2019年高三一轮复习热点题型9.1直线的方程
直线的方程 2019高考绝密资料
8.1.2 直线的方程 主标题:直线的方程副标题:为学生详细的分析直线的方程的高考考点、命题方向以及规律总结 关键词:直线的方程,知识总结 难度:2 重要程度:4考点剖析:1.掌握确定直线位置的几何要素. 2.掌握直线方程的几种形式. 3.了解斜截式与一次函数的关系.命题方向:直线方程是解析几何部分的基础,是历年高考必考的内容,单独命题时多以考查两条直线位置关系为重点,多为选择题或填空题,属容易题. 知识梳理:1.点斜式过点(x 0,y 0),斜率为k 的直线方程为y -y 0=k (x -x 0). 局限性:不含垂直于x 轴的直线. 2.斜截式斜率为k ,纵截距为b 的直线方程为y =kx +b . 局限性:不含垂直于x 轴的直线. 3.两点式过两点(x 1,y 1),(x 2,y 2)(x 1≠x 2,y 1≠y 2)的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1. 局限性:不含垂直于坐标轴的直线. 4.截距式在x 轴、y 轴上的截距分别为a ,b (a ≠0,b ≠0)的直线方程为x a +y b=1. 局限性:不含垂直于坐标轴和过原点的直线. 5.一般式Ax +By +C =0(A 2+B 2≠0).规律总结:当直线与x 轴不垂直时,设直线的斜率为k ,则方程为y =kx +b ;当不确定直线的斜率是否存在时,可设直线的方程为ky +x +b =0导数在研究函数中的应用主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:导数,极值,最值,备考策略 难度:4 重要程度:5内容考点一 利用导数研究函数的单调性【例1】设函数f (x )=(x -1)e x -kx 2. (1)当k =1时,求函数f (x )的单调区间;(2)若f (x )在x ∈[0,+∞)上是增函数,求实数k 的取值范围. 解 (1)当k =1时,f (x )=(x -1)e x -x 2, ∴f ′(x )=e x +(x -1)e x -2x =x (e x -2). 令f ′(x )>0,即x (e x -2)>0, ∴x >ln 2或x <0.令f ′(x )<0,即x (e x -2)<0,∴0<x <ln 2. 因此函数f (x )的递减区间是(0,ln 2); 递增区间是(-∞,0)和(ln 2,+∞). (2)易知f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ). ∵f (x )在x ∈[0,+∞)上是增函数,∴当x ≥0时,f ′(x )=x (e x -2k )≥0恒成立. ∴e x -2k ≥0,即2k ≤e x 恒成立. 由于e x ≥1,∴2k ≤1,则k ≤12.又当k =12时,f ′(x )=x (e x -1)≥0当且仅当x =0时取等号. 因此,实数k 的取值范围是⎝ ⎛⎦⎥⎤-∞,12.【备考策略】 (1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题. (2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.考点二 利用导数研究函数的极值【例2】 设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴. (1)求a 的值;(2)求函数f (x )的极值.审题路线 (1)由f ′(1)=0⇒求a 的值.(2)确定函数定义域⇒对f (x )求导,并求f ′(x )=0⇒判断根左,右f ′(x )的符号⇒确定极值.解 (1)由f (x )=a ln x +12x +32x +1, ∴f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴, ∴该切线斜率为0,即f ′(1)=0. 从而a -12+32=0,∴a =-1.(2)由(1)知,f (x )=-ln x +12x +32x +1(x >0), ∴f ′(x )=-1x -12x 2+32=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x =1或-13(舍去).当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. ∴f (x )在(0,1)上是减函数,在(1,+∞)上是增函数. 故f (x )在x =1处取得极小值f (1)=3,f (x )无极大值.【备考策略】 (1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.考点三 利用导数求函数的最值【例3】已知函数f (x )=ax 3+bx +c 在x =2处取得极值为c -16. (1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. 审题路线 (1)⎩⎨⎧f ′(2)=0,f (2)=c -16⇒a ,b 的值;(2)求导确定函数的极大值⇒求得c 值⇒求得极大值、极小值、端点值⇒求得最值.解 (1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b , 由于f (x )在点x =2处取得极值c -16, 故有⎩⎨⎧ f ′(2)=0,f (2)=c -16,即⎩⎨⎧12a +b =0,8a +2b +c =c -16.化简得⎩⎨⎧ 12a +b =0,4a +b =-8,解得⎩⎨⎧a =1,b =-12.(2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12. 令f ′(x )=0,得x =-2或2.当x 变化时,f (x ),f ′(x )的变化情况如下表:x -3 (-3,-2) -2 (-2,2) 2 (2,3) 3 f ′(x ) + 0 - 0 + f (x )9+c极大值极小值-9+c由表知f (x )在x =-2处取得极大值f (-2)=16+c ,f (x )在x =2处取得极小值f (2)=c -16.由题设条件知,16+c =28,解得c =12,此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=c -16=-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.【备考策略】在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.。
高三数学 专题9.1 直线的方程(讲+练)(原卷版+解析版)
专题9.1 直线的方程1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识点一 直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角,当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的范围是[0,π). 知识点二 直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ.(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 .知识点三 直线方程的五种形式考点一 直线的倾斜角与斜率【典例1】(山西平遥中学2019届模拟)(1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围是__________.【答案】 (1)B (2)(-∞,-3]∪[1,+∞)【解析】(1)直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的取值范围是⎣⎡⎦⎤π4,π3. (2)如图,因为k AP =1-02-1=1, k BP =3-00-1=-3, 所以k ∈(-∞,-3]∪[1,+∞).【方法技巧】直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此求倾斜角或斜率的范围时,要分⎣⎡⎭⎫0,π2,⎩⎨⎧⎭⎬⎫π2和⎝⎛⎭⎫π2,π三种情况讨论.当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).【变式1】(湖南浏阳一中2019届模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π【答案】B【解析】因为a 2+1≠0,所以直线的斜截式方程为y =-1a 2+1x -1a 2+1,所以斜率k =-1a 2+1,即tan α=-1a 2+1,所以-1≤tan α<0,解得3π4≤α<π,即倾斜角的取值范围是⎣⎡⎭⎫3π4,π.故选B. 考点二 直线方程的求法【典例2】( 北京师范大学实验中学2019届模拟)根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.【解析】(1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π),从而cos α=±31010, 则k =tan α=±13.故所求直线方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1.又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0;当斜率存在时,设斜率为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上,所求直线方程为x -5=0或3x -4y +25=0. 【方法技巧】求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程.(2)待定系数法:设出所求直线方程的某种形式,由条件建立所求参数的方程(组),解这个方程(组)求出参数,再把参数的值代入所设直线方程即可.【变式2】(河北正定中学2019届模拟)过点P (3,1),且比直线l :x +3y -1=0的倾斜角小30°的直线方程为__________.【答案】 3x +y -4=0【解析】直线l :x +3y -1=0的斜率为-33,所以其倾斜角为150°,则所求直线的倾斜角为120°,因此所求直线的斜率k =- 3.又直线过点P (3,1),所以所求直线的方程为y -1=-3(x -3),即3x+y -4=0.考点三 直线方程的综合应用【典例3】( 辽宁阜新实验中学2019届模拟)(1)已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.(2)已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.【解析】(1)由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小.故当四边形的面积最小时,实数a 的值为12.(2)依题意知直线l 的斜率k 存在且k <0, 则直线l 的方程为y -2=k (x -3)(k <0), 可得A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), 所以S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+-9k +4-k ≥ 12⎣⎢⎡⎦⎥⎤12+2-9k4-k =12×(12+12) =12, 当且仅当-9k =4-k,即k =-23时,等号成立.故△ABO 的面积的最小值为12, 此时直线l 的方程为2x +3y -12=0. 【方法技巧】(1)含有参数的直线方程可看作是直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题时,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.【变式3】(吉林长春市实验中学2019届模拟)当k >0时,两直线kx -y =0,2x +ky -2=0与x 轴围成的三角形面积的最大值为__________.【答案】24【解析】因为2x +ky -2=0与x 轴交于点(1,0),由⎩⎪⎨⎪⎧kx -y =0,2x +ky -2=0,解得y =2kk 2+2,所以两直线kx -y=0,2x +ky -2=0与x 轴围成的三角形面积为12×1×2k k 2+2=1k +2k≤122,故三角形面积的最大值为24.考点四 综合考查【典例4】(黑龙江哈尔滨市第六中学2019届质检)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( )A .-12 B.-12或-2 C.12或2D .-2【答案】D【解析】∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+2sin θcos θ=15,∴2sin θ cos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2.【变式4】(江苏扬州中学2019届模拟)已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.【解析】(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.专题9.1 直线的方程1.(江苏省无锡一中2019届期中)直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60°D .30°2.(河南省鹤壁一中2019届期末)若函数y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,函数y 2=x 2+3,则(x 1-x 2)2+(y 1-y 2)2的最小值为( )A.2π12B.+272C.+212D.-33+152723.(山西省晋城一中2019届质检)如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 24.(湖北省黄石一中2019届月考)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)5.(陕西师大附中2019届月考)如果AB >0,且BC <0,则直线Ax +By +C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限6.(黑龙江省牡丹江一中2019届期中)设点 A (-2,3),B (3,2),若直线ax +y +2=0与线段 AB 没有交点,则a 的取值范围是( )A.⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43D.⎝⎛⎦⎤-∞,-43∪⎣⎡⎭⎫52,+∞7.( 浙江省舟山一中2019届期末)直线l 过原点且平分▱ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为________.8.(湖北省鄂州一中2019届期中)过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.9.(江西省南昌二中2019届期末)若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.10.(河北衡水中学2019届期中)已知点A (3,4),分别求出满足下列条件的直线方程. (1)经过点A 且在两坐标轴上的截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.11.(江西省鹰潭一中2019届模拟)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )12.(广东惠州一中2019届质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-1,12 C .(-∞,-1)∪⎝⎛⎭⎫15,+∞ D .(-∞,-1)∪⎝⎛⎭⎫12,+∞ 13.(安徽省亳州一中2019届模拟)在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0 B.3x +y +6=0C .3x -y +6=0D .3x +y -6=014.(广西省来宾一中2019届模拟)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B.(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)15.(山东省滨州一中2019届质检)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π416.(四川省德阳一中2019届模拟)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 的面积最大值是( )A .2 5B .5 C.52D. 5 17.(陕西省渭南一中2019届模拟)已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为__________________.18. (广东省云浮一中2019届模拟)如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为____________________________.19.( 甘肃省兰州一中2019届调研)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.20.(四川省雅安一中2019届模拟)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程.1.(2019·浙江高三学业考试)直线y -26x =+的斜率为( )A.2B.-2C.12 D.12- 2.(2019·浙江高三学业考试)直线210x y +-=经过点( )A.(1,0)B.(0,1)C.11,22⎛⎫⎪⎝⎭D.11,2⎛⎫⎪⎝⎭专题9.1 直线的方程1.(江苏省无锡一中2019届期中)直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60°D .30°【答案】A【解析】由直线l 的方程为3x +3y -1=0可得直线l 的斜率为k =-33,设直线l 的倾斜角为α(0°≤α<180°),则tan α=-33,所以α=150°.故选A. 2.(河南省鹤壁一中2019届期末)若函数y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,函数y 2=x 2+3,则(x 1-x 2)2+(y 1-y 2)2的最小值为( )A.2π12B.+272C.+212D.-33+272【答案】B【解析】设z =(x 1-x 2)2+(y 1-y 2)2,则z 的几何意义是两条曲线上动点之间的距离的平方.因为y 1=sin 2x 1-32⎝⎛⎭⎫x 1∈⎣⎡⎦⎤0,π2,所以y 1′=2cos 2x 1.因为函数y 2=x 2+3的斜率为1,所以令y 1′=2cos 2x 1=1,解得x 1=π6,则y 1=0,即函数在⎝⎛⎭⎫π6,0处的切线和直线y 2=x 2+3平行,则最短距离为d =⎪⎪⎪⎪π6+32.所以(x 1-x 2)2+(y 1-y 2)2的最小值为d 2=⎝ ⎛⎭⎪⎪⎫⎪⎪⎪⎪π6+322=+272.故选B.3.(山西省晋城一中2019届质检)如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【答案】D【解析】直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.故选D.4.(湖北省黄石一中2019届月考)若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)【答案】A【解析】因为k ,-1,b 三个数成等差数列,所以k +b =-2,即b =-2-k ,于是直线方程化为y =kx -k -2,即y +2=k (x -1),故直线必过定点(1,-2).5.(陕西师大附中2019届月考)如果AB >0,且BC <0,则直线Ax +By +C =0不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】直线Ax +By +C =0的斜率k =-A B <0,在y 轴上的截距为-C B>0,所以直线不经过第三象限. 6.(黑龙江省牡丹江一中2019届期中)设点 A (-2,3),B (3,2),若直线ax +y +2=0与线段 AB 没有交点,则a 的取值范围是( )A.⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫43,+∞ B.⎝⎛⎭⎫-43,52 C.⎣⎡⎦⎤-52,43 D.⎝⎛⎦⎤-∞,-43∪⎣⎡⎭⎫52,+∞ 【答案】B【解析】易知直线ax +y +2=0恒过点M (0,-2),且斜率为-a .因为k MA =3---2-0=-52, k MB =2--3-0=43, 由图可知-a >-52且-a <43,所以a ∈⎝⎛⎭⎫-43,52. 7.( 浙江省舟山一中2019届期末)直线l 过原点且平分▱ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为________.【答案】y =23x 【解析】直线l 平分平行四边形ABCD 的面积,则直线l 过BD 的中点(3,2),则直线l :y =23x . 8.(湖北省鄂州一中2019届期中)过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.【答案】y =-53x 或x -y +8=0 【解析】当直线过原点时,直线方程为y =-53x ;当直线不过原点时,设直线方程为x a +y -a=1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0.9.(江西省南昌二中2019届期末)若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.【答案】16【解析】根据A (a,0),B (0,b )确定直线的方程为x a +y b =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,可得ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时,等号成立.故ab 的最小值为16.10.(河北衡水中学2019届期中)已知点A (3,4),分别求出满足下列条件的直线方程.(1)经过点A 且在两坐标轴上的截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.【解析】(1)设直线在x ,y 轴上的截距均为a .①若a =0,即直线过点(0,0)及(3,4),所以直线的方程为y =43x ,即4x -3y =0. ②若a ≠0,设所求直线的方程为x a +y a =1.又点(3,4)在直线上,所以3a +4a=1,所以a =7.所以直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0.(2)由题意可知所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).故所求直线的方程为x -y +1=0或x +y -7=0.11.(江西省鹰潭一中2019届模拟)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )【答案】B【解析】由题意l 1:y =-ax -b ,l 2:y =-bx -a ,当a >0,b >0时,-a <0,-b <0.选项B 符合.12.(广东惠州一中2019届质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-1,12C .(-∞,-1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞ 【答案】D【解析】设直线l 的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k .令-3<1-2k<3,解不等式得k <-1或k >12. 13.(安徽省亳州一中2019届模拟)在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0 B.3x +y +6=0C .3x -y +6=0D .3x +y -6=0【答案】C【解析】因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.14.(广西省来宾一中2019届模拟)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2] B.(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)【答案】C【解析】令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 15.(山东省滨州一中2019届质检)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4【答案】D【解析】由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以-b =a ,则直线ax -by +c =0的斜率为k =a b =-1,又直线倾斜角的取值范围为[0,π),所以该直线的倾斜角为3π4,故选D.16.(四川省德阳一中2019届模拟)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx-y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 的面积最大值是( )A .2 5B .5C.52D. 5 【答案】C【解析】由题意可知动直线x +my =0过定点A (0,0).动直线mx -y -m +3=0⇒m (x -1)+3-y =0,因此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △P AB =12×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.当|P A |=|PB |时,△P AB 的面积取得最大值.由2|P A |=|AB |=12+32=10,解得|P A |= 5.所以S △P AB =12|P A |2=52.综上可得,△P AB 的面积最大值是52. 17.(陕西省渭南一中2019届模拟)已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为__________________.【答案】4x -3y -4=0【解析】由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12, 所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0.18. (广东省云浮一中2019届模拟)如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为____________________________.【答案】(3+3)x -2y -3-3=0【解析】由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得 ⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.19.( 甘肃省兰州一中2019届调研)已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16. 【解析】(1)由题意知,直线l 存在斜率.设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.20.(四川省雅安一中2019届模拟)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求:(1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 所在直线的方程.【解析】(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2, 即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2. BC 边的中线AD 经过A (-3,0),D (0,2)两点,由截距式得AD 所在直线的方程为x -3+y 2=1, 即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12, 则BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.1.(2019·浙江高三学业考试)直线y -26x =+的斜率为( )A.2B.-2C.12D.12- 【答案】B【解析】由26y x =-+可知斜率2k =-,本题选B 。
高考数学一轮复习 第九章 第1讲 直线的方程知识点 新
第1讲 直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α;②斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k =y2-y1x2-x1.2.直线方程的五种形式3.线段的中点坐标公式若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1P2的中点M 的坐标为(x ,y),则⎩⎪⎨⎪⎧x =x1+x22,y =y1+y22,此公式为线段P1P2的中点坐标公式. 诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)坐标平面内的任何一条直线均有倾斜角与斜率.(×)(2)直线的倾斜角越大,其斜率就越大.(×)(3)直线的斜率为tan α,则其倾斜角为α.(×)(4)斜率相等的两直线的倾斜角不一定相等.(×)(5)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.(×)(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x -x1)(y2-y1)表示.(√)2.直线3x-y+a=0(a为常数)的倾斜角为()A.30°B.60°C.150°D.120°解析直线的斜率为k=tan α=3,又因为0°≤α<180°,所以α=60°.答案 B3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过()A.第一象限B.第二象限C.第三象限D.第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过一、二、四象限,不经过第三象限. 答案 C4.已知直线l 经过点P(-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=0解析 由点斜式,得y -5=-34(x +2),即3x +4y -14=0. 答案 A5.(人教A 必修2P100A9改编)过点P(2,3)且在两轴上截距相等的直线方程为________. 解析 当截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0.答案 3x -2y =0或x +y -5=0考点一 直线的倾斜角与斜率【例1】 (1)设直线l 的方程为x +ycos θ+3=0(θ∈R),则直线l 的倾斜角α的范围是( )A .[0,π) B.⎣⎡⎭⎫π4,π2 C.⎣⎡⎦⎤π4,3π4 D.⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4(2)经过P(0,-1)作直线l ,若直线l 与连接A(1,-2),B(2,1)的线段总有公共点,则直线l 的倾斜角α的范围是________.解析 (1)当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ.∵cos θ∈[-1,1]且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4. 综上知,倾斜角的范围是⎣⎡⎦⎤π4,3π4,故选C.(2)法一 如图所示, kPA =-2-(-1)1-0=-1,kPB =1-(-1)2-0=1,由图可观察出:直线l 倾斜角α的范围是⎣⎡⎭⎫3π4,π∪⎣⎡⎦⎤0,π4.法二 由题意知,直线l 存在斜率.设直线l 的斜率为k ,则直线l 的方程为y +1=kx ,即kx -y -1=0.∵A ,B 两点在直线的两侧或其中一点在直线l 上, ∴(k +2-1)(2k -1-1)≤0, 即2(k +1)(k -1)≤0, ∴-1≤k≤1.∴直线l 的倾斜角α的范围是⎣⎡⎭⎫3π4,π∪⎣⎡⎦⎤0,π4. 答案 (1)C (2)⎣⎡⎭⎫3π4,π∪⎣⎡⎦⎤0,π4规律方法 (1)由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,正切函数在[0,π)上并不是单调的;(2)过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线无斜率.【训练1】 (1)直线xsin α-y +1=0的倾斜角的变化范围是( )A.⎝⎛⎭⎫0,π2 B .(0,π) C.⎣⎡⎦⎤-π4,π4 D.⎣⎡⎦⎤0,π4∪⎣⎢⎡⎭⎫34π,π(2)已知线段PQ 两端点的坐标分别为P(-1,1)和Q(2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________. 解析 (1)直线x·sin α-y +1=0的斜率是k =sin α, 又∵-1≤sin α≤1,∴-1≤k≤1,当0≤k≤1时,倾斜角的范围是⎣⎡⎦⎤0,π4;当-1≤k <0时,倾斜角的范围是⎭⎫⎣⎡34π,π.(2)如图所示,直线l :x +my +m =0过定点A(0,-1),当m≠0时,kQA =32,kPA =-2,kl =-1m , ∴-1m ≤-2或-1m ≥32, 解得0<m≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为 -23≤m ≤12.答案 (1)D (2)⎣⎡⎦⎤-23,12 考点二 直线方程的求法【例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4), 即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为xa +y12-a=1, 又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k , 则所求直线方程为y -10=k(x -5), 即kx -y +(10-5k)=0.由点线距离公式,得|10-5k|k2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P(4,1),且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0. 若a≠0,则设l 的方程为x a +ya =1, ∵l 过点(4,1),∴4a +1a =1, ∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为2α.∵tan α=3,∴tan 2α=2tan α1-tan2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1), 即3x +4y +15=0.考点三 直线方程的综合应用【例3】 已知直线l 过点P(3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 法一 设直线方程为x a +yb =1(a >0,b >0), 点P(3,2)代入得3a +2b =1≥ 26ab ,得ab≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0.法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k(x -3)(k <0), 且有A⎝⎛⎭⎫3-2k ,0,B(0,2-3k), ∴S △ABO =12(2-3k)⎝⎛⎭⎫3-2k=12⎣⎡⎦⎤12+(-9k )+4(-k )≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k ) =12×(12+12)=12.当且仅当-9k =4-k,即k =-23时,等号成立,深度思考 本题有两种解法,主要从所求直线方程的设法上入手,可设截距式或点斜式,可以尝试一下.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.规律方法 直线方程综合问题的两大类型及解法:(1)与函数相结合的问题,解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x(或y)的函数,借助函数的性质解决;(2)与方程、不等式相结合的问题,一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决. 【训练3】 已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S(O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k(x +2)+(1-y)=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1,∴无论k 取何值,直线总经过定点(-2,1). (2)解 由方程知,当k≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k≥1,解之得k>0; 当k =0时,直线为y =1,符合题意,故k≥0. (3)解 由题意可知k≠0,再由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B(0,1+2k).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵S =12·|OA|·|OB|=12·⎪⎪⎪⎪1+2k k ·|1+2k| =12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4,等号成立的条件是k>0且4k =1k ,即k =12,∴Smin =4,此时直线l 的方程为x -2y +4=0.[思想方法]1.要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y2-y1x2-x1,该公式与两点顺序无关,已知两点坐标(x1≠x2)时,根据该公式可求出经过两点的直线的斜率.当x1=x2,y1≠y2时,直线的斜率不存在,此时直线的倾斜角为90°.2.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.[易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组(建议用时:40分钟)一、选择题1.如图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2解析直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k3<k2,因此k1<k3<k2,故选D.答案 D2.(2015·太原质检)若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为()A.13 B .-13 C .-32 D.23解析 依题意,设点P(a ,1),Q(7,b),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13. 答案 B3.两条直线l1:x a -y b =1和l2:x b -y a =1在同一直角坐标系中的图象可以是( )答案 A4.(2014·郑州模拟)直线l 经过点A(1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A.⎝⎛⎭⎫-1,15 B.⎝⎛⎭⎫-∞,12∪()1,+∞ C .(-∞,1)∪⎝⎛⎭⎫15,+∞ D .(-∞,-1)∪⎝⎛⎭⎫12,+∞ 解析 设直线的斜率为k ,如图,过定点A 的直线经过点B 时,直线l 在x 轴上的截距为3,此时k=-1;过定点A 的直线经过点C 时,直线l 在x 轴上的截距为-3,此时k =12,满足条件的直线l 的斜率范围是(-∞,-1)∪⎝⎛⎭⎫12,+∞. 答案 D5.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( )A .a +b =1B .a -b =1C .a +b =0D .a -b =0解析 由sin α+cos α=0,得sin αcos α=-1,即tan α=-1. 又因为tan α=-a b ,所以-a b =-1.即a =b ,故应选D.答案 D二、填空题6.若点A(4,3),B(5,a),C(6,5)三点共线,则a 的值为________.解析 ∵kAC =5-36-4=1,kAB =a -35-4=a -3. 由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案 47.(2015·烟台模拟)直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________.解析 令x =0,得y =k 4;令y =0,得x =-k 3,则有k 4-k 3=2,所以k =-24.答案 -248.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析 设所求直线的方程为x a +y b =1.∵A(-2,2)在此直线上,∴-2a +2b =1.①又因直线与坐标轴围成的三角形面积为1,∴12|a|·|b|=1.②由①②可得(1)⎩⎪⎨⎪⎧a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2.由(1)解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解. 故所求的直线方程为x 2+y 1=1或x -1+y -2=1, 即x +2y -2=0或2x +y +2=0为所求直线的方程.答案 x +2y -2=0或2x +y +2=0三、解答题9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A(-3,4);(2)斜率为16.解 (1)设直线l 的方程是y =k(x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫-4k -3=±6, 解得k1=-23或k2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b·b|=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为0,显然相等.∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0,得a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0.(2)将l 的方程化为y =-(a +1)x +a -2,由题意得⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,∴a ≤-1. 综上可知a 的取值范围是(-∞,-1].能力提升题组(建议用时:25分钟)11.(2015·长春三校调研)一次函数y =-m n x +1n 的图象同时经过第一、三、四象限的必要不充分条件是( ) A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析 因为y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.答案 B12.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P(a ,b)在线段AB 上,则ab 的最大值为________.解析 直线方程可化为x 2+y =1,故直线与x 轴的交点为A(2,0),与y 轴的交点为B(0,1),由动点P(a ,b)在线段AB 上,可知0≤b≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b)b =-2b2+2b =-2⎝⎛⎭⎫b -122+12,由于0≤b≤1,故当b =12时,ab 取得最大值12.答案 1213.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为________.解析 由题意可得kOA =tan 45°=1,kOB =tan(180°-30°)=-33,所以直线lOA 和直线lOB 的方程分别为y =x ,y =-33x ,设A(m ,m),B(-3n ,n),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A(3,3).又P(1,0),所以kAB =kAP =33-1=3+32, 所以lAB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.答案 (3+3)x -2y -3-3=014.直线l 过点P(1,4),分别交x 轴的正方向和y 轴的正方向于A ,B 两点.(1)当|PA|·|PB|最小时,求l 的方程;(2)当|OA|+|OB|最小时,求l 的方程.解 依题意,l 的斜率存在,且斜率为负.设l :y -4=k(x -1)(k<0).令y =0,可得A ⎝⎛⎭⎫1-4k ,0; 令x =0,可得B(0,4-k).(1)|PA|·|PB|= ⎝⎛⎭⎫4k 2+16·1+k2 =-4k (1+k2)=-4⎝⎛⎭⎫1k +k ≥8(注意k<0). ∴当且仅当1k =k 且k<0即k =-1时,|PA|·|PB|取最小值.这时l 的方程为x +y -5=0.(2)|OA|+|OB|=⎝⎛⎭⎫1-4k +(4-k)=5-⎝⎛⎭⎫k +4k ≥9.∴当且仅当k =4k 且k<0,即k =-2时,|OA|+|OB|取最小值.这时l 的方程为2x +y -6=0.第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.(2)两条直线垂直如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.两直线相交直线l1:A1x +B1y +C1=0和l2:A2x +B2y +C2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A1x +B1y +C1=0,A2x +B2y +C2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.距离公式(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=(x2-x1)2+(y2-y1)2.特别地,原点O(0,0)与任一点P(x ,y)的距离|OP|=x2+y2.(2)点到直线的距离公式平面上任意一点P0(x0,y0)到直线l :Ax +By +C =0的距离d =|Ax0+By0+C|A2+B2. (3)两条平行线间的距离公式一般地,两条平行直线l1:Ax +By +C1=0,l2:Ax +By +C2=0间的距离d =|C1-C2|A2+B2. 诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.(×)(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.(×) (3)已知直线l1:A1x +B1y +C1=0,l2:A2x +B2y +C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.(√)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解析 设所求直线方程为x -2y +c =0,将(1,0)代入得c =-1.∴所求直线方程为x -2y -1=0.答案 A3.(2014·福建卷)已知直线l 过圆x2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0解析 已知圆的圆心为(0,3),直线x +y +1=0的斜率为-1,则所求直线的斜率为1,所以所求直线的方程为y =x +3,即x -y +3=0.故选D.答案 D4.直线2x +2y +1=0,x +y +2=0之间的距离是________.解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324. 答案 3245.(人教A 必修2P114A4改编)若直线(3a +2)x +(1-4a)y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a)(a +4)=0,解得a =0或a =1.答案0或1考点一两直线的平行与垂直【例1】已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0.(1)试判断l1与l2是否平行;(2)当l1⊥l2时,求a的值.解(1)法一当a=1时,l1:x+2y+6=0,l2:x=0,l1不平行于l2;当a=0时,l1:y=-3,l2:x-y-1=0,l1不平行于l2;当a≠1且a≠0时,两直线可化为l1:y=-a2x-3,l2:y=11-a x-(a+1),l1∥l2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1, 综上可知,a =-1时,l1∥l2.法二 由A1B2-A2B1=0,得a(a -1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2⇔⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a2-1)-1×6≠0,⇔⎩⎪⎨⎪⎧a2-a -2=0,a (a2-1)≠6⇒a =-1, 故当a =-1时,l1∥l2.(2)法一 当a =1时,l1:x +2y +6=0,l2:x =0,l1与l2不垂直,故a =1不成立; 当a =0时,l1:y =-3,l2:x -y -1=0,l1不垂直于l2;当a≠1且a≠0时,l1:y =-a 2x -3,l2:y =11-ax -(a +1), 由⎝⎛⎭⎫-a 2·11-a=-1⇒a =23. 法二 由A1A2+B1B2=0,得a +2(a -1)=0⇒a =23.规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 已知过点A(-2,m)和点B(m ,4)的直线为l1,直线2x +y -1=0为l2,直线x +ny +1=0为l3.若l1∥l2,l2⊥l3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析 ∵l1∥l2,∴kAB =4-m m +2=-2,解得m =-8. 又∵l2⊥l3,∴⎝⎛⎭⎫-1n ×(-2)=-1, 解得n =-2,∴m +n =-10.答案 A考点二 两条直线的交点与点到直线的距离【例2】 直线l 经过点P(2,-5)且与点A(3,-2)和点B(-1,6)的距离之比为1∶2,求直线l 的方程.解 当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d1=1,点B 到直线l 的距离为d2=3,不符合题意,故直线l 的斜率必存在.∵直线l 过点P(2,-5),∴设直线l 的方程为y +5=k(x -2),即kx -y -2k -5=0.∴点A(3,-2)到直线l 的距离d1=|3k -(-2)-2k -5|k2+1=|k -3|k2+1, 点B(-1,6)到直线l 的距离d2=|-k -6-2k -5|k2+1=|3k +11|k2+1. ∵d1∶d2=1∶2,∴|k -3||3k +11|=12, ∴k2+18k +17=0,∴k1=-1,k2=-17.∴所求直线方程为x +y +3=0和17x +y -29=0.规律方法 利用距离公式应注意:(1)点P(x0,y0)到直线x =a 的距离d =|x0-a|,到直线y =b 的距离d =|y0-b|;(2)两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.【训练2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k的取值范围是________.(2)直线l 过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2, 解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12. 法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A(4,0),B(0,2).而直线方程y =kx +2k +1可变形为y -1=k(x +2),表示这是一条过定点P(-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足kPA <k <kPB.∵kPA =-16,kPB =12.∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k(x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k2+1=|-4k -5+k +2|k2+1, 即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二 当AB ∥l 时,有k =kAB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案 (1)⎝⎛⎭⎫-16,12 (2)x +3y -5=0或x =-1考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A(-1,-2).求:(1)点A 关于直线l 的对称点A′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m′的方程;(3)直线l 关于点A(-1,-2)对称的直线l′的方程.解 (1)设A′(x ,y),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,∴A ′⎝⎛⎭⎫-3313,413.(2)在直线m 上取一点,如M(2,0),则M(2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得M′⎝⎛⎭⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N(4,3). 又∵m ′经过点N(4,3),∴由两点式得直线方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如M(1,1),N(4,3).则M ,N 关于点A 的对称点M′,N ′均在直线l′上.易知M′(-3,-5),N ′(-6,-7),由两点式可得l′的方程为2x -3y -9=0. 法二 设P(x ,y)为l′上任意一点,则P(x ,y)关于点A(-1,-2)的对称点为P ′(-2-x ,-4-y),∵P ′在直线l 上,∴2(-2-x)-3(-4-y)+1=0,即2x -3y -9=0.规律方法 (1)点关于点的对称:求点P 关于点M(a ,b)的对称点Q 的问题,主要依据M 是线段PQ 的中点,即xP +xQ =2a ,yP +yQ =2b.(2)直线关于点的对称:求直线l 关于点M(m ,n)的对称直线l′的问题,主要依据l′上的任一点T(x ,y)关于M(m ,n)的对称点T′(2m -x ,2n -y)必在l 上.(3)点关于直线的对称:求已知点A(m ,n)关于已知直线l :y =kx +b 的对称点A′(x 0,y0)的坐标,一般方法是依据l 是线段AA′的垂直平分线,列出关于x0,y0的方程组,由“垂直”得一方程,由“平分”得一方程.(4)直线关于直线的对称:此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.【训练3】 光线沿直线l1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎪⎨⎪⎧x -2y +5=0,3x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P(-5,0),设P 关于直线l 的对称点P′(x 0,y0),由PP′⊥l 可知,k PP′=-23=y0x0+5. 而PP′的中点Q 的坐标为⎝⎛⎭⎫x0-52,y02, Q 点在l 上,∴3·x0-52-2·y02+7=0.由⎩⎨⎧y0x0+5=-23,32(x0-5)-y0+7=0,得⎩⎨⎧x0=-1713,y0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二 设直线x -2y +5=0上任意一点P(x0,y0)关于直线l 的对称点为P′(x ,y),则y0-y x0-x=-23,又PP′的中点Q ⎝⎛⎭⎫x +x02,y +y02在l 上,∴3×x +x02-2×y +y02+7=0, 由⎩⎪⎨⎪⎧y0-y x0-x =-23,3×x +x02-(y +y0)+7=0.可得P 点的横、纵坐标分别为x0=-5x +12y -4213,y0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0,∴所求反射光线所在的直线方程为29x -2y +33=0.微型专题 直线系方程的灵活应用直线系指具有某一共同性质的直线的集合,它有多种不同的情况,其中以过两条直线交点的直线系为主.利用直线系方程可以降低运算难度,使解题的过程更加简捷,因此在高考中这类问题也可能会成为考查的重点.【例4】 已知直线l 与点A(3,3)和B(5,2)的距离相等,且过两直线l1:3x -y -1=0和l2:x +y -3=0的交点,求直线l 的方程.点拨 不需要解两直线l1与l2的交点,可设直线l 为:3x -y -1+λ(x +y -3)=0,再分两种情况分别求解.解 根据条件可设直线l 的方程为3x -y -1+λ(x +y -3)=0,即(3+λ)x +(λ-1)y -3λ-1=0;直线l 与点A(3,3)和B(5,2)的距离相等可分为两种情况:(1)当直线l 与A ,B 的连线平行时,可知kAB =3-23-5=-12,则3+λ1-λ=-12,解得λ=-7,此时直线l 的方程为x +2y -5=0;(2)当直线l 过线段AB 的中点M ⎝⎛⎭⎫4,52时,将点M ⎝⎛⎭⎫4,52代入直线l 的方程,可得4(3+λ)+52(λ-1)-3λ-1=0,解得λ=-177,此时直线l 的方程为x -6y +11=0.综上,可知所求直线l 的方程为x +2y -5=0或x -6y +11=0.点评 一般情况下,若两条直线l1:A1x +B1y +C1=0,l2:A2x +B2y +C2=0有交点,则过l1与l2的交点的直线系方程可设为A1x +B1y +C1+λ(A 2x +B2y +C2)=0(不含l2),利用这一结论可以避免求交点时解方程组带来的麻烦.[思想方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1,l2,l1∥l2⇔k1=k2;l1⊥l2⇔k1·k2=-1.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法.3.光线的反射问题具有入射角等于反射角的特点,这样就有两种对称关系,一是入射光线与反射光线关于过反射点且与反射轴垂直的直线(法线)对称,二是入射光线与反射光线所在直线关于反射轴对称.[易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.使用点到直线的距离公式前必须将直线方程化为一般式,同时此公式对直线与坐标轴垂直或平行的情况也适用;使用两平行线间的距离公式时一定要注意先把两直线方程中的x,y的系数化成相等.基础巩固题组(建议用时:40分钟) 一、选择题1.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析 由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0. 答案 A2.(2014·济南模拟)已知两条直线l1:(a -1)x +2y +1=0,l2:x +ay +3=0平行,则a =( )A .-1B .2C .0或-2D .-1或2解析 若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a≠0;当a≠0时,两直线若平行,则有a -11=2a ≠13,解得a =-1或2. 答案 D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为 ( ) A .4B.21313C.52613D.72010解析 把3x +y -3=0化为6x +2y -6=0,则两平行线间的距离d =|1-(-6)|62+22=72010. 答案 D4.(2015·金华调研)当0<k<12时,直线l1:kx -y =k -1与直线l2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k得两直线的交点坐标为⎝ ⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k<12,所以kk -1<0,2k -1k -1>0,故交点在第二象限. 答案 B5.若直线l1:y =k(x -4)与直线l2关于点(2,1)对称,则直线l2经过定点( ) A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析 直线l1:y =k(x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l1:y =k(x -4)与直线l2关于点(2,1)对称,故直线l2经过定点(0,2). 答案 B 二、填空题6.已知直线l1:ax +3y -1=0与直线l2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0, 解得a =35. 答案 357.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2. ∴点(1,2)满足方程mx +2y +5=0, 即m×1+2×2+5=0,∴m =-9. 答案 -98.(2015·秦皇岛检测)已知直线l 过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l 的方程为________.解析 显然直线l 斜率不存在时,不满足题意;设所求直线方程为y -4=k(x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k|1+k2=|4k +2+4-3k|1+k2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=0 三、解答题9.已知直线l1:x +my +6=0,l2:(m -2)x +3y +2m =0,求m 的值,使得: (1)l1与l2相交;(2)l1⊥l2;(3)l1∥l2;(4)l1,l2重合. 解 (1)由已知1×3≠m(m -2), 即m2-2m -3≠0,解得m≠-1且m≠3. 故当m≠-1且m≠3时,l1与l2相交.(2)当1·(m -2)+m·3=0,即m =12时,l1⊥l2.(3)当1×3=m(m -2)且1×2m≠6×(m -2)或m×2m≠3×6,即m =-1时, l1∥l2.(4)当1×3=m(m -2)且1×2m =6×(m -2), 即m =3时,l1与l2重合.10.已知△ABC 的顶点A(5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解 依题意知:kAC =-2,A(5,1), ∴lAC 为2x +y -11=0,联立lAC ,lCM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴C(4,3).设B(x0,y0),AB 的中点M 为⎝⎛⎭⎫x0+52,y0+12,代入2x -y -5=0,得2x0-y0-1=0,∴⎩⎪⎨⎪⎧2x0-y0-1=0,x0-2y0-5=0,∴B(-1,-3), ∴kBC =65,∴直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0. 能力提升题组 (建议用时:25分钟)11.(2014·泉州一模)若点(m ,n)在直线4x +3y -10=0上,则m2+n2的最小值是 ( ) A .2B .2 2C .4D .2 3解析 因为点(m ,n)在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m2+n2的最小值可先求(m-0)2+(n-0)2的最小值,而(m-0)2+(n-0)2表示4m+3n-10=0上的点(m,n)到原点的距离,如图.当过原点的直线与直线4m+3n-10=0垂直时,原点到点(m,n)的距离最小为2.所以m2+n2的最小值为4.答案 C12.如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.210 B.6C.3 3 D.2 5解析易得AB所在的直线方程为x+y=4,由于点P关于直线AB对称的点为A1(4,2),点P关于y轴对称的点为A2(-2,0),则光线所经过的路程即A1(4,2)与A2(-2,0)两点间的距离.于是|A1A2|=(4+2)2+(2-0)2=210.答案 A13.(2014·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P(x ,y),则|PA|·|PB|的最大值是________. 解析 易知A(0,0),B(1,3)且两直线互相垂直, 即△APB 为直角三角形,∴|PA|·|PB|≤|PA|2+|PB|22=|AB|22=102=5. 答案 514.已知三条直线:l1:2x -y +a =0(a >0);l2:-4x +2y +1=0;l3:x +y -1=0,且l1与l2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l1的距离是点P 到l2的距离的12;③点P 到l1的距离与点P 到l3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l2:2x -y -12=0,所以两条平行线l1与l2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+(-1)2=7510,所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72,又a >0,解得a =3.(2)假设存在点P ,设点P(x0,y0).若P 点满足条件②,则P 点在与l1,l2平行的直线l′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪c +125,即c =132或116,所以2x0-y0+132=0或2x0-y0+116=0; 若P 点满足条件③,由点到直线的距离公式, 有|2x0-y0+3|5=25|x0+y0-1|2,即|2x0-y0+3|=|x0+y0-1|, 所以x0-2y0+4=0或3x0+2=0;由于点P 在第一象限,所以3x0+2=0不可能. 联立方程2x0-y0+132=0和x0-2y0+4=0, 解得⎩⎪⎨⎪⎧x0=-3,y0=12;(舍去) 联立方程2x0-y0+116=0和x0-2y0+4=0,解得⎩⎨⎧x0=19,y0=3718.所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件. 第3讲 圆的方程最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程2. 点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)确定圆的几何要素是圆心与半径.(√)(2)方程x2+y2=a2表示半径为a的圆.(×)(3)方程x2+y2+4mx-2y+5m=0表示圆.(×)(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(√)2.方程|x|-1=1-(y-1)2所表示的曲线是()A.一个圆B.两个圆C.半个圆D.两个半圆解析由题意知,(|x|-1)2+(y-1)2=1又|x|-1≥0,即x≥1或x≤-1,故表示两个半圆.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1) B.(0,1)C.(-∞,-1)∪(1,+∞) D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(人教A必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案(x-2)2+y2=105.(2014·山东卷)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为23,则圆C的标准方程为________.解析因为圆心在直线x-2y=0上,且圆C与y轴相切,所以可设圆心坐标为(2a,a),则(2a)2=a2+(3)2,解得a=±1.又圆C与y轴的正半轴相切,所以a=1,故圆C的标准方程为(x-2)2+(y-1)2=4.答案(x-2)2+(y-1)2=4。
专题9-1 直线与方程题型归类2023年高考数学一轮复习热点演练(全国通用)(原卷版)
)
A.
0,
3Leabharlann 2 3,C.
0,
6
5 6
,
B.
0,
6
5 6
,
D.
0,
3
U
2 3
,
2.已知点 P 为曲线 y2 4x 上一动点, A(1, 0) , B 3, 0 ,则 APB 的最大值为(
)
A. 6
B.
4
C.
3
D.
2
3.已知四边形 OABC 各顶点的坐标分别为 O(0,0) , A(2,1) , B(1,3) , C(1, 2) ,点 D 为边 OA 的中点,点 E 在线段 OC 上,
专题 9-1 直线与方程题型归类
目录 【题型一】直线倾斜角与斜率最值范围 ....................................................................................................................... 3 【题型二】绕点旋转动直线 ............................................................................................................................................3 【题型三】含三角函数的圆切线型动直线 ................................................................................................................... 3 【题型四】含参双动直线 ................................................................................................................................................4 【题型五】关于直线对称 ................................................................................................................................................4 【题型六】直线光学性质 ................................................................................................................................................5 【题型七】三角形三大线:中线,高,角平分线 ....................................................................................................... 6 【题型八】平行线 ............................................................................................................................................................6 【题型九】直线应用 1:叠纸 .........................................................................................................................................7 【题型十】直线 应用 2:直线与曲线交点 .................................................................................................................. 7 【题型十一】直线应用 3:直线与函数(切线型) .................................................................................................... 7 【题型十二】直线应用 4:距离公式 ............................................................................................................................ 8 【题型十三】直线应用 5:直线与方程 ........................................................................................................................ 8 【题型十四】直线与最值 ................................................................................................................................................9 真题再现 ............................................................................................................................................................................9 模拟检测 .......................................................................................................................................................................... 11
直线方程知识点归纳总结高中
直线方程知识点归纳总结高中直线方程是高中数学学科中重要的知识点之一,它在解析几何和代数中起着重要的作用。
本文将对高中直线方程的相关内容进行归纳总结,包括直线的一般方程、点斜式方程、两点式方程和截距式方程等几种常见形式。
同时,还将对直线的斜率和截距的概念进行解释,并提供相关的例题进行说明。
一、直线的一般方程直线的一般方程形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
这种形式的直线方程比较通用,可以表示任意一条直线。
在求解问题时,可以通过已知条件将直线方程转化为一般方程的形式,然后进一步进行计算。
例如,已知直线过点P(2, 3)且斜率为2,我们可以先利用斜率公式求得直线的斜率k=2。
然后,代入点斜式方程y - y₁ = k(x - x₁)中的点P的坐标,得到直线的点斜式方程为y - 3 = 2(x - 2)。
最后,将该点斜式方程转化为一般方程的形式,得到2x - y - 1 = 0。
二、直线的点斜式方程点斜式方程形式为y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上一点的坐标,k为直线的斜率。
点斜式方程主要用于确定直线上一点和直线的斜率,通过已知条件和该点斜率可以确定直线方程。
例如,已知直线过点A(-1, 4)且斜率为-3,我们可以直接利用点斜式方程得到直线的方程为y - 4 = -3(x - (-1)),简化后为y = -3x + 1。
三、直线的两点式方程两点式方程形式为(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上的两个点的坐标。
两点式方程可以直接得到直线的方程,适用于已知直线上两个点的坐标的情况。
例如,已知直线上两点A(-2, 1)和B(3, 4),我们可以通过两点式方程求得直线的方程为(y - 1)/(x - (-2)) = (4 - 1)/(3 - (-2)),简化后为3x - y+ 5 = 0。
【解密高考】高考数学大一轮总复习(基础务实+高频考点+易混易错)9.1 直线方程课件 理 新人教A版
1.根据所给条件确 定直线方程2.运用 对称与旋转确定直 线的方程
1.从近几年高考试题来看,高考较少对本部分直接考查, 大多与其他知识结合考查,直线与圆锥曲线的位置关系是高考 热点. 2.以解答题为主,难度为中、高档. 3.命题切入点:直线方程的点斜式应用较多,尤其是在解 答题中.
题型仍以选择题、填空题为主,分值5分.
y-y1=k(x-x1) y=kx+b y-y1 x-x1 = y2-y1 x2-x1
x y a+b=1
方程
适用范围
不含直线x=x1
不含垂直于x轴的 直线 不含直线x=x1(x1 =x2)和直线y= y1(y1=y2) 不含垂直于坐标 轴和过原点的直
Ax+By+C= 0(A、B不同时为0)
特别提醒:使用直线方程时,一定要注意限制条件,以免 解题过程中丢解,如点斜式的使用条件是直线必须有斜率.截 距式的使用条件是截距存在且不为零等.
)
答案:A
5.(2014· 福州二模)已知直线a2x+y+2=0与直线bx-(a2+ 1)y-1=0互相垂直,则|ab|的最小值为( A.5 C.2 B.4 D.1 )
解析:由题意知,a2b-(a2+1)=0且a≠0,∴a2b=a2+1, a2+1 1 1 1 ∴ab= =a+ ,∴|ab|=|a+ |=|a|+ ≥2.(当且仅当a=± 1 a a a |a| 时取“=”).
[变式1]
π A.0,4
(1)直线x+(a2+1)y+1=0的倾斜角的取值范围是 (
3π B. 4 ,π π π 3π D.4,2∪ 4 ,π
1.(2014· 枣庄期末)已知函数f(x)(0≤x≤1)的图象一段圆弧(如 图所示),0<x1<x2,则( )
高考数学中的直线方程
高考数学中的直线方程高考数学中的知识点众多,而直线方程是其中比较常见且基础的知识点之一。
直线方程是指在平面直角坐标系中,描述一条直线的方程式。
了解直线方程是高中数学的基础,也是在高考数学中取得好成绩的必备知识点。
下面将从什么是直线方程、直线方程的种类、怎样求直线方程三个方面对直线方程进行详细的介绍。
一、什么是直线方程在平面直角坐标系中,一条直线上任意两点的坐标(x1, y1)和(x2, y2)之间总是存在一定的关系,我们可以通过确定这种关系来描述这条直线的方程式。
通常我们使用一元一次方程式来描述一条直线,即y=ax+b的形式。
其中,a和b是常数,而x和y则是未知数。
在这种形式下,a决定了这条直线的斜率,而b则决定了这条直线和y轴的交点。
二、直线方程的种类在高考数学中,我们需要掌握三种直线方程的形式:斜截式、点斜式和一般式。
下面我们分别进行详细介绍。
1.斜截式斜截式指的是y=ax+b的形式,其中a是这条直线的斜率,而b则是这条直线和y轴的交点。
在斜截式中,a的值决定了这条直线的斜率,也就是这条直线的倾斜程度。
当a的值为正数时,这条直线呈现上升的趋势;当a的值为负数时,则呈现下降的趋势。
而当a的值为0时,则表示这条直线为水平线。
在计算斜率时,通常我们需要注意两点之间的水平距离是否为0,如果是,则斜率不存在。
2.点斜式点斜式指的是y-y1=k(x-x1)的形式,其中k是这条直线的斜率,而(x1,y1)是这条直线上的一个点的坐标。
在点斜式中,我们需要发现这条直线的斜率,以及找到该直线上的一个点,然后通过点斜式计算出直线方程。
在计算时,我们可以使用任意一个点,因此对于一条直线,可以使用多个不同的点来计算直线方程。
3.一般式一般式指的是Ax+By+C=0的形式,在一般式中,A、B和C都是常数,而x和y为未知数。
在使用一般式来求解直线方程时,我们通常需要将其转化为斜截式或者点斜式。
具体的转化方式可以通过数学公式和推导来实现,在高考数学中,我们需要掌握这些转化方式,以便快速的解决具体的问题。
高考数学专题《直线与直线方程》习题含答案解析
专题9.1 直线与直线方程1.(福建高考真题(文))“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】C 【解析】直线x +y =0和直线x −ay =0互相垂直的充要条件是1×(−a)+1×1=0,即a =1,故选C2.(2020·肥东县综合高中月考(文))点(),P x y 在直线40x y +-=上,O 是坐标原点,则OP 的最小值是( ) A BC .D 【答案】C 【解析】原点到直线40x y +-===故选C. 3.【多选题】(2021·全国高二课时练习)(多选)已知直线:1l y =-,则直线l ( ). A .过点)2-B C .倾斜角为60° D .在y 轴上的截距为1【答案】BC 【分析】根据直线斜截式方程的定义,依次判断,即得解 【详解】 点)2-的坐标不满足方程1y =-,故A 错误;根据斜截式的定义,直线l 的斜率tan k θ=60°,故B ,C 正确; 由1y =-,知直线l 在y 轴上的截距为1-,故D 错误. 故选:BC4.【多选题】(2021·全国高二课时练习)(多选)已知直线:10l x my m -+-=,则下列说法正确的是( ). A .直线l 的斜率可以等于0练基础B .若直线l 与y 轴的夹角为30°,则m =或m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =- 【答案】BD 【分析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误. 【详解】当0m =时,直线:1l x =,斜率不存在, 当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误; ∵直线l 与y 轴的夹角角为30°,∴直线l 的倾斜角为60°或120°,而直线l 的斜率为1m,∴1tan 60m =︒=1tan120m =︒=m 或m =B 选项正确; 直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误; 当0m =时,直线:1l x =,在y 轴上的截距不存在, 当0m ≠时,令0x =,得1m y m-=,令0y =,得1x m =-, 令11m m m-=-,得1m =±,故D 选项正确. 故选:BD .5.【多选题】(2021·全国高二课时练习)(多选)已知直线l 的方程为20ax by +-=,则下列判断正确的是( ).A .若0ab >,则直线l 的斜率小于0B .若0b =,0a ≠,则直线l 的倾斜角为90°C .直线l 可能经过坐标原点D .若0a =,0b ≠,则直线l 的倾斜角为0° 【答案】ABD 【分析】根据直线方程与斜率,倾斜角的关系,依次讨论各选项即可得答案. 【详解】对于A 选项,若0ab >,则直线l 的斜率0ab-<,A 正确; 对于B 选项,若0b =,0a ≠,则直线l 的方程为2x a=,其倾斜角为90°,B 正确; 对于C 选项,将()0,0代入20ax by +-=中,显然不成立,C 错误; 对于D 选项,若0a =,0b ≠,则直线l 的方程为2y b=,其倾斜角为0°,D 正确. 故选:ABD .6.(2021·全国高二课时练习)直线3240x y +-=的斜率为______,在x 轴上的截距为______. 【答案】32- 43【分析】将直线转化为斜截式即可得出斜率,令0y =可求出在x 轴上的截距. 【详解】由3240x y +-=,可得322y x =-+,故该直线的斜率32k =-.令0y =,得43x =,所以该直线在x 轴上的截距为43. 故答案为:32-;43.7.(2021·全国)已知直线1:1l y x =+,将直线1l 绕点()1,2按逆时针方向旋转45︒后,所得直线2l 的方程为_______,将直线1l 绕点()1,2按顺时针方向旋转45°后,所得直线3l 的方程为_______.【答案】1x = 2y = 【分析】根据斜率和倾斜角的关系得出直线2l 和直线3l 的斜率再求解其直线方程即可. 【详解】易知直线1l 的斜率为1,倾斜角为45︒,所以直线2l 的倾斜角为90︒,直线3l 的倾斜角为0︒, 又因为直线2l 和直线3l 都经过点()1,2, 所以直线2l 和直线3l 的方程分别为1x =,2y =. 故答案为:1x =;2y =8.(2021·浙江衢州·高二期末)已知直线1l :3480x y +-=和2l :320x ay -+=,且12l l //,则实数a =__________,两直线1l 与2l 之间的距离为__________. 【答案】-4; 2 【分析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案. 【详解】解:直线1:3480l x y +-=和2:320l x ay -+=,12l l //, 334a -∴=,解得4a =-; ∴2:3420l x y ++= 两直线1l 与2l间的距离是:2d == .故答案为:4-;2.9.(2020·浙江开学考试)已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为___________,直线1l 与2l 的距离为___________. 【答案】34310【解析】直线1l 的方程为3420x y --=即为3142y x =-,斜率为34. 因为直线2l 的方程为6810x y --=即为13402x y --=, 所以直线1l 与2l 平行,则直线1l 与2l310=.故答案为:34;31010.(2021·抚松县第一中学高二月考)已知A (1,0),B (﹣1,2),直线l :2x ﹣ay ﹣a =0上存在点P ,满足|P A |+|PB |=a 的取值范围是 ___________. 【答案】2[,2]3-【分析】计算线段AB 的距离,得到点P 的轨迹,将点A ,B 分别代入2x ﹣ay ﹣a =0,得到a ,根据题意得到直线l 所过定点C,求出直线AC ,BC 的斜率,根结合直线l 与线段AB 始终有交点计算出a 的取值范围. 【详解】因为||AB ==||||PA PB += 由图可知,点P 的轨迹为线段AB ,将点A ,B 的坐标分别代入直线l 的方程,可得a =2,a =23-,由直线l 的方程可化为:2x ﹣a (y +1)=0,所以直线l 过定点C (0,﹣1), 画出图形,如图所示:因为直线AC 的斜率为k AC =1,直线BC 的斜率为k BC =2(1)10----=﹣3, 所以直线l 的斜率为k =2a ,令2123aa⎧≥⎪⎪⎨⎪≤-⎪⎩,解得23-≤a ≤2,所以a 的取值范围是[23-,2].故答案为:[23-,2].1.(2021·绥德中学高一月考)已知0a >,0b >,直线220ax by -+=恒过点(2-,1),则14a b+的最小值为( ) A .8 B .9 C .16 D .18【答案】B 【分析】利用给定条件可得1a b +=,再借助“1”的妙用即可计算得解. 【详解】因直线220ax by -+=恒过点(2-,1),则有2220a b --+=,即1a b +=, 又0a >,0b >,则14144()()559b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,即2b a =时取“=”,练提升由21b a a b =⎧⎨+=⎩得12,33a b ==,所以当12,33a b ==时,14a b+取得最小值9.故选:B2.(2019·四川高考模拟(文))已知点(3,0)P -在动直线(1)(3)0m x n y -+-=上的投影为点M ,若点3(2,)2N ,那么||MN 的最小值为( ) A .2 B .32C .1D .12【答案】D 【解析】因为动直线()()130m x n y -+-=方程为,所以该直线过定点Q (1,3), 所以动点M 在以PQ5,2= 圆心的坐标为3(1,)2-,所以点N3=, 所以MN 的最小值为51322-=.故答案为:D 3.(2019·湖南衡阳市八中高三月考(文))已知直线的倾斜角为且过点,其中,则直线的方程为( )C.【答案】B 【解析】,, 则直线方程为:故选4.(四川高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线l θ1sin()22l 20y --=40y +-=0x -=360y 122sin πθ⎛⎫-= ⎪⎝⎭1cos 2θ∴=-2 3πθ=tan θ=1y x -=40y +-=B30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A. B. C. D.【答案】B 【解析】易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+=+=+.因为0,0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤PA PB ≤+≤.选B. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.5.(2020·浙江)已知点(2,1)M -,直线l 过点M 且与直线210x y -+=平行,则直线l 的方程为____________;点M 关于直线10x y -+=的对称点的坐标为_______________. 【答案】240x y -+= (0,1)- 【分析】根据所求直线与直线210x y -+=平行,设方程为()201x y n n -+=≠求解;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',由112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩求解.【详解】因为所求直线与直线210x y -+=平行, 所以设方程为()201x y n n -+=≠, 因为直线过点(2,1)M -, 代入直线方程解得4n =,所以所求直线方程为:240x y -+=;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ', 则112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得01x y =⎧⎨=-⎩,所以点M 关于直线10x y -+=的对称点的坐标为()0.1-故答案为:240x y -+=,(0,1)-6.(2019·黑龙江鹤岗·月考(文))已知直线l 经过点()4,3P ,且与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点.(1)若点O 到直线l 的距离为4,求直线l 的方程; (2)求OAB ∆面积的最小值.【答案】(1)7241000x y +-=(2)24 【解析】(1)由题意可设直线l 的方程为()34y k x -=-,即430kx y k --+=,则4d ==,解得724k =-. 故直线l 的方程为774302424x y ⎛⎫---⨯-+= ⎪⎝⎭,即7241000x y +-=. (2)因为直线l 的方程为430kx y k --+=,所以34,0A k ⎛⎫-+ ⎪⎝⎭,()0,43B k -+, 则OAB ∆的面积为()113194431624222S OA OB k k k k ⎛⎫⎛⎫=⋅=-+⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭. 由题意可知k 0<,则91624k k --≥=(当且仅当34k =-时,等号成立).故OAB ∆面积的最小值为()12424242⨯+=. 7.(2021·抚松县第一中学高二月考)已知直线l 1:2x +y +3=0,l 2:x ﹣2y =0.(1) 求直线l 1关于x 轴对称的直线l 3的方程,并求l 2与l 3的交点P ; (2)求过点P 且与原点O (0,0)距离等于2的直线m 的方程. 【答案】(1)2x ﹣y +3=0,P (﹣2,﹣1);(2) 3x +4y +10=0或x =﹣2. 【分析】(1)由对称关系求直线l 3的方程,联立l 2与l 3的方程,求点P 的坐标,(2)当直线m 的斜率存在时,设直线m 的点斜式方程,由点到直线距离公式列方程求斜率,由此可得直线m 的方程,再检验过点P 的斜率不存在的直线是否满足要求. 【详解】(1)由题意,直线l 3与直线l 1的倾斜角互补,从而它们的斜率互为相反数,且l 1与l 3必过x 轴上相同点3(,0)2-,∴直线l 3的方程为2x ﹣y +3=0,由230,20,x y x y -+=⎧⎨-=⎩解得2,1.x y =-⎧⎨=-⎩∴P (﹣2,﹣1).(2)当直线m 的斜率存在时,设直线m 的方程为y +1=k (x +2), 即kx ﹣y +2k ﹣1=0,∴原点O (0,0)到直线m2=,解得34k =-,∴直线m 方程为3x +4y +10=0,当直线m 的斜率不存在时,直线x =﹣2满足题意, 综上直线m 的方程为3x +4y +10=0或x =﹣2.8.(2021·宝山区·上海交大附中高一开学考试)如图,点(),4A m ,4,B n 在反比例函数()0ky k x=>的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若2m =,求n 的值; (2)求m n +的值;(3)连接OA 、OB ,若tan tan 1AOD BOC ∠+∠=,求直线AB 的函数关系式. 【答案】(1)2(2)0(3)2y x =+ 【分析】(1)先把A 点坐标代入()0k y k x =>求出k 的值得到反比例函数解析式为8y x=,然后把(4,)B n -代8y x=可求出n 的值; (2)利用反比例函数图象上点的坐标特征得到4m =k ,﹣4n =k ,然后把两式相减消去k 即可得到m +n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE 4AE mOE ==,tan 4BF n BOF OF -∠==,则144m n-+=,加上0m n +=,于是可解得2,2m n ==-,从而得到(2,4)A ,(4,2)B --,然后利用待定系数法求直线AB 的解析式.【详解】(1)当m =2,则A (2,4), 把A (2,4)代入ky x=得k =2×4=8, 所以反比例函数解析式为8y x=, 把(4,)B n -代入8y x=得﹣4n =8,解得n =﹣2; (2)因为点A (m ,4),B (﹣4,n )在反比例函数()0ky k x=>的图象上, 所以4m =k ,﹣4n =k , 所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE 4AE mOE ==, 在Rt △BOF 中,tan 4BF nBOF OF -∠==, 而tan ∠AOD +tan ∠BOC =1, 所以144m n-+=, 而m +n =0,解得m =2,n =﹣2, 则A (2,4),B (﹣4,﹣2), 设直线AB 的解析式为y =px +q ,把(2,4),(4,2)A B --代入得2442p q p q +=⎧⎨-+=-⎩,解得12p q =⎧⎨=⎩,所以直线AB 的解析式为y =x +2.9.(2021·全国高二课时练习)已知点()2,1P -. (1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1) 20x -=或34100x y --=;(2) 不存在这样的直线;理由见解析. 【分析】(1)分k 存在与不存在两种情况讨论,点斜式表示直线方程,利用点到直线距离公式即得解;(2)过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,分析即得解 【详解】(1)①当直线的斜率不存在时,直线方程为2x =,符合题意. ②当直线的斜率存在时,设斜率为k ,则直线方程为()12y k x +=-,即210kx y k ---=.2=,解得34k =,所以直线方程为34100x y --=.故所求直线方程为20x -=或34100x y --=. (2)不存在.理由如下:过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,OP =而6>10.(2021·全国高三专题练习)AOB 是等腰直角三角形,||AB =动直线l 过点(1,1)P 与AOB 的斜边、直角边分别交于不同的点M 、N (如图所示).(1)设直线l 的斜率为k ,求k 的取值范围,并用k 表示M 的坐标; (2)试写出表示AMN 的面积S 的函数解析式()S k ,并求()S k 的最大值.【答案】(1)0k >,1,11kM k k ⎛⎫ ⎪++⎝⎭;(2)112(1)()012(1)k k k S k kk k ⎧⎪+⎪=⎨-⎪<<⎪+⎩,max 1()4S k =.【分析】(1)根据题意,结合图象即可得到k 的取值范围,再联立直线方程即可得到M 的坐标; (2) 由于l 绕P 点转动,则N 点可落在OA 上,也可落在OB 上,AMNS的计算不一样,所以必须对l 的斜率不同的取值范围进行分类讨论,表示出()S k ,结合函数单调性即可求解. 【详解】(1)由已知条件得(1,0)A 、(0,1)B ,0k >,设直线l 的方程为1y kx k =+-.由11x y y kx k+=⎧⎨=+-⎩,得1,11kM k k ⎛⎫ ⎪++⎝⎭. (2)当1k 时,点N 在直角边OA 上,1,0k N k -⎛⎫⎪⎝⎭, 1111()1212(1)k S k k k k k -⎛⎫=-⋅= ⎪++⎝⎭. 当01k <<时,点k 在直角边OB 上,(0,1)N k -,111()11(1)122212(1)k k S k k k k k =⨯⨯--⨯-⨯=++.∴112(1)()012(1)k k k S k k k k ⎧⎪+⎪=⎨-⎪<<⎪+⎩,当1k 时,()S k 递减,∴max 1()(1)4S k S ==,当01k <<时,11111()22(1)244S k k =-<-=+. 综上所述,当1k =时,max 1()4S k =.1.(上海高考真题(文))已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是( ). A .1或3 B .1或5C .3或5D .1或2【答案】C 【解析】由两直线平行得,当k-3=0时,两直线的方程分别为1y =- 和32y =,显然两直线平行.当练真题k-3≠0时,由()k 34k1/32k 32--=≠--,可得 k=5.综上,k 的值是 3或5, 故选 C .2.(2020·山东高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D.3.(2021·山东高考真题)如下图,直线l 的方程是( )A 0y -=B 20y -=C 310y --=D .10x -=【答案】D 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解. 【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=. 故选:D4.(2021·湖南高考真题)点(0,1)-到直线3410x y -+=的距离为( ) A .25B .35C .45D .1【答案】D 【分析】利用点到直线的距离公式即可求解. 【详解】点(0,1)-到直线3410x y -+=的距离为515d ==, 故选:D.5.(全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭, C.113⎛⎤⎥ ⎝⎦, D.1132⎡⎫⎪⎢⎣⎭,【答案】B 【解析】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1, 由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0), 由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0, 故ba-≤0,故点M 在射线OA 上. 设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为(11b a -+,1a ba ++).①若点M 和点A 重合,如图:则点N为线段BC的中点,故N(12,12),把A、N两点的坐标代入直线y=ax+b,求得a=b13 =.②若点M在点O和点A之间,如图:此时b13>,点N在点B和点C之间,由题意可得三角形NMB的面积等于12,即1122NMB y⋅⋅=,即111212b a ba a+⎛⎫⨯+⋅=⎪+⎝⎭,可得a212bb=->0,求得b12<,故有13<b12<.③若点M在点A的左侧,则b13<,由点M的横坐标ba--<1,求得b>a.设直线y =ax +b 和AC 的交点为P ,则由 1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为(11b a --,1a ba --),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |12=, 即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 . 两边开方可得(1﹣b)=1,∴1﹣b ,化简可得 b >12-, 故有1b 13<. 综上可得b 的取值范围应是1122⎛⎫- ⎪ ⎪⎝⎭,, 故选:B .6.(2011·安徽高考真题(理))在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号) ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果与都是无理数,则直线不经过任何整点 ③直线经过无穷多个整点,当且仅当经过两个不同的整点④直线经过无穷多个整点的充分必要条件是:与都是有理数 ⑤存在恰经过一个整点的直线 【答案】①③⑤ 【解析】①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确; ②令直线为:,②错误;③令直线为:,过两个不同的整点,则,两式作差得: 即直线经过整点直线经过无穷多个整点,③正确;x y (,)x y k b y kx b =+l l y kx b =+k b l 12y x =+l y =-()2,0l y kx =()11,x y ()22,x y 112y kx y kx =⎧⎨=⎩()1212y y k x x -=-l ()1212,x x y y --∴l④令直线为:,则不过整点,④错误; ⑤令直线为:,则其只经过一个整点,⑤正确.本题正确结果:①③⑤l 1132y x =+ll y =()0,0。
高考直线必考知识点
高考直线必考知识点高考是众多中国学生所迎接的重要考试,其中数学科目无疑是一项关键挑战。
为了帮助学生们更好地备考数学高考,本文将列举一些直线的必考知识点,供大家参考。
一、直线的方程1.一般式方程:Ax + By + C = 0,其中A、B、C为实数且A和B不同时为0。
2.斜截式方程:y = kx + b,其中k为直线的斜率,b为y轴截距。
3.点斜式方程:y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上的一点,k为直线的斜率。
4.两点式方程:(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁),其中(x₁,y₁)和(x₂, y₂)为直线上的两点。
二、直线的性质1.斜率:直线的斜率表示为k,并可用斜率公式计算:k = (y₂ -y₁)/(x₂ - x₁)。
2.平行和垂直关系:若两条直线的斜率相等,则它们平行;若两条直线的斜率乘积为-1,则它们垂直。
3.点与直线的位置关系:设直线方程为Ax + By + C = 0,对于点P(x₀, y₀),代入方程可以判断点在直线上、直线上方或直线下方。
4.距离公式:点P(x₀, y₀)到直线Ax + By + C = 0的距离为d =|Ax₀ + By₀ + C| / √(A² + B²)。
三、直线的特殊情况1.过两点的直线方程:已知两点P₁(x₁, y₁)和P₂(x₂, y₂),可以使用两点式方程求得直线的方程。
2.过点且垂直于某条直线的直线方程:设直线L的斜率为k,直线L'垂直于L且过点P(x₀, y₀),则直线L'的斜率为-1/k,应用点斜式可以求得直线方程。
通过对这些直线的必考知识点的梳理和理解,学生们可以更好地备考高考数学,提高解题的准确性和速度。
同时,对常见题型的训练也是非常重要的,例如求直线方程、判断两条直线的关系等等。
因此,建议学生们多进行真题的练习,加深对知识点的理解和应用能力。
高三直线方程的知识点总结
高三直线方程的知识点总结一、直线方程的三种基本形式在高三数学中,我们经常会涉及到直线的方程。
直线方程的形式有三种基本形式,分别是一般式、截距式和斜截式。
1. 一般式:设直线的方程为Ax + By + C = 0,其中A、B、C为常数,且A与B不同时为0。
2. 截距式:设直线与x轴和y轴的交点分别为(A, 0)和(0, B),直线的方程可表示为x/A + y/B = 1。
3. 斜截式:设直线与y轴的交点为(0, B),直线的斜率为k,直线的方程可表示为y = kx + B。
二、直线的斜率与截距1. 斜率:直线的斜率表示了直线的倾斜程度。
斜率可以通过两点之间的纵坐标差与横坐标差的比值来计算。
设点(x1, y1)和点(x2, y2)在直线上,则直线的斜率k为k = (y2 - y1) / (x2 - x1)。
2. 截距:直线与y轴相交的点称为截距。
斜截式方程中的B即为直线的截距,表示直线与y轴的交点的纵坐标。
三、直线方程的相互转换在高三的学习中,我们需要掌握直线方程的相互转换方法,便于在不同形式的方程之间进行转换和运用。
1. 一般式与截距式的转换:已知直线方程为Ax + By + C = 0,其中A、B、C为常数,且A与B不同时为0。
将其转换为截距式,只需做一些简单的变形即可得到截距式方程。
2. 斜截式与截距式的转换:已知直线方程为y = kx + B,将其转换为截距式,只需将k和B带入截距式的公式即可。
四、直线的性质和应用1. 平行和垂直关系:两条直线平行,意味着它们的斜率相等;两条直线垂直,意味着它们的斜率的乘积为-1。
2. 直线的交点:两条直线的交点即为其方程组的解,可以通过联立方程组求解来确定交点的坐标。
3. 直线的应用:直线的方程在解决实际问题时有着广泛的应用,例如在经济学、物理学、工程学等领域,直线方程常被用于描述和分析物体的运动、表达经济模型等。
综上所述,高三直线方程的知识点主要包括直线方程的三种基本形式、斜率与截距的概念、直线方程的相互转换方法以及直线的性质和应用。
高考数学一轮复习专题训练—直线的方程
直线的方程考纲要求1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan_α. (2)计算公式①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1.②若直线的方向向量为a =(x ,y )(x ≠0),则直线的斜率k =yx .3.直线方程的五种形式截距式纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线一般式Ax +By +C =0(A 2+B 2≠0)所有直线1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0不存在k <02.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案 (1)× (2)× (3)× (4)√解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等.2.若过两点A (-m,6),B (1,3m )的直线的斜率为12,则直线的方程为________. 答案 12x -y -18=0解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0.3.若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________. 答案 A ≠0且B ≠0解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 4.(2020·衡水模拟)直线x +3y +1=0的倾斜角是( ) A.π6 B .π3C .2π3D .5π6答案 D解析 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,又α∈[0,π),所以α=5π6.5.(2021·西安模拟)已知两点A (-1,2),B (m,3),且m ∈⎣⎡⎦⎤-33-1,3-1,则直线AB 的倾斜角α的取值范围是( ) A.⎣⎡⎭⎫π6,π2B .⎝⎛⎦⎤π2,2π3 C.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3 D .⎣⎡⎦⎤π6,2π3答案 D解析 ①当m =-1时,α=π2;②当m ≠-1时,∵k =1m +1∈(-∞,-3]∪⎣⎡⎭⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3. 综合①②知直线AB 的倾斜角α的取值范围是⎣⎡⎦⎤π6,2π3.6.(2021·合肥调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______. 答案 4x -y +16=0解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.考点一 直线的倾斜角与斜率【例1】 (经典母题)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________. 答案 (-∞,-3]∪[1,+∞)解析 法一 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞, -3].故斜率的取值范围是(-∞,-3]∪[1,+∞). 法二 设直线l 的斜率为k ,则直线l 的方程为 y =k (x -1),即kx -y -k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(-3-k )≤0,即(k -1)(k +3)≥0,解得k ≥1或k ≤- 3.即直线l 的斜率k 的取值范围是(-∞,-3]∪[1,+∞).【迁移】 若将例1中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.解 设直线l 的斜率为k ,则直线l 的方程为 y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0, 即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎡⎦⎤13,3. 感悟升华 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上并不是单调的. 2.过一定点作直线与已知线段相交,求直线斜率取值范围时,应注意倾斜角为π2时,直线斜率不存在.【训练1】 过函数f (x )=13x 3-x 2图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D .⎝⎛⎦⎤π2,3π4答案 B解析 ∵f ′(x )=x 2-2x =(x -1)2-1≥-1,∴斜率k =tan α≥-1,解得倾斜角α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π,故选B. 考点二 直线方程的求法【例2】 (1)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3).求BC 边上的中线AD 所在直线的方程.(2)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题意得线段BC 的中点D (0,2),可得BC 边上的中线AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +ya =1.因为直线l 过点P (2,3),所以2a +3a =1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 则可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k +2.于是-2k +3=-3k +2,解得k =32或k =-1.则直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0.感悟升华 (1)求直线方程一般有以下两种方法:①直接法:由题意确定出直线方程的适当形式,然后直接写出其方程.②待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数,即得所求直线方程.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】 (1)已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0D .3x +y -6=0(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________________. 答案 (1)D (2)x +y -3=0或x +2y -4=0 解析 (1)设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ()α+45°=2+11-2×1=-3,又点M (2,0),所以y =-3(x -2),即3x +y -6=0. (2)由题意可设直线方程为x a +yb=1.则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R).(1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.感悟升华 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,能够看出“动中有定”.若直线的方程为y =k (x -1)+2,则直线过定点(1,2).2.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.3.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.【训练3】 (1)已知k ∈R ,写出以下动直线所过的定点坐标: ①若直线方程为y =kx +3,则直线过定点________; ②若直线方程为y =kx +3k ,则直线过定点________; ③若直线方程为x =ky +3,则直线过定点________.(2)(2021·武威模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A .1B .4C .2D .8答案 (1)①(0,3) ②(-3,0) ③(3,0) (2)B解析 (1)①当x =0时,y =3,所以直线过定点(0,3). ②直线方程可化为y =k (x +3),故直线过定点(-3,0). ③当y =0时,x =3,所以直线过定点(3,0). (2)∵直线ax +by =ab (a >0,b >0)过点(1,1),所以a +b =ab ,1a +1b =1,因为直线在x 轴的截距为b ,在y 轴上的截距为a ,所以直线在x轴、y 轴上的截距之和为a +b ,a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,所以当a =b =2时取最小值,最小值为4,故选B.基础巩固一、选择题1.如图中的直线l 1, l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.2.(2021·安阳模拟)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A .1±2或0 B .2-52或0C.2±52D .2+52或0答案 A解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1±2.3.如果A ·B >0,B ·C <0,那么直线Ax -By -C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 D解析 因为直线在x 轴、y 轴上的截距分别为C A <0,-CB >0,所以直线Ax -By -C =0不经过的象限是第四象限.故选D.4.(2020·成都诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2答案 A解析 直线y =-x -1的倾斜角为3π4,则所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2.5.(2021·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )答案 B解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合.6.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1答案 D解析 令x =0,y =2+a ,令y =0,x =2+a a ,则2+a =2+a a. 即(a +2)(a -1)=0,∴a =-2或a =1. 7.直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3B .⎣⎡⎦⎤π4,π3C .⎣⎡⎦⎤π4,π2D .⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.8.(2021·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 恒相交,则k 的取值范围是( )A .k ≥12B .k ≤-2C .k ≥12或k ≤-2 D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 恒相交,∴-2≤k ≤12. 二、填空题9.把直线x -y +3-1=0绕点(1,3)逆时针旋转15°后,所得直线l 的方程是________. 答案 y =3x解析 已知直线的斜率为1,则其倾斜角为45°,绕点逆时针旋转15°后,得到的直线l 的倾斜角α=45°+15°=60°,直线l 的斜率为tan α=tan 60°=3,∴直线l 的方程为y -3=3(x -1),即y =3x .10.(2020·沈阳模拟)过点⎝⎛⎭⎫1,14且在两坐标轴上的截距互为倒数的直线方程为________. 答案 x +4y -2=0解析 因为两坐标轴上的截距互为倒数,所以截距不为零,可设直线方程为x a+ay =1, 因为x a+ay =1过点⎝⎛⎭⎫1,14,所以1a +14a =1,解得a =2, 所以,所求直线方程为12x +2y =1,化为x +4y -2=0. 11.(2021·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.答案 -13解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧ a +7=2,b +1=-2,解得⎩⎪⎨⎪⎧a =-5,b =-3, 从而可知直线l 的斜率为-3-17+5=-13. 12.在平面直角坐标系xOy 中,经过点P (1,1)的直线l 与x 轴交于点A ,与y 轴交于点B .若P A→=-2PB →,则直线l 的方程是________.答案 x +2y -3=0解析 设A (a,0),B (0,b ),由P A →=-2PB →,可得a -1=-2×(0-1),0-1=-2(b -1),则a=3,b =32,由截距式可得直线l 的方程为x 3+y 32=1,即x +2y -3=0. B 级 能力提升13.(2020·东北三省三校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B .[-1,0] C .[0,1]D .⎣⎡⎦⎤12,1答案 A解析 由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1, 故-1≤x 0≤-12. 14.已知A ,B 是x 轴上的不同两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0答案 B解析 因为点P 的横坐标为2,且点P 在直线x -y +1=0上,所以点P 的纵坐标为3,所以P (2,3).又因为|P A |=|PB |,所以直线P A ,PB 的斜率互为相反数,所以直线PB 的斜率为-1,则直线PB 的方程是y -3=-(x -2),即x +y -5=0.故选B.15.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,则a =________.答案 12解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,又0<a <2,所以当a =12时,面积最小. 16.在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是线段AB 上的点,则P 到AC ,BC 的距离的乘积的最大值为________.答案 3解析 以C 为坐标原点,CB 所在直线为x 轴建立直角坐标系(如图所示),则A (0,4),B (3,0),直线AB的方程为x3+y4=1.设P(x,y)(0≤x≤3),所以P到AC,BC的距离的乘积为xy,因为x3+y4≥2x3·y4,当且仅当x3=y4=12时取等号,所以xy≤3,所以xy的最大值为3.。
高三数学一轮复习直线与方程知识点
2019高三数学一轮复习直线与方程知识点直线与方程就是直线的方程,在几何问题的研究中,我们常常直接依据几何图形中点,直线,平面间的关系研究几何图形的性质。
以下是直线与方程知识点,请考生学习。
(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。
当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)注意:○1各式的适用范围○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数) (二)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点相交交点坐标即方程组的一组解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.1 直线的方程1.平面直角坐标系中的基本公式 (1)两点的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=|AB |(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,我们规定,与x 轴平行或重合的直线的倾斜角为零度角. (2)倾斜角的范围:[0°,180°). 3.直线的斜率(1)定义:通常,我们把直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线,人们常说它的斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4.直线方程的五种形式判断下面结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)直线的倾斜角越大,其斜率就越大.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)经过定点A(0,b)的直线都可以用方程y=kx+b表示.(×)(5)不经过原点的直线都可以用xa+yb=1表示.(×)(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(√)1.直线3x-y+a=0的倾斜角为()A.30°B.60°C.150°D.120°答案 B解析化直线方程为y=3x+a,∴k=tan α= 3.∵0°≤α<180°,∴α=60°.2.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过()A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析由已知得直线Ax+By+C=0在x轴上的截距-CA>0,在y轴上的截距-CB>0,故直线经过一、二、四象限,不经过第三象限.3.过点P (2,3)且在两坐标轴上截距相等的直线方程为__________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +ya =1,则2a +3a =1,解得a =5, 所以直线方程为x +y -5=0.综上,直线方程为3x -2y =0或x +y -5=0.4.(教材改编)若过点A (m,4)与点B (1,m )的直线与直线x -2y +4=0平行,则m 的值为________. 答案 3解析 4-m m -1=12,∴m =3.5.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点,则直线l 的倾斜角的取值范围为____________. 答案 ⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析 直线l 的斜率k =m 2-11-2=1-m 2≤1.若l 的倾斜角为α,则tan α≤1. 又∵α∈[0,π),∴α∈⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π.题型一 直线的倾斜角与斜率例1 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是 ( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为__________________.答案 (1)B (2)(-∞,-3]∪[1,+∞)解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2·cos α∈[1, 3 ]. 设直线的倾斜角为θ,则有tan θ∈[1, 3 ].又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的取值范围是⎣⎡⎦⎤π4,π3. (2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴k ∈(-∞,- 3 ]∪[1,+∞). 引申探究1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎡⎦⎤13,3.2.将本例(2)中的B 点坐标改为B (2,-1),求直线l 倾斜角的范围.解 如图:直线P A 的倾斜角为45°, 直线PB 的倾斜角为135°,由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°).思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).(1)直线x cos α+3y +2=0的倾斜角的范围是( )A.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,5π6B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6 (2)已知实数x ,y 满足2x +y =8,当2≤x ≤3时,则y x 的最大值为________;最小值为________.答案 (1)B (2)2 23解析 (1)由x cos α+3y +2=0得直线斜率k =-33cos α. ∵-1≤cos α≤1,∴-33≤k ≤33. 设直线的倾斜角为θ,则-33≤tan θ≤33. 结合正切函数在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上的图象可知, 0≤θ≤π6或5π6≤θ<π.(2)本题可先作出函数y =8-2x (2≤x ≤3)的图象,把yx 看成过点(x ,y )和原点的直线的斜率进行求解.如图,设点P (x ,y ),因为x ,y 满足2x +y =8,且2≤x ≤3,所以点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标分别是(2,4),(3,2).因为yx 的几何意义是直线OP的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.题型二 求直线的方程例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:(1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 解 (1)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1), ∴4a +1a =1, ∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (2)由已知:设直线y =3x 的倾斜角为α, 则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2 α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.题型三 直线方程的综合应用命题点1 与均值不等式相结合求最值问题例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 解 方法一 设直线方程为x a +yb =1 (a >0,b >0),点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24,从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0. 命题点2 由直线方程解决参数问题例4 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小. 思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用均值不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或均值不等式求解.(1)(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx-y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.(2)(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 答案 (1)5 (2)-12解析 (1)∵直线x +my =0与mx -y -m +3=0分别过定点A ,B , ∴A (0,0),B (1,3).当点P 与点A (或B )重合时,|P A |·|PB |为零; 当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点, 且易知此两直线垂直, ∴△APB 为直角三角形, ∴|AP |2+|BP |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=102=5,当且仅当|P A |=|PB |时,上式等号成立.(2)∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.13.求直线方程忽视零截距致误典例 (12分)设直线l 的方程为(a +1)x +y +2-a =0 (a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.易错分析 本题易错点求直线方程时,漏掉直线过原点的情况. 规范解答解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,∴a =2,方程即为3x +y =0.[2分]当直线不经过原点时,截距存在且均不为0. ∴a -2a +1=a -2,即a +1=1.[4分] ∴a =0,方程即为x +y +2=0.综上,l 的方程为3x +y =0或x +y +2=0.[6分] (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,∴a ≤-1.[10分]综上可知a 的取值范围是a ≤-1.[12分]温馨提醒 (1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用.[方法与技巧]直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率. (2)直线的倾斜角α和斜率k 之间的对应关系:[失误与防范]与直线方程的适用条件、截距、斜率有关问题的注意点: (1)明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x 、y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.(2)截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.(3)求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.A 组 专项基础训练(时间:35分钟)1.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A.m ≠-32B.m ≠0C.m ≠0且m ≠1D.m ≠1 答案 D解析 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0, 解得m =1, 故m ≠1时方程表示一条直线.2.(2015·山东枣庄第八中学第二次阶段性检测)如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π3 B.⎣⎡⎭⎫π3,π2 C.⎝⎛⎦⎤π2,2π3D.⎣⎡⎭⎫π3,π答案 B解析 f ′(x )=a (x -1)2+ 3 (a >0),∴k ≥ 3.切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2.3.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.4.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足 ( )A.a +b =1B.a -b =1C.a +b =0D.a -b =0答案 D 解析 由sin α+cos α=0,得sin αcos α=-1,即tan α=-1. 又因为tan α=-a b ,所以-a b=-1. 即a =b ,故应选D.5.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( ) A. 3B.- 3C.0D.1+ 3答案 A解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan 60°= 3.6.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是__________. 答案 [-3,0)∪⎣⎡⎭⎫33,1 解析 当π6≤α<π4时,33≤tan α<1, ∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0. ∴k ∈⎣⎡⎭⎫33,1∪[-3,0). 7.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________________________________________________________________________. 答案 x +2y -2=0或2x +y +2=0解析 设所求直线的方程为x a +y b=1. ∵A (-2,2)在此直线上, ∴-2a +2b =1. ①又∵直线与坐标轴围成的三角形面积为1,∴12|a |·|b |=1. ②由①②可得(1)⎩⎪⎨⎪⎧ a -b =1,ab =2或(2)⎩⎪⎨⎪⎧ a -b =-1,ab =-2. 由(1)解得⎩⎪⎨⎪⎧ a =2,b =1或⎩⎪⎨⎪⎧ a =-1,b =-2,方程组(2)无解. 故所求的直线方程为x 2+y 1=1或x -1+y -2=1, 即x +2y -2=0或2x +y +2=0为所求直线的方程.8.若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a,0)、B (0,b )确定直线的方程为x a +y b =1,又C (-2,-2)在该直线上,故-2a+-2b=1, 所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据均值不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.9.设直线l :(m 2-2m -3)x +(2m 2+m -1)y -2m +6=0 (m ≠-1),根据下列条件分别确定m 的值:(1)直线l 在x 轴上的截距为-3;(2)直线l 的斜率为1.解 (1)∵l 在x 轴上的截距为-3,∴-2m +6≠0,即m ≠3,又m ≠-1,∴m 2-2m -3≠0.令y =0,得x =2m -6m 2-2m -3, 由题意知,2m -6m 2-2m -3=-3, 解得m =-53. (2)由题意知2m 2+m -1≠0,且-m 2-2m -32m 2+m -1=1,解得m =43. 10.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过点P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2),即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2, 解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图所示.由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2. 由直线方程的点斜式,得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5. (3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.B 组 专项能力提升(时间:25分钟)11.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A.1B.2C.4D.8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b=1, ∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥2+2b a ·a b =4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.12.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.答案 3 解析 直线AB 的方程为x 3+y 4=1, ∵动点P (x ,y )在直线AB 上,则x =3-34y , ∴xy =3y -34y 2=34(-y 2+4y ) =34[-(y -2)2+4]≤3. 即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取最大值3.13.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. ∴b 的取值范围是[-2,2].14.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程. 解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在y =12x 上,且A 、P 、B 三点共线得 ⎩⎨⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.15.已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程是k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1,∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k ≥0.(3)解 由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎨⎧ -1+2k k <0,1+2k >0,解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.。