,AB=15,BC=14,AC=13, 设BD=x,则CD=14-x,
在Rt△COD中,根据勾股定理,
OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15
OD 3.15 1.77,
BD OD OB 1.77 1 0.77 .
A C
O
BD
所以梯子的顶端沿墙下滑0.5m时,梯子底端并不是也外 移0.5m,而是外移约0.77m.
归纳总结
利用勾股定理解决实际问题的一般步骤:
a
c
b
二 勾股定理的验证
拼一拼 请同学们准备四个完全相同的直角三 角形,跟着我国汉代数学家赵爽拼图.
赵爽
b
a
c
b
a
a2 + b2
这种用拼图的验
=证勾c股2 定理的方
法叫做弦图法
c
a
b
证一证
证明: S大正方形=c2
c b
a
b-a
赵爽弦图
S小正方形=(b-a)2
S大正方形=4·S三角形+S小正方形
当堂练习
1.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米
.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行
( B )A. 8米 B.10米
C.12米 D.14米
A
B
第1题图

人教版八年级数学下册 第17章 勾股定理 课时训练(含答案)

人教版八年级数学下册 第17章 勾股定理 课时训练(含答案)

人教版 八年级数学 第17章 勾股定理 课时训练一、选择题1. 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c += B. 若a b c ,,是Rt ABC ∆的三边,则222a b c += C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c += D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=2. 如图,在△ABC 中,AB =AC =5,BC =8,D 是线段BC 上的动点(不含端点B ,C),若线段AD 长为正整数...,则点D 的个数共有( )A . 5个B . 4个C . 3个D . 2个3. 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为204. 三角形的三边为a b c ,,,由下列条件不能判断直角三角形的( ) A .::8:16:17a b c = B .222a b c -=C .()()2a b c b c =+-D .::13:5:12a b c =如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )A. a b c <<B. c a b <<C. c b a <<D. b a c <<6. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定7. 已知ABC∆的三边为a、b、c,且4a b+=,1ab=,14c=,则ABC∆是().A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形8. 如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH四条线A.CD,EF,GH B.AB,EF,GHC.AB,CD,GH D.AB,CD,EFFHGEDBCA二、填空题9. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.10. 已知直角三角形两边x,y的长满足224560x y y-+-+=______________.11.大正方形的面积分别是576和676,那么最小的正方形的面积为12. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.13.对边分别是,且满足的形状是15.的正方形的边长为7cm _______cm 2.三、解答题16.的一点,且18. 在ABC∆中,90,,A AB AC D∠==为斜边上任一点,求证:2222BD CD AD+=.D CBA人教版八年级物理第17章勾股定理课时训练-答案一、选择题1. 【答案】D【解析】在直角三角形中,才可应用勾股定理.其次,要注意边和角的对应.选D. 2. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD 之间一定存在AD=4的两种情况,∴点D的个数共有3个.3. 【答案】C【解析】在直角三角形中,直接应用勾股定理.可得斜边为5.选C.4. 【答案】A5. 【答案】C【解析】a= 10,b=5,c= 13. 选D.6. 【答案】C【解析】整体代入法.应用平方差公式.选C.7. 【答案】B【解析】∵4a b+=,1ab=,∴()()2222221621414a b a b ab c+=+-=-===,故ABC∆是直角三角形.8. 【答案】BB.二、填空题9. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.10.11.12.,少走了5m.又知2步为1米,所以少走了10步.13.【解析】14. 【答案】15..49cm2.三、解答题ACB =2.。

人教版八年级下册数学课时练《17.1 勾股定理》02(含答案)

人教版八年级下册数学课时练《17.1 勾股定理》02(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!《17.1勾股定理》课时练学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列各组数中不能作为直角三角形的三边长的是()A .6,8,10B .5,12,13C .1,2,3D .9,12,152.长方体敞口玻璃罐,长、宽、高分别为16cm 、6cm 和6cm ,在罐内点E 处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD 中心的正上方2cm 处,则蚂蚁到达饼干的最短距离是多少cm .()A .BC .24D3.如图,阴影部分是一个长方形,它的面积是()平方厘米.A .3B .4C .5D .64.如图,小方格都是边长为1的正方形,则△ABC 中BC 边上的高等于()A .BC .D5.如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=()A .6B .62C .63D .126.已知,如图,AD 平分BAC Ð,E 是BC 的中点,DE BC ^,DM AB ^,DN AC ^,若8AB =,5AC =,则CN 的长为()A .1B .32C .2D .37.如图,在ABC 中,4,3,60,AB BC B M ==Ð= 是BC 延长线上一点,2,CM P =是边AB 上一动点,连结PM ,作DPM △与BPM △关于PM 对称(点D 与点B 对应),连结AD ,则AD 长的最小值是()A .0.5B .0.6C .521D 1338.如图,在ABC 中,D ,E 分别是边BC ,AC 的中点,已知90ACB Ð=°,4BE =, 7AD =,则AB 的长为().A .13B .53C .10D .15二、填空题9.直角三角形的两边长为5和7,则第三边长为.10.若三角形三边之比为3:4:5,周长为24,则三角形面积.11.一个直角三角形的两直角边为8,15,则斜边上的高为_______12.如图,海中有一个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 在它的北偏东60°方向上,航行12海里到达点C 处,测得小岛A 在它的北偏东30°方向上,那么小岛A 到航线BC 的距离等于____________海里.13.如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.14.在△ABC中,∠C=90°,AC=BC=1,将△ABC沿射线AB翻折,得到△ABD,再将AC 沿射线AB平移,得到EF,连接DE、DF,则△DEF周长的最小值是__.三、解答题15.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.16.如图,为修建高速铁路需凿通隧道AC,测得,,,若每天可凿隧道0.3m,需要多少天才能把隧道AC凿通?17.如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东方向,办公楼B位于南偏东方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B 之间的距离.18.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算出两圆孔的中心点A和点M之间的距离.参考答案1.C2.B3.C4.B5.A6.B7.C8.A 9.2或10.24;11.12.13.2.5或5 214115.解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.16.,为直角三角形,,,,(天).答:需要天才能将隧道凿通.17.由题意可知:,,.在中,,,.在中,,,.由勾股定理,,即,解得.米.18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1勾股定理第1课时练习
一、选择题
1. 利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图。

观察图形,可以验证()公式。

A. (a+b)(a-b)=a2-b2
B. (a+b)2=a2-2ab+b2
C. c2=a2+b2
D. (a-b)2=a2-2ab+b2
二、填空题
2. 如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为__________。

3. 如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是_________。

三、解答题
4. 如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a、b,斜边长为c)和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形。

c
c
参考答案
1. C 解析:利用两种方法表示出大正方形的面积,根据面积相等可以整理出c2=a2+b2。

2. 1 解析:∵四个全等的直角三角形的直角边分别是3和4,∴阴影部分的正方形的边
解析:此图可以这样理解,。

相关文档
最新文档