高二数学上学期第一次月考试题 文(新版)新人教版
人教版高二上学期数学第一次月考文试题(解析版)
因为 ,所以解得 ,
所以 的方程为 ,
(2)由题意可得直线方程为 ,设直线与椭圆交于 ,
将 代入椭圆方程得, ,即 ,
所以 ,
所以
【点睛】此题考查求椭圆的标准方程,考查直线与椭圆的位置关系,考查弦长公式的应用,考查计算能力,属于基础题
22.已知椭圆的焦点是F1(0,-1),F2(0,1),离心率e= .
(1)求椭圆的标准方程;
(2)设P在这个椭圆上且|PF1|-|PF2|=1,求∠F1PF2的余弦值.
【答案】(1) ,(2)
【解析】
【分析】
(1)根据题意可得: ,解得 ,从而可得椭圆的方程;
(2)由椭圆 定义得: ,结合题意可得: ,再根据余弦定理可求得结果
【详解】解:(1)由已知设椭圆方程为 ,
【详解】由不等式 的解集为 ,得 无解,即对 , 恒成立,①当 时,显然满足题意,②当 时,有 ,解得: ,综上,
故答案为:
【点睛】本题结合二次函数得性质,考查命题的真假,属于容易题.
三、解答题(本大题共6小题,满分70分)
17.当c<0时,若ac>bc,则a<b.请写出该命题的逆命题、否命题、逆否命题,并分别判断真假.
考点:本小题主要考查椭圆的标准方程,考查学生的推理能力.
点评:解决本小题时,不要忘记 ,否则就表示圆了.
15.若椭圆 的离心率为 ,则 的短轴长为___________.
【答案】
【解析】
【分析】
判断出椭圆的焦点在 轴上,得出 的值,根据离心率的概念可得 ,解出 的值可得短轴长.
【详解】由椭圆 得焦点在 轴上, , , ,
10.已知△ABC的顶点B、C在椭圆 +y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( )
高二数学上学期第一次月考试题含解析
智才艺州攀枝花市创界学校第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕一、选择题〔本大题一一共13小题,每一小题4分,一共52分.题1—10为单项选择题,题11-13为多项选择题,多项选择题错选得0分,漏选得2分.〕 1.椭圆229225x ky +=的一个焦点是()4,0,那么k =〔〕A.5B.25C.-5D.-25【答案】B 【解析】 【分析】将椭圆方程化为HY 方程,根据焦点坐标求得c ,由此列方程求得k 的值.【详解】椭圆的HY方程为22122525x y k+=,由于椭圆焦点为()4,0,故焦点在x 轴上,且4c =.所以2225254k=+,解得25k =. 应选:B【点睛】本小题主要考察根据椭圆的焦点坐标求参数的值,属于根底题. 2.双曲线22412mx y -=的一条渐近线的方程为20y -=,那么m =〔〕A.3C.4D.16【答案】A 【解析】 【分析】写出双曲线的HY 方程,根据渐近线方程即可得解. 【详解】双曲线22412mx y -=20y -=,即双曲线221213m x y -=的一条渐近线的方程为y x =, 所以124,3m m==. 应选:A【点睛】此题考察根据双曲线的渐近线方程求双曲线HY 方程,关键在于准确掌握双曲线的概念,找准其中的a ,b .3.“x R ∃∈,2440x x -+≤〞的否认是〔〕A.x R ∀∈,2440x x -+>B.x R ∀∈,2440x x -+≥C.x R ∃∈,2440x x -+>D.x R ∃∈,2440x x -+≥【答案】A 【解析】 【分析】 .【详解】A 选项正确. 应选:A 【点睛】. 4.〕 A.2230x x -->,B.π不是无限不循环小数C.直线与平面相交D.在线段AB 上任取一点【答案】B 【解析】【分析】 ACDB.【详解】ACD 均不能判断真假,B. 应选:B 【点睛】.5.平面内,一个动点P ,两个定点1F ,2F ,假设12PF PF -为大于零的常数,那么动点P 的轨迹为〔〕A.双曲线B.射线C.线段D.双曲线的一支或者射线 【答案】D 【解析】【分析】根据双曲线的定义,对动点P 的轨迹进展判断,由此确定正确选项. 【详解】两个定点的间隔为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线;不存在1212PF PF F F ->的情况.综上所述,P 的轨迹为双曲线的一支或者射线. 应选:D【点睛】本小题主要考察双曲线定义的辨析,属于根底题. 6.〕A.x R ∀∈,2210x x -+>B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <C.a ∀∈R ,in s (s in )a a π-=D.x R ∀∈,12x x+≥ 【答案】C 【解析】 【分析】 .【详解】A.x R ∀∈,2210x x -+>,当21,210x x x =-+=B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <,当,tan 14x x π== C.a ∀∈R ,in s (s in )a a π-=,满足题意; D.x R ∀∈,12x x +≥,当10,2x x x<+≤-. 应选:C 【点睛】.7.假设方程22216x y a a +=-表示双曲线,那么实数a 的取值范围是〔〕A.6a <B.6a <且0a≠ C.2a > D.2a >或者3a <-【答案】B 【解析】 【分析】根据双曲线方程形式得2060a a ⎧≠⎨-<⎩,即可得解.【详解】方程22216x y a a +=-表示双曲线,那么2060a a ⎧≠⎨-<⎩,解得:6a <且0a ≠.应选:B【点睛】此题考察双曲线概念辨析,根据方程表示双曲线求解参数的取值范围,关键在于纯熟掌握双曲线方程的形式.8.1F ,2F 是椭圆(222:13x y C a a+=>的两个焦点,P 是C 上一点.假设1260F PF ∠=︒,那么12F PF △的面积为〔〕B. D.与a 有关【答案】A 【解析】 【分析】根据椭圆的几何性质结合余弦定理求得124F P PF ⋅=,利用三角形面积公式即可得解.【详解】根据椭圆几何性质可得:122F P PF a +=,12F PF △中,由余弦定理:222121212F F F P PF F P PF =+-⋅,即()221212123F F F P PF F P PF =+-⋅()22124343a a F P PF -=-⋅,解得:124F P PF ⋅=12F PF △的面积为121sin 602F P PF ⋅⋅︒=. 应选:A【点睛】此题考察椭圆的几何性质的应用,结合余弦定理和面积公式求三角形面积,关键在于纯熟掌握椭圆根本性质和三角形相关定理公式.9.1F ,2F 是椭圆()222210x y a b a b+=>>的左,右焦点,直线23b y =与该椭圆交于B ,C ,假设2BF C △是直角三角形,那么该椭圆的离心率为〔〕B.【答案】D 【解析】 【分析】联立直线和椭圆求出交点坐标22,,,3333b b B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,分别讨论直角情况即可得解.【详解】联立直线和椭圆方程:2222123x y a b b y ⎧=⎪⎪⎨+=⎪⎪⎩ 所以直线23b y =与椭圆()222210x y a b a b+=>>的交点坐标22,33b b B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭, 因为椭圆焦点在x 轴,所以角B 不可能为直角,当角Cc =,即e =;当角2F 为直角时,220F B F C ⋅=,即22,,03333b b c c ⎛⎫⎛⎫--⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22254099a b c -+=,2222544099a a c c --+=225c a =,5e =.应选:D【点睛】此题考察根据直线与椭圆位置关系,结合三角形形状求解离心率,关键在于准确求出直线与椭圆的交点坐标,根据垂直关系建立等量关系求椭圆离心率.10.双曲线221916x y -=的左,右焦点分别为1F ,2F ,P 为右支上一点,且1245cos F PF ∠=,那么12F PF △内切圆的面积为〔〕A.211πB.83π C.649π D.176121π【答案】C 【解析】 【分析】 根据1245cos F PF ∠=求出三角形的边长和面积,利用等面积法求出内切圆的半径,即可得到面积. 【详解】由题:1245cos F PF ∠=,那么123sin 5F PF ∠=,P 为右支上一点, 12F PF △中由余弦定理:()()22212111146265F F F P F P F P F P =++-⋅+⨯解得110F P =,12F PF △的面积121310164825F PF S =⨯⨯⨯=△,设其内切圆半径为r ,()101016482r ++=,解得:83r = 那么12F PF △内切圆的面积为286439ππ⎛⎫⨯=⎪⎝⎭【点睛】此题考察根据双曲线的几何性质求解焦点三角形的面积和内切圆的半径,根据等面积法求解半径得到圆的面积. 11.〕A.假设a ba c ⋅=⋅,那么bc =B.正数,a b ,假设2a b+≠a bC.0x N +∃∈,使200x x ≤D.正数,x y ,那么1xy =是lg lg 0x y +=的充要条件【答案】BCD 【解析】 【分析】 考虑0a=可断定A.【详解】A 选项:假设0a =,任意向量,b c ,0a b a c ⋅=⋅=,不能推出b c =B ,a b ,假设ab =,那么2a b+= C 选项:当01x =D 选项:正数,x y ,lg lg 0x y +=等价于lg 0xy =,等价于1xy =,那么1xy =是lg lg 0x y +=的充要条件应选:BCD 【点睛】.12.〔多项选择题〕双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,那么双曲线1C 的离心率可能为〔〕C.2D.3【答案】CD 【解析】 【分析】根据渐近线的平分关系求出斜率,根据斜率为b a =b a =.【详解】双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,根据双曲线对称性可得:双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第一象限三等分,所以第一象限的两条渐近线的倾斜角为30°和60°,其斜率为b a =b a =,所以其离心率为2或者3. 应选:CD【点睛】此题考察根据双曲线的渐近线关系求离心率,关键在于对题目所给条件进展等价转化,利用双曲线根本量之间的关系求解.13.〔多项选择题〕以下说法正确的选项是〔〕 A.方程2xxy x +=表示两条直线B.椭圆221102x y m m +=--的焦距为4,那么4m =C.曲线22259x y xy +=关于坐标原点对称D.双曲线2222x y a b λ-=的渐近线方程为b y x a=±【答案】ACD 【解析】 【分析】B 选项漏掉考虑焦点在y 轴的情况,ACD 说法正确. 【详解】方程2xxy x +=即()10x x y +-=,表示0x =,10x y +-=两条直线,所以A 正确;椭圆221102x ym m+=--的焦距为4,那么()1024m m---=或者()2104m m---=,解得4m=或者8m=,所以B选项错误;曲线22259x yxy+=上任意点(),P x y,满足22259x yxy+=,(),P x y关于坐标原点对称点(),P x y'--也满足()()()()22259x yx y--+=--,即(),P x y'--在22259x yxy+=上,所以曲线22259x yxy+=关于坐标原点对称,所以C选项正确;双曲线2222x ya bλ-=即0λ≠,其渐近线方程为by xa=±正确,所以D选项正确.应选:ACD【点睛】此题考察曲线方程及简单性质辨析,涉及认识曲线方程,研究对称性,根据椭圆性质求参数的取值,求双曲线的渐近线.二、填空题〔本大题一一共4小题,每一小题4分,一共16分.〕14.方程22157x ya a+=--表示椭圆,那么实数a的取值范围是_______.【答案】()()5,66,7【解析】【分析】根据方程表示椭圆,列不等式组可得507057aaa a->⎧⎪->⎨⎪-≠-⎩,即可求解.【详解】由题方程22157x ya a+=--表示椭圆,那么507057aaa a->⎧⎪->⎨⎪-≠-⎩,解得()()5,66,7a ∈故答案为:()()5,66,7【点睛】此题考察根据曲线方程表示椭圆求参数的取值范围,关键在于纯熟掌握椭圆的HY方程特征,此题容易漏掉考虑a =6的情况不合题意.15.假设“0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <〞m 的取值范围是________. 【答案】0m >【解析】【分析】 根据0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,实数m 的取值范围,即()min tan x m <. 【详解】0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,即()min tan x m <, tan y x =在0,4x π⎡⎤∈⎢⎥⎣⎦单调递增,()min tan 0x = 即0m >.故答案为:0m >【点睛】.16.2F 是椭圆2211612x y +=的右焦点,P 是椭圆上的动点,(A 为定点,那么1PA PF +的最小值为_______.【答案】6【解析】【分析】 将问题进展转化12288PA PF PA PF PA PF +=+-=+-,根据动点到两个定点间隔之差的最值求解. 【详解】()22,0F 是椭圆2211612x y +=的右焦点,()12,0F -是椭圆2211612x y +=的左焦点,128PF PF +=(A 在椭圆内部,1222888826PA PF PA PF PA PF AF +=+-=+-≥-=-=,当P 为2F A 的延长线与椭圆交点时获得最小值.故答案为:6【点睛】此题考察椭圆上的点到椭圆内一点和焦点的间隔之和最值问题,关键在于利用椭圆的几何性质进展等价转化,结合平面几何知识求解.17.点A ,B 分别是射线()1:0l y x x =≥,2(:0)l y x x =-≤上的动点,O 为坐标原点,且AOB 的面积为定值4.那么线段AB 中点M 的轨迹方程为_________. 【答案】22144-=y x ,0y > 【解析】【分析】设出中点坐标,根据面积关系建立等量关系化简即可得到轨迹方程.【详解】由题:()1:0l y x x =≥,2(:0)l y x x =-≤互相垂直,()()112212,,,,0,0A x x B x x x x -><,设线段AB 中点(),M x y , AOB 的面积为定值4,即)12142x -=,即124x x =- 121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,两式平方得:222121222212122424x x x x x x x x x y ⎧++=⎪⎪⎨+-⎪=⎪⎩, 两式相减得:22124x y x x -==- 即22144-=y x ,0y >故答案为:22144-=y x ,0y > 【点睛】此题考察求轨迹方程,关键在于根据给定的条件建立等量关系,此类题目容易漏掉考虑取值范围的限制.三、解答题〔本大题一一共6小题,总分值是82分.解容许写出文字说明,证明过程或者演算步骤〕18.集合{}2(3)0A x x a x a =+-+=,{}0B x x =>.假设A B =∅.务实数a 的取值范围.【答案】(](),19,a ∈-∞+∞【解析】【分析】 将问题转化考虑A B =∅a 的取值范围,即可得到假设A B =∅a 的取值范围. 【详解】考虑A B =∅2(3)0x a x a +-+=没有正根, ①()2340a a ∆=--<得()1,9a ∈; ②()2340a a ∆=--=得1a =,或者9a =, 当9a =时{}{}26903A x x x =++==-符合题意,当1a =时{}{}22101A x x x =-+==,不合题意,所以9a =; ③()23403020a a a a ⎧∆=-->⎪-⎪<⎨⎪>⎪⎩无解; 综受骗A B =∅(]1,9a ∈,所以假设A B =∅(](),19,a ∈-∞+∞【点睛】.19.对称中心在坐标原点的椭圆关于坐标轴对称,该椭圆过1212,55⎛⎫ ⎪⎝⎭,且长轴长与短轴长之比为4:3.求该椭圆的HY 方程. 【答案】221169x y +=或者221169y x += 【解析】【分析】根据椭圆的长轴短轴长度之比设椭圆的HY 方程,根据椭圆经过的点求解参数即可得解.【详解】由题:对称中心在坐标原点的椭圆关于坐标轴对称,长轴长与短轴长之比为4:3,当焦点在x 轴上,设椭圆的HY 方程为221169x y m m+=,m >0,椭圆过1212,55⎛⎫ ⎪⎝⎭, 14414412516259m m+=⨯⨯,解得:m =1, 所以椭圆的HY 方程为221169x y += 同理可得当焦点在y 轴上,椭圆的HY 方程为221169y x +=, 所以椭圆的HY 方程为221169x y +=或者221169y x += 【点睛】此题考察求椭圆的HY 方程,关键在于根据长轴短轴长度关系设方程,根据椭圆上的点的坐标求解,易错点在于漏掉考虑焦点所在位置.20.“[]0,2x ∃∈,使方程251020x x m -+-=有解〞.〔1〕务实数m 的取值集合A ;〔2〕设不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件,务实数a 的取值范围.【答案】〔1〕{}32A m m =-≤≤;〔2〕()(),23,a ∈-∞-+∞【解析】【分析】〔1〕将问题转化为()225102513m x x x =-+=--在[]0,2x ∈有解,即可求解;〔2〕分类讨论求解A B ⊆即可得到参数的取值范围.【详解】〔1“[]0,2x ∃∈,使方程251020x x m -+-=有解〞是.即()225102513m x x x =-+=--在[]0,2x ∈有解,所以[]3,2m ∈- 即{}32A m m =-≤≤;〔2〕不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件, 当23a =不合题意; 当23<a 时,112a a -<-,()1,12B a a =--,13122a a -<-⎧⎨->⎩,得2a <-; 当23a >时,112a a ->-,()12,1B a a =--,12123a a ->⎧⎨-<-⎩,得3a >; 所以()(),23,a ∈-∞-+∞【点睛】此题考察根据方程有解求参数的取值范围,根据充分条件和必要条件关系求解参数的取值范围,关键在于弄清充分条件和必要条件关系,利用分类讨论求解.21.设1F ,2F 分别是椭圆222:14x y E b+=的左,右焦点,假设P 是该椭圆上的一个动点,12PF PF ⋅的最大值为1.求椭圆E 的方程. 【答案】2214x y += 【解析】【分析】设出焦点坐标,表示出12PF PF ⋅利用函数关系求出最大值,即可得到21b =.【详解】由题:()1F ,)2F 分别是椭圆222:14x y E b +=的左,右焦点,设(),P x y 施椭圆上的动点,即[]222221,0,4,44x y x b b+=∈<, ()22222221124444x b x b x b b ⎛⎫⎛⎫=-+-=-+- ⎪ ⎪⎝⎭⎝⎭-,当2x =4时,获得最大值, 即21b =, 所以椭圆的方程为2214x y +=. 【点睛】此题考察求椭圆的HY 方程,关键在于根据椭圆上的点的坐HY 确计算,结合取值范围求解最值.22.平面直角坐标系中两个不同的定点()1,0F a -,()2,0,0F a a >,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠,求动点P 的轨迹方程,并说明此轨迹是何种曲线.【答案】见解析.【解析】【分析】 根据斜率关系化简得22221x y a ma-=,分类讨论得解. 【详解】设(),P x y ,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠, 即y y m x a x a ,222y mx ma =-,22221x y a ma-=, 当1m =-轨迹是圆,不含点()1,0F a -,()2,0,0F a a >;当0m >,轨迹是以()1,0F a -,()2,0F a 为顶点的双曲线,不含顶点()1,0F a -,()2,0F a ; 当10m -<<,轨迹是以()1,0F a -,()2,0F a 为长轴顶点的椭圆,不含()1,0F a -,()2,0F a ; 当1m <-,轨迹是以()1,0F a -,()2,0F a 为短轴顶点的椭圆,不含()1,0F a -,()2,0F a .【点睛】此题考察曲线轨迹的辨析,关键在于根据题意建立等量关系,根据曲线轨迹方程分类讨论得解.23.椭圆221:1169x y C +=和双曲线222:1169x y C -=,点A ,B 为椭圆的左,右顶点,点P 在双曲线2C 上,直线OP 与椭圆1C 交于点Q 〔不与点A ,B 重合〕,设直线AP ,BP ,AQ ,BQ 的斜率分别为1k ,2k ,3k ,4k .〔1〕求证:12916k k ⋅=; 〔2〕求证:1234k k k k +++的值是定值.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】【分析】〔1〕设(),P x y ,表示出斜率即可求得斜率之积;〔2〕设直线:OP y kx =,0k≠,依次求解P ,Q 坐标,表示出斜率之和化简即可得解. 【详解】〔1〕由题:()()()4,0,4,0,,A B P x y -满足221169x y -=,229116x y ⎛⎫=- ⎪⎝⎭ 21229441616y y y k k x x x ⋅=⋅==+--; 〔2〕根据曲线的对称性不妨设直线:OP y kx =,0k ≠, 联立221169y kx x y =⎧⎪⎨+=⎪⎩得2221169x k x +=,22144916x k =+,不妨取Q ⎛⎫,同理可得:P ⎛⎫ 所以1234k k k k +++的值是定值.【点睛】此题考察椭圆与双曲线对称性辨析,求解直线与曲线交点坐标,根据坐标表示斜率求解斜率之积和斜率之和证明结论.。
高二数学上学期第一次月考试题 新版新人教版 (2).doc
2019学年第一学期第一次月考试卷 高二数学 一、选择题(本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中只有一项符合要求). 41.在△ABC 中,若B A sin sin >,则A 与B 的大小关系为( ) A .B A > B. B A < C. A ≥B D. A 、B 的大小关系不能确定 2.在△ABC 中,已知a=7,b=10,c=6判断△ABC 的形状( ) A.锐角三角形 B.直角三角形 C.锐角或直角三角形 D.钝角三角形 3.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C.3+62 D.3+394 4.已知A ,B 两地的距离为10 km ,B,C 两地的距离为20 km ,现测得∠ABC =120°,则A ,C 两地的距离为( ). A .10 km B .103km C .105km D .107km 5.若△ABC 中,sin A ∶sin B ∶sinC =2∶3∶4,那么cos C =( ) A .-14 B.14 C .-23 D.23 6.△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19 7.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S =( ) A .58 B .88 C .143 D .176 8.在等比数列{}n a 中,4510a a +=,6720a a +=,则89a a +=( ) A.90 B.30 C.70 D.40 9.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于( )……………………………………………………密…………………封…………………线……………………………………………………………A .6B .7C .8D .910.设n S 为等比数列{}n a 的前n 项和,2580a a -=,则42S S =( ) A.5 B.8 C.-8 D.1511.根据下列条件解三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9.那么,下面判断正确的是( ).A .①只有一解,②也只有一解.B .①有两解,②也有两解.C .①有两解,②只有一解.D .①只有一解,②有两解. 12.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,如果a ,b ,c 成等差数列, ∠B =30°,△ABC 的面积为23,那么b =( ). A .231+ B .1+3 C .232+ D .2+3二.填空题(本大题共4小题,每小题5分共20分).13.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 .14.△ABC 中,若a cos A 2=b cos B 2=c cos C 2,则△ABC 的形状是________. 15.已知等比数列{a n }的前10项和为32,前20项和为56,则它的前30项和为 .16.已知数列{}n a 的前n 项和n n S 23+=,则n a =___________.三.解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或计算步骤).17.(本小题满分10分)在△ABC 中,BC =5,AC =3,sin C =2sin A.(1)求AB 的值;(2)求sin A 的值.18.(本小题满分12分)△ABC 中,D 在边BC 上,且BD=2,DC=1,∠B=60°,∠ADC=150°,求AC 的长及△ABC 的面积.19.(本小题满分12分)在△ABC 中,已知∠A =30°,a ,b 分别为∠A ,∠B 的对边, 且a =4=33b ,解此三角形.20.(本小题满分12分)已知等差数列{}n a .(1)若12=31a ,32=151a 求42a ;(2)若1=5,d=3,=2009n a a ,求n .21.(本小题满分12分)数列{}n a 满足14a =,144n n a a -=-(2)n ≥,设n b =12n a -. (1)判断数列{}n b 是否为等差数列并试证明;(2)求数列{}n a 的通项公式.22. 在数列{a n }中,S n +1=4a n +2,a 1=1.(1)设b n =a n +1-2a n ,求证数列{b n }是等比数列;(2)设c n =n n a 2,求证数列{c n }是等差数列; (3)求数列{a n }的通项公式及前n 项和的公式.2018——2019学年第一学期第一次月考答案 高二 数学 ……………………………………………………密…………………封…………………线…………………………………………………………… 学校:班级:学号:姓名:。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案
高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
高二数学上学期第一次月考试题 文人教版新版
—————————— 教育资源共享 步入知识海洋 ————————2019学年上学期月考试卷高二文科数学本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡的相应位置填涂考生号。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.作答填空题和解答题时,必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( )A .15B .30C .31D .642. 设等差数列{}n a 的前n 项和为n s ,若316,4S a ==,则公差d 等于( ) A .1 B .53C .-2D .3 3. 在等差数列{}n a 中,若686=+a a ,则数列{}n a 的前13项之和为( ) A.392 B. 39 C. 1172 D.78 4.在数列}{n a 中,满足21+=+n n a a ,11=a ,则=5S ( ) A . 9 B . 11 C . 25 D .365. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且45,60,1,B C c ===则最短边的边长等于( )A. 12 D.6.已知△ABC 中,a =4,b =4√3,∠A =30°,则∠B 等于( )A.30ºB.30º或150ºC.60º或120ºD.60º7.已知在△ABC 中,sinA ∶sinB ∶sinC =3∶5∶7,那么这个三角形的最大角是( )A.135ºB.90ºC.120ºD.150º8.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且C c B b A a si n si n si n =+,则ABC ∆的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形9.设21011n a n n =-++,则数列{}n a 从首项到第几项的和最大( )A.第10项B. 第11项C. 第10项或11项D. 第12项10.在∆ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若C b a c o s =,则∆ABC 的形状为( ) A .正三角形 B .等腰三角形或直角三角形C .等腰直角三角形D .直角三角形11.在等差数列}{n a 中,若156=n S ,305=-n a ,9911=S ,则=n ( )A .8B .9C .10D .1112.在∆ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,A c a sin 23=,且2π<C ,则A si n 的值是( )A .121或B . 23 C . 1 D .21 二、填空题:本题共4小题,每小题5分,共20分.13.在ABC ∆中, 角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列,2b =,则=Aa sin 14.在∆ABC 中,B A B A tan tan 33tan tan =++,则C =15.在等差数列}{n a 中,1201210864=++++a a a a a ,则=15S16.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,则n a =三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.17.(本题14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且.222bc a c b =-+(1)求角A ;(2)若2=b ,且ABC ∆的面积为32=S ,求a 的值.18. (本题14分)在等差数列}{n a 中, n S 为该数列的前n 项和。
高二上学期第一次月考数学试题(答案)
高二数学上第一次月考试题一、选择题1.已知两点()()1,3,3,3--BA ,则直线AB 的斜率是( )A .3B .3-C .33D .33- 2.下列说法中正确的是( )A .平行于同一直线的两个平面平行B .垂直于同一直线的两个平面平行C .平行于同一平面的两条直线平行D .垂直于同一平面的两个平面平行3.用一个平面去截一个正四棱柱(底面是正方形,侧棱与底面垂直),截法不同,所得截面的形状不一定相同,在各种截法中,边数最多的截面的形状为 ( ) A .四边形 B .五边形 C .六边形 D .八边形4.用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )A .B . C. D .5.圆锥的底面半径为a ,侧面展开图是半圆面,那么此圆锥的侧面积是 ( ) A .22a π B .24a π C. 2a π D .23a π 6.为了得到函数⎪⎭⎫⎝⎛-=32sin πx y 的图像,只需把函数x y 2sin =的图像( ) A .向左平移125π个单位长度 B .向右平移125π个单位长度 C.向左平移3π个单位长度 D .向右平移6π个单位长度 7.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 1 2 4 5 销售额y (万元)10263549根据上表可得回归方程ˆˆˆybx a =+,其中ˆb 约等于9,据此模型预测广告费用为8万元时,销售额约为( )A .55万元B .57万元 C. 66万元 D .75万元8.棱锥的中截面(过棱锥高的中点且与高垂直的截面)将棱锥的侧面分成两部分,这两部分的面积的比为( )A . 4:1B . 3:1 C. 2:1 D .1:1 9.若过定点()3,0-P 的直线l 与直线232+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .⎪⎭⎫⎢⎣⎡3,6ππ B .⎪⎭⎫ ⎝⎛2,6ππ C.⎪⎭⎫ ⎝⎛2,3ππ D .⎥⎦⎤⎢⎣⎡2,3ππ10.执行如图所示程序框图,若输出x 值为47,则实数a 等于( )A .2B .3 C. 4 D .511.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥+-011405201y x y x y x ,则y x z +=的最大值是( )A .6B .7 C. 8 D .912.在体积为15的斜三棱柱111C B A ABC -中,P 是C C 1上的一点,ABC P -的体积为3,则三棱锥111C B A P -的体积为( )A .1B .23C. 2 D .3 二、填空题13.如图,点F E ,分别为正方体的面11A ADD ,面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是 .(要求:把可能的图的序号都填上)14.设向量()()1,2,,1a b m =-=,如果向量2a b +与2a b -平行,则a b ⋅= .15.某几何体的三视图如下图(单位:cm )则该几何体的表面积是 2cm .16.定义在()5,2+-b b 上的奇函数()x f 是减函数,且满足()()01<++a f a f ,则实数a 取值范围是三、解答题17. 已知在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且.2,2cos cos =+-=c a bca B C (1)求角B ;(2)当边长b 取得最小值时,求ABC ∆的面积;18.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1) //PA 平面BDE ; (2)平面⊥PAC 平面BDE ;19.如图,在三棱锥ABC P -中,平面⊥PBC 平面ABC ,PBC ∆是边长为a 的正三角形,M BAC ACB ,30,9000=∠=∠是BC 的中点.(1)求证:AC PB ⊥; (2)求点M 到平面PCA 的距离.20.如图,已知⊥PA 平面ABCD ,ABCD 为矩形,N M ,分别为PC AB ,的中点.(1)求证:AB MN ⊥;(2)若045=∠PDA ,求证:平面⊥MND 平面PDC .21.已知各项均不相等的等差数列{}n a 的前五项和205=S ,且731,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若n T 为数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和,且存在*∈N n ,使得01≥-+n n a T λ成立,求实数λ的取值范围.22.在棱长为2正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,F 是棱AD 上的一点,E 是棱1CC 的中点.(1)如图1,若F 是棱AD 的中点,求异面直线OE 和1FD 所成角的余弦值; (2)如图2,若延长EO 与F D 1的延长线相交于点G ,求线段G D 1的长度.试卷答案一、选择题1-5: DBCAA 6-10: DDBBD 11、12:DC二、填空题13.②③ 14.25 15.1413+⎪⎭⎫ ⎝⎛-9,21 三、解答题17.解:(1) 因为b c a B C -=2cos cos ,所以.sin sin sin 2cos cos BC A B C -= 所以()B C A B C cos sin sin 2sin cos -=, 所以()B A C B cos sin 2sin =+, 所以.cos sin 2sin B A A = 在ABC ∆中,0sin ≠A , 故21cos =B ,又因为()π,0∈B ,所以.3π=B (2)由(1)求解,得3π=B ,所以222222cos b a c ac B a c ac =+-=+- 又2=+c a ,所以()ac ac c a b 34322-=-+=,又因为22⎪⎭⎫ ⎝⎛+≤c a ac ,所以1≤ac ,所以12≥b ,又因为0>b ,故b 的最小值为1,此时.4360sin 11210=⨯⨯⨯=∆ABC S18.证:(1) 连接EO , 在PAC ∆中O 是AC 的中点,E 是PC 的中点 .//AP OE ∴又⊂OE 平面⊄PA BDE ,平面BDE ,//PA ∴平面BDE ,(2)⊥PO 底面ABCD ,.BD PO ⊥∴又BD AC ⊥ ,且O PO AC = ,⊥∴BD 平面.PAC而⊂BD 平面BDE ,∴平面⊥PAC 平面.BDE19.解:(1) PBC ∆ 是边长为a 的正三角形,M 是BC 的中点.BC PM ⊥∴又 平面⊥PBC 平面ABC ,且平面 PBC 平面BC ABC =,⊥∴PM 平面ABC ,⊂AC 平面ABC , .AC PM ⊥∴090=∠ACB ,即BC AC ⊥,又M BC PM = ,⊥∴AC 平面PBC ,⊂PB 平面PBC , PB AC ⊥∴(2)PAC M ACM P V V --=,得a h 43=,即为点M 到平面PAC 的距离. 20.证明:(1) 设E 为PD 的中点,连接AE EN ,,N M , 分别为PC AB ,的中点,DC EN //∴且DC AM DC EN //,21=,且AM EN DC AM //,21∴=且AM EN =, ∴四边形AMNE 为平行四边形,AE MN //∴,⊥PA 平面PA AB ABCD ⊥∴,,又⊥∴⊥AB AD AB , 平面PAD ,又⊂AE 平面.,AE AB PAD ⊥∴.,//AB MN AE MN ⊥∴(2)AD PA PDA =∴=∠,450,则.PD AE ⊥又⊥AB 平面⊥∴CD CD AB PAD ,//,平面PAD .AE CD ⊥∴ 又⊥∴=AE D PD CD , 平面PDC ,⊥∴MN AE MN ,// 平面.PDC又⊂MN 平面∴,MND 平面⊥MND 平面.PDC 21.解:(1) 设数列{}n a 的公差为d ,则()()⎪⎩⎪⎨⎧+=+=⨯+d a a d a d a 6220245511211,即⎩⎨⎧==+d a d d a 121242, 又因为0≠d ,所以⎩⎨⎧==121d a , 所以.1+=n a n (2)因为()(),211121111+-+=++=+n n n n a a n n所以()222121211141313121+=+-=+-+++-+-=n n n n n T n , 因为存在*∈N n ,使得01≥--n n a T λ成立,所以存在*∈N n ,使得()()0222≥+-+n n nλ成立,即存在*∈N n ,使()222+≤n nλ成立, 又()1614421,4421222≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+n n n n n n ,(当且仅当2=n 时取等号) 所以.161≤λ 即实数λ的取值范围是.161,⎥⎦⎤ ⎝⎛∞-22.解:(1) 如图,连接OF ,取11D C 的中点M ,连接.,ME OMM F O ,, 分别为11,,D C AD AC 的中点,CD M D CD OF //,//1∴,且.21,211CD M D CD OF ==M D OF 1//∴且,1M D OF = ∴四边形M OFD 1为平行四边形,.//1OM F D ∴MOE ∠∴为异面直线1FD 与OE 所成的角,在MOE ∆中,易求.,3,2,5222OE ME OM OE ME OM +=∴===.OE ME ⊥∴ .51553cos ==∠∴MOE(2)∈G 平面F D 1,且F D 1在平面11A ADD 内,∈∴G 平面,11A ADD同理∈G 平面11A ACC ,又 平面 11A ADD 平面A A A ACC 111=,∴由公理2知1AA G ∈(如图)CE G A //1 ,且O 为AC 的中点,1==∴CE AG ,。
高二数学上学期月考试卷(含解析)
高二上学期月考数学试卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)点A(﹣1,5),B(3,﹣3)的中点坐标为()A.(1,﹣1)B.(1,1)C.(2,﹣4)D.(﹣2,1)2.(4分)点(1,﹣1)到直线x﹣y+1=0的距离是()A.B.C.D.3.(4分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.104.(4分)两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4 B.C.D.5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B. C. D.6.(4分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3 C.(x﹣2)2+(y+1)2=9 D.(x+2)2+(y﹣1)2=37.(4分)圆x2+y2﹣2x=3与直线y=ax+1的交点的个数是()A.0个B.1个C.2个D.随a值变化而变化8.(4分)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k 的取值范围是()A.[﹣,0] B.C.[﹣] D.[﹣,0]二、填空题(共6小题,每小题4分,满分24分)9.(4分)直线x+y+1=0的倾斜角的大小为.10.(4分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为.11.(4分)经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是.12.(4分)从原点向圆x2+y2﹣12y+27=0作两条切线,则这两条切线的夹角的大小为.13.(4分)已知点A(1,﹣1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是.14.(4分)集合A={(x,y)|x2+y2=4},B={(x,y)|(x﹣3)2+(y﹣4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是.三、解答题,本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤.15.(12分)已知两条直线l1:2x﹣y+1=0,l2:ax+y+2=0,点P(3,1).(Ⅰ)直线l过点P,且与直线l1垂直,求直线l的方程;(Ⅱ)若直线l1与直线l2平行,求a的值;(Ⅲ)点P到直线l2距离为3,求a的值.16.(10分)已知圆M的圆心为(5,0),且经过点(3,),过坐标原点作圆M的切线l.(1)求圆M的方程;(2)求直线l的方程.17.(10分)已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.求:(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(2)的条件下,是否存在实数a,使得过点P(﹣2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)点A (﹣1,5),B (3,﹣3)的中点坐标为()A . (1,﹣1)B . (1,1)C . (2,﹣4)D . (﹣2,1)考点: 中点坐标公式.专题: 直线与圆.分析: 利用中点坐标公式即可得出.解答: 解:∵点A (﹣1,5),B (3,﹣3),∴线段AB 的中点坐标为,即为(1,1).故选:B .点评: 本题考查了中点坐标公式,属于基础题.2.(4分)点(1,﹣1)到直线x ﹣y+1=0的距离是()A .B .C .D .考点: 点到直线的距离公式.专题: 计算题.分析: 应用到直线的距离公式直接求解即可.解答: 解:点(1,﹣1)到直线x ﹣y+1=0的距离是:= 故选D .点评: 本题考查点到直线的距离公式,是基础题.3.(4分)已知过点A (﹣2,m )和B (m ,4)的直线与直线2x+y ﹣1=0平行,则m 的值为()A . 0B . ﹣8C . 2D . 10考点: 斜率的计算公式.专题: 计算题.分析: 因为过点A (﹣2,m )和B (m ,4)的直线与直线2x+y ﹣1=0平行,所以,两直线的斜率相等.解答: 解:∵直线2x+y ﹣1=0的斜率等于﹣2,∴过点A (﹣2,m )和B (m ,4)的直线的斜率K 也是﹣2,∴=﹣2,解得 ,故选 B .点评: 本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.4.(4分)两直线3x+y ﹣3=0与6x+my+1=0平行,则它们之间的距离为()A.4 B.C.D.考点:两条平行直线间的距离.专题:计算题;直线与圆.分析:根据两条直线平行的条件,建立关于m的等式解出m=2.再将两条直线化成x、y 的系数相同,利用两条平行直线间的距离公式加以计算,可得答案.解答:解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d===.故选:D点评:本题已知两条直线互相平行,求参数m的值并求两条直线的距离.着重考查了直线的位置关系、平行线之间的距离公式等知识,属于基础题.5.(4分)在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A.B. C. D.考点:确定直线位置的几何要素.专题:数形结合.分析:本题是一个选择题,按照选择题的解法来做题,由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上,得到结果.解答:解:由y=x+a得斜率为1排除B、D,由y=ax与y=x+a中a同号知若y=ax递增,则y=x+a与y轴的交点在y轴的正半轴上;若y=ax递减,则y=x+a与y轴的交点在y轴的负半轴上;故选C.点评:本题考查确定直线为主的几何要素,考查斜率和截距对于一条直线的影响,是一个基础题,这种题目也可以出现在直线与圆锥曲线之间的图形的确定.6.(4分)以点(2,﹣1)为圆心且与直线3x﹣4y+5=0相切的圆的方程为()A.(x﹣2)2+(y+1)2=3 B.(x+2)2+(y﹣1)2=3 C.(x﹣2)2+(y+1)2=9 D.(x+2)2+(y﹣1)2=3考点:直线与圆的位置关系.分析:求出半径即可求得圆的方程.解答:解:r==3,所求圆的方程为(x﹣2)2+(y+1)2=9故选C.点评:本题考查直线与圆的位置关系,求圆的方程,是基础题.7.(4分)圆x2+y2﹣2x=3与直线y=ax+1的交点的个数是()A.0个B.1个C.2个D.随a值变化而变化考点:直线与圆相交的性质.专题:计算题;转化思想.分析:把圆的方程整理成标准方程,求得圆心和半径,进而利用点到直线的距离求得圆心到直线的距离的表达式,利用不等式的性质可比较出<2,进而推断出直线与圆相交,故可知交点为2个.解答:解:整理圆的方程为(x﹣1)2+y2=4,圆心为(1,0),半径为2,圆心到直线的距离为()2﹣4=,对于y=3a2﹣2a+3,△=4﹣36<0∴3a2﹣2a+3>0,∴()2﹣4<0∴()2<4即<2∴直线与圆相交,即交点有2个.故选C点评:本题主要考查了直线与圆相交的性质.判断直线与圆的位置关系时,一般是看圆心到直线的距离与半径的大小的比较.8.(4分)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若|MN|≥2,则k 的取值范围是()A.[﹣,0] B.C.[﹣] D.[﹣,0]考点:直线与圆的位置关系;点到直线的距离公式;直线和圆的方程的应用.专题:压轴题.分析:先求圆心坐标和半径,求出最大弦心距,利用圆心到直线的距离不大于最大弦心距,求出k的范围.解答:解:解法1:圆心的坐标为(3,2),且圆与x轴相切.当,弦心距最大,由点到直线距离公式得解得k∈;故选A.解法2:数形结合,如图由垂径定理得夹在两直线之间即可,不取+∞,排除B,考虑区间不对称,排除C,利用斜率估值,故选A.点评:考查直线与圆的位置关系、点到直线距离公式,重点考查数形结合的运用.解法2是一种间接解法,选择题中常用.二、填空题(共6小题,每小题4分,满分24分)9.(4分)直线x+y+1=0的倾斜角的大小为.考点:直线的倾斜角.专题:直线与圆.分析:化直线的一般式方程为斜截式,求出直线的斜率,由倾斜角的正切值等于斜率求倾斜角.解答:解:由x+y+1=0,得,∴直线x+y+1=0的斜率为,设其倾斜角为θ(0≤θ<π),则,∴θ=.故答案为:.点评:本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题.10.(4分)圆x2+y2﹣4x=0在点P(1,)处的切线方程为x﹣y+2=0.考点:圆的切线方程.专题:计算题.分析:求出圆的圆心坐标,求出切点与圆心连线的斜率,然后求出切线的斜率,解出切线方程.解答:解:圆x2+y2﹣4x=0的圆心坐标是(2,0),所以切点与圆心连线的斜率:=﹣,所以切线的斜率为:,切线方程为:y﹣=(x﹣1),即x﹣y+2=0.故答案为:x﹣y+2=0.点评:本题是基础题,考查圆的切线方程的求法,求出切线的斜率解题的关键,考查计算能力.11.(4分)经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是2x﹣y﹣7=0.考点:直线的两点式方程;直线的点斜式方程.专题:计算题;直线与圆.分析:联立两直线方程,求解交点坐标,然后代入直线方程的点斜式得答案.解答:解:联立,解得.∴两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点为(3,﹣1),∴经过两条直线3x+4y﹣5=0和3x﹣4y﹣13=0的交点,且斜率为2的直线方程是y+1=2(x ﹣3),即2x﹣y﹣7=0.故答案为:2x﹣y﹣7=0.点评:本题考查了直线方程的点斜式,考查了二元一次方程组的解法,是基础题.12.(4分)从原点向圆x2+y2﹣12y+27=0作两条切线,则这两条切线的夹角的大小为.考点:圆的切线方程.专题:直线与圆.分析:根据圆的标准方程求出圆心C的坐标和半径r,设这两条切线的夹角的大小为2θ,利用直线和圆相切的性质求得sinθ=的值,从而求得θ的值,由此可得结论.解答:解:圆x2+y2﹣12y+27=0,即 x2+(y﹣6)2=9,表示以C(0,6)为圆心,半径r=3的圆.设这两条切线的夹角的大小为2θ,其中θ为锐角,则由圆的切线性质可得sinθ==,所以θ=,故这两条切线的夹角的大小为2×=,故答案为:.点评:本题主要考查圆的标准方程,直线和圆相切的性质,直角三角形中的边角关系,根据三角函数的值求角,属于基础题.13.(4分)已知点A(1,﹣1),点B(3,5),点P是直线y=x上动点,当|PA|+|PB|的值最小时,点P的坐标是(2,2).考点:两条直线的交点坐标.专题:计算题.分析:根据图形可知,当P运动到直线y=x与直线AB的交点Q时,|PA|+|PB|的值最小时,所以利用A和B的坐标求出直线AB的方程,与y=x联立即可求出交点的坐标即为P的坐标.解答:解:连接AB与直线y=x交于点Q,则当P点移动到Q点位置时,|PA|+|PB|的值最小.直线AB的方程为y﹣5=(x﹣3),即3x﹣y﹣4=0.解方程组,得.于是当|PA|+|PB|的值最小时,点P的坐标为(2,2).故答案为:(2,2)点评:此题考查学生会根据两点坐标写出直线的方程,会求两直线的交点坐标,是一道中档题.14.(4分)集合A={(x,y)|x2+y2=4},B={(x,y)|(x﹣3)2+(y﹣4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是3或7.考点:集合的包含关系判断及应用.专题:计算题.分析:集合A中的元素其实是圆心为坐标原点,半径为2的圆上的任一点坐标,而集合B 的元素是以(3,4)为圆心,r为半径的圆上点的坐标,因为r>0,若A∩B中有且仅有一个元素等价与这两圆只有一个公共点即两圆相切,则圆心距等于两个半径相加得到r的值即可.解答:解:据题知集合A中的元素是圆心为坐标原点,半径为2的圆上的任一点坐标,集合B的元素是以(3,4)为圆心,r为半径的圆上任一点的坐标,因为r>0,若A∩B中有且仅有一个元素,则集合A和集合B只有一个公共元素即两圆有且只有一个交点,则两圆相切,圆心距d=R+r或d=R﹣r;根据勾股定理求出两个圆心的距离为5,一圆半径为2,则r=3或7故答案为3或7点评:考查学生运用两圆位置关系的能力,理解集合交集的能力,集合的包含关系的判断即应用能力.三、解答题,本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤.15.(12分)已知两条直线l1:2x﹣y+1=0,l2:ax+y+2=0,点P(3,1).(Ⅰ)直线l过点P,且与直线l1垂直,求直线l的方程;(Ⅱ)若直线l1与直线l2平行,求a的值;(Ⅲ)点P到直线l2距离为3,求a的值.考点:直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系;点到直线的距离公式.专题:直线与圆.分析:(Ⅰ)利用直线与直线垂直的性质求解.(Ⅱ)利用直线与直线平行的性质求解.(Ⅲ)利用点到直线的距离公式求解.解答:解:(Ⅰ)∵直线l过点P,且与直线l1垂直,∴设直线l的方程为x+2y+c=0,把P(3,1)代入,得:3+2+c=0,解得c=﹣5,∴直线l的方程为:x+2y﹣5=0.(Ⅱ)∵直线l1与直线l2平行,∴,解得a=﹣2.(Ⅲ)∵点P到直线l2距离为3,∴=3,解得a=1.点评:本题考查直线方程和实数值的求法,是基础题,解题时要认真审题,注意直线的位置关系和点到直线的距离公式的合理运用.16.(10分)已知圆M的圆心为(5,0),且经过点(3,),过坐标原点作圆M的切线l.(1)求圆M的方程;(2)求直线l的方程.考点:圆的切线方程.专题:计算题;直线与圆.分析:(1)求出半径,然后求出圆M的标准方程;(2)设出直线方程,利用直线与圆相切求出k即可求出直线方程.解答:解:(1)点(3,)到圆心(5,0)的距离为圆的半径R,所以R==3..(2分)所以圆的标准方程为(x﹣5)2+y2=9..(4分)(2)设切线方程为y=kx,与圆M方程联立方程组有唯一解,即:(1+k2)x2﹣10x+16=0有唯一解..(6分)所以:△=100﹣64(1+k2)=0,即:k=±所以所求切线方程为y=±x.点评:本题是基础题,考查直线的切线方程,圆的标准方程,考查计算能力,常考题型.17.(10分)已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.考点:直线和圆的方程的应用.分析:联立方程,设出交点,利用韦达定理,表示出P、Q的坐标关系,由于OP⊥OQ,所以k OP•k OQ=﹣1,问题可解.解答:解:将x=3﹣2y代入方程x2+y2+x﹣6y+m=0,得5y2﹣20y+12+m=0.设P(x1,y1)、Q(x2,y2),则y1、y2满足条件y1+y2=4,y1y2=.∵OP⊥OQ,∴x1x2+y1y2=0.而x1=3﹣2y1,x2=3﹣2y2,∴x1x2=9﹣6(y1+y2)+4y1y2.∴m=3,此时△>0,圆心坐标为(﹣,3),半径r=.点评:本题考查直线和圆的方程的应用,解题方法是设而不求,简化运算,是常考点.18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.求:(Ⅰ)求圆的方程;(Ⅱ)设直线ax﹣y+5=0与圆相交于A,B两点,求实数a的取值范围;(Ⅲ)在(2)的条件下,是否存在实数a,使得过点P(﹣2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线和圆的方程的应用.专题:直线与圆.分析:(Ⅰ)利用点到直线的距离求出半径,从而求圆的方程;(Ⅱ)利用圆心到直线的距离小于半径可求出实数a的取值范围;(Ⅲ)假设存在利用直线与圆的位置关系性质解决.解答:解:(Ⅰ)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以,,即|4m﹣29|=25.因为m为整数,故m=1.故所求的圆的方程是(x﹣1)2+y2=25.(Ⅱ)直线ax﹣y+5=0即y=ax+5.代入圆的方程,消去y整理,得(a2+1)x2+2(5a﹣1)x+1=0.由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,解得 a<0,或.所以实数a 的取值范围是.(Ⅲ)设符合条件的实数a存在,由(2)得a≠0,则直线l 的斜率为,l 的方程为,即x+ay+2﹣4a=0.由于l垂直平分弦AB,故圆心M(1,0)必在l上.所以1+0+2﹣4a=0,解得.由于,故存在实数a=,使得过点P(﹣2,4)的直线l垂直平分弦AB.点评:本题主要考查了圆的标准方程,点到直线的距离公式,直线与圆的位置关系等知识的综合应用,以及存在性问题的解决技巧,属于难题.11。
高二数学上学期月考试题 文含解析 试题
2021-2021学年HY中学高二上学期段一考试〔月考〕文数试题一、选择题:一共12题1. 将直角三角形绕它的一个直角边所在的直线旋转一周,形成的几何体一定是A. 圆锥B. 圆柱C. 圆台D. 以上均不正确【答案】A【解析】由棱锥的定义可知:将直角三角形绕它的一个直角边所在的直线旋转一周,形成的几何体一定是圆锥. 此题选择A选项.2. 由斜二测画法得到:①相等的线段和角在直观图中仍然相等;②正方形在直观图中是矩形;③等腰三角形在直观图中仍然是等腰三角形;④平行四边形的直观图仍然是平行四边形.上述结论正确的个数是A. 0B. 1C. 2D. 3【答案】B【解析】逐一考察所给的说法:①相等的线段平行时在直观图中仍然相等,原说法错误;②正方形在直观图中是平行四边形,不是矩形,原说法错误;③等腰三角形在直观图中不是等腰三角形,原说法错误;④平行四边形的直观图仍然是平行四边形,原说法正确.综上可得上述结论正确的个数是1个.此题选择B选项.3. 以下四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出的图形的序号是A. ①③B. ①④C. ②③D. ②④【答案】B【解析】此题考察空间线面的平行关系.对于①,根据正方体的概念可知,以AB为对角线的对角面与平面MNP平行,故平面,即①正确;②③中,直线AB与平面MNP都相交;对于④,易得AB∥NP,故平面.所以,能得到平面的序号是①④.故答案为:B。
4. 在正方体中,异面直线与所成的角为A. 90°B. 60°C. 45°D. 30°【答案】C【解析】如下图,由正方体的性质可知,那么异面直线与所成的角即,结合正方体的性质可知,综上可得异面直线与所成的角为45°.此题选择C选项.点睛:平移线段法是求异面直线所成角的常用方法,其根本思路是通过平移直线,把异面问题化归为一共面问题来解决,详细步骤如下:①平移:平移异面直线中的一条或者两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5. 如图,在四面体中,假设直线和相交,那么它们的交点一定A. 在直线上B. 在直线上C. 在直线上D. 都不对【答案】A【解析】依题意有:由于交点在上,故在平面上,同理由于交点在上,故在平面上,故交点在这两个平面的交线上.6. 在正方体中,为棱的中点,那么A. B. C. D.【答案】D【解析】由题意结合射影定理逐一考察所给选项:在平面上的射影为,假设,那么,该结论明显不成立,选出A错误;在平面上的射影为,假设,那么,该结论明显不成立,选出B错误;在平面上的射影为,假设,那么,该结论明显不成立,选出C错误;在平面上的射影为,假设,那么,该结论明显成立,选出D正确;此题选择D选项.7. ?九章算术?是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?〞其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽丈,长丈,上棱长丈,高2丈,问:它的体积是多少?〞丈为尺,该锲体的三视图如下图,那么该锲体的体积为A. 立方尺B. 立方尺C. 立方尺D. 立方尺【答案】A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如下图:沿上棱两端向底面作垂面,且使垂面与上棱垂直,那么将几何体分成两个四棱锥和1个直三棱柱,那么三棱柱的四棱锥的体积由三视图可知两个四棱锥大小相等,立方丈立方尺.应选A.【点睛】此题考察三视图及几何体体积的计算,其中正确复原几何体,利用方格数据分割与计算是解题的关键.8. 设是两条不同的直线,是一个平面,那么以下命题正确的选项是A. 假设,那么B. 假设,那么C. 假设,那么D. 假设,那么【答案】B【解析】试题分析:由题意得,对于A中,假设,,那么可能在内,所以错误;B中,假设,,根据线面垂直的性质定理以及平行线的性质,可得,所以正确;C中,假设,,那么与平行或者异面,所以错误;D中,假设,,那么与平行、相交或者异面,所以错误,应选B.考点:线面位置关系的断定.9. 在棱长为1的正方体中,是棱的中点,是侧面内(包括边)的动点,且平面,沿运动,将点所在的几何体削去,那么剩余几何体的体积为A. B. C. D.【答案】B【解析】如下图,分别取B1B、B1C1的中点M、N,连接AM、MN、AN,那么∵A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,∴A1M∥平面D1AE.同理可得MN∥平面D1AE,∵A1M、MN是平面A1MN内的相交直线,∴平面A1MN∥平面D1AE,由此结合A1F∥平面D1AE,可得直线A1F⊂平面A1MN,即点F的轨迹是线段MN,∴,∴将B1点所在的几何体削去,剩余几何体的体积为,此题选择B选项.10. 在空间四边形中,分别为上的点,且,又分别是的中点,那么A. 平面,且四边形是平行四边形B. 平面,且四边形是平行四边形C. 平面,且四边形是梯形D. 平面,且四边形是梯形【答案】C【解析】如图,由条件知,,,,且;且=;四边形EFGH为梯形;,平面BCD,平面BCD;平面BCD;假设平面ADC,那么,显然EH不平行FG;不平行平面ADC;选项C正确.点睛:这个题目主要考察了线面平行的断定方法;对于线面平行的证法,一般是转化为线线平行;常见方法有:构造三角形中位线,构造平行四边形等方法证明线线平行,从而得到线面平行。
高二数学上学期第一次月考试题 新人教版 (新版).doc
2019学年高二数学上学期第一次月考试题一.选择题(共60分) 1. 设全集为R ,集合,,则A.B.C.D.2. 过点P (-1,3)平行直线 x-2y+3=0的直线方程 ( ) A. 2x+y-1=0 B. 2x+y-5=0 C. x+2y-5=0 D. x-2y+7=0 3.已知圆22:40C x y x +-=,过点(3,0)P 的直线l ,则( )A.l 与C 相交B. l 与C 相切C.l 与C 相离D. 以上三个选项均有可能 4.直线2550x y +-+=被圆22240x y x y +--=截得的弦长为 ( )A . 1B .2C .4D .465.圆0882:221=-+++y x y x C ,圆0244:222=---+y x y x C ,圆1C 与圆2C 的位置关系. ( )(A )内切 (B )相交 (C )外切 (D )相离 6. 已知,则的大小关系为 ()A.B.C.D.7.将函数的图象向右平移个单位长度,所得图象对应的函数( )A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增 D. 在区间上单调递减8.已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )-3 (C )2 (D )-29.点42P (,-)与圆422=+y x 上任一点连线的中点轨迹方程是 ( )10.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .()232,D .2232⎡⎤⎣⎦,11.(理科)已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ( ) A.435 B.433 C.332 D.423 11.(文科) 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b ,0)(b ≠-2)和常数λ满足: 对圆O 上任意一点M ,都有|MB |=λ|MA |,则 ( )A .1,2b λ=-=B .1,2b λ==C .11,22b λ==D .11,22b λ=-=12. 如图,在平面四边形ABCD 中,,,,. 若点E为边CD 上的动点,则 AE BE u u u r u u u rg 的最小值为 ( ) A. B. C.D.二.填空题(共20分)13.在直角坐标系中,直线330x y --=的倾斜角的度数是14. 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的最小值为 .15.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅u u u r u u u r≤则点P 的横坐标的取值范围是 .16.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则1211S S +311nS S +++=L三.解答题(共70分)17.(10分)(1)求过点(1,2)P -且在两个坐标轴上的截距相等的直线方程; (2)求 圆心在直线032=--y x 上,且过点)2,3(),2,5(-B A 的圆的方程18、(12分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y 表示生产甲、乙两种肥料的车皮数. (Ⅰ)用x,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.19.(12分) 在平面四边形ABCD 中,AB AD ⊥,2721,cos ,73BC B ACB π==∠=. (1)求AC 的长; (2)若21AD =,求CD 的长和四边形ABCD 的面积.20.(理科12分)在四棱锥P ABCD -中,侧面PCD⊥底面ABCD ,PD CD ⊥,E 为PC中点,底面ABCD是直角梯形,//AB CD ,90ADC ∠=o,1AB AD PD ===,2CD =.(1)求证:BC ⊥平面PBD ;(2)在线段PC 上是否存在一点Q ,使得二面角Q BD P --为45o?若存在,求PQPC的值;若不存在,请说明理由.20.文科(12分) 如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,AB//DC ,△PAD 是等边三角形,BD =2AD =8,AB =2DC =45.(1)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (2)求四棱锥P-ABCD 的体积.20.[文科] 如图,三棱柱ABC A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C .(1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC A 1B 1C 1的高.21.(12分)数列}{n a 满足)0(m ,111≠==+m a a a n n ,数列{n b }的前n 项和为=n s 12n 2++n ,(1)求数列}{n a 的前n 项和,及数列{n b }的通项公式; (2)当3=m 时,设n n nb ac ⋅=,求数列{n c }的前n 项和n T ;(3)若12-≤n T k n 对*∈N n 都成立,求k 的取值范围.22. (12分)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1) 求圆C 的方程;(2) 过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由。
高二数学上学期第一次月考试题 人教版 新版.doc
2019学年高二数学上学期第一次月考试题本卷共150分,考试时间120分钟, 班级 姓名一、选择题(本题共12小题每小题5分共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项公式a n 可能是( )A .2nB .2n +1C .2n -1D .2n -1 2.若a <1,b >1,那么下列不等式中正确的是( )A.1a >1b B .ba >1 C .a 2<b 2 D .ab <a +b 3.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <3 4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±155.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为( ) A .5 2 B .5 3 C .2 5 D .3 5 6,已知命题p :∀x ∈R ,sin x ≤1,则( ).A .¬p :∃x 0∈R ,sin x 0≥1B .¬p :∀x ∈R ,sin x ≥1C .¬p :∃x 0∈R ,sin x 0>1D .¬p :∀x ∈R ,sin x >17.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .78.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .49.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6B .5C .4D .310.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,则三角形△F 1MF 2的面积= ( ).A. 16B. 8C. 6 D .1211. 已知椭圆:E )0(12222>>=+b a by a x 的右焦点)0,3(F ,过点F 的直线交E 于A ,B两点,若AB 的中点坐标为)1,1(-,则E 的方程为( )A. 1364522=+y xB. 1273622=+y xC. 1182722=+y xD. 191822=+y x12.在各项均为正数的等比数列{a n }中,公比q ∈(0,1).若a 3+a 5=5,a 2·a 6=4,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn 取最大值时,n 的值为( )A .8B .9C .8或9D .17二、填空题(本大题共4小题每小题5分共20分,把正确答案填在题中的横线上) 13.不等式752>+x 的解集为________.14.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.则双曲线C 的方程为_________.15. 已知在正整数数列{a n }中,前n 项和S n 满足:S n =18(a n +2)2.若b n =12a n -30. 则数列{b n }的前n 项和的最小值为_________.16.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. 则2211b a +的值为_________. 三、解答题(本大题有6题共70分,解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分10分)已知函数f (x )=ax 2-4ax -3.(1)当a =-1时,求关于x 的不等式f (x )>0的解集;(4分)(2)若对于任意的x ∈R ,均有不等式f (x )≤0成立,求实数a 的取值范围.(6分)18.(本小题满分12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(6分)(2)若p 是q 的必要不充分条件,求实数a 的取值范围.(6分)19.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列.(1)若b =23,c =2,求△ABC 的面积;(6分)(2)若sin A ,sin B ,sin C 成等比数列,试判断△ABC 的形状.(6分)20.(本小题满分12分)如图,已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=4 2.过椭圆焦点F 1作一直线,交椭圆于两点M ,N . (1)求椭圆的方程;(5分)(2)当∠F 2F 1M =π4时,求|MN |.(7分)21.(本小题满分12分) 已知n S 是数列{n a }的前n 项和,并且1a =1, 对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ). (I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(5分) (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .(7分)22.(本小题满分12分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P . (1)求椭圆C 的离心率;(5分)(2)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.(7分)高二年级数学教学质量第一次月考检测(10.8)本卷共150分,考试时间120分钟, 班级 姓名 一、选择题(本题共12小题每小题5分共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项公式a n 可能是( )A .2nB .2n +1C .2n -1D .2n -1 解析:取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 选C. 2.若a <1,b >1,那么下列不等式中正确的是( )A.1a >1b B .ba >1 C .a 2<b 2 D .ab <a +b解析:利用特值法,令a =-2,b =2,则1a <1b ,A 错;ba <0,B 错;a 2=b 2,C 错.选D. 3.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <3 解析:因为f (x )=-x 2+mx -1有正值,所以Δ=m 2-4>0,所以m >2或m <-2. 选A. 4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±15解析:因为a 24+a 27+2a 4a 7=(a 4+a 7)2=9,所以a 4+a 7=±3,所以a 1+a 10=±3,所以S 10=10(a 1+a 10)2=±15. 选D. 5.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为( ) A .5 2 B . 5 3 C .2 5 D .3 5解析:依题意,知三角形的最大边为b .由于A =30°,根据正弦定理bsin B =asin A ,得b =a sin B sin A =5sin 135°sin 30°=5 2.选A.6,已知命题p :∀x ∈R ,sin x ≤1,则( ).A .¬p :∃x 0∈R ,sin x 0≥1B .¬p :∀x ∈R ,sin x ≥1C .¬p :∃x 0∈R ,sin x 0>1D .¬p :∀x ∈R ,sin x >1解: 命题p 是全称命题,全称命题的否定是特称命题. 答C7.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .7解析:在坐标平面内画出题中的不等式组表示的平面区域及直线3x +y =0,平移该直线,当平移到经过该平面区域内的 点B (2,1)时,相应直线在x 轴上的截距达到最大,此时z =3x +y 取得最大值,最大值是7.答案:D8.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -2×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3, 即a =3.答 C9.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6B .5C .4D .3解:据椭圆定义知△AF 1B 的周长为4a =16,所求的第三边的长度为16-10=6.答案:A10.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,则三角形△F 1MF 2的面积= ( ).A. 16B. 8C. 6D .12[解析]:由题意可得双曲线的两个焦点是F 1(0,-5)、F 2(0,5),由双曲线定义得:621=-MF MF ,联立3221=⋅MF MF 得21MF +22MF=100=221F F , 所以△F 1MF 2是直角三角形,从而其面积为S =162121=⋅MF MF 答案:A 11. 已知椭圆:E )0(12222>>=+b a by a x 的右焦点)0,3(F ,过点F 的直线交E 于A ,B两点,若AB 的中点坐标为)1,1(-,则E 的方程为( )A. 1364522=+y xB. 1273622=+y xC. 1182722=+y xD. 191822=+y x【解析】由椭圆12222=+by a x 得,222222b a y a x b =+,因为过F 点的直线与椭圆)0(12222>>=+b a by a x 交于A ,B 两点,设),(11y x A ,),(22y x B ,则1221=+x x ,1221-=+y y 则22212212b a y a x b =+ ①22222222b a y a x b =+ ② 由①-②得0)()(2221222212=-+-y y a x x b ,化简得0))(())((2121221212=+-++-y y y y a x x x x b .0)(2)(2212212=---y y a x x b ,222121a b x x y y =--又直线的斜率为0(1)1312k --==-, 即2122=a b .因为92222-=-=a c a b ,所以21922=-a a ,解得182=a ,92=b . 故椭圆方程为191822=+y x .选D.12.在各项均为正数的等比数列{a n }中,公比q ∈(0,1).若a 3+a 5=5,a 2·a 6=4,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn 取最大值时,n 的值为( )A .8B .9C .8或9D .17解析:因为a 2·a 6=a 3·a 5=4,且a 3+a 5=5,所以a 3,a 5是方程x 2-5x +4=0的 两个根.又因为等比数列{a n }各项均为正数且q ∈(0,1),所以a 3=4,a 5=1.所以q 2=a 5a 3=14,所以q =12.所以a n =4·⎝ ⎛⎭⎪⎫12n -3,所以b n =log 2a n =5-n .所以S n =(9-n )·n 2, 所以S n n =9-n 2.T n =S 11+S 22+…+S n n =14(-n 2+17n )=14⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫n -1722+2894.所以当n =8或9时,T n 取得最大值.选C.二、填空题(本大题共4小题每小题5分共20分,把正确答案填在题中的横线上) 13.不等式752>+x 的解集为________.解:由原不等式可得752-<+x ,或752>+x .整理,得6-<x ,或1>x .∴原不等式的解集是{}1,6>-<x x x 或.答案:{}1,6>-<x x x 或 14.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.则双曲线C 的方程为_________.解:设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,∴b 2=1,∴双曲线C 的方程为x 23-y 2=1.答案:x 23-y 2=115. 已知在正整数数列{a n }中,前n 项和S n 满足:S n =18(a n +2)2.若b n =12a n -30. 则数列{b n }的前n 项和的最小值为_________.解:当n =1时,S 1=a 1=18(a 1+2)2,∴(a 1-2)2=0,∴a 1=2.当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,∴a n -a n -1=4,∴{a n }为等差数列. a n =a 1+(n -1)4=4n -2,由b n =12a n -30=2n -31≤0得n ≤312. ∴{b n }的前15项之和最小,且最小值为-225.16.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. 则2211ba +的值为_________. [解析]:设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得:Θ 又将代入x y -=112222=+by a x 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221b a a x x +=+∴>∆Θ222221)1(b a b a x x +-=代入①化简得 21122=+b a . 三、解答题(本大题有6题共70分,解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分10分)已知函数f (x )=ax 2-4ax -3. (1)当a =-1时,求关于x 的不等式f (x )>0的解集;(4分)(2)若对于任意的x ∈R ,均有不等式f (x )≤0成立,求实数a 的取值范围.(6分) 解:(1)当a =-1时,不等式ax 2-4ax -3>0,即-x 2+4x -3>0.可化为x 2-4x +3<0, 即(x -1)(x -3)<0,解得1<x <3,故不等式f (x )>0的解集为(1,3). (2)①当a =0时,不等式ax 2-4ax -3≤0恒成立; ②当a ≠0时,要使得不等式ax 2-4ax -3≤0恒成立;只需⎩⎪⎨⎪⎧a <0,Δ≤0,即⎩⎪⎨⎪⎧a <0,-4a 2-4a -3≤0,解得⎩⎪⎨⎪⎧a <0,-34≤a ≤0,即-34≤a <0,综上所述,a 的取值范围为⎣⎢⎡⎦⎥⎤-34,0.18.(本小题满分12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(6分)(2)若p 是q 的必要不充分条件,求实数a 的取值范围.(6分)解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0,当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0x 2+2x -8>0,得2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则p 真且q 真, 所以实数x 的取值范围是2<x <3. (2)p 是q 的必要不充分条件,即q ⇒p 且p q ,设A ={x |p (x )},B ={x |q (x )},则AB ,又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a ).所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2;当a <0时,显然A ∩B =∅,不合题意.综上所述,实数a 的取值范围是1<a ≤2.19.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c , 且A ,B ,C 成等差数列.(1)若b =23,c =2,求△ABC 的面积;(6分) (2)若sin A ,sin B ,sin C 成等比数列,试判断△ABC 的形状.(6分) 解:因为A ,B ,C 成等差数列,所以2B =A +C .又A +B +C =π,所以B =π3.(1)法一:因为b =23,c =2,所以由正弦定理得b sin B =csin C ,即b sin C =c sin B , 即23sin C =2×32,得sin C =12.因为b >c ,所以B >C ,即C 为锐角,所以C =π6, 从而A =π2.所以S △ABC =12bc =2 3.法二:由余弦定理得b 2=a 2+c 2-2ac cos B , 即a 2-2a -8=0,得a =4.所以S △ABC =12ac sin B =12×4×2×32=2 3.(2)因为sin A ,sin B ,sin C 成等比数列,所以sin 2B =sin A ·sin C .由正弦定理得b 2=ac ;由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac .所以ac =a 2+c 2-ac ,即(a -c )2=0,即a =c .又因为B =π3,所以△ABC 为等边三角形.20.(本小题满分12分)如图,已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=4 2. 过椭圆焦点F 1作一直线,交椭圆于两点M ,N .(1)求椭圆的方程;(5分) (2)当∠F 2F 1M =π4时,求|MN |.(7分)解 (1)由题意知:2a =6,2c =42,∴b 2=a 2-c 2=9-8=1,且焦点在x 轴上,∴椭圆的方程为x 29+y 2=1.(2)当∠F 2F 1M =π4时,直线MN 的斜率k =1.又F 1(-22,0),∴直线MN 的方程为y =x +2 2.由⎩⎨⎧x29+y 2=1,y =x +22得:10x 2+362x +63=0.若M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1825,x 1x 2=6310. ∴|MN |=1+k 2·|x 1-x 2|=2·x 1+x 22-4x 1x 2=65.即|MN |的长为65.21.(本小题满分12分) 已知n S 是数列{n a }的前n 项和,并且1a =1, 对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ). (I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(5分) (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .(7分) 解:(I )),2(24,2411≥+=∴+=-+n a S a S n n n n Θ两式相减:),2(4411≥-=-+n a a a n n n *),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+,21=∴+nn b b }{n b ∴是以2为公比的等比,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而Θ*)(231N n b n n ∈⋅=∴-(II ),231-==n nn b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n Λ22.(本小题满分12分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(1)求椭圆C 的离心率;(5分)(2)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.(7分)【解析】(1)由椭圆定义知,2a =|PF 1|+|PF 2|=(43+1)2+(13)2+(43−1)2+(13)2=22,所以a =2,又由已知,c =1,所以椭圆的离心率e =c a =12=22.(2)由(1)知,椭圆C 的方程为x 22+y 2=1, 设点Q 的坐标为(x ,y ).(ⅰ) 当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,,此时点Q 的坐标为(0,2−355).(ⅱ) 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,因为M,N 在直线l 上,可设点M,N的坐标分别为1122(x ,kx +2),(x ,kx +2) 则|AM |2=(1+k 2)x 12, |AN |2=(1+k 2)x 22,又|A Q|2=(1+k 2)x 2,由2|AQ |2=1|AM |2+1|AN |2,得2 (1+k 2)x 2=1(1+k 2)x 12+1(1+k 2)x 22,即2x 2=1x 12+1x 22=(x 1+x 2)2−2 x 1x 2 x 12x 12, ① 将y =kx +2代入x 22+y 2=1中,得(2k 2+1)x 2+8kx +6=0.② 由=(8k )2−4(2k 2+1)6>0,得k 2>32. 由②可知,x 1+x 2=−8k 2k 2+1,x 1x 2=62k 2+1, 代入①并化简得x 2=21810k 3-. ③因为点Q 在直线y =kx +2上, 所以k =y −2x , 代入③并化简,得10(y −2)2−3x 2=18.由③及k 2>32,可知0<x 2<32,即x(−62,0)∪(0,62).又(0,2−355)满足10(y −2)2−3x 2=18, 故x (−62,62).由题意,Q(x ,y )在椭圆C 内,所以−1y 1,又由10(y −2)2=3x 2+18 有(y −2)2[95,94) 且−1y 1, 则y(12,2−355]. 所以点Q 的轨迹方程为10(y −2)2−3x 2=18,其中x(−62,62), y(12,2−355].。
高二数学上学期第一次月考试题 文新 版新人教版.doc
2019学年高二数学上学期第一次月考试题 文一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.直线310x y --=的倾斜角为A . 56πB .23πC .3π D . 4π 2.双曲线22148x y -=的焦距是 A .23 B .4 C .43 D .8 3.已知平行直线12:210,:210l x y l x y +-=++=,则12,l l 的距离2555D. 254.过椭圆22142x y +=的右焦点且垂直于长轴的直线交椭圆于,A B ,则||AB = A .12B.14C. 1D. 25.设x ,y 满足约束条件21021030x y x y y -+≥⎧⎪+-≤⎨⎪+≥⎩,则z x y =+的最小值是A .5-B .5C .1-D .16.若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2=PFA .11B .9C .5D .3 7.圆2240x x y ++=与圆224240x y x y +---=的位置关系是A .内切B .相交C .外切D .外离8.已知双曲线2222:1x y C a b -=(0,0)a b >>满足5b a =且与椭圆221123x y +=有公共焦点,则双曲线C 的标准方程为A .22145x y -= B .221810x y -= C .22154x y -=D .22143x y -= 9. 圆222210x y x y +--+=上的点到直线324y x =--的最大距离是 A. 1 B.2 C.3D.410. 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是A .02=-y xB .042=-+y xC .01232=-+y xD .082=-+y x11.已知集合(){}2,1x y y x A ==--,集合(){},2x y y x a B ==+,且A B ≠∅I ,则a的取值范围是A .5⎡-⎣B .()),13,-∞-+∞U C .5,2⎡⎤⎣⎦D .()),25,-∞-+∞U12.已知椭圆)0(12222>>=+b a by a x 的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ∠=︒,则椭圆的离心率的取值范围为A. 3B. 2,1)2C. 2(0,2D. 3二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上.) 13.点(2,5)P 关于直线1x y +=的对称点的坐标是 .14.已知P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,当123F PF π∠=时,则12PF F ∆的面积为 .15.已知双曲线的左,右焦点分别为1(40)F -,,2(40)F ,,双曲线上点P 满足124PF PF -=,则双曲线的标准方程为 .16.已知点)0,1(),0,1(B A -和圆4)4()3(:22=-+-y x C 上的动点P ,则22PA PB +的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)直线l 过定点(4,1)P ,交x 、y 正半轴于A 、B 两点,其中O 为坐标原点. (Ⅰ)若l 的倾斜角为34π,求AB ; (Ⅱ)求OA OB +的最小值.18.(本小题满分12分)已知圆C 经过椭圆221164x y +=的右顶点A 、下顶点1B 、上顶点2B .(Ⅰ)求圆C 的标准方程;(Ⅱ)直线l 经过点(1,1),且与10x y ++=垂直,求圆C 被直线l 截得的弦长.19.(本小题满分12分)已知椭圆C 的两个焦点分别为12(20),(20)F F -,,,且椭圆经过点53()22P -,.(I )求椭圆C 的方程;(Ⅱ)若直线l 的斜率为1,且与椭圆C 相切,求直线l 的方程.20.(本小题满分12分)圆C 关于直线y x =对称,直线3x y +=截椭圆形成最长弦,直线10x y -+=与圆C 交于,A B 两点,其中90ACB ∠=︒(圆C 的圆心为C ).(Ⅰ)求圆C 的标准方程;(Ⅱ)过原点O 向圆C 引两条切线,切点分别为,M N ,求四边形OMCN 的面积.21.(本小题满分12分)已知(0,2)A -,椭圆E :22221x y a b+=(0a b >>)F 是椭圆E 的右焦点,直线AF ,O 为原点. (I )求椭圆E 的方程;(Ⅱ)直线l 经过点A ,与椭圆交于,M N 两点,若以MN 为直径的圆经过坐标原点O ,求MN .22.(本小题满分12分)已知椭圆C :2222by a x +=1(0a b >>)的左右焦点分别是12,,F F 离心率12e =,点P 为椭圆上的一个动点,12PF F ∆面积的最大值为(Ⅰ)求椭圆C 的方程;(Ⅱ),,,A B C D 是椭圆上不重合的四个点,AC 与BD 相交于1F ,若直线AC 、BD 均不与坐标轴重合,且0AC BD ⋅=u u u r u u u r,求四边形ABCD 面积的最小值.参考答案1-5CCADA 6-10BBADD 11,12CB13. 14.15.16.17.(Ⅰ),令令,……4分(Ⅱ)设,则……8分当时,的最小值.……10分18.(Ⅰ)设圆心为(,0),则半径为,则,解得,故圆的方程为.……6分(Ⅱ),即,圆心到的距离为,圆的半径为圆被直线截得的弦长. ……12分19.(I)设椭圆的方程为由椭圆的定义,……3分椭圆的方程为;……6分(II)得,与椭圆相切且斜率为的直线方程:……12分20.(I) ,,半径……6分(II)则,,四边形的面积……12分21. (I),,直线的斜率为,,故椭圆的方程:. ……4分(Ⅱ)与联立,,或,设,由韦达定理,得解得, ……10分……12分22.(I),解得椭圆的方程:=1……4分(II)(1)当AC,BD中有一条直线斜率为0,另一条斜率不存在时,=14 ……6分(2)当AC斜率k存在且时,AC:与椭圆联立,,同理可求,=……10分综上,的最小值(此时)……12分。
【人教版】2020学年高二数学上学期第一次月考试题(新版)新人教版
2020上学期高二第一次月考数学试题(时间:120分钟 满分:150分) 2018.10.一、选择题(本大题共12小题,每小题5分,共60分) 1.已知等差数列{}n a 中,a 7+a 9=16,a 4=1,则a 12的值是 ( ) A .15B .30C .31D .642.各项均不为零的等差数列{}n a 中,若a 2n -a n -1-a n +1=0 (n ∈N *,n ≥2),则S 2010等( ) A .0B .2C .2009D .40203.已知数列{}n a 的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于 ( ) A .66B .65C .61D .564.等比数列{}n a 中,T n 表示前n 项的积,若T 5=1,则 ( ) A .a 1=1B .a 3=1C .a 4=1D .a 5=15.由a 1=1,a n +1=a n3a n +1给出的数列{a n }的第34项( )A.34103B .100C.1100D.11046.已知数列{}n a 的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于 ( ) A .9B .8C .7D .67.已知数列{}n a 的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于 ( )A .13B .10C .9D .68.设等差数列{}n a 的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( ) A .6B .7C .8D .99.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x +y +z 的值为 ( )A .1B .2C .3D .410.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( ) A .X +Z =2Y B .Y (Y -X )=Z (Z -X ) C .Y 2=XZ D .Y (Y -X )=X (Z -X ) 11. 若c b a >>,则下列不等式成立的是( ) A .c a -1>c b -1 B .c a -1<cb -1C .bc ac >D .bc ac <12.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++等于( )A .1514B .1213C .1316D .1516二、填空题(本大题共4小题,每小题5分,共20分) 13.数列{}n a 的通项公式a n =1n +n +1,若{}n a 的前n 项和为24,则n =_______.14. 在等差数列{}n a 中,已知log 2(a 5+a 9)=3,则等差数列{}n a 的前13项的和S 13=________. 15.已知-2π≤α<β≤2π,则2βα-的范围为 。
高二数学上学期第一次月考测试题和答案
高二数学上学期第一次月考测试题和答案高二数学月底考试是检测学习成效的重要手段,只有平时认真对待每一次数学月考,才能够在高考数学考试中超常发挥。
以下是店铺为大家收集整理的高二数学月考测试题,希望对大家有所帮助!高二数学上学期第一次月考测试题(理科卷)(考试时间:120分钟总分:150分)一、(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是( )A.(x-1)2+(y+2)2=100B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=25D.(x+1)2+(y+2)2=252. 某程序框图如图所示,若输出的S=57,则判断框内应填(A) k>4?(B)k>5?(C) k>6?(D)k>7?(第3题)3、某程序框图如图所示,该程序运行后输出的的值是( )A. B. C. D.4. 将51转化为二进制数得 ( )A.100 111(2)B.110 110(2)C.110 011(2)D.110 101(2)5.读程序回答问题:甲乙I=1S=0WHILE i<=5S= S+iI= i+1WENDPRINT SENDI= 5S= 0DOS = S+iI = i-1LOOP UNTIL i<1PRINT SEND对甲、乙两程序和输出结果判断正确的是( )A 程序不同,结果不同B 程序不同,结果相同C 程序相同,结果不同D 程序相同,结果不同6.(如图)为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分别是、,则下列说法正确的是( )A. ,乙比甲成绩稳定,应选乙参加比赛B. ,甲比乙成绩稳定,应选甲参加比赛C. ,甲比乙成绩稳定,应选甲参加比赛D. ,乙比甲成绩稳定,应选乙参加比赛7.如图,输入X=-10 则输出的是( )A. 1B. 0C. 20D. -208..若点P(1,1)为圆的弦MN的中点,则弦MN所在直线方程为( )A. B.C. D.9. 三个数390, 455, 546的最大公约数是 ( )A.65B.91C.26D.1310. 数据,,,的平均数为,方差为,则数据,,,的平均数和方差分别是( )A. 和B. 和C. 和D. 和11.已知点,过点的直线与圆相交于两点,则的最小值为( ). .12. 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样二、题(本大题共4小题,每小题4分,满分16分.把答案填在题中横线上)13. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样抽取容量为45的样本,那么高一?高二?高三各年级抽取的人数分别为________.14. 已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,当x=5时由秦九韶算法v0=2 v1=2×5-5=5 则v3= ________.15. 把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为___________.16.若集合A={(x,y)y=1+4-x2},B={(x,y)y=k(x-2)+4}.当集合A∩B有4个子集时,实数k的取值范围是________________.三、解答题(本大题共6小题,满分74分.解答应写出必要的文字说明?证明过程或演算步骤)17.(本小题满分12分)对甲?乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下甲6080709070乙8060708075问:甲?乙两人谁的平均成绩高?谁的各门功课发展较平衡?质量(单位克)数量(单位袋)26128218.(本小题满分12分)某种袋装产品的标准质量为每袋100克,但工人在包装过程中一般有误差,规定误差在2克以内的产品均为合格.由于操作熟练,某工人在包装过程中不称重直接包装,现对其包装的产品进行随机抽查,抽查30袋产品获得的数据如下:(1)根据表格中数据绘制产品的频率分布直方图;(2)估计该工人包装的产品的平均质量的估计值是多少.19.(本小题满分12分)某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大?参考公式:20. (本小题满分12分)据报道,某公司的33名职工的月工资(以元为单位)如下:职务董事长副董事长董事总经理经理管理员职员人数11215320工资5 5005 0003 5003 0002 5002 0001 500(1) 求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3) 你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.21.(本小题满分12分)如图所示程序框图中,有这样一个执行框 =f( )其中的函数关系式为,程序框图中的D为函数f(x)的定义域.,(1)若输入,请写出输出的所有 ;(2)若输出的所有xi都相等,试求输入的初始值 .22.(本小题满分14分)已知圆x2+y2+2ax-2ay+2a2-4a=0(0(1)若m=4,求直线l被圆C所截得弦长的最大值;(2)若直线l是圆心下方的切线,当a在0,4的变化时,求m的取值范围.高二数学月考测试题参考答案一、题号123456789101112选项CAABCDDBDCDD二、题(13)、 15..10..20 (14)、 108. (15 ) 16 (16) 512三、解答题1718. 解析】 (1)频率分布直方图如图…………6分(2) (克) …………12分19. 解答:(1)根据表中所列数据可得散点图如下:————————3分(2)列出下表,并用科学计算器进行有关计算.i12345xi24568yi3040605070xiyi60160300300560因此,x=255=5,y=2505=50,i=15x2i=145,i=15y2i=13 500,i=15xiyi=1 380.于是可得b=i=15xiyi-5x yi=15x2i-5x2=1 380-5×5×50145-5×52=6.5; ——————7分a=y-bx=50-6.5×5=17.5,因此,所求回归直线方程是=6.5x+17.5. ——9分(3)据上面求得的回归直线方程,当广告费支出为10百万元时,=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元. ————————————12分20. 【解析】:(1)平均数是=1 500+≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元. ——————————————4分(2)平均数是≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元. ————————————————8分(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平. ——————————————————12分21.-------------------------------------6分(2) 要使输出的所有数xi都相等,则xi=f(xi-1)=xi-1.此时有x1=f(x0)=x0,即 ,解得x0=1或x0=2,所以输入的初始值x0=1或x0=2时,输出的所有数xi都相等.——————————————12分22. 解析:(1)已知圆的标准方程是(x+a)2+(y-a)2=4a(0则圆心C的坐标是(-a,a),半径为2a. ——————————2分直线l的方程化为:x-y+4=0.则圆心C到直线l的距离是-2a+42=22-a. ——————————3分设直线l被圆C所截得弦长为L,由圆、圆心距和圆的半径之间关系是:L=2(2a)2-(22-a)2 ——————————5分=2-2a2+12a-8=2-2(a-3)2+10.∵0(2)因为直线l与圆C相切,则有m-2a2=2a,——————————8分即m-2a=22a.又点C在直线l的上方,∴a>-a+m,即2a>m. ——————————10分∴2a-m=22a,∴m=2a-12-1.∵0。
高二数学上学期第一次月考试题 文 新版 人教版.doc
2019学年度上学期月考考试高二数学(文)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题共60分)注意事项:1、答第I 卷前,考生务必将自己的姓名、考号用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
一、选择题(每小题5分,共60分)1.命题“若a b >则55a b ->-”的逆否命题是( )A.若a b <则55a b -<-B.若55a b -<-则a b >C.若a b <则55a b -≤-D.若55a b -≤-则a b ≤ 2. 设x R ∈,则“12x >”是“2210x x +->”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要必要条件 D.既不充分也不必要条件3. 已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∧⌝;④()p q ⌝∨中,真命题是( )A.①③B.①④C.②③D.②④ 4. 命题“对任意 x R ∈ ,都有20x ≥”的否定为( )A.对任意 x R ∈,都有20x <B.不存在 x R ∈,使得20x <C.存在 0x R ∈,使得200x ≥D.存在 0x R ∈,使得 200x <5. 平面内有两定点,A B 及动点P ,设命题甲是:“PA PB +是定值”,命题乙是:“点P 的轨迹是以,A B 为焦点的椭圆”,那么( )A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6. 若双曲线22221x y a b-=的离心率为3,则其渐近线方程为( )A. 2y x =±B. 2y x =±C. 12y x =±D. 22y x =± 7.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得()22123PFPF b ab -=-,则该双曲线的离心率为( )A. 2B. 15C. 4D. 178. 实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的( ) A.焦距相等 B.实半轴长相等 C.虚半轴长相等 D.离心率相等9. 已知0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C离心率之积为32,则2C 的渐近线方程为( ) A. 20x y ±= B. 20x y ±= C. 20x y ±= D. 20x y ±=10. 已知对R k ∈,直线01=--kx y 与椭圆1522=+my x 恒有公共点,求实数m 的取值范( )A.1≥mB.5≤mC.51≠≥m m 且D.6≤m11. 过双曲线221918x y -=的焦点作弦MN ,若48MN =,则直线MN 的倾斜角为( ) A.30° B.60° C.30°或 150° D.60°或 120°12.已知21,F F 是椭圆C 的两个焦点,P 是C 上的一点,若21PF PF ⊥,且︒=∠6012F PF ,则C 的离心率为( )A.231-B.32-C.213- D.13-第II 卷二 填空题:(本大题共4小题,每小题5分,共20分)13. 双曲线()501642222ππm my m x =--的焦距_________ 14.设1F 、2F 分别是椭圆221167x y +=的左、右焦点,若点P 在椭圆上,且120PF PF ⋅=u u u r u u u u r ,则12PF PF +=u u u r u u u u r__________15.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60o ,则双曲线C 的离心率为__________16.已知F 是双曲线18:22=-y x C 的右焦点,P 是C 的左支上的一点,()66,0A 是y 轴上的一点,则APF ∆周长的最小值__________ 三.解答题: (解答应写出文字说明、证明过程或演算步骤) 17. (本题满分10分)设p :实数x 满足22430x ax a -+< (0a >),:q 实数x 满足2260{280x x x x --≤+->.①若1,a =且“p ∧q ”为真,求实数x 的取值范围; ②若p ⌝是q ⌝的必要不充分要条件,求实数a 的取值范围.18. (本题满分12分)如图, P 为圆()22:236B x y ++=上一动点,点A 坐标为()2,0,线段AP 的垂直平分线交直线B P 于点Q ,求点Q 的轨迹方程.19. (本题满分12分)已知椭圆C :22221x y a b +=(0)a b >>的离心率12e =,且椭圆经过点()2,3?N -.①求椭圆C 的方程;②求椭圆以() 1,2M -为中点的弦所在直线的方程.20.(本题满分12分) 已知双曲线1222=-y x ,过点P (1,1)能否作一条直线l ,与双曲线交于A, B 两点,且点P是线段AB 的中点?如果能,求出直线的方程;如果不能,请说明理由.21 (本题满分12分)已知椭圆8822=+y x ,直线04:=+-y x l ,在椭圆上是否存在一点,它到直线l 距离的最小?若存在请求出这点和最小距离.22 (本题满分12分)已知椭圆()2222:10x y C a b a b +=>>的离心率与双曲线221412x y -=的离心率互为倒数,且过点31,2P ⎛⎫ ⎪⎝⎭1)求椭圆C 的方程2)过P 作两条直线12,l l 与圆2223(1)(0)2x y r r -+=<<相切且分别交椭圆于,M N 两点.①求证:直线MN 的斜率为定值;②求MON ∆面积的最大值(其中O 为坐标原点).高二数学月考考试参考答案(文)一、选择题1 C2 D3 C4 B5 C6 B7 B8 A9 D 10 D 11 D 12 D 二、填空题13. 16 14. 6 15. 6216. 32 17. 1.由22430(0)x ax aa -+得()()30x a x a --<,得3,0a x a a <,则:3,0p a x a a <.由 2260{280x x x x --≤+->解得2?3x <≤.即:23q x <≤. 若1a =,则:13p x <<, 若p q ∧为真,则,p q 同时为真, 即23{13x x -<≤<<,解得23x <<,∴实数x 的取值范围()2,?3?. 2.若p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件, ∴33{2a a >≤,即1{2a a >≤, 解得12a <≤18. ∵直线AP 的垂直平分线交直线B P 于点 Q , ∴ AQ PQ =,∴6AQ BQ PQ BQ +=+=,∴点 Q 的轨迹为以A 、B 为焦点的椭圆,且2a=6,24c =.∴点 Q 的轨迹方程为22195x y +=.19. 1.由椭圆经过点()2,3?N -,得()2222321a b -+=, 又∵12c e a ==,解得216a =,212b =. ∴椭圆C 的方程为2211612x y +=. 2.显然M 在椭圆内,设()11,A x y ,()22,B x y 是以M 为中点的弦的两个端点,则221111612x y +=,222211612x y +=. 相减得()()()()2121212101612x x x x y y y y -+-++=.整理得1212123168AB x x k y y ⋅+=-=⋅+.则所求直线的方程为()3218y x -=+,即38190x y -+=. 20. 设过点P ()1,1的直线方程为()11+-=x k y 或1=x(1)当k存在时,有()11+-=x k y ,1222=-y x,得()()0322222222=-+--+-k k x k kx k ① 当直线与双曲线相交于两个不同点,必有()()()23,03224222222πφk k k k kk -+----=∆ 又方程①的两个不同的根是两交点A 、B 的横坐标()222122k k k x x --=+∴,又P ()1,1为线段AB 的中点 1221=+∴x x ,即2,1222==--k kk k 但02π∆=使k 因此当2=k 时方程①无实数解 所以不存在(2)当1=x 时,直线经过点P 但不满足条件。
【高二】2021 2021学年高二数学上册第一次月考测试题(含答案)
【高二】2021 2021学年高二数学上册第一次月考测试题(含答案)【高二】2021-2021学年高二数学上册第一次月考测试题(含答案)“华安、连城、永安、漳平一中、龙海二中、泉港一中”联考2021-2021学年上学期第一次月考高二文科数学试题(考试时间:120分钟总分:150分)一、(本问题共有12个子问题,每个子问题得5分,总计60分。
每个子问题给出的四个选项中只有一个符合问题的要求)一.一个年级有12个班,每个班有50名同学,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是()a、抽签法B、分层抽样法C、随机数表法D、系统抽样法2.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,在这个问题中,下面说法正确的是(?a、 1000名学生是整个B。
每个学生都是一个人c.100名学生中每一名学生是样本d.样本的容量是1003.将88转换为十六进制数()a.324(5)b.323(5)c.233(5)d.332(5)4.计算机执行右边的程序语句后,输出结果为()a.,b.,c、,d5.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是() a、至少一个黑色球,两个都是黑色球B,至少一个黑色球和至少一个红色球c、恰好有一个黑球与恰好有两个黑球d、至少有一个黑球与都是红球6.一名篮球运动员在一个赛季40场比赛中的得分干叶图如右下图所示:中位数和模式为()a.3与3b.23与3c、 23和23d。
3和237.直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0,若l1∥l2,则a=()n=5s=0当小于15s=s+nn=n-1wend普林顿enda、 -3B。
2C.-3或2D。
3或-28.下列程序执行后输出的结果是()A.1b。
0c。
1d。
二9.有如下四个游戏盘,撒一粒黄豆,若落在阴影部分,就可以中奖,若希望中奖的机会最大,则应该选择的游戏是()10.当使用秦九韶算法计算当时多项式的值时,该值为a.5.2b.1c.3.2d.4.211.一组数据的平均值为,方差为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金戈铁骑—————————— 教育资源共享 步入知识海洋 ————————2019高二第一次月考文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.数列1-,3,5-,7,9-,,的一个通项公式为( )A .21n a n =-B .()()112nn a n =-- C .()()121nn a n =-- D .()()1121n n a n +=--2.设n S 是等差数列{}n a 的前n 项和,12a =,533a a =,则9S =( ) A .90B .54C .54-D .72-3.已知等比数列{}n a 中,2341a a a =,67864a a a =,则5a =( ) A .2±B .2-C .2D .44.在锐角ABC △中,角A ,B 所对的边分别为a ,b,若2sin b A ⋅=,则角B 等于( )A .π3B .π4C .π6D .5π125.在ABC △中,222a b c bc =+-,则A 等于( ) A .45︒B .120︒C .60︒D .30︒6.已知数列{}n a 是等差数列,满足1252a a S +=,下列结论中错误的是( ) A .90S =B .5S 最小C .36S S =D .50a =7.在ABC △中,60A ∠=︒,4AC =,BC =,则ABC △的面积为( ) A.B .4C.D8.设n S 为等比数列{}n a 的前n 项和,且关于x 的方程21320a x a x a -+=有两个相等的实根,则93S S =( ) A .27B .21C .14D .59.设n S 为等差数列{}n a 的前n 项和,44a =,515S =,若数列11n n a a +⎧⎫⎨⎬⎩⎭的前m 项和为1011,则m =( ) A .8B .9C .10D .1110.某船开始看见灯塔A 时,灯塔A 在船南偏东30︒方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( )A.B .30kmC .15kmD.km11.已知等比数列{}n a 的前n 项和为n S ,若37S =,663S =,则数列{}n na 的前n 项和为( )A .()312n n -++⨯B .()312n n ++⨯C .()112n n ++⨯D .()112n n +-⨯12.已知ABC △的内角A ,B ,C 对的边分别为a ,b ,c,且sin 2sin A B C =,则cos C 的最小值等于( ) ABCD第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若数列{}n a 的前n 项和为22n S n =,则34a a +的值为__________.14.在ABC △中,已知2AB =,3AC =,120A ∠=︒,则ABC △的面积为_______.15.在ABC △中,三个角A ,B ,C 所对的边分别为a ,b ,c .若角A ,B ,C 成等差数列,且边a ,b ,c 成等比数列,则ABC △的形状为__________.16.已知首项为2的正项数列{}n a 的前n 项和为n S ,且当2n ≥时,21323n n n S S a --=-.若12nn S m ≤+恒成立,则实数m 的取值范围为_______________.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知数列{}n a 中,12a =,12n n a a +=. (1)求n a ;(2)若n n b n a =+,求数列{}n b 的前5项的和5S .18.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知())sin ,cos ,A C c ==,m n ,已知∥m n , (1)求角C 的值;(2)若4b c ==,ABC △的面积.19.(12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (1)求{}n a 的通项公式;金戈铁骑(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .20.(12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos c A ,cos b B ,cos a C 成等差数列. (1)求B ;(2)若a c +=,b =ABC △的面积.21.(12分)如图所示,在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为15°,向山顶前进10米后到达点B ,又从点B 测得斜度为α,建筑物的高CD 为5米. (1)若30α=︒,求AC 的长;(2)若45α=︒,求此山对于地平面的倾斜角θ的余弦值.22.(12分)已知数列{}n a 前n 项和为n S ,12a =,且满足112n n S a n +=+,()n ∈*N .(1)求数列{}n a 的通项公式;(2)设()142n n b n a +=-,求数列{}n b 的前n 项和n T .金戈铁骑金戈铁骑第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C【解析】首先是符号规律:()1n-,再是奇数规律:21n -,因此()()121nn a n =--,故选C . 2.【答案】C【解析】因为533a a =,所以()24322d d +=+,24d ∴=-,2d ∴=-,()998922542S ⨯∴=⨯+-=-,故答案为C . 3.【答案】C【解析】因为等比数列{}n a 中,2341a a a =,67864a a a =,所以331a =,3764a =, 即31a =,74a =,因此25374a a a ==,因为5a 与3a 同号,所以52a =,故选C . 4.【答案】B【解析】由2sin b A ⋅=,依正弦定理,可得:2sin sin B A A . ∵0πA <<,∴sin 0A ≠.∴sin B =.∵π02B <<,∴π4B =.故选B . 5.【答案】C【解析】由等式可得:222a b c bc =+-,代入关于角A 的余弦定理:2221cos 222b c a bc A bc bc +-===.所以60A =︒.故选C . 6.【答案】B【解析】由题设可得11132510280a d a d a d +=+⇒+=,即50a =,所以答案D 正确; 由等差数列的性质可得19520a a a +==,则()19959902a a S a +===,所以答案A 正确;又()361115336153430S S a d a d a d a -=+--=-+=-=,故答案C 正确. 所以答案B 是错误的,应选答案B . 7.【答案】C【解析】因为ABC △中,60A ∠=︒,4AC =,BC =,由正弦定理得:sin sin BC ACA B=4sin B =,所以sin 1B =, 所以90B ∠=︒,30C ∠=︒,所以14sin302ABC S =⨯⨯︒=△,故选C .8.【答案】B【解析】根据题意,关于x 的方程21320a x a x a -+=有两个相等的实根,则有()231240a a a -=,代入等比数列的通项公式变形可得440q q -=,即34q =,则()()919393331111412111411a q S q qS q a q q----====----,故选B . 9.【答案】C【解析】n S 为等差设列{}n a 的前n 项和,设公差为d ,44a =,515S =, 则4534155a S a ===⎧⎨⎩,解得1d =,则()44n a n n =+-=.由于()1111111n n a a n n n n +==-++,则11111110112231111m S m m m =-+-++-=-=++, 解得10m =,故答案为10.故选C . 10.【答案】D【解析】根据题意画出图形,如图所示,可得60DBC ∠=︒,30DBA ∠=︒,45km BC =,30ABC ∴∠=︒,120BAC ∠=︒, 在ABC △中,利用正弦定理得:45sin120sin30AC︒︒=,)km AC ∴=, 则这时船与灯塔的距离是)km .故选D . 11.【答案】D【解析】当1q =时,不成立,当1q ≠时,,解得:2q =,11a =, 即1112n n n a a q --==,12n n n a n -⋅=⋅,21122322n n S n -=+⋅+⋅++⋅,()2121222......122n n n S n n -=⋅+⋅++-⋅+⋅,两式相减得到:所以()112n n S n =+-⋅,故选D . 12.【答案】A【解析】已知等式sin 2sin A B C =,利用正弦定理化简可得:2a c =,两边平方可得:()224a c =,即22224a b c ++=,2222244432a b c a b ∴+-=-+,即222a b c +-,222132cos 28a b c a b C ab b a +-⎛∴==+-≥ ⎝,当且仅当32a bb a=时取等号,则cos CA .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】24【解析】因为数列{}n a 的前n 项和为22n S n =,所以22332232210a S S =-=⨯-⨯=, 22443242314a S S =-=⨯-⨯=,3424a a ∴+=,故答案为24.14.【解析】2AB =,3AC =,120A ∠=︒,11sin 23sin12022ABCS AB AC A ∴=⋅⋅⋅=⨯⨯⨯︒=△. 15.【答案】等边三角形【解析】角A ,B ,C 成等差数列,则2B A C =+,A B C ++=π,解得3B π=, 边a ,b ,c 成等比数列,则2b ac =,余弦定理可知()22222cos 0b a c ac B ac a c a c =+-=⇒-=⇒=,故为等边三角形.16.【答案】1516⎡⎫+∞⎪⎢⎣⎭, 【解析】由题意可得:21211323323n n n n n nS a S S a S -++-⎧=--=-⎪⎨⎪⎩,两式相减可得:2211330n n n n a a a a ++---=, 因式分解可得:()()1130n n n n a a a a +++--=,又因为数列为正项数列,所以130n n a a +--=,故数列{}n a 为以2为首项,3为公差的等差数列, 所以()312n n n S +=,所以()2312n n n m ++≤恒成立,即其最大值小于等于m .由于函数分母为指数型函数,增长速度较快,所以当n 较大时,函数值越来越小,n 较小时存在最大值,经代入验证,当3n =时有最大值1516,所以1516m ≥.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)2n n a =;(2)77. 【解析】(1)12a =,12n n a a +=,则数列{}n a 是首项为2,公比为2的等比数列,1222n n n a -=⨯=. (2)2n n n b n a n =+=+,()()()()()234551222324252S =+++++++++ ()()23451234522222=+++++++++()515522277212+⨯-⨯=+=-.18.【答案】(1)3π;(2)【解析】(1)由∥m n得sin cos c A C =, ∵sin 0A ≠,∴sin tan 3C C C C π=⇒=. (2)由余弦定理:2222cos c a b ab C =+-,得2a =,则1sin 2S ab C ==19.【答案】(1)112n a n =+;(2)1422n n n S ++=-.【解析】(1)方程2560x x -+=的两个根为2,3,由题意得因为22a =,43a =. 设数列{}n a 的公差为d ,则422a a d -=,故12d =,从而132a =.所以{}n a 的通项公式为112n a n =+.(2)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,由(1)知1222n nn a n ++=, 则23134122222n n n n n S +++=++++ ① 34121341222222n n n n n S ++++=++++ ②金戈铁骑金戈铁骑①-②得341212131112311212422224422n n n n n n n S ++-+++⎛⎫=++++-=+-- ⎪⎝⎭. 所以1422n n n S ++=-. 20.【答案】(1)3B π=;(2.【解析】(1)∵cos c A ,cos b B ,cos a C 成等差数列,∴2cos cos cos b B c A a C =+, 由正弦定理2sin a R A =,2sin c R C =,2sin b R B =,R 为ABC △外接圆的半径, 代入上式得:2sin cos sin cos sin cos B B C A A C =+,即()2sin cos sin B B A C =+.又A C B +=π-,∴()2sin cos sin B B B =π-,即2sin cos sin B B B =. 而sin 0B ≠,∴1cos 2B =,由0B <<π,得3B π=.(2)∵2221cos 22a cb B ac +-==,∴()222122a c ac b ac+--=,又a c +=,b = ∴27234ac ac --=,即54ac =,∴115sin 224ABC S ac B ==⨯=△. 21.【答案】(1)AC =(2)cos 1θ.【解析】(1)当30α=︒时,150ABC ∠=︒,15ACB BAC ∠=∠=︒,所以10BC AB ==,由余弦定理得:222101021010cos150200AC =+-⨯⨯⨯︒=+AC =(2)当45α=︒,在ABC △中,由正弦定理有sin 205sin AB BAC BC ACB ⋅∠===∠,在BCD △中,sin sin 1BC DBCBDC CD ⋅∠∠==,又cos cos sin 12ADC ADC θπ⎛⎫=∠-=∠ ⎪⎝⎭.22.【答案】(1)22,131,2n n n a n -=⎧=⎨+≥⎩;(2)()222232n n T n n =+-⋅+.【解析】(1)()()11122112n n n nS a n n S a n +-⎧⎪⎪⎨⎪⎪=⎩=+≥+-时,111122n n n a a a +=-+,即()1322n n a a n +=-≥,即()()1131n n a a +-=-,当12a =时,22a =,211=131a a -≠-, {}1n a -以211a -=为首项,3为公比的等比数列,∴2113n n a --=⋅,即231n n a -=+,∴-22,1 231,n n n a n =⎧=⎨≥+⎩. (2)()()()()()11142423142342n n n n b n a n n n --+=-=-⋅+=-+-, 记()'01212363103423n n S n -=⋅+⋅+⋅++-, ①()()'12132363463423n n n S n n -⋅+⋅++-+-=②由①②得,()()'01212=2343+3++3423n n n S n --⋅+⋅--⋅,∴()'2223nn S n =+-,()()()24222223222322n n n n nT n n n -+∴=+-⋅+=+-⋅+.。