北师大版七年级上册数学第一次月考数学试卷含答案
北师大版七年级上册数学第一次月考考试及完整答案
北师大版七年级上册数学第一次月考考试及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3< 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.如果23a b -=22()2a b a b a a b+-⋅-的值为( ) A 3 B .23C .33D .37.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 8.6的相反数为()A.-6 B.6 C.16-D.169.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.因式分解:2218x-=______.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、B6、A7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、55°3、2(x+3)(x﹣3).4、205、2或2.56、5三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、74n=-,38m=.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、60°5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
北师大版七年级上册数学第一次月考考试题及答案【完美版】
北师大版七年级上册数学第一次月考考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.绝对值不大于4.5的所有整数的和为________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.方程()()()()32521841x x x x +--+-=的解是_________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组x 3y 1{3x 2y 8+=--=2.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.3.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱) 销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、C6、D7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、03、3 44、3x=.5、两6、5三、解答题(本大题共6小题,共72分)1、x2 y1⎧⎨⎩==-2、(1)±3;(2)2a+b﹣1.3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、20°5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.。
北师大版七年级数学上册第一次月考考试题(及参考答案)
北师大版七年级数学上册第一次月考考试题(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC3.如图,下列能判定AB∥EF的条件有( )①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个B.2个C.3个D.4个4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.5.如图,按各组角的位置判断错误的是()A .∠1与∠4是同旁内角B .∠3与∠4是内错角C .∠5与∠6是同旁内角D .∠2与∠5是同位角 6.已知2|1|0++-=a b ,那么()2017a b +的值为( ) A .-1 B .1 C .20173D .20173- 7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 8.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =_______________,△APE 的面积等于6.3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.46623于________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知关于x 的不等式组0{321x a x -≥-≥-的整数解共有5个,则a 的取值范围是 .三、解答题(本大题共6小题,共72分)1.解方程:(1)2976x x -=+ (2)332164x x +-=-2.化简(1)先化简,再求值:()()22632a a a a ++-,其中1a =(2)化简:已知222A a ab b =-+,22+2B a ab b =+,求()14B A -3.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.4.如图,∠1+∠2=180°,∠B=∠E ,试猜想AB 与CE 之间有怎样的位置关系?并说明理由.5.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.6.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、C6、A7、C8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、1.5或5或93、445、两6、-3<a≤-2三、解答题(本大题共6小题,共72分)1、(1)x=﹣3;(2)x=3 4.2、(1)4a,4;(2)ab3、(1)略;(2)3.4、AB//CE,略5、(1)100;(2)见解析;(3)72 ;(4)160人.6、生产圆形铁片的有24人,生产长方形铁片的有18人.。
北师大版七年级上册数学《第一次月考》考试(含答案)
北师大版七年级上册数学《第一次月考》考试(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x x的值是( )A .5B .6C .7D .86.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x yx y+=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x++-=2.解不等式组()3x2x4x112⎧+≥+⎪⎨-⎪⎩<,并求出不等式组的非负整数解.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、A6、C7、C8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、60°3、5404、-405、40°6、±3三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、0,1,2.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)略;(2)略.5、(1)40;(2)72;(3)280.6、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。
北师大版七年级上册数学第一次月考测试卷(附答案)
北师大版七年级上册数学第一次月考测试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.观察下列图形,是中心对称图形的是( )A .B .C .D .7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若+x x -有意义,则+1x =___________.5.如图,直线a ,b 与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a ∥b 的是________(填序号)6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.化简求值:()1已知a是13的整数部分,3b=,求54ab+的平方根.()2已知:实数a,b在数轴上的位置如图所示,化简:22(1)2(1)a b a b++---.3.如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C 不与B ,H 两点重合)从点B 出发,沿射线BG 的方向运动,其他条件不变,求∠BAF 的度数.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A ,B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、B6、D7、A8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、-4π3、135°4、15、①③④⑤.6、36°或37°.三、解答题(本大题共6小题,共72分)1、-7<x≤1.数轴见解析.2、(1)±3;(2)2a+b﹣1.3、(1)略;(2) 略.4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、A饮料生产了30瓶,B饮料生产了70瓶.。
北师大版七年级(上)第一次月考数学试卷(附答案和解析)
1北师大版 七年级(上)第一次月考数学试卷1. 下面的数中,与−2的和为0的是( )A. 2B. −2C. 12D. −12 2. 如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是( )A. 祝B. 你C. 事D.成 3. 设a 是最小的自然数,b 是相反数等于它本身的数,c 是到原点的距离等于2的负数,则20192020(a +b)+(c2)2020的值为( ) A. −1 B. 0 C. 1 D. 24. 下列说法正确的是( )A. 两个数的绝对值相等,这两个数也相等B. 一个有理数若不是正数必定是负数C. 两个数不相等,这两个数的绝对值也不相等D. 互为相反数的两个数绝对值相等5. 在−(−25),95%,−|−32|,−34,0中正数有( ) A. 1个 B. 2个 C. 3个 D. 4个6. 如图,将正方体沿面AB′C 剪下,则截下的几何体为( )A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱7. 四个有理数的积是负数,则这四个有理数中负因数有( )A. 1个B. 2个C. 3个D. 1个或3个8. 已知a ,b 两数在数轴上对应的点如图所示,下列结论中正确的是( )A. |a|>|b|B. ab <0C. b −a >0D. a +b <09.如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为______.10.A市某天的温差为7℃,如果这天的最高气温为5℃,这天的最低气温是______ .11.比较大小:−68______ −78.12.用平面去截一个六棱柱,截面的形状最多是______ 边形.13.某次数学测验共20道选择题,规则是:选对一道的5分,选错一道的−1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是______ .14.在数轴上,到原点距离小于或等于2的所有整数有______ .15.如果|a+2|+|1−b|=0,那么a×b=______.16.用小立方块搭一个几何体,如图所示,这样的几何体最少需要______ 个小立方块,最多需要______ 个小立方块.17.观察如图中的几何体,画出从左面、上面两个方向看到的形状图.第2页,共14页18.如图所示,这是一个由小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方体的个数,请分别画出从它的正面和左面看到的形状图.19.(1)|−213|+|−323|(2)8.63−(−1.37)(3)(−25)+34+156+(−65)(4)(−0.5)−234−(+214)(5)(−52)+24−(+74)+12.(6)−313−(−587)+(−97)−(+323)(7)(+13)+(−12)−(+34)−(−23)(8)(−479)−(−316)−(+29)+(616)20.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车的人数181512750下车的人数0−3−4−10−113(1)到终点下车还有多少人,填在表格相应的位置;(2)车行驶在那两站之间车上的乘客最多______ 站和______ 站;(3)若每人乘坐-站需买票0.5元,问该车出车一次能收入多少钱?写出算式.21.附加题:如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是−2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数−3,将点A向右移动7个单位长度,那么终点B表示的数是______,A,B两点间的距离是______;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______,A,B两点间的距离为______;(3)如果点A表示数−4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是______,A、B两点间的距离是______;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?第4页,共14页答案和解析1.【答案】A【解析】解:设这个数为x,由题意得:x+(−2)=0,x−2=0,x=2,故选:A.设这个数为x,根据题意可得方程x+(−2)=0,再解方程即可.此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.2.【答案】D【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意正方体的空间图形,从相对面入手,分析及解答问题.【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选:D.3.【答案】C【解析】【分析】由自然数的定义,相反数及绝对值定义等分别求出a、b、c的值,代入原式即可得到答案.本题主要考查绝对值和倒数,掌握绝对值和倒数的性质是解题的关键.【解答】解:因为a是最小的自然数,b是相反数等于它本身的数,c是到原点的距离等于2的负数;5第6页,共14页所以a =0,b =0,c =−2,所以20192020(a +b)+(c 2)2020=1, 故选C.4.【答案】D【解析】【试题解析】【分析】本题考查了绝对值的意义、有理数的分类.互为相反数的两个数的绝对值相等,正有理数、负有理数和0统称有理数.可通过举反例的办法判断选项A 、B 、C 是否正确,根绝绝对值的意义判断选项D.【解答】解:因为|3|=|−3|,但+3≠−3,故选项A 错误;由于有理数0既不是正数也不是负数,故选项B 错误;由于3≠−3,但|3|=|−3|,故选项C 错误;互为相反数的两个数的绝对值相等,故选项D 正确.故选D.5.【答案】B【解析】解:−(−25)=25是正数;95%是正数;−|−32|=−32是负数;−34是负数;0既不是正数也不是负数;所以,在−(−25),95%,−|−32|,−34,0中正数有−(−25),95%,共2个. 故选B.根据相反数的定义,绝对值的性质分别进行化简,然后根据正数的定义进行判断即可得解.本题考查了正数和负数,主要利用了相反数的定义,绝对值的性质,是基础题.6.【答案】A【解析】解:∵截下的几何体的底面为三角形,且AB 、CB 、B′B 交于一点B , ∴该几何体为三棱锥.故选A.找出截下几何体的底面形状,由此即可得出结论.本题考查了截一个几何体,找出所截几何体的形状是解题的关键.7.【答案】D【解析】【分析】本题考查了有理数的乘法,解答本题的关键在于熟练掌握n个有理数相乘,其中负因数的个数为奇数的,其积为负数;负因数的个数为偶数的,积为正数.结合n个有理数相乘,其中负因数的个数为奇数的,其积为负数;负因数的个数为偶数的,积为正数,进行求解即可.【解答】解:n个有理数相乘,其中负因数的个数为奇数的,其积为负数;负因数的个数为偶数的,积为正数.4个有理数相乘,积为负数,则其负因数的个数为1或3.故选D.8.【答案】D【解析】解:因为表示数字b的点到原点的距离大于表示数字a的点到原点的距离,故A错误;依据a、b在数轴上的位置可知b<a<0,所以ab>0,b−a<0,a+b<0,故B、C错误,D正确.故选D.依据a、b在数轴上的位置可知b<a<0,然后再依据绝对值的定义、有理数的加法、减法、乘法法则求解即可.本题主要考查的是利用数轴比较有理数的大小,有理数的运算法则,熟练掌握相关知识是解题的关键.9.【答案】−4小时【解析】解:∵正午(中午12:00)记作0小时,午后3点钟记作+3小时,又∵上午8点钟距中午12:00有:12−8=4(小时),7∴上午8点钟可表示为:−4小时.故答案为:−4小时.由在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示;可首先求得上午8点钟距中午12:00有:12−8=4(小时),即可求得上午8点钟的表示方法.此题考查了正数与负数的意义.注意解题关键是理解“正”和“负”的相对性.10.【答案】−2℃【解析】【分析】本题考查了有理数的减法,熟记运算法则是解题的关键.用最高温度减去温差,根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5−7=5+(−7)=−2℃.故答案为:−2℃.11.【答案】>【解析】【分析】本题考查了有理数大小的比较,解答本题的关键在于熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.结合有理数大小比较的法则:两个负数,绝对值大的其值反而小.【解答】解:∵68<78,∴−68>−78.故答案为:>.第8页,共14页【解析】解:∵用平面去截正方体时最多与8个面相交得八边形,∴最多可以截出八边形.故答案是:八.六棱柱有8个面,用平面去截六棱柱时最多与8个面相交得八边形,最少与五个面相交得三角形.因此最多可以截出八边形.本题考查了截一个几何体.用到的知识点为:截面经过棱柱的几个面,得到的截面形状就是几边形.13.【答案】78【解析】【分析】根据规则列出得分的代数式计算即可.此题的关键是读懂题意,列式计算.【解答】解:∵选对一道得5分,选错一道得−1分,不选得零分.∴他的得分是16×5−2=78.故答案为:78.14.【答案】−2,−1,0,1,2【解析】解:如图所示:在数轴上,到原点距离小于或等于2的所有整数有:−2,−1,0,1,2.故答案为:−2,−1,0,1,2.据题意画出数轴,进而得出符合题意的整数点.本题考查了有理数大小的比较,解答本题的关键在于根据题意正确在数轴上表示出各数.9【解析】解:由题意得,a+2=0,1−b=0,解得a=−2,b=1,所以,a×b=(−2)×1=−2.故答案为:−2.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【答案】9;13【解析】【分析】考查学生对三视图掌握程度和灵活运用能力.根据三视图的知识可得,几何体的底层确定有6个立方块,而第二层最少有2个立方块,最多会有4个.第三层最少要1个,最多要3个,故这个几何体最少要6+2+1个,最多要6+4+3个.【解答】解:综合正视图和俯视图,这个几何体的底层最少要6个小立方块,最多也需要6个小立方块.第二层最少要2个小立方块,最多要4个,第三层最少要1个,最多要3个,因此这样的几何体最少要6+2+1=9个,最多要6+4+3=13个.故答案为9,1317.【答案】解:左面、上面两个方向看到的图形如图所示,第10页,共14页【解析】从左边看有2列,每列小正方形数目分别为2,1;从上面看3列,每行小正方形数目分别为2,1,1,由此即可画出图形.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.【答案】解:如图所示:【解析】此题主要考查了三视图以及由三视图判断几何体的形状,正确想象出几何体的形状是解题关键.利用俯视图可得出几何体的形状,进而利用主视图以及左视图的观察角度得出不同视图即可.19.【答案】解:(1)|−213|+|−323|=213+323=6;(2)8.63−(−1.37)=10;(3)(−25)+34+156+(−65)=(−25−65)+(34+156)=−90+190=100;(4)(−0.5)−234−(+214)=(−0.5)+(−234−214)=−0.5−5=−5.5;(5)(−52)+24−(+74)+12=(−52+12)+(24−74)11=−40−50 =−90;(6)−313−(−587)+(−97)−(+323)=(−313−323)+(587−97)=−21+7 =−14;(7)(+13)+(−12)−(+34)−(−23)=(+13+23)+(−12−34)=1−11 4=−14;(8)(−479)−(−316)−(+29)+(616)=(−479−29)+(316+616)=−5+91 3=41 3 .【解析】(1)先化简再计算加法;(2)根据有理数的减法法则计算;(3)根据加法交换律和结合律计算;(4)先计算同分母分数,再计算加减法;(5)先化简再计算加减法;(6)(7)(8)先计算同分母分数,再计算加减法.此题考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.【答案】(1)根据题意可得:到终点前,车上有18+15−3+12−4+7−10+5−11=29,即29人;故到终点下车还有29人.(2)B;C(3)根据题意:(18+30+38+35+29)×0.5=75(元).【解析】解:(1)见答案(2)根据图表:易知B站和C站之间人数最多.(3)见答案【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.21.【答案】(1)4;7;(2)1;2;(3)−92;88;(4)B表示的数为(m+n−p),A,B两点间的距离为|n−p|.【解析】解:(1)∵点A表示数−3,∴点A向右移动7个单位长度,终点B表示的数是−3+7= 4,A,B两点间的距离是|−3−4|=7;故答案为:4,7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3−7+5=1,A,B两点间的距离为3−1=2;故答案为,1,2;(3)∵点A表示数−4,∴将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是−4+168−256=−92,A、B两点间的距离是|−4+92|= 88;故答案为:−92,88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为(m+n−p),A,B两点间的距离为|n−p|;故答案为:(m+n−p),|n−p|.13【分析】根据数轴上表示的数左减右加的原则计算即可.本题考查的是数轴的定义及数轴上两点之间的距离公式,属较简单题目.。
北师大版七年级上册数学第一次月考试卷(及参考答案)
北师大版七年级上册数学第一次月考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.关于x的不等式组314(1){x xx m->-<的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥37.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是___________________.3.因式分解:2218x -=______.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、B5、B6、D7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、垂线段最短.3、2(x +3)(x ﹣3).4、50°5、两6、48三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x =2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.3、(1)6;(2)略;(3)略.4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
北师大版七年级数学上册第一次月考测试卷(附答案)
北师大版七年级数学上册第一次月考测试卷(附答案)(满分120分,时间90分钟)题号一二三总分得分合要求的)1.下列几何体中,没有曲面的是( )2.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A.-18%B.-8%C.+2%D.+8%3.下列平面图形不能够围成正方体的是( )4.若一个数的绝对值是2 019,则这个数是( )A.2 019B.-2 019C.±2 019D.以上都不对5.下列说法正确的是( )A.有理数包括正整数、零和负分数B.-a不一定是整数C.-5 和+(-5)互为相反数D.两个有理数的和一定大于每一个加数6.有理数a,b在数轴上的位置如图所示,下面结论正确的是( )A. b-a<0B. ab>0C. a+b>0D.|a|>|b|7.如图所示是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是( )8.一个圆柱体削去12立方分米后,正好削成一个与它等底等高的圆锥,这个圆锥体体积是( )立方分米.A.24B.12C.6D.189.如图所示,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数,则填入正方形A,B,C的三个数依次为( )A.1,-2,0B.-2,1,0C.-2,0,1D.0,-2,110.如图所示,用一个平面去截一个圆柱,则截得的形状应为( )二、填空题(本大题共8小题,共32分)11.把下列各数-1.5, 12,0,-0.101,3,--5填在相应集合里.非正数集合:{ } 负分数集合:{ } 整数集合:{ }12.在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”,这里把雨滴看成了点,用数学知识解释这一现象: . 13.若|a-6|+|b+5|=0,则a+b 的值为 .14.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有 种不同的涂法. 15.在(-1)²⁰¹⁹,(-1)²⁰²⁰,-2²,(-3)²中,最大的数与最小的数的和等于 . 16.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要 块正方体木块,至多需要 块正方体木块.17.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有 个.18.观察下列算式:2¹=2,2²=4,2³=8,2⁴=16,2⁵=32,2⁶=64,2⁷=128,2⁸=256,…通过观察,根据所发现的规律可确定2¹⁵个位上的数字是 . 三、解答题(本大题有6个小题,共58分) 19.(8分)计算下列各题:(1)3.587−(−5)+(−512)+(+7)−(+314)−(+1.587); (2)(−1)5×{[−423÷(−2)2+(−1.25)×(−0.4)]÷(−19)−32}.20.(8分)如图,这是一个由一些相同的小立方块塔成的几何体从上面看的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面看和从左面看的形状图.21.(10分)一辆货车从超市出发送货,先向南行驶30km到达A单位,继续向南行驶20km到达B 单位.回到超市后,又给向北15 km处的C单位送了3次货,然后回到超市休息.(1)C单位离A 单位有多远?(2)该货车一共行驶了多少千米?22.(10分)一只蜘蛛在一个正方体的顶点 A 处,一只蚊子在正方体的顶点 B 处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?23.(10分)如图所示,在数轴上的三个点 A、B、C 表示的数分别为−3,−2,2,试回答下列问题.(1)A,C两点间的距离是 ;(2)若E点与B点的距离是8,则 E点表示的数是;(3)若将数轴折叠,使A 点与C 点重合,则B 点与哪个数重合?24.(12 分)下面是按一定规律排列的一列数: 第1个数: 1−(1+−12); 第2个数: 2−(1+−12)[1+(−1)23][1+(−1)34]; 第3个数: 3−(1+−12)(1+(−1)23)(1+(−1)34)(1+(−1)45)[1+(−1)56].…(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案1. B2. B3. B4. C5. B6. A7. B8. C9. B 10. B 11.{--1.5,0,-0.101,-5} {-1.5,-0.101} {0,3,-5} 12.点动成线 13.1 14.4 15.5 16.6 16 17.8 18.819.解(1)原式 =3.587+5−512+7−314−1.587 =(3.587−1.587)+(5+7)+(−512−314) =2+12−834 =514.(2)原式 =−1×{[−143÷4+0.5]÷(−19)−9}=−1×[(−23)÷(−19)−9] =−1×(6−9) =−1×(−3) =3. 20.解21.解(1)规定超市为原点,向南为正,向北为负,依题意,得C 单位离A 单位有 30+|15|=45(km ), ∴C 单位离A 单位45 km.(2)该货车一共行驶了 (30+20)×2+|15|×6=190(km).答:该货车一共行驶了190km.22.解所走的最短路线是正方体平面展开图中从点A 到点B 的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.23.解(1)5(2)6或-10(3)因为A 点与C 点重合,所以折痕与坐标轴的交点表示的数为-0.5,则B 点与表示1的点重合.24.解(1)第1个数: 12 ;第2个数: 32;;第3个数: 52. (2)第2017个数: 2017−(1+−12)[1+(−1)23][1+(−1)34]..[1+(−1)40334034]=40332.。
2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面).23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−【答案】D【解析】【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,进行比较判断即可. 【详解】解:53 1.51−>−>−>− 53 1.51∴−<−<−<−故选D .【点睛】本题考查了有理数比较大小,解决本题的关键是掌握有理数间的大小比较方法. 2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 的值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值. 根据绝对值大于1的数,用科学记数法表示为10n a ×,其中110a ≤<,n 的值为整数位数少1,即可得出结果.【详解】解:3150000000大于1,用科学记数法表示为10n a ×,其中 3.15a =,9n =, 故选:B .3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】D【解析】【分析】本题考查了数轴、相反数以及绝对值的意义,解题的关键是确定原点的位置.由“点M ,N 表示的有理数互为相反数”可知原点在点M 与点N 的中点,再根据离原点越远,绝对值越大即可解答.【详解】 点M ,N 表示的有理数互为相反数, ∴原点在点M 与点N 的中点,根据数轴可知,点Q 到原点的距离最大,即点Q 的绝对值最大,故选:D5. 下列运算中,错误的是( )A ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=【答案】A【解析】 【分析】本题考查有理数的除法.掌握有理数的除法运算的法则是解题关键.根据有理数的除法运算法则逐项计算即可. 【详解】()1115555 ÷−=×−,故A 错误,符合题意; ()()()15522 −÷−=−×−,故B 正确,不符合题意; ()18484 ÷−=×−,故C 正确,不符合题意; 080÷=,故D 正确,不符合题意..6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数和为0,则它们必定互为相反数D. 倒数是它本身的数只有1【答案】C【解析】【分析】分别利用有理数的定义、绝对值的性质、有理数的加法法则、倒数的定义得出即可.【详解】解:A 、一个有理数可能是正数、0、负数,故此选项错误;B 、绝对值等于它本身的数是非负数,故此选项错误;C 、若两个有理数的和为0,则它们必定互为相反数,此选项正确;D 、倒数等于它本身的数有:±1,故此选项错误.故选:C .【点睛】此题主要考查了有理数的定义、绝对值的性质、有理数的加法、倒数,正确区分它们是解题关键.7. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 【答案】A【解析】【分析】本题考查了相反数的定义,有理数的乘方以及化简绝对值,先分别算出每个选项的值,再结合相反数的定义进行逐个比较分析,即可作答.【详解】解:A 、229(33)9, ,它们是互为相反数,符合题意,故该选项是正确的; B 、223939−==,,它们不是互为相反数,不符合题意,故该选项是错误的; C 、2211113939−== ,,它们不是互为相反数,不符合题意,故该选项是错误的; D 、223939−−=−−=−,,它们不是互为相反数,不符合题意,故该选项是错误的;故选:A .8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的面展开图可能是()A. B. C. D.【答案】D【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵相对面上的两数之和为7,∴3与4相对,5与2相对,6与1相对观察选项,只有选项D符合题意.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 有理数,a b在数轴上的位置如图所示,则化简a b a−+的结果为()A. bB. b−C. 2a b−− D. 2a b−【答案】A【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】由数轴得:0a b<<,即0a b−<则原式b a a b=−+=故选:A【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1121=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A. 3B. 23C. 12−D. 无法确定 【答案】C【解析】【分析】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出2a 、3a 、4a ,找出数字变化的规律.根据规则计算出2a 、3a 、4a ,即可发现每3个数为一个循环,然后用2024除以3,即可得出答案.【详解】解:由题意可得,13a =,211213a =−=−, 3121312a == −−, 413213a ==−, …,由上可得,每三个数一个循环,202436742÷=⋅⋅⋅,∴202412a =−. 故选:C . 二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.【答案】面动成体【解析】分析】根据点动成面、面动成体原理即可解答.【详解】解:硬币桌面上快速地转动时,看上去像球,这说明了面动成体.【在故答案为:面动成体.【点睛】本题主要考查了面动成体,这是面动成体的原理在现实中的具体表现.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.【答案】7【解析】【分析】本题主要考查了从不同方向看几何体,从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,得出组成这个几何体的小正方体的个数最少有7个.【详解】解:从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有7个,∴n 的最小值为7,故答案为:7.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.【答案】12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.【答案】5【解析】【分析】根据绝对值的意义和正负数的意义,求出x 和y 的值然后求解即可. 【详解】∵2x =, 3y =,∴xx =2或-2,3y =或-3,∵0xy <,∴x 和y 异号,又∵0x y +<,∴xx =2,3y =−,∴()235x y −=−−=,故答案为:5.【点睛】本题考查了绝对值和正负数的意义,解决本题的关键是正确理解题意,熟练掌握绝对值的意义.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C 表示的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.【答案】6【解析】【分析】先由|2||1|0a b +++=,根据绝对值的非负性,得出a 和b 的值,根据倒数的定义,得出点C 表示的数,再根据对折的要求,得出对折点,从而根据对折的性质得出与点B 重合的点表示的数.【详解】解:∵|2||1|0a b +++=,|2|0a +≥,|1|0b +≥, ∴20a +=,10b +=, ∴2a =−,1b =−,∵点C 表示的数是17的倒数, ∴点C 表示的数是7,∵7(2)9−−=, 将数轴折叠,使得点A 与点C 重合, ∴对折点表示的数为:97 2.52−=, ∴[]2.5(2.5(1) 2.5 3.56+−−=+=.【点睛】本题考查了绝对值非负性、倒数的定义,对折的性质等基础知识,根据题意正确地用数学语言表示相关概念,是解题的关键.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 【答案】(1)10−(2)22(3)16−(4)52− 【解析】(1)先计算乘方,再计算乘法,最后计算加法即可;(2)先计算乘方,再计算除法,最后计算减法即可;(3)先计算除法,再计算乘法即可;(4)先计算乘方,再计算乘除法,最后计算减法即可.【小问1详解】解:()()2832+−×− ()892=+×−818=−10=−;【小问2详解】解:()()22100223 ÷−−−÷−的()1004232=÷−−×−25322=;【小问3详解】解:()()3434⎛⎫⎪-÷-⨯- ⎪⎝⎭()()4433=−×−×−16=−;【小问4详解】 解:231114332−÷−−×−1811394=−÷−×−132=−+52=−.17. 计算:(1)1564358−÷×;(2)35344+−−−− ;(3)()()0.350.60.25 5.4+−++−;(4)()457369612−×−+− ;(5)18991819−×;(6)22218134333×−+×−× .【答案】(1)252−(2)1−(3) 5.4−(4)7(5)1179919− (6)6−【解析】【分析】本题考查了有理数的混合运算,乘法运算律,绝对值等知识.熟练掌握有理数的混合运算,乘法运算律,绝对值是解题的关键.(1)先进行除法运算,然后进行乘法运算即可;(2)先去括号,计算绝对值,然后进行加减运算即可;(3)利用乘法运算律计算求解即可;(4)利用乘法运算律计算求解即可;(5)利用乘法运算律计算求解即可;(6)利用乘法运算律计算求解即可.【小问1详解】 解:1564358−÷× 5564168=−×× 252=−; 【小问2详解】 解:35344 +−−−− 35344=+− 23=−1=−;【小问3详解】解:()()0.350.60.25 5.4+−++−0.350.60.25 5.4−+−()0.350.250.6 5.4=+−−5.4=−;【小问4详解】解:()457369612 −×−+−()()()4573636369612 =−×−+−×−−×163021=−+7=;【小问5详解】 解:18991819−× 11001819 =−−×1100181819=−×+× 18180019=−+ 1179919=−; 【小问6详解】 解:22218134333 ×−+×−× ()2181343=×−+− ()293=×− 6=−四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,. 【答案】(1)3−,3.5,2, 0,0.5;300.52 3.5−<<<<(2)见详解,443.50753−<−<<< 【解析】【分析】本题考查了有理数大小比较,数轴,准确熟练地进行计算是解题的关键.(1)先根据数轴得出各点代表的有理数,然后根据数轴比较有理数的大小即可.(2)先在数轴上把各数表示出来,然后根据数轴比较有理数的大小即可.【详解】解:(1)点A 表示的有理数为:3−,点B 表示的有理数为:3.5,点C 表示的有理数为:2,点D 表示的有理数为:0,点E 表示的有理数为:0.5,用<将它们连接起来为:300.52 3.5−<<<<.(2)各数在数轴上的表示如图:大小如下:443.50753−<−<<< 19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26) =6÷(﹣16) =6×(﹣6)=﹣36【点睛】本题考查有理数的混合运算,解答本题的关键是掌握乘法分配律.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.【答案】(1)36 (2)330【解析】【分析】本题主要考查了图形类的规律探索,根据已知图形的面积得出变化规律,第n 个几何体的表面积为:()31n n +是解题的关键.(1)只需要写出第3个几何体露在外面的小正方形面即可得到答案;(2)根据前3个几何体的表面积找到规律第n 个几何体的表面积为:()31n n +,在代入10n =进行求解即可.【小问1详解】解:由题意得,第3个几何体的表面积是66666636+++++=;【小问2详解】解:第1个几何体的表面积为()31116××+=, 第2个几何体的表面积为()322118××+=, 第3个几何体的表面积是()333136××+=, ......,以此类推,第n 个几何体的表面积是()31n n +,∴第10个几何体的表面积为()310101330××+=. 21. 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?【答案】(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积(包括底面).【答案】(1)见解析(2)①10个;②表面积为3800平方厘米【解析】【分析】本题主要考查了正方体的展开图,求几何体的表面积:(1)根据正方体展开图“33型”有1种,“222型”有1种,“141型”有6种,“132型”有3种,结合已给图形进行求解即可;(2)①根据从不同方向看的图形分别确定每个位置小正方体的个数即可得到答案;②根据几何体表面积计算公式求解即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:①如图所示,每个位置的小立方体数如下所示:+++++=个正方体盒子组成这个几何体;∴小明用了23111210第16页/共17页 ②()()26662210103800cm ++×+××=,答:表面积为3800平方厘米. 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.【答案】(1)0 (2)<;>;<(3)a【解析】【分析】(1)根据相反数的意义,即可求解;(2)观察数轴得:0c b a <<<,且c b a >=,即可求解; (3)先根据绝对值的性质化简,再合并,即可求解.【小问1详解】解:∵||||a b =,且a ,b 所对应的点分别位于原点的两侧,∴a ,b 互为相反数,∴0a b +=;故答案为:0【小问2详解】解:观察数轴得:0c b a <<<,且c b a >=, ∴0b c +<;0a c −>;0ac <;故答案为:<;>;<【小问3详解】解:|2|||||||c b c a b c −+−+−+−()2c b a c b c =−−−+−+−2c b a c b c −+−+−a =.【点睛】本题主要考查了数轴,绝对值的性质,整式的加减,利用数形结合思想解答是解题的关键.。
北师大版七年级上册数学第一次月考试卷及答案【完整】
北师大版七年级上册数学第一次月考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 494) A .32 B .32- C .32± D .81165.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个 二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________. 4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x y x y -=⎧⎨+=⎩(2)25528x y x y -=⎧⎨+=⎩2.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.3.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、A5、B6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、105°3、43 32a≤≤4、50°5、16、54°三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、(1)±3;(2)2a+b﹣1.3、(1)证明见解析;(2)75.4、20°5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
北师大版七年级上册数学《第一次月考》考试卷(含答案)
北师大版七年级上册数学《第一次月考》考试卷(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)116________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x y x y --=⎧⎨-=⎩2.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、A6、C7、C8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、60°3、5404、-405、16、2或-8三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、(1)–2x2+6;(2)5.3、(1)证明见解析;(2)∠FAE=135°;4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)40;(2)72;(3)280.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
北师大版七年级上册数学《第一次月考》考试题(含答案)
北师大版七年级上册数学《第一次月考》考试题(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A .x >﹣2B .x >0C .x >1D .x <15.如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④910+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<0二、填空题(本大题共6小题,每小题3分,共18分)1.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.4.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为________.5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.69=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)x-12(3x-2)=2(5-x)(2)24x+-1=236x-2.解不等式组:()41710853x xxx⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、C7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、20°.3、3 44、55、2或﹣8.6、3三、解答题(本大题共6小题,共72分)1、(1)x=6(2 x=02、不等式组的所有非负整数解为:0,1,2,3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)34;(2)1256、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
北师大版七年级上册数学《第一次月考》考试卷带答案
北师大版七年级上册数学《第一次月考》考试卷带答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于()A.-23999B.-2C.-21999D.219992.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.>,下列不等式不一定成立的是()5.若m nA .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n > 6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A .赚16元B .赔16元C .不赚不赔D .无法确定8.在数轴上,a 所表示的点总在b 所表示的点的右边,且|a |=6,|b |=3,则a -b 的值为( )A .-3B .-9C .-3或-9D .3或99.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:2ab a -=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.分解因式:32x 2x x -+=_________.4.若162482m m ⋅⋅=,则m =________.5.若不等式(a ﹣3)x >1的解集为13x a <-,则a 的取值范围是________. 6.若多项式29x mx ++是一个完全平方式,则m =________.三、解答题(本大题共6小题,共72分)1.解不等式组:2(1),712.2x x x x +>⎧⎪⎨+-⎪⎩并在数轴上表示它的解集.2.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.3.如图1,点E 在直线AB 上,点F 在直线CD 上,EG ⊥FG .(1)若∠BEG+∠DFG =90°,请判断AB 与CD 的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG ⊥FG 保持不变,EG 上有一点M ,使∠MFG =2∠DFG ,则∠BEG 与∠MFD 存在怎样的数量关系?并说明理由.(3)如图2,若移动点M ,使∠MFG =n ∠DFG ,请直接写出∠BEG 与∠MFD 的数量关系.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.6.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进2价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、B5、D6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a (b +1)(b ﹣1).2、83、()2x x 1-.4、35、3a <.6、-6或6三、解答题(本大题共6小题,共72分)1、21x -<-,2、±33、(1)AB //CD ,理由略;(2)∠BEG 13+∠MFD =90°,理由略;(3)∠BEG +11n +∠MFD =90°.4、(1)65°(2)证明略5、(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.6、(1) 该超市第一次购进甲种商品150件、乙种商品90件.(2) 1950元.。
北师大版七年级上册数学第一次月考考试卷(附答案)
北师大版七年级上册数学第一次月考考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A.0 B.1 C.2 D.37.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.实数a、b在数轴上的位置如图所示,则化简|a-b|﹣a的结果为()A.-2a+b B.b C.﹣2a﹣b D.﹣b9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l410.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)181________.2.绝对值不大于4.5的所有整数的和为________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________. 5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、B7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、03、(3,7)或(3,-3)4、a≤2.5、±46、±3三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、0<m<3.3、(1) C(5,﹣4);(2)90°;(3)略4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)50;72;(2)详见解析;(3)330.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
北师大版七年级上册数学第一次月考试卷【及答案】
北师大版七年级上册数学第一次月考试卷【及答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.下列图形中,不是轴对称图形的是()A.B.C.D.3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.6的相反数为()A.-6 B.6 C.16-D.169.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.绝对值不大于4.5的所有整数的和为________.3.因式分解:2218x-=______.5.若不等式组x a0{12x x2+≥-->有解,则a的取值范围是________.5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.先化简再求值:22(3)(3)(3)6(2)a b b a a b b b ⎡⎤+-+--÷-⎣⎦ 其中13a =-,2b =-.3.如图1,点E 在直线AB 上,点F 在直线CD 上,EG ⊥FG .(1)若∠BEG+∠DFG =90°,请判断AB 与CD 的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG ⊥FG 保持不变,EG 上有一点M ,使∠MFG =2∠DFG ,则∠BEG 与∠MFD 存在怎样的数量关系?并说明理由.(3)如图2,若移动点M ,使∠MFG =n ∠DFG ,请直接写出∠BEG 与∠MFD 的数量关系.4.如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、A5、A6、B7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、03、2(x+3)(x﹣3).4、a>﹣15、2或﹣8.6、10三、解答题(本大题共6小题,共72分)1、3x=.2、-3 .3、(1)AB//CD,理由略;(2)∠BEG13+∠MFD=90°,理由略;(3)∠BEG+11n+∠MFD=90°.4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、()117、20;()22次、2次;()372;()4120人.25003km.6、①Q=100﹣6t;② 10L;③。
北师大版数学七年级上册第一次月考试题含答案
北师大版数学七年级上册第一次月考数学试卷一、选择题(共15小题,每题3分,共51分)1.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A .1B .4C .5D .62.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是( )3.如图所示,用一个平面去截一个圆柱,则截得的形状应为( )4.用一平面去截下列几何体,其截面可能是长方形的有( )A .1个B .2个C .3个D .4个5.如图是由几个大小相同的小正方体搭成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,则该几何体从左面看到的图形是( )A B C D6.下列说法中,正确的个数是( ) ①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A .2B .3C .4D .57.如图,由高和直径相同的5个圆柱搭成的几何体,从左边看得到的平面图形是( )8.将如图所示放置的一个直角三角形ABC ,(∠C =90°),绕斜边AB 旋转一周,所得到的几何体从正面看到的图形是下面四个图中的( )A B C D 9.如图是一个正方体被截去一个正三棱锥得到的几何体,从上面看这个几何体,则所看到的平面图形是( )10.下列数-91,1.5,23,-136,7,0中,负数的个数是( )A .1B .2C .3D .4 11.下列说法错误的是( ) A .-2是负有理数B .0不是整数C.25是正有理数D .-0.25是负分数12.如图,在数轴上点A 表示的数可能是( )A .1.5B .-1.5C .-2.6D .2.613.|-13|的相反数是( )A.13B .-13C .3D .-314.(绍兴中考)比较-3,1,-2的大小,正确的是( ) A .-3<-2<1 B .-2<-3<1C .1<-2<-3D .1<-3<-2 15.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个16.有理数a 、b 、c 在数轴上的位置如图所示,下列结论错误的是( )A .c <b <aB .-c>aC .b <0,c <0D .-a>-c 17.下列说法错误的是( ) A .长方体、正方体都是棱柱B .六棱柱有18条棱、6个侧面、12个顶点C .三棱柱的侧面是三角形D .圆柱由两个平面和一个曲面围成二、填空题(共5小题,每题5分,共25分)18.如图的几何体有____个面,____条棱,_____个顶点,它是由简单的几何体____和____组成的.19.人在雪地上行走,他的脚印形成一条____,这就是__________________的原理.20.把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6.(1)非负数集合:{ }; (2)负数集合:{ }; (3)正整数集合:{ }; (4)负分数集合:{ }.21.已知 | 2a +4 |+ | 3—b |=0,则a +b =22.某地一天下午4时的温度是6 ℃,过了6时气温下降了4 ℃,又过了2时气温下降了3 ℃,第二天0时的气温________.三、解答题(共3题,每题8分,共24分)23.围成下面这些立体图形的各个面中,哪些面是平的?哪些面是曲的?(8分)(1) (2)24.(8分)如图,图1为一个长方体,AB=AD=16,AE=6,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面“国”;(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置,并求出图2中△ABN的面积.25.若a,b都是非零的有理数,那么a|a|+b|b|的值是多少?参考答案一、选择题(共15小题,每题3分,共51分)1.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( B )A .1B .4C .5D .62.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是( D )3.如图所示,用一个平面去截一个圆柱,则截得的形状应为( B )4.用一平面去截下列几何体,其截面可能是长方形的有( C )A .1个B .2个C .3个D .4个5.如图是由几个大小相同的小正方体搭成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,则该几何体从左面看到的图形是( A )A B C D6.下列说法中,正确的个数是( B ) ①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A .2B .3C .4D .57.如图,由高和直径相同的5个圆柱搭成的几何体,从左边看得到的平面图形是( C )8.将如图所示放置的一个直角三角形ABC ,(∠C =90°),绕斜边AB 旋转一周,所得到的几何体从正面看到的图形是下面四个图中的( B )A B C D 9.如图是一个正方体被截去一个正三棱锥得到的几何体,从上面看这个几何体,则所看到的平面图形是( B )10.下列数-91,1.5,23,-136,7,0中,负数的个数是( B )A .1B .2C .3D .4 11.下列说法错误的是( B )A .-2是负有理数B .0不是整数 C.25是正有理数D .-0.25是负分数12.如图,在数轴上点A 表示的数可能是( C )A .1.5B .-1.5C .-2.6D .2.613.|-13|的相反数是( B )A.13B .-13C .3D .-314.(绍兴中考)比较-3,1,-2的大小,正确的是( A ) A .-3<-2<1 B .-2<-3<1C .1<-2<-3D .1<-3<-2 15.绝对值不大于11.1的整数有( D )A .11个B .12个C .22个D .23个16.有理数a 、b 、c 在数轴上的位置如图所示,下列结论错误的是( D )A .c <b <aB .-c>aC .b <0,c <0D .-a>-c 17.下列说法错误的是( C ) A .长方体、正方体都是棱柱B .六棱柱有18条棱、6个侧面、12个顶点C .三棱柱的侧面是三角形D .圆柱由两个平面和一个曲面围成二、填空题(共5小题,每题5分,共25分)18.如图的几何体有__9__个面,__16__条棱,___9__个顶点,它是由简单的几何体_四棱锥___和_长方体___组成的.20.人在雪地上行走,他的脚印形成一条_平行线___,这就是____平行线不相交______________的原理.20.把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6.(1)非负数集合:{ 15、0、0.15、225、+20 };(2)负数集合:{ -38、-30、-128、-2.6 };(3)正整数集合:{ 15、+20 }; (4)负分数集合:{ -38、-2.6 }.21.已知 | 2a +4 |+ | 3—b |=0,则a +b = 122.某地一天下午4时的温度是6 ℃,过了6时气温下降了4 ℃,又过了2时气温下降了3 ℃,第二天0时的气温__-1 ℃______. 三、解答题(共3题,每题8分,共24分)23.围成下面这些立体图形的各个面中,哪些面是平的?哪些面是曲的?(8分)(1) (2)解:(1)各个面都是平面(2)三个面是平面,一个面是曲面24.(8分)如图,图1为一个长方体,AB=AD=16,AE=6,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面“国”;(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置,并求出图2中△ABN 的面积.解:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,“学”与“国”是相对面,叶”与“际”是相对面,“枫”与“校”是相对面,故答案为:国;(2)点M、N如图所示,∵N是所在棱的中点,25.若a ,b 都是非零的有理数,那么a |a|+b|b|的值是多少?解:1.a >0,b >0时, a |a|+b |b|=2 a <0,b <0时a |a|+b|b|=-2 a 、b 异号时 a |a|+b |b|=0。
北师大版七年级数学上册第一次月考考试卷(及参考答案)
北师大版七年级数学上册第一次月考考试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为()A.14 B.16 C.90α- D.44α-3.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是()A.x=-4 B.x=-3 C.x=-2 D.x=-1 4.下列图形中,由AB∥CD,能得到∠1=∠2的是A. B.C. D.5.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.276.下列二次根式中,最简二次根式的是()A 15B0.5C5D507.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .1+3B .2+3C .23﹣1D .23+110.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形二、填空题(本大题共6小题,每小题3分,共18分)1.标价m 元的上衣,打八五折后,便宜了_____元钱.2.如图,A α∠=,,ABC ACD ∠∠的平分线相交于点1P ,11,PBC PCD ∠∠的平分线相交于点2P ,2P BC ∠,2P CD ∠的平分线相交于点3P ……以此类推,则n P ∠的度数是___________(用含n 与α的代数式表示).3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.6.若关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为____________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、B6、C7、C8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、0.15m.2、12nα⎛⎫ ⎪⎝⎭3、724、a-b+c5、70°6、3 4三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、见解析(2)∠EBC=25°4、(1)65°(2)证明略5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)4种;(3)选择“派出大型渣土运输车10辆、小型渣土运输车10辆”的方案划算.。
北师大版七年级数学上册第一次月考测试卷(附答案)
北师大版七年级数学上册第一次月考测试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.42.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°5.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示()A .同位角、同旁内角、内错角B .同位角、内错角、同旁内角C .同位角、对顶角、同旁内角D .同位角、内错角、对顶角6.下列各组数中,两个数相等的是( )A .-2与2(-2)B .-2与-12C .-2与3-8D .|-2|与-27.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .89.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.分解因式:32x 2x x -+=_________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.若一个数的平方等于5,则这个数等于________.6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.若关于x 、y 的二元一次方程组325233x y a x y a -=-⎧⎨+=+⎩的解都为正数. (1)求a 的取值范围;(2)化简|a+1|﹣|a ﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a 的值.3.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、C5、B6、C7、A8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、55°3、()2 x x1-.4、x<1 95、6、200°三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、(1)a>1;(2)2;(3)a的值是2.3、略4、60°5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、生产圆形铁片的有24人,生产长方形铁片的有18人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级上册数学第一次月考数学试卷一、细心选一选(每小题3分,计30分)1.(3分)﹣5的相反数是()A.B.﹣5 C.D.52.(3分)冬季某天我国三个城市的最高气温分别是﹣9℃,1℃,﹣5℃,把它们从高到低排列正确的是()A.﹣9℃,﹣5℃,1℃B.﹣5℃,﹣9℃,1℃C.1℃,﹣9℃,﹣5℃D.1℃,﹣5℃,﹣9℃3.(3分)绝对值不大于3的所有整数的和是()A.0 B.﹣1 C.1 D.64.(3分)下列说法中,不正确的是()A.平方等于本身的数只有0和1B.正数的绝对值是它本身,负数的绝对值是它的相反数C.0除以任何数都得0D.两个负数比较,绝对值大的负数小5.(3分)下列各式中正确的是()A.﹣2+1=﹣3 B.﹣5﹣2=﹣3 C.﹣12=1 D.(﹣1)3=﹣16.(3分)现规定一种新运算“*”:a*b=a b,如3*2=32=9,则()*3=()A.B.8 C.D.7.(3分)把一张厚度为0.1mm的白纸连续对折五次后的厚度为()A.0.5mm B.0.8mm C.1.6mm D.3.2mm8.(3分)(2017秋•怀远县校级月考)我国的陆地国土面积为9.60×106km2,它是由四舍五入得到的,那么它()A.有3个有效数字,精确到百分位B.有3个有效数字,精确到万位C.有3个有效数字,精确到百万位D.有2个有效数字,精确到万位9.(3分)(2017•长乐市校级模拟)若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定10.(3分)(2016秋•安岳县期末)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0二、静心填一填(每小题4分,计32分)11.(4分)某天的最低气温是﹣4℃,最高气温是4℃,这一天的温差是℃.12.(4分)(2017秋•怀远县校级月考)在数轴上,距离原点有2个单位的点所对应的数是.13.(4分)我们在买化肥时,总会发现袋上标注有(50±0.5)kg,±0.5kg的意思是.14.(4分)2006年中央为提高参加合作医疗农民的补助标准,将投入4730000000元人民币,把4730000000用科学记数法表示为.15.(4分)平方得的数是;立方得﹣64的数是.16.(4分)(2017秋•怀远县校级月考)观察,按规律在横线上填写适当的数:,﹣,,﹣,(不化简).17.(4分)若a、b互为相反数,c、d互为倒数,且m是绝对值最小的数,则=.18.(4分)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41…猜测第n个等式(n 为正整数)应为.三、专心算一算(每小题25分,计25分)19.(25分)(2017秋•怀远县校级月考)(1)33+(﹣32)+7﹣(﹣3)(2)×(﹣)×÷(3)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2012(4)1﹣2+3﹣4+…+2013﹣2014(5)若|x﹣4|+(3﹣y)2=0,求多项式xy的值.四、耐心解一解:(每小题12分,共24分)20.(12分)(2013秋•深圳期中)树的高度与树生长的年数有关,测得某棵树的有关数据如表:(树苗原高100厘米)年数a高度h(单位:厘米)1115213031454……(1)计算第4年树苗可能达到的高度;(2)请用含a的代数式表示高度h;(3)用你得到的代数式计算,生长了10年后的树苗可能达到的高度.21.(12分)(2010秋•永宁县期中)“十、一”黄金周期间,阜阳生态园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单位:千+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2人(1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数?(2)请判断七天内游客人数最多的是哪天?请说明理由.(3)若9月30日的游客人数为5千人,门票每人10元.问黄金周期间阜阳生态园门票收入是多少元?五、仔细猜一猜:(9分)22.(9分)(2017秋•怀远县校级月考)观察如图所示的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.参考答案与试题解析一、细心选一选(每小题3分,计30分)1.(3分)(2013•攀枝花)﹣5的相反数是()A.B.﹣5 C.D.5【分析】直接根据相反数的定义求解.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数:a的相反数为﹣a.2.(3分)(2012秋•枞阳县校级期中)冬季某天我国三个城市的最高气温分别是﹣9℃,1℃,﹣5℃,把它们从高到低排列正确的是()A.﹣9℃,﹣5℃,1℃B.﹣5℃,﹣9℃,1℃C.1℃,﹣9℃,﹣5℃D.1℃,﹣5℃,﹣9℃【分析】首先根据正数大于一切负数,可知1℃排在第一位;再根据两个负数,绝对值大的其值反而小,可知﹣5℃>﹣9℃;从而得出结果.【解答】解:∵正数大于一切负数,∴1℃排在第一位;又∵|﹣9|=9>|﹣5|=5,∴﹣5>﹣9,所以把它们从高到低排列正确的是1℃,﹣5℃,﹣9℃.故选:D.【点评】本题考查了有理数大小比较的法则.主要利用了以下知识点:正数大于一切负数;两个负数,绝对值大的其值反而小.3.(3分)(2016秋•蚌埠期中)绝对值不大于3的所有整数的和是()A.0 B.﹣1 C.1 D.6【分析】首先根据绝对值及整数的定义求出绝对值不大于3的所有整数,然后根据有理数的加法法则,将所有整数相加,即可得出结果.【解答】解:利用绝对值性质,可求出绝对值不大于3的所有整数为:0,±1,±2,±3.所以0+1﹣1+2﹣2+3﹣3=0.故选:A.【点评】本题主要考查了绝对值的定义及有理数的加法法则.需注意不大于3,即小于或等于3,包含3这个数.4.(3分)(2017秋•怀远县校级月考)下列说法中,不正确的是()A.平方等于本身的数只有0和1B.正数的绝对值是它本身,负数的绝对值是它的相反数C.0除以任何数都得0D.两个负数比较,绝对值大的负数小【分析】根据各个选项中的语句可以判断是否正确,从而可以解答本题.【解答】解:平方等于本身的数只有0和1,故选项A正确;正数的绝对值是它本身,负数的绝对值是它的相反数,故选项B正确;0除以任何不为0的数都得0,故选项C错误;两个负数比较,绝对值大的反而小,故选项D正确,故选:C.【点评】此题考查了有理数的乘方、相反数、绝对值、理数的除法,解答本题的关键是明确题意,可以判断各个选项是否正确.5.(3分)(2017秋•怀远县校级月考)下列各式中正确的是()A.﹣2+1=﹣3 B.﹣5﹣2=﹣3 C.﹣12=1 D.(﹣1)3=﹣1【分析】根据有理数加减法的运算方法,以及有理数的乘方的运算方法逐一判断即可.【解答】解:∵2+1=﹣1,∴选项A不正确;∵﹣5﹣2=﹣7,∴选项B不正确;∵﹣12=﹣1,∴选项C不正确;∵(﹣1)3=﹣1,∴选项D正确.故选:D.【点评】此题主要考查了有理数加减法的运算方法,以及有理数的乘方的运算方法,要熟练掌握.6.(3分)(2015秋•黄石港区期末)现规定一种新运算“*”:a*b=a b,如3*2=32=9,则()*3=()A.B.8 C.D.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出()*3的值是多少即可.【解答】解:()*3=()3=.故选:C.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.7.(3分)(2010秋•永宁县期中)把一张厚度为0.1mm的白纸连续对折五次后的厚度为()A.0.5mm B.0.8mm C.1.6mm D.3.2mm【分析】分别求出对折一次、二次、三次纸的厚度,找出规律,即可求出对折5次后纸的厚度.【解答】解:∵对折一次后的厚度为21×0.1=0.2(mm);对折二次后的厚度为22×0.1=0.4(mm);对折三次后的厚度为23×0.1=0.8(mm);∴对折五次后的厚度为25×0.1=3.2(mm).故选:D.【点评】此题主要考查了有理数的乘方运算,此题属规律性题目,解答此题的关键是根据题意求出对折一次、二次、三次…的厚度,找出规律解答.8.(3分)(2017秋•怀远县校级月考)我国的陆地国土面积为9.60×106km2,它是由四舍五入得到的,那么它()A.有3个有效数字,精确到百分位B.有3个有效数字,精确到万位C.有3个有效数字,精确到百万位D.有2个有效数字,精确到万位【分析】利用近似数的精确度和有效数字的定义求解.【解答】解:9.60×106km2,它有三个有效数字,精确到万位.故选:B.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.9.(3分)(2017•长乐市校级模拟)若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定【分析】根据有理数的乘法法则,得a、b同号,再由有理数的加法法则,得a、b都是负数.【解答】解:∵ab>0,∴a、b同号,∵a+b<0,∴a、b都是负数,故选:B.【点评】本题考查了有理数的加法法则和有理数的乘法法则,要熟练掌握.10.(3分)(2016秋•安岳县期末)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.【点评】本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.二、静心填一填(每小题4分,计32分)11.(4分)(2013秋•惠山区校级期中)某天的最低气温是﹣4℃,最高气温是4℃,这一天的温差是8℃.【分析】这天的温差就是最高气温与最低气温的差.【解答】解:4﹣(﹣4)=4+4=8℃.答:这一天的温差是8℃.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.(4分)(2017秋•怀远县校级月考)在数轴上,距离原点有2个单位的点所对应的数是±2.【分析】由绝对值的定义可知:|x|=2,所以x=±2【解答】解:设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2,故答案为:±2【点评】本题考查绝对值的性质,属于基础题型.13.(4分)(2012秋•蕉岭县校级期中)我们在买化肥时,总会发现袋上标注有(50±0.5)kg,±0.5kg的意思是化肥介于49.5kg到50.5kg之间.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:袋上标注有(50±0.5)kg,表示这袋化肥最重为50+0.5=50.5kg,这袋化肥最轻为50﹣0.5=49.5kg,∴袋上标注有(50±0.5)kg,表示这袋化肥介于49.5kg到50.5kg之间.故答案为化肥介于49.5kg到50.5kg之间.【点评】本题考查了正数和负数的定义,明确正数和负数相加的计算是解题的关键.14.(4分)(2014秋•灌南县校级期中)2006年中央为提高参加合作医疗农民的补助标准,将投入4730000000元人民币,把4730000000用科学记数法表示为4.73×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4730000000用科学记数法表示为4.73×109.故答案为:4.73×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)(2014秋•天水期末)平方得的数是±;立方得﹣64的数是﹣4.【分析】根据平方根及立方根的定义进行解答即可.【解答】解:∵±=±,=﹣4,∴平方得的数是±,立方得﹣64的数是﹣4.故答案为:±,﹣4.【点评】本题考查的是有理数的乘方,熟知有理数乘方的法则是解答此题的关键.16.(4分)(2017秋•怀远县校级月考)观察,按规律在横线上填写适当的数:,﹣,,﹣,(不化简).【分析】分子是从1开始连续的奇数,分母可以拆成两个连续自然数的乘积,奇数位置为正,偶数位置为负,由此得出第n个数为(﹣1)n+1,由此代入求得答案即可.【解答】解:∵第n个数为(﹣1)n+1,∴第5个数为=.故答案为:.【点评】此题考查数字的变化规律,找出数字之间的排列规律,找出运算的方法,利用规律与方法解决问题.17.(4分)(2010秋•永宁县期中)若a、b互为相反数,c、d互为倒数,且m 是绝对值最小的数,则=1.【分析】由a、b互为相反数得a+b=0,c、d互为倒数得cd=1,且m是绝对值最小的数得m=0,由此代入代数式求值即可.【解答】解:∵a+b=0,cd=1,m=0,∴=0+1﹣0=1.故答案为:1.【点评】此题考查绝对值、相反数、倒数的意义以及代数式求值,有理数的混合运算的等知识.18.(4分)(2004•云南)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41…猜测第n个等式(n为正整数)应为9(n﹣1)+n=10n﹣9.【分析】这几个等式中,左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【解答】解:根据分析:即第n个式子是9(n﹣1)+n=10(n﹣1)+1=10n﹣9.故答案为9(n﹣1)+n=10n﹣9.【点评】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系.三、专心算一算(每小题25分,计25分)19.(25分)(2017秋•怀远县校级月考)(1)33+(﹣32)+7﹣(﹣3)(2)×(﹣)×÷(3)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2012(4)1﹣2+3﹣4+…+2013﹣2014(5)若|x﹣4|+(3﹣y)2=0,求多项式xy的值.【分析】(1)将减法转化为加法后,根据加法法则计算可得;(2)先计算括号内的、并将除法转化为乘法,再计算乘法即可得;(3)根据有理数的混合运算顺序和法则计算可得;(4)每两个数的差为﹣1,据此可得原式=(﹣1)×1007,计算可得;(5)根据非负数的性质得出x=4、y=3,代入计算可得.【解答】解:(1)原式=33+(﹣32)+7+3=43﹣32=11;(2)原式=×(﹣)××=﹣;(3)原式=﹣8﹣(﹣6)+3﹣1=﹣8+6+3﹣1=﹣9+9=0;(4)原式==﹣1×1007=﹣1007;(5)∵|x﹣4|+(3﹣y)2=0,∴x﹣4=0,3﹣y=0,则x=4、y=3,∴xy=4×3=12.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则及非负数的性质.四、耐心解一解:(每小题12分,共24分)20.(12分)(2013秋•深圳期中)树的高度与树生长的年数有关,测得某棵树的有关数据如表:(树苗原高100厘米)年数a高度h(单位:厘米)1115213031454……(1)计算第4年树苗可能达到的高度;(2)请用含a的代数式表示高度h;(3)用你得到的代数式计算,生长了10年后的树苗可能达到的高度.【分析】(1)根据统计表可以得到高度每年增加15厘米,据此即可求解;(2)解法与(1)相同;(3)把a=10代入(2)所列的代数式,求值即可.【解答】解:(1)145+15=160(厘米);(2)h=15a+100(或h=115+15(a﹣1));(3)当a=10时,h=15×10+100=250.答:生长了10年后的树苗可能达到的高度是250厘米.【点评】本题考查了代数式求值,正确理解高度每年增加15厘米这一规律是关键.21.(12分)(2010秋•永宁县期中)“十、一”黄金周期间,阜阳生态园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化+1.6+0.8+0.4﹣﹣+0.2﹣0.40.8 1.2单位:千人(1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数?(2)请判断七天内游客人数最多的是哪天?请说明理由.(3)若9月30日的游客人数为5千人,门票每人10元.问黄金周期间阜阳生态园门票收入是多少元?【分析】(1)10月2日的游客人数=a+1.6+0.8;(2)分别用a的代数式表示七天内游客人数,再找出最多的人数,以及对应的日期即可.(3)先把七天内游客人数分别用a的代数式表示,再求和,把a=5(千人)代入化简后的式子,乘以10即可得黄金周期间该公园门票的收入.【解答】解:(1)a+2.4(万人);(2)七天内游客人数分别是a+1.6,a+2.4,a+2.8,a+2.4,a+1.6,a+1.8,a+0.6,所以3日人最多;(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2=7×5+13.2=48.2(千人),∴黄金周期间该公园门票收入是48.2×1000×10=4.82×105(元).【点评】本题考查了正负数的意义,读懂题目的意思,根据题目给出的条件,列式计算,注意单位的统一是解题关键.五、仔细猜一猜:(9分)22.(9分)(2017秋•怀远县校级月考)观察如图所示的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.【分析】根据前4条算式即可求出得出规律.【解答】解:(1)第五个等式为:5×=5﹣,如图所示.(2)第n个等式为:n×=n﹣【点评】本题考查数字规律问题,解题的关键是根据题意找出规律,本题属于基础题型.。