(精选)华东师大初中数学中考冲刺:观察、归纳型问题--知识讲解(提高)

合集下载

中考数学冲刺复习 华东师大版

中考数学冲刺复习 华东师大版

中考数学冲刺复习 华东师大版一. 本周教学内容:中考冲刺二、重点、难点:重点:1. 立足教材,夯实“双基”。

2. 重视重点、核心问题。

难点:综合题训练及知识间的纵横联系。

三、教学过程:1. 立足教材,夯实“三基”数学教材中的基本概念、公式、法则、性质定理及思想方法是数学的重要基础知识,也是各种能力形成的基础,并且,近年各地课改中考数学试题中,一般都有70%左右的基础题。

因此,在中考复习中,应以教材为本,制定复习计划,把各个局部知识按照一定的观点和方法组织成整体,构建出有自己特色的知识网络,形成知识体系;关注教材中新增和加强的内容,重视教材中典型例题的解题思路是怎样形成的,提供的方法能用来解决哪些问题,并重视这些题目的变式训练,拓展视野。

与此同时,要注意查漏补缺,对平时模糊或掌握不熟练的知识点或容易出错的地方应加强巩固或进行辨析确认,寻找防X 措施,做到用时准确无误;另外,还要特别注意老师在展示基本数学思想方法、基本的解题思路方法时的思维过程,做到真正了解和领悟,避免出现“轻过程,重结论”的局面,从而强化“三基”的落实。

例1. (本题5分)先化简xx x x x x -÷+--24)22(,并在22≤≤-x 中选择一个适当的整数带入求值。

分析:(1)化简时,注意x -2与2-x 互为相反数。

(2)x 可以取哪些整数。

解:化简得:21+-x ,当1-=x 时,原式1-= 2. 抓住核心,突出重点把握好初中数学的核心内容,既是数学学习的重点,也是中考考查的重点。

各地课改中考卷大都覆盖了《数学课程标准》中的数与代数、空间与图形、统计与概率及课题学习这四大块内容,并以其中的主体内容为载体,突出考查重点知识和方法,将数学思考、解决问题、数学活动过程也融于核心内容的考查之中。

因此,复习中要抓住关键、突出重点知识和方法,如方程知识与方程思想方法、函数知识与函数思想方法、全等知识与方法、概率统计知识与方法等。

最新华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

最新华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t(s)表示移动的时间(0≤t ≤6),那么:⑴当t 为何值时,△QAP 为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?D ABC QP【思路点拨】⑴中应由△QAP为等腰直角三角形这一结论,需补充条件AQ=AP,由AQ=6-t,AP=2t,可求出t的值;⑵中四边形QAPC是一个不规则图形,其面积可由矩形面积减去△DQC与△PBC的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC的面积也可由△QAC与△CAP的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4,动点M从点B出发沿线段BC以每秒2个单位长度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(1)直接写出梯形ABCD的中位线长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD.∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2.∵ △ABC 是等边三角形,∴ BA=BC=AC ,∠ACB= 60°.∵ BP=BA ,∴ BP=BC .∵ BD= BD ,∴ △PBD ≌△CBD .∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题【高清课堂:几何综合问题 例1 】4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .【思路点拨】(1)由题意可得:DE 是线段BC 的垂直平分线,易证DE ∥AC ,即DE 是△ABC 的中位线,即可求得DE 的长;【答案与解析】【总结升华】考查了折叠的性质、直角三角形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系,是一道典型的几何综合题.举一反三【变式】在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB ′E ,那么△AB ′E 与四边形AECD 重叠部分的面积是 .【答案】在Rt △ABE 中,∵∠B=45°,AB=2,∴AE=BE=2 ,∴S △ABE =1.由翻折的性质可知:△AB ′E ≌△ABE ,∴EB ′=EB=2∴B ′C=BB ′-BC=22-2,∵四边形ABCD 是菱形,∴CF ∥BA .∴∠ B ′FC=∠B ′AB=90°, ∠B ′CF=∠B=45°∴CF='2B C ∴S B FC △' =221CF =3-22 ∴S 阴=S B E ′△A -S B FC′△=22-2.5.如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10 cm,CD=4 cm,等腰直角△PMN的斜边MN=10 cm, A点与N点重合, MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角△PMN沿AB所在直线以1 cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN移动x (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积为y(cm2),求y与x之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN与等腰梯形ABCD重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN,AN=x(cm),过点E作EH⊥AB于点H,则EH 平分AN,求出EH,根据三角形的面积公式求出即可;②当6<x≤10时,重叠部分的形状是等腰梯形ANED,求出AN=x(cm),CE=BN=10-x,DE=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,求出DF,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。

华东师大初中数学中考总复习:四边形综合复习--知识讲解(提高)(1)

华东师大初中数学中考总复习:四边形综合复习--知识讲解(提高)(1)

①当 EC=EF时,此时△ AEF≌△ DCE,
∴ AE=CD.
∵ 12-x=10 ,∴ x=2.
②当 FC=FE时,有∠ FCE=∠FEC=∠ CAE, ∴ CE=AE=12-x.

Rt △ CHE中,由(
12-x )2=( 6-x ) 2+82,解得
11
x= .
3
③当 CE=CF时,有∠ CFE=∠CEF=∠ CAE,
【要点诠释】
面积公式: S 菱形 = 1 ab=ch. ( a、b 为菱形的对角线 ,c 为菱形的边长 S 平行四边2形 =ah. a 为平行四边形的边, h 为 a 上的高)
考点三、梯形
, h 为 c 边上的高)
1. 梯形的定义: 一组对边平行而另一组对边不平行的四边形叫做梯形
.
(1) 互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底
.
⑶若 CD=2,求四边形 BCFE的面积 .
【答案】( 1)平行四边形; ( 2)△ BEF≌△ CDF或(△ AFB≌△ EBC≌△ EFC) 证明:连接 DE,
∵ AB=2CD, E 为 AB中点, ∴ DC=EB, 又∵ DC∥EB,
∴四边形 BCDE是平行四边形, ∵ AB⊥ BC,
∴四边形 BCDE为矩形, ∴∠ AED=90°,∠ CDE=∠ BED=90°, BE=CD, 在 Rt △ AED中,∠ A=60°, F 为 AD的中点,
等腰三角形问题要注意分类讨论也是比较重要的,注意掌握.
举一反三:
【 变式 】在直角梯形 ABCD中, AB∥ DC, AB⊥ BC,∠ A=60°, AB= 2CD, E、 F 分别为 AB、 AD的中点, 连结 EF、EC、 BF、CF.

[精品]华东师大初中数学中考冲刺:图表信息型问题--知识讲解(提高)

[精品]华东师大初中数学中考冲刺:图表信息型问题--知识讲解(提高)

中考冲刺:图表信息型问题—知识讲解(提高)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题1.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B. C.D.【思路点拨】根据题意分1<x<与≤x<2两种情况,确定出y与x的关系式,即可确定出图象.【答案】C.【答案与解析】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选C.【总结升华】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.2.(福鼎市期中)甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)【思路点拨】(1)分别利用利用总路程除以总时间求出速度即可;(2)利用待定系数法求出函数解析式即可;(3)利用函数图象确定乙比甲距离A地更近时的时间即可.【答案与解析】解:(1)v甲==30(km/h),v乙==20(km/h);(2)设甲的函数关系式为S=kt+b,把(0,50),(2.5,0)代入解得:,解得:,∴关系式为:S=﹣20t+50;(3)由图象可得出:当1<t<2.5时,乙比甲距离A地更近.【总结升华】此题考查了学生从图象中读取信息的能力.学会利用数形结合来解答问题.举一反三:【高清课堂:图表信息型问题例4】【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P 上,求k的取值范围.【答案】 解:⑴ 解法一:设 2(0)y ax bx c a =++≠,任取x,y 的三组值代入,求出解析式2142y x x =+-, 令y=0,求出124,2x x =-=;令x=0,得y=-4,∴ A 、B 、C 三点的坐标分别是A(2,0),B(-4,0),C(0,-4) .解法二:由抛物线P 过点(1,-52),(-3,52-)可知, 抛物线P 的对称轴方程为x=-1,又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知,点A 、B 、C 的坐标分别为 A(2,0),B(-4,0),C(0,-4) .⑵ 由题意,AD DG AO OC=,而AO=2,OC=4,AD=2-m ,故DG=4-2m , 又 BE EF BO OC=,EF=DG ,得BE=4-2m ,∴ DE=3m , ∴S DEFG =DG·DE=(4-2m) 3m=12m-6m 2 (0<m <2) .注:也可通过解Rt△BOC 及Rt △AOC ,或依据△BOC 是等腰直角三角形建立关系求解.⑶ ∵S DEFG =12m-6m 2 (0<m <2),∴m=1时,矩形的面积最大,且最大面积是6 .当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),设直线DF 的解析式为y=kx+b ,易知,k=23,b=-23,∴2233y x =-, 又可求得抛物线P 的解析式为:2142y x x =+-, 令2233x -=2142x x +-,可求出x=1613-±. 设射线DF 与抛物线P 相交于点N , 则N 的横坐标为1613--,过N 作x 轴的垂线交x 轴于H ,有 FN HE DF DE ==161233----=5619-+, 点M 不在抛物线P 上,即点M 不与N 重合时,此时k 的取值范围是 k≠5619-+且k >0. 类型二、图表信息题3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题:(1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.【思路点拨】(1)根据调查的总人数100人,结合其它部分数据即可计算出5个对应的频数是100-90=10;然后首先计算样本平均数,再进一步计算2000人需要的塑料袋;(2)根据总百分比是1即可计算收费塑料购物袋占:1-75%=25%;结合两个统计图中的数据进行合理分析,提出合理化建议即可.【答案与解析】解:(1)如图所示.“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯== 这100位顾客平均一次购物使用塑料购物袋的平均数为3个.2000×3=6000(个).估计这个超市每天需要为顾客提供6000个塑料购物袋.(2)图中,使用收费塑料购物袋的人数所占百分比为25%.由上图和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.【总结升华】此题是社会上的热门话题与统计相结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力.4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A.计算机行业好于其他行业B.贸易行业好于化工行业C.机械行业好于营销行业D.建筑行业好于物流行业【思路点拨】本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业,通过计算即可求解.【答案与解析】解:计算机行业比值为1.83;机械行业比值为2.29;营销行业比值为1.50;建筑行业为0;化工行业为0;而物流行业与贸易行业的比值为无穷大,所以此题应选D.【总结升华】本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业.举一反三:【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格. 【答案】(1)30,20;(2)310; (3)解法一:依题意,有x x 205080030100020+⨯+⨯= 18 . 解得x =500 .经检验,x =500是原方程的解.答:每张乒乓球门票的价格为500元.解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯.解得x =500 .答:每张乒乓球门票的价格为500元.类型三、从表格、数字中寻求规律5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?最大利润多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?【思路点拨】从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.【答案与解析】(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y= k x+b(k≠0)∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴5003040040k bk b=+⎧⎨=+⎩解得10800kb=-⎧⎨=⎩∴函数关系式是:y=-10x+800(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数 W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.【总结升华】能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式是关键.举一反三:【高清课堂:图表信息型问题例3】【变式】某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【答案】解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.由题意得:解得:答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20-a)亩.由题意得:解得:10<a≤14.∵a取整数为:11、12、13、14.∴租地方案为:类别种植面积单位:(亩)A 11 12 13 14B 9 8 7 6。

华东师大初中数学中考总复习:二次函数--知识讲解(提高)

华东师大初中数学中考总复习:二次函数--知识讲解(提高)

中考总复习:二次函数—知识讲解(提高)【考纲要求】1.二次函数的概念常为中档题.主要考查点的坐标、确定解析式、自变量的取值范围等;2.二次函数的解析式、开口方向、对称轴、顶点坐标等是中考命题的热点;3.抛物线的性质、平移、最值等在选择题、填空题中都出现过,覆盖面较广,而且这些内容的综合题一般较难,在解答题中出现.【知识网络】【考点梳理】考点一、二次函数的定义一般地,如果2y ax bx c(a、b、c是常数,a≠0),那么y叫做x的二次函数.要点诠释:二次函数2y ax bx c(a≠0)的结构特征是:(1)等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.(2)二次项系数a≠0.考点二、二次函数的图象及性质1.二次函数2y ax bx c(a≠0)的图象是一条抛物线,顶点为24,24b ac ba a.2.当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下.3.①|a|的大小决定抛物线的开口大小.|a|越大,抛物线的开口越小,|a|越小,抛物线的开口越大.②c的大小决定抛物线与y轴的交点位置.c=0时,抛物线过原点;c>0时,抛物线与y轴交于正半轴;c<0时,抛物线与y轴交于负半轴.③ab 的符号决定抛物线的对称轴的位置.当ab =0时,对称轴为y 轴;当ab >0时,对称轴在y 轴左侧;当ab <0时,对称轴在y 轴的右侧. 4.抛物线2()ya xh k 的图象,可以由2y ax 的图象移动而得到.将2y ax 向上移动k 个单位得:2y axk .将2y ax 向左移动h 个单位得:2()ya x h .将2y ax 先向上移动k(k >0)个单位,再向右移动h(h >0)个单位,即得函数2()y a xh k 的图象.5. 几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0) (轴)(0,)(,0) (,)()要点诠释:求抛物线2yaxbx c (a ≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.考点三、二次函数的解析式1.一般式:2+yax bxc (a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2yaxbx c ,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)ya xx x x a.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a xx x x ,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式.3.顶点式:2()(0)ya xh k a .若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式.4.对称点式:12()()(0)ya xx x x m a.若已知二次函数图象上两对称点(x 1,m),(x 2,m),则可设所求二次函数为12()()(0)y a xx xx m a ,将已知条件代入,求得待定系数,最后将解析式化为一般形式.要点诠释:已知图象上三点或三对、的值,通常选择一般式.已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数).已知图象与轴的交点坐标、,通常选用交点式:(a ≠0).(由此得根与系数的关系:).考点四、二次函数2y axbx c (a ≠0) 的图象的位置与系数a 、b 、c 的关系1.开口方向:a >0时,开口向上,否则开口向下.2.对称轴:02b a时,对称轴在y 轴的右侧;当02b a时,对称轴在y 轴的左侧.3.与x 轴交点:240b ac时,有两个交点;240bac 时,有一个交点;240bac 时,没有交点.要点诠释:关于二次函数2y axbx c (a ≠0)中几个常用结论:(1)抛物线的对称轴是y 轴(顶点在y 轴上),则b =0;(2)抛物线与x 轴只有一个交点(顶点在x 轴上),则240b ac ;(3)抛物线过原点,则c =0;(4)当x =1时,函数y =a+b+c ;(5)当x =-1时,函数y =a-b+c ;(6)当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方;(7)当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方.考点五、二次函数的最值1.如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当2b xa时,244ac by a最值.2.如果自变量的取值范围是x 1≤x ≤x 2,那么,首先要看2b a是否在自变量的取值范围x 1≤x ≤x 2内.①若在此范围内,则:当a >0时,244ac by a最小值,2b xa 此时,211y axbx c 最大值(此时,221122axbx cax bx c );当a <0时,244ac by a 最大值,2b xa 此时,211y axbx c 最小值(此时,221122ax bx caxbx c ).②若不在此范围内,则:当y 随x 的增大而增大时,222y axbx c 最大值(此时,2xx ),211y axbx c 最小值(此时,x =x 1);当y 随x 的增大而减小时,211y axbx c 最大值(此时,1xx ),222y axbx c 最小值(此时,x =x 2).要点诠释:在求应用问题的最值时,除求二次函数2y ax bx c 的最值,还应考虑实际问题的自变量的取值范围.考点六、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.【典型例题】类型一、应用二次函数的定义求值1.已知抛物线y=(m-1)x 2+mx+m 2-4的图象过原点,且开口向上.(1)求m=,并写出函数解析式;(2)写出函数图象的顶点坐标及对称轴.【思路点拨】(1)直接根据抛物线的性质可知m-1>0,m2-4=0,解之即可得到m=2,即y=x2+2x;(2)y=x2+2x=(x+1)2-1直接可写出顶点坐标及对称轴.【答案与解析】(1)∵抛物线y=(m-1)x2+mx+m2-4的图象过原点,且开口向上,∴m-1>0,且m2-4=0,解得m=±2,而m>1,∴m=2,∴y=x2+2x;(2)∵y=x2+2x=(x+1)2-1,∴顶点坐标为(-1,-1),对称轴为x=-1.【总结升华】主要考查了用待定系数法求二次函数的解析式和象限内点的坐标特点.用待定系数法求函数解析式的一般步骤是:(1)写出函数解析式的一般式,其中包括未知的系数;(2)把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方程或方程组;(3)解方程(组)求出待定系数的值,从而写出函数解析式.举一反三:【变式】已知抛物线22y m x x m过原点,求m.(1)31【答案】解:由题意得210m,∴ m=±1.又∵ m-1≠0,∴ m≠1,∴取m=-1.类型二、二次函数的图象及性质的应用2.已知点M(-2,5),N(4,5)在抛物线2y ax bx c,则抛物线的对称轴为________.【思路点拨】M(-2,5),N(4,5)两点纵坐标相等,根据抛物线的对称性,对称轴为两点横坐标的平均数.【答案】x=1;【解析】因为M(-2,5),N(4,5)两点纵坐标相等,所以M,N两点关于抛物线的对称轴对称,所以抛物线的对称轴为直线x=1.【总结升华】抛物线上纵坐标相等的两点是关于抛物线的对称轴对称的两点.抛物线的对称性:当抛物线上两点纵坐标相等时,对称轴为两点横坐标的平均数.举一反三:【变式1】如图,已知二次函数c bx x y221的图象经过A (2,0)、B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连结BA 、BC ,求△ABC 的面积.【答案】(1)把A (2,0)、B (0,-6)代入cbx xy221得:6022c c b 解得64cb ∴这个二次函数的解析式为64212x xy(2)∵该抛物线对称轴为直线4)21(24x∴点C 的坐标为(4,0)∴224OAOCAC∴6622121OBACSABC.【高清课程名称:二次函数与中考高清ID 号:关联的位置名称(播放点名称):经典例题2】【变式2】如图,在平面直角坐标系中,直线y =-3x -3与x 轴交于点A ,与y 轴交于点 C. 抛物线y =x 2+bx +c 经过A 、C 两点,且与x 轴交于另一点B(点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)若点M 是线段BC 上一动点,过点M 的直线EF 平行y 轴交x 轴于点F ,交抛物线于点 E.求ME 长的最大值;yxCA OB(3)试探究当ME 取最大值时,在抛物线x 轴下方是否存在点P ,使以M 、F 、B 、P 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,试说明理由.【答案】解:(1)当y=0时,-3x-3=0,x=-1 ∴A (-1,0)当x=0时,y=-3,∴C (0,-3),∴1-03b c c∴23b c,抛物线的解析式是:y=x 2-2x-3.当y=0时,x 2-2x-3=0,解得:x 1=-1,x 2=3 ∴B (3,0).(2)由(1)知B (3,0),C (0,-3)直线BC 的解析式是:y=x-3,设M (x ,x-3)(0≤x ≤3),则E (x ,x 2-2x-3)∴ME=(x-3)-(x 2-2x-3)=-x 2+3x=-(x-32)2+94;∴当x=32时,ME 的最大值为94.(3)答:不存在.由(2)知ME 取最大值时ME=94,E (32,154),M (32,-32)∴MF=32,BF=OB-OF=32.设在抛物线x 轴下方存在点P ,使以P 、M 、F 、B 为顶点的四边形是平行四边形,则BP ∥MF ,BF ∥PM .∴P 1(0,-32)或P 2(3,-32)当P 1(0,-32)时,由(1)知y=x 2-2x-3=-3≠-32∴P 1不在抛物线上.当P 2(3,-32)时,由(1)知y=x 2-2x-3=0≠-32∴P 2不在抛物线上.综上所述:抛物线x 轴下方不存在点P ,使以P 、M 、F 、B 为顶点的四边形是平行四边形.类型三、求二次函数的解析式3.抛物线2y axbx c 的顶点为(2,3),且与x 轴的两个交点之间的距离为6,求抛物线解析式.【思路点拨】已知了抛物线的对称轴方程和抛物线与x 轴两交点间的距离,可求出抛物线与x 轴两交点的坐标;然后用待定系数法求出抛物线的解析式,【答案与解析】解:∵抛物线的顶点为(2,3),∴抛物线的对称轴为直线x =2.又∵抛物线与x 轴的两个交点之间的距离为6,根据抛物线的对称性知抛物线与x 轴交点为(-1,0),(5,0).设抛物线为2(2)3y a x,∵过点(-1,0),∴2(12)30a .∴13a.∴抛物线解析式为21(2)33y x .即2145333yxx.【总结升华】求二次函数解析式选择恰当的方法很重要,可以节省时间.举一反三:【变式】请选择一组你喜欢的a 、b 、c 的值,使二次函数2y axbx c (a ≠0)的图象同时满足下列条件:①开口向下;②当2x 时,y 随x 的增大而增大;当x >2时,y 随x 的增大而减小.这样的二次函数的解析式可以是___ _____.【答案】由①知a <0,由②知抛物线的对称轴为直线x =2,因此解析式满足22b a,且a <0即可.答案:245yxx (答案不唯一)类型四、二次函数图象的位置与a 、b 、c 的关系4.已知二次函数2(0)y ax bx c a 的图象如图所示,有下列5个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m(am+b)(m ≠1的实数).其中正确的结论有( )A .2个B .3个C . 4个D .5个【思路点拨】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【答案】B ;【解析】由图象可知a <0,b >0,c >0,a-b+c <0,a+b+c >0,由对称性知,当x =2时函数值大于零,∴ 4a+2b+c >0,由对称性知9a+3b+c <0,且12b a,∴9302bb c ,∴23c b .把2ba 代入a+b >m(am+b)中可验证此项正确,故③④⑤正确.【总结升华】数形结合是解此类题的关键.难度较大,要求有很强的逻辑推理能力.举一反三:【变式】如图所示的二次函数2y axbx c 的图象中,张凯同学观察得出了下面四条信息:(1)240bac;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误..的有()A .2个B .3个C .4个D .1个【答案】D.(2)错了.类型五、求二次函数的最值5.二次函数2105y xx 的最小值为( )A.-35 B.-30 C .-5 D.20xy-11O1【思路点拨】直接套用求函数最值的公式即可,即y最值=244ac ba.【答案】B ;【解析】解析1:配方法化成顶点式来解,22105(5)30y x x x ,因此当5x ,30y 最小.解析2:用顶点坐标公式:105221b a,22441(5)1030441ac ba.【总结升华】求二次函数的最值有两种方法:一是用配方法化成顶点式,顶点纵坐标即为最值,二是用顶点坐标公式24,24b ac b a a来求.类型六、二次函数综合题6.如左图所示,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB =20米,顶点M 距水面6米(即MO =6米),小孔顶点N 距水面 4.5米(即NC =4.5米).当水位上涨刚好淹没小孔时,借助右图中的直角坐标系,求此时大孔的水面宽度EF .【思路点拨】先求出大孔所在抛物线解析式,再由EF 所在高度求出相应宽度EF .【答案与解析】解:设抛物线解析式为26y ax.依题意得,B(10,0)在图象上,∴ a ×102+6=0,解得a =-0.06.∴20.066y x .当y =4.5时,20.066 4.5x ,解得5x ,∴ DF =5,EF =10,即水面宽度为10米.【总结升华】解决二次函数在物体运动或抛物线建筑方面的应用题,先求抛物线解析式,然后再具体问题具体分析(即要求横向宽度找纵向条件,要求纵向高度找横向条件),充分体现了函数建模思想.举一反三:【变式1】如图所示,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起。

华东师大初中数学中考冲刺:代几综合问题--知识讲解(提高)(1)(精选)

华东师大初中数学中考冲刺:代几综合问题--知识讲解(提高)(1)(精选)

中考冲刺:代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C 运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t >0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D (4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t >0, ∴b=-t ; (2)不变.∵抛物线的解析式为:y=x 2-tx ,且M 的横坐标为1,∴当x=1时,y=1-t , ∴M (1,1-t ), ∴AM=|1-t|=t-1, ∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠A MP=45°; (3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解;②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1,即-4<4-2t <-3,-2<9-3t <-1, ∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解;④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】 解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4).(2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6. 设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB 的交点在OA 上时,即1<b ≤32,如图1,此时点E (2b ,0). ∴S =12OE·CO=12×2b ×1=b.②若直线与折线OAB 的交点在BA 上时,即32<b <52,如图2, 此时点E (3,32b -),D (2b -2,1). ∴S =S 矩-(S △OCD +S △OAE +S △DBE )= 3-[12(2b -1)×1+12×(5-2b)•(52b -)+12×3(32b -)](2)如图3,设O 1A 1与CB 相交于点M ,C 1B 1与OA 相交于点N ,则矩形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积.由题意知,DM ∥NE ,DN ∥ME ,∴四边形DNEM 为平行四边形, 根据轴对称知,∠MED =∠NED, 又∠MDE =∠NED , ∴∠MED =∠MDE ,MD =ME , ∴平行四边形DNEM 为菱形.过点D 作DH ⊥OA ,垂足为H ,设菱形DNEM 的边长为a ,由题可知, D (2b-2,1),E (2b ,0), ∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a ,则在Rt △DHM 中,由勾股定理知:222(2)1a a =-+,∴a=5.4.∴S 四边形DNEM =NE ·DH =54. ∴矩形OA 1B 1C 1与矩形OABC 的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处.(1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD ,FB=AB ,可得四边形ABFD 是正方形,则可求点E 、F 的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E 、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解.【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4.∴P(0,4),∴4=a(0-1)2+2,解得a=2,∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去) ③当EF=EP 时,EP=5<3,这种情况不存在.综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME.∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5.又∵EF=5,∴FN+MN+ME+EF=5+5,此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1B O A【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【答案与解析】根据直角三角形的面积公式,得S 1=-11=22; 根据勾股定理,得:AB=2,则S 2=1=20;A 1B=2,则S 3=21,依此类推,发现:n S =n-22.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值.解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3∴S=1013-3 2∴3+32+33+ (3100)1013-3 2问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。

华东师大初中数学初三中考冲刺:观察、归纳型问题--巩固练习(提高)

华东师大初中数学初三中考冲刺:观察、归纳型问题--巩固练习(提高)

中考冲刺:观察、归纳型问题—巩固练习(提高)【巩固练习】一、选择题1.(2015秋•扬州校级月考)如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种2. 在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()A.B.C.D.3. 边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.B.C.D.二、填空题4.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n.当n≥2时,S n-S n-1= .5.如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A、B、C、D、E、F中,会过点(45,2)的是点.6.(2016春•固始县期末)如图所示,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2.第三次将三角形OA2B2变换成三角形OA3B3,已知A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0)..(1)观察每次变换前后的三角形有何变化?找出规律再将三角形将△OA3B3变换成三角形OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将三角形OAB进行n次变换,得到三角形OA n B n,推测A n的坐标是,B n的坐标是.三、解答题7.在下图中,每个正方形由边长为1的小正方形组成:n=1n=2n=3n=4n=5(1(2)在边长为n(n≥1)的正方形中,设蓝色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.8. 定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.⑴若△DEF的面积为10000,当n为何值时,2<S n<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)⑵当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明).9. (2016•台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.10. 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三、股四、弦五”.⑴观察:3,4,5;5,12,13;7,24,25;……,发现这些勾股数的勾.都是奇数,且从3起就没有间断过.计算12(9-1)、12(9+1)与12(25-1)、12(25+1),并根据你发现的规律,分别写出能表示7,24,25的股.和弦.的算式;⑵根据⑴的规律,用n(n为奇数且...n≥3)的代数式来表示所有这些勾股数的勾.、股.、弦.,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;⑶继续观察4,3,5;6,8,10;8,15,17;……,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且...m>4)的代数式来表示他们的股.和弦..【答案与解析】一、选择题1.【答案】D;【解析】∵数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),∴质点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.2.【答案】D;【解析】∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,设正方形的面积分别为S1,S2 (2012)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x,∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD==,∴AB=AD=BC=,∴S1=5,∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∴tan∠BAA1===,∴A1B=,∴A1B=A1C=BC+A1B=,∴S2=×5=5×()2,∴==,∴A2B1=×=,∴A2C1=B1C1+A2B1=+==×()2,∴S3=×5=5×()4,由此可得:S n=5×()2n-2,∴S2012=5×()2×2012-2=5×()4022.故选D.3.【答案】A;【解析】连接AD、DF、DB,∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△△ABD≌Rt△AFD,∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第一个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第二个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第三个等边三角形的边长是××a,第四个正六边形的边长是×××a;第四个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第五个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×512⎛⎫⎪⎝⎭a,故选A.二、填空题4.【答案】.【解析】连接BE,∵在线段AC同侧作正方形ABMN及正方形BCEF,∴BE∥AM,∴△AME与△AMB同底等高,∴△AME的面积=△AMB的面积,∴当AB=n时,△AME的面积记为S n=n2,S n-1=(n-1)2=n2-n+,∴当n≥2时,S n-S n-1=,故答案为:.5.【答案】B;【解析】如图所示:当滚动一个单位长度时E、F、A的对应点分别是E′、F′、A′,连接A′D,点F′,E′作F′G⊥A′D,E′H⊥A′D,∵六边形ABCD是正六边形,∴∠A′F′G=30°,∴A′G=A′F′=,同理可得HD=,∴A′D=2,∵D(2,0)∴A′(2,2),OD=2,∵正六边形滚动6个单位长度时正好滚动一周,∴从点(2,2)开始到点(45,2)正好滚动43个单位长度, ∵=7…1,∴恰好滚动7周多一个,∴会过点(45,2)的是点B . 故答案为:B .6.【答案】(1)A 4(16,2),B 4(32,0);(2)(2n ,2),(2n+1,0).【解析】(1)根据题意,A 4的横坐标是16,纵坐标是3,B 4的横坐标是32,纵坐标是0.所以A 4(16,2),B 4(32,0),(2)由上题规律可知A n 的纵坐标总为2,横坐标为2n ,B n 的纵坐标总为0,横坐标为2n+1. 所以A n (2n ,2),B n (2n+1,0).三、解答题 7.【答案与解析】(1)1,5,9,13,奇数2n -1;4,8,12,16,偶数2n .(2)由(1)可知,当n 为偶数时P 1=2n ,∴P 2=n 2-2n (用总个数n 2减去蓝色小正方形的个数2n ),根据题意得n 2-2n =5×2n ,即n 2-12n =0,解得n =0(不合题意,舍去),n =12.∴存在偶数n =12,使得P 2=5P 1. 8.【答案与解析】 解:⑴△DEF 经n 阶分割所得的小三角形的个数为n41,∴S n =n 410000当n =5时,S 5=510000S ≈9.77; 当n =6时,S 6=610000S ≈2.44; 当n =7时,S 7=710000S ≈0.61; ∴当n =6时,2<S 6<3; ⑵S n2=S 1-n ×S 1+n ;9.【答案与解析】 解:(1)∵∠A=∠B=∠C ,∴3∠A+∠ADC=360°, ∴∠ADC=360°﹣3∠A .∵0<∠ADC<180°,∴0°<360°﹣3∠A<180°,∴60°<∠A<120°;(2)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,且∠E+∠EBF=180°.∵DE=DA,DF=DC,∴∠E=∠DAE=∠F=∠DCF,∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,∴∠DAB=∠DCB=∠ABC,∴四边形ABCD是三等角四边形.(3)①当60°<∠A<90°时,如图1,过点D作DF∥AB,DE∥BC,∴四边形BEDF是平行四边形,∠DFC=∠B=∠DEA,∴EB=DF,DE=FB,∵∠A=∠B=∠C,∠DFC=∠B=∠DEA,∴△DAE∽△DCF,AD=DE,DC=DF=4,设AD=x,AB=y,∴AE=y﹣4,CF=4﹣x,∵△DAE∽△DCF,∴,∴,∴y=﹣x2+x+4=﹣(x﹣2)2+5,∴当x=2时,y的最大值是5,即:当AD=2时,AB的最大值为5,②当∠A=90°时,三等角四边形是正方形,∴AD=AB=CD=4,③当90°<∠A<120°时,∠D为锐角,如图2,∵AE=4﹣AB>0,∴AB<4,综上所述,当AD=2时,AB 的长最大,最大值是5;此时,AE=1,如图3,过点C 作CM ⊥AB 于M ,DN ⊥AB 于N , ∵DA=DE ,DN ⊥AB , ∴AN=AE=,∵∠DAN=∠CBM ,∠DNA=∠CMB=90°, ∴△DAN ∽△CBM , ∴,∴BM=1, ∴AM=4,CM==, ∴AC===.10.【答案与解析】 解:⑴∵12(9-1)=4,12(9+1)=5;12(25-1)=12,12(25+1)=13; ∴7,24,25的股的算式为:12(49-1)=12(72-1)弦的算式为:12(49+1)=12(72+1);⑵当n 为奇数且n ≥3,勾、股、弦的代数式分别为:n ,12(n 2-1),12(n 2+1).例如关系式①:弦-股=1;关系式②:勾2+股2=弦2;证明关系式①:弦-股=12(n 2+1)-12(n 2-1)=12[(n 2+1)-(n 2-1)]=1; 或证明关系式②:勾2+股2=n 2+[12(n 2-1)]2=14n 4+12n 2+14=14(n 2+1)2=弦2;∴猜想得证.⑶例如探索得,当m 为偶数且m >4时, 股、弦的代数式分别为:(2m )2-1,(2m )2+1.。

华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)【精编】.doc

华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)【精编】.doc

中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用 数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t(s)表示移动的时间(0≤t ≤6),那么:⑴当t 为何值时,△QAP 为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?D ABC QP【思路点拨】⑴中应由△QAP为等腰直角三角形这一结论,需补充条件AQ=AP,由AQ=6-t,AP=2t,可求出t的值;⑵中四边形QAPC是一个不规则图形,其面积可由矩形面积减去△DQC与△PBC的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC的面积也可由△QAC与△CAP的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4,动点M从点B出发沿线段BC以每秒2个单位长度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(1)直接写出梯形ABCD的中位线长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD.∵点D在∠PBC的平分线上,∴∠1=∠2.∵△ABC是等边三角形,∴ BA=BC=AC,∠ACB= 60°.∵ BP=BA,∴ BP=BC.∵ BD= BD,∴△PBD≌△CBD.∴∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题【高清课堂:几何综合问题 例1 】4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2,∴S△ABE=1.由翻折的性质可知:△AB′E≌△ABE,∴EB′=EB=2∴B′C=BB′-BC=22-2,∵四边形ABCD是菱形,∴CF∥BA.∴∠ B′FC=∠B′AB=90°, ∠B′CF=∠B=45°∴'C∴S B FC△' =221CF=3-22∴S阴=SB E′△A -SB FC′△=22-2.5.如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10 cm,CD=4 cm,等腰直角△PMN的斜边MN=10 cm, A点与N点重合, MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角△PMN沿AB所在直线以1 cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN移动x (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积为y(cm2),求y与x之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN与等腰梯形ABCD重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN,AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,求出EH,根据三角形的面积公式求出即可;②当6<x≤10时,重叠部分的形状是等腰梯形ANED,求出AN=x(cm),CE=BN=10-x,DE=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,求出DF,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB 于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=. ∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。

华东师大初中数学中考冲刺:观察、归纳型问题--知识讲解(基础)

华东师大初中数学中考冲刺:观察、归纳型问题--知识讲解(基础)

中考冲刺:观察、归纳型问题—知识讲解(基础)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到. 考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n =1,2,3…代入验证,都符合时即为正确结论.【典型例题】类型一、数式归纳1.试观察下列各式的规律,然后填空:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…;则109(1)(x x x -++…1)x ++=________.【思路点拨】根据前几个等式的规律,不难得出1(1)(n n x x x--++…11)1n x x +++=-.【答案与解析】答案:111x -.【总结升华】此题归纳方法很多,注意每行数字的变化规律和符号规律.举一反三:【变式1】观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;… … …(1)根据规律填空 (x-1)(x n+x n-1+…+x+1)=__ __________.(2)根据规律计算 2100+299+298+297+…+22+2 +1= . 【答案】(1) x n+1-1 ;(2) 2101-1.【高清课堂:观察、归纳型问题例1】【变式2】按一定规律排列的一列数依次为:14916,,,,,3579按此规律排列下去,这列数中的第5个数是,第n个数是.【答案】2 25n;. 112n+1类型二、图形变化归纳2.(招远市期末)如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2012次闪烁呈现出来的图形是()A.B.C.D.【思路点拨】从所给四个图形中可以得出每旋转一次的度数,根据阴影所处的位置的规律即可算出2012次之后的图形.【答案与解析】解:易得每旋转一次,旋转角为90°,即每4次旋转一周,∵2012÷4=503,即第2012次与第4次的图案相同.故选B.【总结升华】找到图形的变化规律是解题的关键.举一反三:【变式】如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()A. B. C. D.【答案】A.3.(2015•海宁市模拟)操作:将一个边长为1的等边三角形(如图1)的每一边三等分,以居中那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(如图2),称为第一次分形.接着对每个等边三角形凸出的部分继续上述过程,即在每条边三等分后的中段向外画等边三角形,得到一个新的图形(如图3),称为第二次分形.不断重复这样的过程,就能得到雪花曲线.问题:(1)从图形的对称性观察,图4是图形(轴对称或中心对称图形)(2)图2的周长为;(3)试猜想第n次分形后所得图形的周长为.【思路点拨】(1)根据图形变化规律,图4仍然关于原三角形的对称轴成轴对称,关于对称中心成中心对称;(2)分形后,三角形的边长增加,变为原来的,再乘以3就是周长;(3)每一次分形后,边长都变为原来的,第n次分形后边长就变为原来的()n倍,再乘以3就是周长.【答案与解析】解:(1)图4是中心对称图形又是轴对称图形.(2)根据题意,边长为×4=,周长为×3=4;(3)n次分形,边长变为原来的()n倍,周长为3×()n×1=3×()n.故答案为:中心对称图形又是轴对称图形,4,3×()n.【总结升华】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.类型三、数值、数量结果归纳4.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示).【思路点拨】根据题意画出图形,再找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系即可求出答案.【答案与解析】解:如图:当点B在(3,0)点或(4,0)点时,△AOB内部(不包括边界)的整点为(1,1)(1,2)(2,1),共三个点,所以当m=3时,点B的横坐标的所有可能值是3或4;因为△AOB内部(不包括边界)的整点个数=[(点B的横坐标-1)×(点A的纵坐标-1)-3]÷2,所以当点B的横坐标为4n(n为正整数)时,m=[(4n-1)×(4-1)-3]÷2=6n-3;故答案为:3或4,6n-3.【总结升华】此题考查了点的坐标,关键是根据题意画出图形,找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系,考查数形结合的数学思想方法.【高清课堂:观察、归纳型问题例2】【变式】(2016秋•宝应县期中)我们常常用火柴棒搭几何图形探究其中的数学规律,如图是用火柴棒搭几何图形的学习实践活动,请根据几何图形思考并完成下列问题:(1)填表:图形编号 1 2 3 …火柴棒根数 …(2)搭第n 个这样的图形需要 根火柴棒;(3)如果小红现有123根火柴棒,用它可搭出 个图1大小的梯形.【答案】(1)图1有5根火柴棒,图2有9根火柴棒,图3有13根火柴棒;(2)搭第n 个这样的图形需要5n ﹣(n ﹣1)=1+4n 根火柴棒,故答案为:1+4n ;(3)设小红现有123根火柴棒可搭出n 个图1大小的梯形,则1+4n=123,解得:n=30,即小红现有123根火柴棒可搭出30个图1大小的梯形,故答案为:30.类型四、数形归纳5.在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3 km 和2 km ,AB =a km(a >1).现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:如图①所示是方案一的示意图,设该方案中管道长度为d 1 (km),且1d PB BA =+(km)(其中BP ⊥l 于点P);如图②所示是方案二的示意图,设该方案中管道长度为d 2,且2d PA PB =+(km)(其中点A ′与点A 关于l 对称,A ′B 与l 交于点P).观察计算(1)在方案一中,d 1=________km(用含a 的式子表示);(2)在方案二中,组长小宇为了计算d 2的长,作了如图③所示的辅助线,请你按小宇同学的思路计算,d 2=________km(用含a 的式子表示).探索归纳(1)①当a =4时,比较大小:d 1________d 2(填“>”、“=”或“<”);②当a =6时,比较大小:d 1________d 2(填“>”、“=”或“<”);(2)请你参考方框中的方法指导,就a(当a >1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?【思路点拨】观察计算: (1)由题意可以得知管道长度为d 1=PB+BA (km ),根据BP ⊥l 于点P 得出PB=2,故可以得出d 1的值为a+2.(2)由条件根据勾股定理可以求出KB 的值,由轴对称可以求出′K 的值,在Rt △KBA ′由勾股定理可以求出A ′B 的值224a +就是管道长度.探索归纳:(1)①把a=4代入d 1=a+2和d 2=224a +就可以比较其大小;②把a=6代入d 1=a+2和d 2=224a +就可以比较其大小;(2)分类进行讨论当d 1>d 2,d 1=d 2,d 1<d 2时就可以分别求出a 的范围,从而确定选择方案.【答案与解析】解:观察计算(1)a+2;(2)224a +.探索归纳(1)①<;②>.(2)2222212(2)(24)420d d a a a -=+-+=-.①当4a-20>0,即a >5时,22120d d ->, ∴120d d ->.∴12d d >;②当4a-20=0,即a =5时,22120d d -=,∴120d d -=.∴d 1=d 2;③当4200a -<,即a <5时,22120d d -<,∴120d d -<.∴12d d <.综上可知:当a >5时,选方案二;当a =5时,选方案一或方案二;当l <a <5时,选方案一.【总结升华】本题根据课本中所熟知的背景,打破原有的条条框框,开展探究性学习,最后通过科学的计算,推导出新的结论,即当1<a <5时选方案一,体现了平时教学中,学生开展课题学习,培养质疑精神的可贵.。

华东师大初中数学中考冲刺:观察、归纳型问题--巩固练习(基础) (精选)

华东师大初中数学中考冲刺:观察、归纳型问题--巩固练习(基础) (精选)

中考冲刺:观察、归纳型问题—巩固练习(基础)【巩固练习】一、选择题1. 用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是( )A.2 B.4 C.5 D.62.求1+2+22+23+…+22 012的值,可令S=1+2+22+23+…+22 012,则2S=2+22+23+24+…+22 013,因此,2S-S=22 013-1.仿照以上推理,计算出1+5+52+53+…+52 012的值为( )A.52 012-1 B.52 013-1 C.2013514-D.2012514-3.(2016•冷水江市三模)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0) B.(2017,1) C.(2017,﹣1) D.(2018,0)二、填空题4.(2015•盘锦四模)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是.5.(2016•天门)如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为.6. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=___________.(用含n的式子表示)三、解答题7.观察下列等式:……请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;(2)用含有n的代数式表示第n个等式:a n=______=______(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.8. 如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n . (1)将方程组1的解填入表中.(2)请依据方程组和它的解的变化规律,将方程组n 和它的解直接填入表中;9. 如图所示,是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图①倒置后与原图拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为123+++ (1)2n n n ++=.如果图①中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边的这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中都按图④的方式填上一串连续的整数-23,-22,-21,…,求图④中所有圆圈中各数的绝对值之和.10.(余杭区期中)如图,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表次数1 2 3 4 5 个数4 7 (2)如果剪了n 次,共剪出多少个小正方形?(3)能否经过若干次分割后共得到2014片纸片?若能,请直接写出相应的次数,若不能,请说明理由.(4)若将所给的正方形纸片剪成若干个小正方形(其大小可以不一样),那么你认为可以将它剪成六个小正方形吗?八个小正方形呢?如果可以,请在下图中画出剪割线的示意图;如果不可以,请简单说明理由.【答案与解析】一、选择题1.【答案】D;【解析】6个,把边长为1的小正方形的对角线与3乘3网格中的中间正方形任意边重合(其中小正方形的对角线中点与3乘3网格中的中间正方形边上的中点重合),因为对角线的长为2>1,所以这时有6个正方形网格被覆盖.2.【答案】C;【解析】设S=1+5+52+53+…+52 012,则5S=5+52+53+54+…+52 013.因此,5S-S=52 013-1,S=20135-1 4.3.【答案】B;【解析】以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为(2017,1).二、填空题4.【答案】(22016,0).【解析】∵∠OBC=90°,OB=1,BC=,∵将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,∴OC1=2OC=2×2=4=22,OC2=2OC1=2×4=8=23,OC3=2OC2=2×8=16=24,…,OC n=2n+1,∴OC2015=22016,∵2015÷6=335…5,∴点C2015与点C5在同一射线上,在x轴正半轴,坐标为(22016,0).故答案为:(22016,0).5.【答案】45.【解析】观察,发现规律:A2(2,),A4(,﹣),A6(2,2),A8(,﹣),…,∴A4n+2(2,n+),A4n+4(,﹣)(n为自然数),∵100=4×24+4,∴A100的坐标为(,﹣).故答案为:(,﹣).6.【答案】.【解析】∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.三、解答题7.【答案与解析】解:根据观察知,答案分别为:8.【答案与解析】显然该方程组不符合(2)中的规律.9.【答案与解析】解:(1)67.(2)图④中所有圆圈中共有1+2+3+…+12=12(21)782+=个数,其中23个负数,1个0,54个正数,∴图④中所有圆圈中各数的绝对值之和=|-23|+|-22|+…+|-1|+0+1+2+…+54=(1+2+3+...+23)+(1+2+3+ (54)=276+1485=1761.10.【答案与解析】解:(1)答案如下:次数 1 2 3 4 5个数 4 7 10 13 16 (2)如果剪了n次,共剪出4+3(n﹣1)=3n+1个小正方形;(3)3n+1=2014解得n=671,经过671次分割后共得到2014片纸片;(4)可以将它剪成六个小正方形,八个小正方形,如图。

华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:⑴当t为何值时,△QAP为等腰直角三角形?⑵求四边形QAPC的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?【思路点拨】⑴中应由△QAP 为等腰直角三角形这一结论,需补充条件AQ=AP ,由AQ=6-t ,AP=2t ,可求出t 的值;⑵中四边形QAPC 是一个不规则图形,其面积可由矩形面积减去△DQC 与△PBC 的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】解:(1)对于任何时刻t ,AP=2t ,DQ=t ,QA=6-t .当QA=AP 时,△QAP 为等腰直角三角形,即6-t=2t ,解得:t=2(s ),所以,当t=2s 时,△QAP 为等腰直角三角形.(2)在△QAC 中,QA=6-t ,QA 边上的高DC=12,∴S △QAC =12QA ?DC=12(6-t )?12=36-6t .在△APC 中,AP=2t ,BC=6,∴S △APC =12AP ?BC=12?2t ?6=6t .∴S 四边形QAPC=S △QAC +S △APC =(36-6t )+6t=36(cm 2).由计算结果发现:在P 、Q 两点移动的过程中,四边形QAPC 的面积始终保持不变.(也可提出:P 、Q 两点到对角线AC 的距离之和保持不变)(3)根据题意,可分为两种情况,在矩形ABCD 中:①当QA APAB BC时,△QAP ∽△ABC ,则有:62126t t ,解得t=1.2(s ),即当t=1.2s 时,△QAP ∽△ABC ;②当QAAPBC AB时,△PAQ ∽△ABC ,则有:62612t t ,解得t=3(s ),即当t=3s 时,△PAQ ∽△ABC ;所以,当t=1.2s 或3s 时,以点Q 、A 、P 为顶点的三角形与△ABC 相似.【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC 的面积也可由△QAC 与△CAP 的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性. 2.(永春县校级月考)如图,在梯形ABCD 中,AD ∥BC ,AD=3,CD=5,BC=10,梯形的高为4,动点M 从点B 出发沿线段BC 以每秒2个单位长度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒(1)直接写出梯形ABCD 的中位线长;D ABCQ P(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋?泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;106=8,(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得CE=2228=,最后根据△ADE是等腰直角三角形,即进而得出CD=8﹣6=2,在Rt△DCE中,求得DE=22可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴CE=22106=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,DE=2228=68,∵△ADE是等腰直角三角形,∴AE=6834 22DE.【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD.∵点D在∠PBC的平分线上,∴∠1=∠2.∵△ABC是等边三角形,∴ BA=BC=AC,∠ACB= 60°.∵ BP=BA,∴ BP=BC.∵ BD= BD,∴△PBD≌△CBD.∴∠BPD=∠3.∵ DB=DA,BC=AC,CD=CD,∴△BCD≌△ACD.∴1ACB.34302∴∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题【高清课堂:几何综合问题例1 】4.如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E.(1) DE 的长为;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于.【思路点拨】(1)由题意可得:DE 是线段BC 的垂直平分线,易证DE ∥AC ,即DE 是△ABC 的中位线,即可求得DE 的长;(2)由DE ∥AC ,DE=12AC ,易证△AOC ∽△EOD ,根据相似三角形的对应边成比例,即可求得OA :OE=2,然后求得△ACE 的面积,利用等高三角形的面积比等于对应底的比,即可求得答案.【答案与解析】(1)根据题意得:DE ⊥BC ,CE=BE ,∵∠ACB=90°,即AC ⊥BC ,∴DE ∥AC ,∴AD=BD ,∴DE=12AC=12×8=4;(2)∵DE ∥AC ,DE=12AC ,∴△AOC ∽△EOD ,∴OA :OE=AC :DE=2,∵CE=12BC=12×6=3,∵∠ACB=90°,AC=8,∴S △ACE =12CE ?AC=12×3×8=12,∴S △OCE =13S △ACE =4,∴S △ADE +S △ODE =S △ABC -4-12=8,∴其中最小一块的面积等于4.【总结升华】考查了折叠的性质、直角三角形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系,是一道典型的几何综合题.举一反三【变式】在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB ′E ,那么△AB ′E 与四边形AECD 重叠部分的面积是 .【答案】在Rt △ABE 中,∵∠B=45°,AB=2,∴AE=BE=2,∴S △ABE =1.由翻折的性质可知:△AB ′E ≌△ABE ,∴EB ′=EB=2∴B ′C=BB ′-BC=22-2,∵四边形ABCD 是菱形,∴CF ∥BA .∴∠ B ′FC=∠B ′AB=90°, ∠B ′CF=∠B=45°∴CF=2'=2-22B C ,∴S B FC △' =221CF =3-22∴S 阴=S B E ′△A -S B FC′△=22-2.5.如图,在等腰梯形ABCD 中,AB ∥DC ,∠A=45°,AB=10 cm ,CD=4 cm ,等腰直角△PMN 的斜边MN=10 cm , A 点与N 点重合, MN 和AB 在一条直线上,设等腰梯形ABCD 不动,等腰直角△PMN 沿AB 所在直线以 1 cm /s 的速度向右移动,直到点N 与点B 重合为止. (1)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN 移动x (s)时,等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积为y(cm 2),求y 与x 之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN ,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x ≤6时,重叠部分的形状为等腰直角△EAN ,AN=x (cm ),过点E 作EH ⊥AB 于点H ,则EH 平分AN ,求出EH ,根据三角形的面积公式求出即可;②当6<x ≤10时,重叠部分的形状是等腰梯形ANED ,求出AN=x (cm ),CE=BN=10-x ,DE=x-6,过点D 作DF ⊥AB 于F ,过点C 作CG ⊥AB 于G ,求出DF ,代入梯形面积公式求出即可. 【答案与解析】(1)等腰直角三角形;等腰梯形. (2)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重合部分图形的形状可分为以下两种情况:①当0<x ≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E 作EH ⊥AB 于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。

华东师大初中数学中考冲刺:数形结合问题--知识讲解(提高)[精品]

华东师大初中数学中考冲刺:数形结合问题--知识讲解(提高)[精品]

中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。

华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过 添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经 验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用 数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t(s)表示移动的时间(0≤t ≤6),那么:⑴当t 为何值时,△QAP 为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似? D ABC QP【思路点拨】⑴中应由△QAP为等腰直角三角形这一结论,需补充条件AQ=AP,由AQ=6-t,AP=2t,可求出t的值;⑵中四边形QAPC是一个不规则图形,其面积可由矩形面积减去△DQC与△PBC的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC的面积也可由△QAC 与△CAP的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4,动点M从点B出发沿线段BC以每秒2个单位长度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(1)直接写出梯形ABCD的中位线长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得=8,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD .∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2.∵ △ABC 是等边三角形,∴ BA=BC=AC ,∠ACB= 60°.∵ BP=BA ,∴ BP=BC .∵ BD= BD ,∴ △PBD ≌△CBD .∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题【高清课堂:几何综合问题 例1 】4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .【答案与解析】举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2,∴S△ABE=1.由翻折的性质可知:△AB′E≌△ABE,∴EB′=EB=2∴B′C=BB′-BC=22-2,∵四边形ABCD是菱形,∴CF∥BA.∴∠ B′FC=∠B′AB=90°, ∠B′CF=∠B=45°∴'C∴S B FC△' =221CF=3-22∴S阴=SB E′△A -SB FC′△=22-2.5.如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10 cm,CD=4 cm,等腰直角△PMN的斜边MN=10 cm, A点与N点重合, MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角△PMN沿AB 所在直线以1 cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN移动x (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积为y(cm2),求y 与x之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN与等腰梯形ABCD重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN,AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,求出EH,根据三角形的面积公式求出即可;②当6<x≤10时,重叠部分的形状是等腰梯形ANED,求出AN=x(cm),CE=BN=10-x,DE=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,求出DF,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。

【精编版】华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

【精编版】华东师大初中数学中考冲刺:几何综合问题--知识讲解(基础)

中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过 添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经 验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用 数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t(s)表示移动的时间(0≤t ≤6),那么:⑴当t 为何值时,△QAP 为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?D ABC QP【思路点拨】⑴中应由△QAP为等腰直角三角形这一结论,需补充条件AQ=AP,由AQ=6-t,AP=2t,可求出t的值;⑵中四边形QAPC是一个不规则图形,其面积可由矩形面积减去△DQC与△PBC的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC的面积也可由△QAC与△CAP的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4,动点M从点B出发沿线段BC以每秒2个单位长度向终点C运动;动点N同时从点C出发沿线段CD 以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(1)直接写出梯形ABCD的中位线长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得=8,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD .∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2.∵ △ABC 是等边三角形,∴ BA=BC=AC ,∠ACB= 60°.∵ BP=BA ,∴ BP=BC .∵ BD= BD ,∴ △PBD ≌△CBD .∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题【高清课堂:几何综合问题 例1 】4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .【答案与解析】【总结升华】考查了折叠的性质、直角三角形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系,是一道典型的几何综合题.举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2,∴S△ABE=1.由翻折的性质可知:△AB ′E ≌△ABE ,∴EB ′=EB=2∴B ′C=BB ′-BC=22-2,∵四边形ABCD 是菱形,∴CF ∥BA .∴∠ B ′FC=∠B ′AB=90°, ∠B ′CF=∠B=45°∴CF='2B C ∴S B FC △' =221CF =3-22 ∴S 阴=S B E ′△A -S B FC′△=22-2.5.如图,在等腰梯形ABCD 中,AB∥DC,∠A=45°,AB=10 cm ,CD=4 cm ,等腰直角△PMN 的斜边MN=10 cm , A 点与N 点重合, MN 和AB 在一条直线上,设等腰梯形ABCD 不动,等腰直角△PMN 沿AB 所在直线以1 cm /s 的速度向右移动,直到点N 与点B 重合为止.(1)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN 移动x (s)时,等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积为y(cm 2),求y与x 之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN ,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x ≤6时,重叠部分的形状为等腰直角△EAN ,AN=x (cm ),过点E 作EH ⊥AB 于点H ,则EH 平分AN ,求出EH ,根据三角形的面积公式求出即可;②当6<x ≤10时,重叠部分的形状是等腰梯形ANED ,求出AN=x (cm ),CE=BN=10-x ,DE=x-6,过点D 作DF ⊥AB 于F ,过点C 作CG ⊥AB 于G ,求出DF ,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。

华东师大初中数学中考冲刺:阅读理解型问题--知识讲解(提高)【精编】.doc

华东师大初中数学中考冲刺:阅读理解型问题--知识讲解(提高)【精编】.doc

中考冲刺:阅读理解型问题—知识讲解(提高)【中考展望】阅读理解型问题在近几年的全国中考试题中频频“亮相”,应该特别引起我们的重视. 它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等.同时,更能够综合考查同学们的数学意识和数学综合应用能力.【方法点拨】题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.阅读理解题一般可分为如下几种类型:(1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;(2)判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;(3)迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.【典型例题】类型一、阅读试题提供新定义、新定理,解决新问题1.问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.解决问题:根据以上步骤,请你解答“问题情境”.【思路点拨】画出相关图形后可得这些点在一条直线上,设出直线解析式,把任意两点代入可得直线解析式,进而把x=2012代入可得相应的棋子数目.【答案与解析】解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13)依次连接以上各点,所有各点在一条直线上,设直线解析式为y=kx+b ,把(1,4)、(2,7)两点坐标代入得427k b k b +=⎧⎨+=⎩, 解得31k b =⎧⎨=⎩,所以y=3x+1,验证:当x=3时,y=10.所以,另外一点也在这条直线上.当x=2012时,y=3×2012+1=6037.答:第2012个图有6037枚棋子.【总结升华】考查一次函数的应用;根据所给点画出相应图形,从而判断出相应的函数是解决本题的突破点.举一反三:【变式】如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C 的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A 送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含x的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为 km,货车从H到C往返2次的路程为 km,这辆货车每天行驶的路程y= .当25<x≤35时,这辆货车每天行驶的路程y= ;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?【答案】解:(1)∵当0≤x≤25时,货车从H到A往返1次的路程为2x,货车从H到B往返1次的路程为:2(5+25-x)=60-2x,货车从H到C往返2次的路程为:4(25-x+10)=140-4x,这辆货车每天行驶的路程为:y=60-2x+2x+140-4x=-4x+200.当25<x≤35时,货车从H到A往返1次的路程为2x,货车从H到B往返1次的路程为:2(5+x-25)=2x-40,货车从H到C往返2次的路程为:4[10-(x-25)]=140-4x,故这辆货车每天行驶的路程为:y=2x+2x-40+140-4x=100;故答案为:60-2x,140-4x,-4x+200,100;(2)根据当0≤x≤25时,y=-4x+200,x=0,y=200,x=25,y=100,当25<x≤35时,y=100;如图所示:(3)根据(2)图象可得:当25≤x≤35时,y恒等于100km,此时y的值最小,得出配货中心H建CD段,这辆货车每天行驶的路程最短为100km.类型二、阅读试题信息,归纳总结提炼数学思想方法2.[背景资料]低碳生活的理念已逐步被人们接受.据相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18kg ;一个人平均一年少买的衣服,相当于减排二氧化碳约6kg .[问题解决] 甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议.2009年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg .(1)2009年两校响应本校倡议的人数分别是多少?(2)2009年到2011年,甲校响应本校倡议的人数每年增加相同的数量;乙校响应本校倡议的人数每年按相同的百分率增长.2010年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍;2011年两校响应本校倡议的总人数比2010年两校响应本校倡议的总人数多100人.求2011年两校响应本校倡议减排二氧化碳的总量.【思路点拨】(1)设2009年甲校响应本校倡议的人数为x 人,乙校响应本校倡议的人数为y 人,根据题意列出方程组求解即可.(2)设2009年到2011年,甲校响应本校倡议的人数每年增加m 人;乙校响应本校倡议的人数每年增长的百分率为n .根据题目中的人数的增长率之间的关系列出方程组求解即可. 【答案与解析】解:(1)方法一:设2009年甲校响应本校倡议的人数为x 人,乙校响应本校倡议的人数为y 人 依题意得:60186600x y x y +=⎧⎨+=⎩, 解之得x=20,y=40方法二:设2009年甲校响应本校倡议的人数为x 人,乙校响应本校倡议的人数为(60-x )人,依题意得:18x+6(60-x )=600解之得:x=20,60-x=40∴2009年两校响应本校倡议的人数分别是20人和40人.(2)设2009年到2011年,甲校响应本校倡议的人数每年增加m 人;乙校响应本校倡议的人数每年增长的百分率为n .依题意得:2(20)240(1)(202)40(1)(20)40(1)100m n m n m n +⨯=⨯+⎧⎨+++=++++⎩①②, 由①得m=20n ,代入②并整理得2n 2+3n-5=0解之得n=1,n=-2.5(负值舍去)∴m=20∴2011年两校响应本校倡议减排二氧化碳的总量:(20+2×20)×18+40(1+1)2×6=2040(千克)答:2011年两校响应本校倡议减排二氧化碳的总量为2040千克.【总结升华】题考查了一元二次方程的应用及二元一次方程组的应用,解题的关键是根据题意找到合适的等量关系.举一反三:【变式】(天津期末)如图,某化工厂与A ,B 两地有公路和铁路相连,这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运输费15000元,铁路运输费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,某同学列出尚不完整的方程组如下:根据这位同学所列方程组,请你指出未知数x,y哪一个代表产品的质量,哪一个代表原料的重量:(注:x、y的单位均为吨),x表示,y表示;(2)在(1)中等式右边的括号里补全所列方程组;(3)根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.【答案】解:(1)由题意得,x表示产品重量,y表示原料重量;(2)补全后为:;(3)将x=300代入原方程组解得y=400,∴产品销售额为300×8000=2400000(元),原料费为400×1000=400000(元),又∵运费为15000+97200=112200(元),∴这批产品的销售额比原料费和运费的和多:2400000﹣(400000+112200)=1887800(元).答:这批产品的销售款比原料费和运输费的和多1887800元.类型三、阅读相关信息,通过归纳探索,发现规律,得出结论3.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2-4>0解:∵x2-4=(x+2)(x-2)∴x2-4>0可化为(x+2)(x-2)>0由有理数的乘法法则“两数相乘,同号得正”,得①2020xx+>⎧⎨->⎩,②2020xx+<⎧⎨-<⎩.解不等式组①,得x>2,解不等式组②,得x<-2,∴(x+2)(x-2)>0的解集为x>2或x<-2,即一元二次不等式x2-4>0的解集为x>2或x<-2.(1)一元二次不等式x2-16>0的解集为;(2)分式不等式13xx-->0的解集为;(3)解一元二次不等式2x2-3x<0.【思路点拨】(1)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;(2)据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;【答案与解析】解:(1)∵x2-16=(x+4)(x-4)∴x2-16>0可化为:(x+4)(x-4)>0由有理数的乘法法则“两数相乘,同号得正”,得4040x x +>⎧⎨->⎩或4040x x +<⎧⎨-<⎩. 解不等式组①,得x >4,解不等式组②,得x <-4,∴(x+4)(x-4)>0的解集为x >4或x <-4,即一元二次不等式x 2-16>0的解集为x >4或x <-4.(2)∵13x x -->0 ∴1030x x ->⎧⎨->⎩或1030x x -<⎧⎨-<⎩, 解得:x >3或x <1.(3)∵2x 2-3x=x (2x-3)∴2x 2-3x <0可化为:x (2x-3)<0由有理数的乘法法则“两数相乘,同号得正”,得0230x x >⎧⎨-<⎩或0230x x <⎧⎨->⎩, 解不等式组①,得0<x <32, 解不等式组②,无解,∴不等式2x 2-3x <0的解集为0<x <32. 【总结升华】本题考查了一元一次不等式组及方程的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.类型四、阅读试题信息,借助已有数学思想方法解决新问题4.(2016•天门)在一次自行车越野赛中,出发mh 后,小明骑行了25km ,小刚骑行了18km ,此后两人分别以akm/h ,bkm/h 匀速骑行,他们骑行的时间t (单位:h )与骑行的路程s (单位:km )之间的函数关系如图,观察图象,下列说法:①出发mh 内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km ;④此次越野赛的全程为90km ,其中正确的说法有( )A.1个B.2个C.3个D.4个【思路点拨】①根据函数图象可以判断出发mh内小明的速度比小刚快是否正确;②根据图象可以得到关于a、b、m的三元一次方程组,从而可以求得a、b、m的值,从而可以解答本题;③根据②中的b、m的值可以求得小刚追上小明时离起点的路程,本题得以解决;④根据②中的数据可以求得此次越野赛的全程.【答案】C;【解析】解:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,,解得,,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;故选C.【总结升华】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.举一反三:【变式】某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km).甲游客以一定的速度沿线路“A→D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.(1)求甲在每个景点逗留的时间,并补全图象;(2)求C,E两点间的路程;(3)乙游客与甲同时从A处出发,打算游完三个景点后回到A处,两人相约先到者在A处等候,等候时间不超过10分钟.如果乙的步行速度为3km/h,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.【答案】解:(1)由图2得,甲从A步行到D,用了0.8h,步行了1.6km,则甲步行的速度=1.60.8=2(km/h),而甲步行到C共用了1.8h,步行了2.6km,所以甲在D景点逗留的时间=1.8-0.8-2.6 1.62=1-0.5=0.5(h),所以甲在每个景点逗留的时间为0.5h;甲在C景点逗留0.5h,从2.3h开始步行到3h,步行了(3-2.3)×2=1.4km,即回到A处时共步行了4km,画图;(2)由(1)得甲从C到A步行了(3-2.3)×2=1.4km,而C到A的路程为0.8km,所以C,E两点间的路程为0.6km;(3)他们的约定能实现.理由如下:∵C,E两点间的路程为0.6km,∴走E-B-E-C的路程为0.4+0.4+0.6=1.4(km),走E-B-C的路程为0.4+1.3=1.7(km),∴乙游览的最短线路为:A→D→C→E→B→E→A(或A→E→B→E→C→D→A),总行程为1.6+1+0.6+0.4×2+0.8=4.8(km),∴乙游完三个景点后回到A处的总时间=3×0.5+4.83=3.1(h),而甲用了3小时,∴乙比甲晚0.1小时,即6分钟到A处,∴他们的约定能实现.5.问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【思路点拨】(1)根据等腰三角形的性质和角平分线性质得出即可;(2)证△OMA≌△ONB(AAS),即可得出答案;(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC- ∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.【答案与解析】(1)解:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),角平分线上的点到角的两边距离相等.(2)证明:∵CA=CB,∴∠A=∠B,∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°,∵在△OMA和△ONB中,∴△OMA≌△ONB(AAS),∴OM=ON.(3)解:OM=ON,OM⊥ON.理由如下:连接CO,则CO是AB边上的中线.∵∠ACB=90°,∴OC=AB=OB,又∵CA=CB,∴∠CAB=∠B=45°,∠1=∠2=45°,∠AOC=∠BOC=90°,∴∠2=∠B,∵BN⊥DE,∴∠BND=90°,又∵∠B=45°,∴∠3=45°,∴∠3=∠B,∴DN=NB.∵∠ACB=90°,∴∠NCM=90°.又∵BN⊥DE,∴∠DNC=90°∴四边形DMCN是矩形,∴DN=MC,∴MC=NB,∴△MOC≌△NOB(SAS),∴OM=ON,∠MOC=∠NOB,∴∠MOC-∠CON=∠NOB-∠CON,即∠MON=∠BOC=90°,∴OM⊥ON.【总结升华】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定,矩形的性质和判定,角平分线性质等知识点的应用,主要考查学生运用定理进行推理的能力,题目比较好,综合性也比较强.【高清课堂:阅读理解型问题例2】6.如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120°,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕B1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片OABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形OABC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是222041π?请你解答上述两个问题.11【思路点拨】①根据正方形旋转3次和5次的路径,利用弧长计算公式以及扇形面积公式求出即可, ②再利用正方形纸片OABC 经过4次旋转得出旋转路径,进而得出 即可得出旋转次数. 【答案与解析】解:问题①:如图,正方形纸片经过3次旋转,顶点O 运动所形成的图形是三段圆弧11223,,OO O O O O ,所以顶点O 在此运动过程中经过的路程为9019022211801802πππ⎛⎫⋅⋅⋅⋅⋅+=+ ⎪ ⎪⎝⎭.顶点O 在此过程中经过的图形与直线2l 围成的图形面积为:.正方形纸片经过5次旋转,顶点O 运动经过的路程为:90190232318018022πππ⎛⎫⋅⋅⋅⋅⋅+=+ ⎪ ⎪⎝⎭. 问题②:∵ 正方形纸片每经过4次旋转,顶点O 运动经过的路程均为: 9019022211801802πππ⎛⎫⋅⋅⋅⋅⋅+=+ ⎪ ⎪⎝⎭. 又412022201222πππ⎛⎫+=++ ⎪ ⎪⎝⎭,而2π是正方形纸片第4n +1次旋转,顶点O 运动经过的路程.∴正方形纸片OABC 按上述方法经过81次旋转,顶点O 经过的路程是412022π+. 【总结升华】此题主要考查了图形的旋转以及扇形面积公式和弧长计算公式,分别得出旋转3,4,5次旋转的路径是解决问题的关键.【高清课堂:阅读理解型问题 例1】7.问题情境: 已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少? 数学模型:12设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>. 探索研究:(1)我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质. ①填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值. 解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案.【思路点拨】(1)①根据求代数式的值的方法将x 的值函数的解析式求出其值就可以了.②根据①表中的数据画出函数的图象,再结合表中的数据就可以写出图象的相应的性质. (2)由③的结论可以把x a =直接代入y 与x 的函数关系式为2()(0)ay x x x=+>就可以求出周长的最小值. 【答案与解析】解:(1)①当1=4x 时,17=4y , 当1=3x 时,10=3y ,当1=2x 时,5=2y ,当x=1、2、3、4时,则y 的值分别为510172,,,234. ∴函数1y x x=+(x >0)的图象如图.13②当0<x <1时,y 随x 增大而减小;当x >1时,y 随x 增大而增大;当x=1时函数1y x x=+(x >0)的最小值为2. ③22222111111()()()()22()22y x x x x x x x x x x x x =+=+=+-∙+∙=-+≥ 当1=0x x -时,即x=1时,函数1y x x=+(x >0)的最小值为2. (2)当该矩形的长为a 时, 它的周长最小,最小值为4a .【总结升华】本题是一道二次函数的综合试题,考查了描点法画函数的图象的方法,二次函数最值的运用.反比例函数的图象性质的运用.。

【推荐】北师大初中数学中考冲刺:观察、归纳型问题--知识讲解(提高)

【推荐】北师大初中数学中考冲刺:观察、归纳型问题--知识讲解(提高)

中考冲刺:观察、归纳型问题—知识讲解(提高)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n=1,2,3…代入验证,都符合时即为正确结论.由于猜想归纳本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点.【典型例题】类型一、数式归纳1.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n= .【思路点拨】根据题目提供的信息,列出方程,然后求解即可.【答案与解析】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n(2n+1+3)=2×168,整理得,n2+2n-168=0,解得n1=12,n2=-14(舍去).故答案为:12.【总结升华】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.举一反三:【变式】如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和.【答案】 (1)64, 8, 15;(2)n 2-2n+2, n 2, 2n-1;(3)322331n n n -+-.类型二、图形变化归纳2.课题:两个重叠的正多边形,其中的一个绕着某一顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),3θ,4θ,5θ,6θ所表示的角如图所示.(1)用含α的式子表示角的度数:3θ=________,4θ=________,5θ=________;(2)如上图①~图④中,连结A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…1n A -与正n 边形A 0B 1B 2…1n B -重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…1n B -绕顶点A 0逆时针旋转1800n αα⎛⎫<< ⎪⎝⎭°.(3)设n θ与上述“3θ,4θ,…”的意义—样,请直接写出n θ的度数;(4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【思路点拨】(1)要求θ的度数,应从旋转中有关角度的变与不变上突破;(2)结合图形比较容易得到被A 0H 垂直平分的线段,在证明时要充分利用背景中正多边形及旋转中的角度;(3)要探究n θ的度数,要注意区分正偶数边形及正奇数边形两种情形去思考与求解度数的表达式;(4)要探究正n 边形中被A 0H 垂直平分的线段,也应注意区分正偶数边形及正奇数边形两种情形去思考与突破.【答案与解析】解:(1)60α-°,α,36α-°.(2)存在.下面就所选图形的不同分别给出证明:选图①.图①中有直线A 0H 垂直平分A 2B 1(如图所示),证明如下:证法一:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B l =∠A 0B 1A 2.又∠A 0A 2H =∠A 0B 1H =60°,∴∠HA 2B l =∠HB 1A 2,∴A 2H =B 1H ,∴点H 在线段A 2B 1的垂直平分线上.又∵A 0A 2=A 0B 1,∴点A 0在线段A 2B 1的垂直平分线上.∴直线A 0H 垂直平分A 2B 1.证法二:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B 1=∠A 0B l A 2.又∠A 0A 2H =∠A 0B 1H ,∴∠HA 2B l =∠HB 1A 2.∴HA 2=HB 1.在△A 0A 2H 与△A 0B 1H 中,∵A 0A 2=A 0B ,HA 2=HB 1,∠A 0A 2B =∠A 0B 1H ,∴△A 0A 2H ≌△A 0B 1H ,∴∠A 2A 0H =∠B 1A 0H ,∴A 0H 平分等腰三角形A 0A 2B 1的顶角∠A 2A 0B 1,∴直线A 0H 垂直平分A 2B 1.选图②.图②中有直线A 0H 垂直平分A 2B 2(如图所示),证明如下:∵A 0B 2=A 0A 2,∴∠A 0B 2A 2=∠A 0A 2B 2.又∵∠A 0B 2B 1=∠A 0A 2A 3=45°,∴∠HB 2A 2=∠HA 2B 2,∴HB 2=HA 2,∴点H 在线段A 2B 的垂直平分线上.又∵A 0B 2=A 0A 2,∴点A 0在线段A 2B 2的垂直平分线上.∴直线A 0H 垂直平分A 2B 2.(3)当n 为奇数时,当n 为偶数时,n θα=.(4)存在.当n 为奇数时,直线A 0H 垂直平分1122n n A B +-;当n 为偶数时,直线A 0H 垂直平分22n n A B .【总结升华】本题考查由特殊到一般推理论证的能力,属较难题.具有较强的逻辑推理能力及演绎推理意识是解决问题的关键.举一反三:【变式】长为20,宽为a 的矩形纸片(10<a <20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a 的值为 .【答案】解:由题意,可知当10<a <20时,第一次操作后剩下的矩形的长为a ,宽为20-a ,所以第二次操作时正方形的边长为20-a ,第二次操作以后剩下的矩形的两边分别为20-a ,2a-20.此时,分两种情况:①如果20-a >2a-20,即a <40,那么第三次操作时正方形的边长为2a-20.则2a-20=(20-a )-(2a-20),解得a=12;②如果20-a <2a-20,即a >,那么第三次操作时正方形的边长为20-a .则20-a=(2a-20)-(20-a ),解得a=15.∴当n=3时,a的值为12或15.故答案为:12或15.3.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.【思路点拨】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【答案与解析】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【总结升华】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.举一反三:【变式】(2016•安顺)观察下列砌钢管的横截面图:则第n个图的钢管数是 .【答案】第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.类型三、数值、数量结果归纳4.(2015•长清区模拟)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3,以此继续下去,则点A2015到x轴的距离是.【思路点拨】根据勾股定理可得正方形A1B1C1D1的边长为,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2015个正方形和第2015个正方形的边长,进一步得到点A2015到x轴的距离.【答案与解析】如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△C1E1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2015E4017=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为,∴D1F=,∴A1F=,∵A1E∥D1E1,∴,∴A1E=3,∴,∴点A2015到x轴的距离是,故答案为【总结升华】此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.类型四、数形归纳5.(秀屿区校级模拟)如图,从原点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;…,按此规律,继续画半圆,则第6个半圆的面积为(结果保留π).【思路点拨】根据已知图形得出第5个半圆的半径,进而得出第5个半圆的面积,得出第n个半圆的半径,进而得出答案.【答案与解析】∵以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,∴第5个半圆的直径为16,根据已知可得出第n个半圆的直径为:2n﹣1,则第n个半圆的半径为:=2n﹣2,第n个半圆的面积为:=22n﹣5π.所以第6个半圆的面积为:128π.故答案为:128π.【总结升华】此题主要考查了图形的变化规律,注意数字之间变化规律,根据已知得出第n个半圆的直径为:2n﹣1是解题关键.。

【精选】北师大初中数学中考冲刺:观察、归纳型问题--知识讲解(提高)

【精选】北师大初中数学中考冲刺:观察、归纳型问题--知识讲解(提高)

中考冲刺:观察、归纳型问题—知识讲解(提高)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n=1,2,3…代入验证,都符合时即为正确结论.由于猜想归纳本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点.【典型例题】类型一、数式归纳1.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n= .【思路点拨】根据题目提供的信息,列出方程,然后求解即可.【答案与解析】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n (2n+1+3)=2×168,整理得,n 2+2n-168=0,解得n 1=12,n 2=-14(舍去).故答案为:12.【总结升华】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.举一反三:【变式】如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和.【答案】 (1)64, 8, 15;(2)n 2-2n+2, n 2, 2n-1;(3)322331n n n -+-.类型二、图形变化归纳2.课题:两个重叠的正多边形,其中的一个绕着某一顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),3θ,4θ,5θ,6θ所表示的角如图所示.(1)用含α的式子表示角的度数:3θ=________,4θ=________,5θ=________;(2)如上图①~图④中,连结A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…1n A -与正n 边形A 0B 1B 2…1n B -重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…1n B -绕顶点A 0逆时针旋转1800n αα⎛⎫<< ⎪⎝⎭°. (3)设n θ与上述“3θ,4θ,…”的意义—样,请直接写出n θ的度数;(4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【思路点拨】(1)要求θ的度数,应从旋转中有关角度的变与不变上突破;(2)结合图形比较容易得到被A 0H 垂直平分的线段,在证明时要充分利用背景中正多边形及旋转中的角度;(3)要探究n θ的度数,要注意区分正偶数边形及正奇数边形两种情形去思考与求解度数的表达式;(4)要探究正n 边形中被A 0H 垂直平分的线段,也应注意区分正偶数边形及正奇数边形两种情形去思考与突破.【答案与解析】解:(1)60α-°,α,36α-°.(2)存在.下面就所选图形的不同分别给出证明:选图①.图①中有直线A 0H 垂直平分A 2B 1(如图所示),证明如下:证法一:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B l =∠A 0B 1A 2.又∠A 0A 2H =∠A 0B 1H =60°,∴∠HA 2B l =∠HB 1A 2,∴A 2H =B 1H ,∴点H 在线段A 2B 1的垂直平分线上.又∵A 0A 2=A 0B 1,∴点A 0在线段A 2B 1的垂直平分线上.∴直线A 0H 垂直平分A 2B 1.证法二:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B 1=∠A 0B l A 2.又∠A 0A 2H =∠A 0B 1H ,∴∠HA 2B l =∠HB 1A 2.∴HA 2=HB 1.在△A 0A 2H 与△A 0B 1H 中,∵A 0A 2=A 0B ,HA 2=HB 1,∠A 0A 2B =∠A 0B 1H ,∴△A 0A 2H ≌△A 0B 1H ,∴∠A 2A 0H =∠B 1A 0H ,∴A 0H 平分等腰三角形A 0A 2B 1的顶角∠A 2A 0B 1,∴直线A 0H 垂直平分A 2B 1.选图②.图②中有直线A 0H 垂直平分A 2B 2(如图所示),证明如下:∵A 0B 2=A 0A 2,∴∠A 0B 2A 2=∠A 0A 2B 2.又∵∠A 0B 2B 1=∠A 0A 2A 3=45°,∴∠HB 2A 2=∠HA 2B 2,∴HB 2=HA 2,∴点H 在线段A 2B 的垂直平分线上.又∵A 0B 2=A 0A 2,∴点A 0在线段A 2B 2的垂直平分线上.∴直线A 0H 垂直平分A 2B 2.(3)当n 为奇数时,当n 为偶数时,n θα=.(4)存在.当n 为奇数时,直线A 0H 垂直平分1122n n A B +-;当n 为偶数时,直线A 0H 垂直平分22n n A B .【总结升华】本题考查由特殊到一般推理论证的能力,属较难题.具有较强的逻辑推理能力及演绎推理意识是解决问题的关键.举一反三:【变式】长为20,宽为a 的矩形纸片(10<a <20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a 的值为 .【答案】解:由题意,可知当10<a <20时,第一次操作后剩下的矩形的长为a ,宽为20-a ,所以第二次操作时正方形的边长为20-a ,第二次操作以后剩下的矩形的两边分别为20-a ,2a-20.此时,分两种情况:①如果20-a >2a-20,即a <40,那么第三次操作时正方形的边长为2a-20.则2a-20=(20-a )-(2a-20),解得a=12;②如果20-a <2a-20,即a >,那么第三次操作时正方形的边长为20-a .则20-a=(2a-20)-(20-a ),解得a=15.∴当n=3时,a 的值为12或15.故答案为:12或15.3.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n 个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n 的值为 .【思路点拨】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【答案与解析】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【总结升华】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.举一反三:【变式】(2016•安顺)观察下列砌钢管的横截面图:则第n个图的钢管数是 .【答案】第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.类型三、数值、数量结果归纳4.(2015•长清区模拟)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3,以此继续下去,则点A2015到x轴的距离是.【思路点拨】根据勾股定理可得正方形A1B1C1D1的边长为,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2015个正方形和第2015个正方形的边长,进一步得到点A2015到x轴的距离.【答案与解析】如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△C1E1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2015E4017=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为,∴D1F=,∴A1F=,∵A1E∥D1E1,∴,∴A1E=3,∴,∴点A2015到x轴的距离是,故答案为【总结升华】此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.类型四、数形归纳5.(秀屿区校级模拟)如图,从原点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;…,按此规律,继续画半圆,则第6个半圆的面积为(结果保留π).【思路点拨】根据已知图形得出第5个半圆的半径,进而得出第5个半圆的面积,得出第n个半圆的半径,进而得出答案.【答案与解析】∵以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,∴第5个半圆的直径为16,根据已知可得出第n个半圆的直径为:2n﹣1,则第n个半圆的半径为:=2n﹣2,第n个半圆的面积为:=22n﹣5π.所以第6个半圆的面积为:128π.故答案为:128π.【总结升华】此题主要考查了图形的变化规律,注意数字之间变化规律,根据已知得出第n个半圆的直径为:2n﹣1是解题关键.。

华东师大初中数学初三中考冲刺:阅读理解型问题--知识讲解(基础)

华东师大初中数学初三中考冲刺:阅读理解型问题--知识讲解(基础)

中考冲刺:阅读理解型问题—知识讲解(基础):【中考展望】阅读理解型问题在近几年的全国中考试题中频频“亮相”,应该特别引起我们的重视. 它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等.同时,更能够综合考查同学们的数学意识和数学综合应用能力.【方法点拨】题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.阅读理解题一般可分为如下几种类型:(1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;(2)判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;(3)迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.【典型例题】类型一、阅读试题提供新定义、新定理,解决新问题1.阅读材料:如图,建立平面直角坐标系,点P(x,0)是x轴上一点,离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角△A′CB,根据以上阅读材料,解答下列问题:【思路点拨】标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,然后在坐标系内描出各点,利用勾股定理得出结论即可.【答案与解析】B(2,3)的距离之和,故答案为(2,3);∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,如图所示:设点A关于x轴的对称点为A′,则PA=PA′,∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,∴PA′+PB的最小值为线段A′B的长度,∵A(0,7),B(6,1)∴A′(0,-7),A′C=6,BC=8,故答案为:10.【总结升华】本题考查的是轴对称——最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.类型二、阅读试题信息,归纳总结提炼数学思想方法2.阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法:当a-b>0时,一定有a>b;当a-b=0时,一定有a=b;当a-b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:∵a2-b2=(a+b)(a-b),a+b>0,∴(a2-b2)与(a-b)的符号相同.当a2-b2>0时,a-b>0,得a>b;当a2-b2=0时,a-b=0,得a=b;当a2-b2<0时,a-b<0,得a<b.解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:①W1= (用x、y的式子表示);W2= (用x、y的式子表示);②请你分析谁用的纸面积更大.(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.①在方案一中,a1= km(用含x的式子表示);②在方案二中,a2= km(用含x的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.【思路点拨】(1)①根据题意得出3x+7y和2x+8y,即得出答案;②求出W1-W2=x-y,根据x和y的大小比较即可;(2)①把AB和AP的值代入即可;②过B作BM⊥AC于M,求出AM,根据勾股定理求出BM.再根据勾股定理求出BA′,即可得出答案;③求出a12-a22=6x-39,分别求出6x-39>0,6x-39=0,6x-39<0,即可得出答案.【答案与解析】(1)解:①W1=3x+7y,W2=2x+8y,故答案为:3x+7y,2x+8y.②解:W1-W2=(3x+7y)-(2x+8y)=x-y,∵x>y,∴x-y>0,∴W1-W2>0,得W1>W2,所以张丽同学用纸的总面积更大.(2)①解:a1=AB+AP=x+3,故答案为:x+3.②解:过B作BM⊥AC于M,则AM=4-3=1,在△ABM中,由勾股定理得:BM2=AB2-12=x2-1,当a12-a22>0(即a1-a2>0,a1>a2)时,6x-39>0,解得x>6.5,当a12-a22=0(即a1-a2=0,a1=a2)时,6x-39=0,解得x=6.5,当a12-a22<0(即a1-a2<0,a1<a2)时,6x-39<0,解得x<6.5,综上所述,当x>6.5时,选择方案二,输气管道较短,当x=6.5时,两种方案一样,当0<x<6.5时,选择方案一,输气管道较短.【总结升华】本题考查了勾股定理,轴对称——最短路线问题,整式的运算等知识点的应用,通过做此题培养了学生的计算能力和阅读能力,题目具有一定的代表性,是一道比较好的题目.举一反三:【变式】如图所示,正方形ABCD和正方形EFGH的边长分别为,对角线BD、FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O在直线l上平移时,正方形 EFGH也随之平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D=_______,O2F=______;(2)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1 O2 =_________.(3)随着中心 O2在直线l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)【答案】(1)O1D=2,O2F=1;(2)O1 O2 =3;(3)当O1 O2>3或0≤O1 O2<1时,两个正方形无公共点;当O1 O2=1时,两个正方形有无数个公共点;当1<O1 O2<3时,两个正方形有2个公共点.类型三、阅读相关信息,通过归纳探索,发现规律,得出结论3.(2016•无锡一模)已知:如图正方形ABCD中,点E、F分别是边AB和BC上的点,且满足BE=CF.(1)不用圆规,请只用不带刻度的直尺作图:在边CD和DA上分别作出点G和点H,使DG=AH=BE=CF(保留作图痕迹,不要求写作法)(2)在(1)的条件下,当点E在AB边上的何处时,能使S四边形EFGH:S四边形ABCD=5:8,并说明理由.(3)如图:正六边形ABCDEF中,点A′、B′、C′、D′、E′、F′分别是边AB、BC、CD、DE、EF、FA上的点,且AA′=BB′=CC′=DD′=EE′=FF′.①设AA′:A′B=1:3,则S六边形A′B′C′D′E′F′:S六边形ABCDEF= ;②设AA′:A′B=k,求S六边形A′B′C′D′E′F′:S六边形ABCDEF的值(用含k的代数式表示).【思路点拨】(1)根据正方形是中心对称图形作图即可;(2)设BE=CF=x,根据勾股定理表示出EF,根据相似多边形的性质列出比例式,计算即可;(3)①作B′H⊥AB交AB的延长线于H,设AA′=a,根据题意表示出A′B,利用三角函数的定义表示出B′H和BH,根据勾股定理求出A′B′,根据相似多边形的性质计算即可;②设AA′=k,利用①的思路进行解答即可.【答案与解析】解:(1)如图1所示:DG=AH=BE=CF;(2)设BE=CF=x,BC=y,则BF=y﹣x,由勾股定理得,EF2=BE2+BF2=x2+(y﹣x)2=2x2﹣2xy+y2,∵S四边形EFGH:S四边形ABCD=5:8,∴(2x2﹣2xy+y2):(y2)=5:8,则2()2﹣2×+=0,解得,=,=,∴当BE=AB或BE=AB时,S四边形EFGH:S四边形ABCD=5:8;(3)①如图3,作B′H⊥AB交AB的延长线于H,设AA′=a,则A′B=3a,AB=4a,B′B=a,∵六边形ABCDEF为正六边形,∴∠ABC=120°,∴∠B′BH=60°,∴BH=a,B′H=a,∴A′B′==a,∴=,∴S六边形A′B′C′D′E′F′:S六边形ABCDEF=13:16,故答案为:13:16;②∵AA′:A′B=k,∴设AA′=k,则A′B=1,则BH=k,B′H=k,∴A′B′==,AB=1+k,∴S六边形A′B′C′D′E′F′:S六边形ABCDEF=()2=.【总结升华】本题考查的是正方形和正六边形的性质以及全等三角形的判定和性质,掌握正方形是中心对称图形、正确求出正六边形的内角的度数、熟记锐角三角函数的定义是解题的关键.举一反三:【变式】(2015秋•邹城市期中)阅读材料大数学家高新在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:1×2=.2×.3×.如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4=;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21=;1×2+2×3+3×4+4×5+…+n(n+1)=.【答案】解:(1)三式相加得:1×2+2×3+3×4=(1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=×3×4×5;(2)归纳总结得:原式=×20×21×22;原式=n(n+1)(n+2).故答案为:(1)×3×4×5;(2)×20×21×22;n(n+1)(n+2).类型四、阅读试题信息,借助已有数学思想方法解决新问题4.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【思路点拨】【答案与解析】解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,7444422【总结升华】此题考查了相似三角形的判定与性质、正方形的性质、直角梯形的性质以及勾股定理等知识.此题难度较大,注意数形结合思想、方程思想与分类讨论思想的应用,注意辅助线的作法.5.阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【思路点拨】(1)在小丽展示的情形二中,如图3,根据三角形的外角定理、折叠的性质推知∠B=2∠C;(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B-2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是88°、88°.【答案与解析】解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C;故答案是:是;(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC 是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,∴∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角,∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.【总结升华】本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质,难度较大.举一反三:【阅读理解型问题例3】【变式】阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF即为△ABC 的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2) 如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.①②③【答案】(1) 如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2) 此时共有2个友好矩形,如图中的矩形BCAD、ABEF.易知,矩形BCAD、ABEF的面积都等于△ABC 面积的2倍,∴△ABC的“友好矩形”的面积相等.(3) 此时共有3个友好矩形,如图的矩形BCDE 、CAFG 及ABHK ,其中矩形ABHK 的周长最小 .证明如下:易知,这三个矩形的面积相等,令其为S. 设矩形BCDE 、CAFG 及ABHK 的周长分别为L 1,L 2,L 3, △ABC 的边长BC=a ,CA=b ,AB=c ,则L 1=2S a +2a ,L 2=2S b +2b ,L 3=2S c+2c . ∴L 1-L 2=(2S a +2a)-(2S b +2b)=2(a-b)ab S ab , 而ab >S ,a >b ,∴L 1-L 2>0,即L 1>L 2 .同理可得,L 2>L 3 .∴L 3最小,即矩形ABHK 的周长最小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考冲刺:观察、归纳型问题—知识讲解(提高)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n=1,2,3…代入验证,都符合时即为正确结论.由于猜想归纳本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点.【典型例题】类型一、数式归纳1.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n= .【思路点拨】根据题目提供的信息,列出方程,然后求解即可.【答案与解析】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n (2n+1+3)=2×168,整理得,n 2+2n-168=0,解得n 1=12,n 2=-14(舍去).故答案为:12.【总结升华】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.举一反三:【高清课堂:观察、归纳型问题 例5】【变式】如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和.【答案】 (1)64, 8, 15;(2)n 2-2n+2, n 2, 2n-1;(3)322331n n n -+-.类型二、图形变化归纳2.课题:两个重叠的正多边形,其中的一个绕着某一顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),3θ,4θ,5θ,6θ所表示的角如图所示.(1)用含α的式子表示角的度数:3θ=________,4θ=________,5θ=________;(2)如上图①~图④中,连结A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…1n A -与正n 边形A 0B 1B 2…1n B -重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…1n B -绕顶点A 0逆时针旋转1800n αα⎛⎫<< ⎪⎝⎭°. (3)设n θ与上述“3θ,4θ,…”的意义—样,请直接写出n θ的度数;(4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【思路点拨】(1)要求θ的度数,应从旋转中有关角度的变与不变上突破;(2)结合图形比较容易得到被A 0H 垂直平分的线段,在证明时要充分利用背景中正多边形及旋转中的角度;(3)要探究n θ的度数,要注意区分正偶数边形及正奇数边形两种情形去思考与求解度数的表达式;(4)要探究正n 边形中被A 0H 垂直平分的线段,也应注意区分正偶数边形及正奇数边形两种情形去思考与突破.【答案与解析】解:(1)60α-°,α,36α-°.(2)存在.下面就所选图形的不同分别给出证明:选图①.图①中有直线A 0H 垂直平分A 2B 1(如图所示),证明如下:证法一:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B l =∠A 0B 1A 2.又∠A 0A 2H =∠A 0B 1H =60°,∴∠HA 2B l =∠HB 1A 2,∴A 2H =B 1H ,∴点H 在线段A 2B 1的垂直平分线上.又∵A 0A 2=A 0B 1,∴点A 0在线段A 2B 1的垂直平分线上.∴直线A 0H 垂直平分A 2B 1.证法二:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B 1=∠A 0B l A 2.又∠A 0A 2H =∠A 0B 1H ,∴∠HA 2B l =∠HB 1A 2.∴HA 2=HB 1.在△A 0A 2H 与△A 0B 1H 中,∵A 0A 2=A 0B ,HA 2=HB 1,∠A 0A 2B =∠A 0B 1H ,∴△A 0A 2H ≌△A 0B 1H ,∴∠A 2A 0H =∠B 1A 0H ,∴A 0H 平分等腰三角形A 0A 2B 1的顶角∠A 2A 0B 1,∴直线A 0H 垂直平分A 2B 1.选图②.图②中有直线A 0H 垂直平分A 2B 2(如图所示),证明如下:∵A 0B 2=A 0A 2,∴∠A 0B 2A 2=∠A 0A 2B 2.又∵∠A 0B 2B 1=∠A 0A 2A 3=45°,∴∠HB 2A 2=∠HA 2B 2,∴HB 2=HA 2,∴点H 在线段A 2B 的垂直平分线上.又∵A 0B 2=A 0A 2,∴点A 0在线段A 2B 2的垂直平分线上.∴直线A 0H 垂直平分A 2B 2.(3)当n 为奇数时,当n 为偶数时,n θα=.(4)存在.当n 为奇数时,直线A 0H 垂直平分1122n n A B +-;当n 为偶数时,直线A 0H 垂直平分22n n A B .【总结升华】本题考查由特殊到一般推理论证的能力,属较难题.具有较强的逻辑推理能力及演绎推理意识是解决问题的关键.举一反三:【变式】长为20,宽为a 的矩形纸片(10<a <20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a 的值为 .【答案】解:由题意,可知当10<a <20时,第一次操作后剩下的矩形的长为a ,宽为20-a ,所以第二次操作时正方形的边长为20-a ,第二次操作以后剩下的矩形的两边分别为20-a ,2a-20.此时,分两种情况:①如果20-a >2a-20,即a <40,那么第三次操作时正方形的边长为2a-20.则2a-20=(20-a )-(2a-20),解得a=12;②如果20-a <2a-20,即a >,那么第三次操作时正方形的边长为20-a .则20-a=(2a-20)-(20-a ),解得a=15.∴当n=3时,a 的值为12或15.故答案为:12或15.3.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n 个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n 的值为 .【思路点拨】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【答案与解析】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【总结升华】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.举一反三:【高清课堂:观察、归纳型问题例3】【变式】(2016•安顺)观察下列砌钢管的横截面图:则第n个图的钢管数是 .【答案】第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.类型三、数值、数量结果归纳4.(2015•长清区模拟)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3,以此继续下去,则点A2015到x轴的距离是.【思路点拨】根据勾股定理可得正方形A1B1C1D1的边长为,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2015个正方形和第2015个正方形的边长,进一步得到点A2015到x轴的距离.【答案与解析】如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△C1E1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2015E4017=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为,∴D1F=,∴A1F=,∵A1E∥D1E1,∴,∴A1E=3,∴,∴点A2015到x轴的距离是,故答案为【总结升华】此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.类型四、数形归纳5.(秀屿区校级模拟)如图,从原点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;…,按此规律,继续画半圆,则第6个半圆的面积为(结果保留π).【思路点拨】根据已知图形得出第5个半圆的半径,进而得出第5个半圆的面积,得出第n个半圆的半径,进而得出答案.【答案与解析】∵以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,∴第5个半圆的直径为16,根据已知可得出第n个半圆的直径为:2n﹣1,则第n个半圆的半径为:=2n﹣2,第n个半圆的面积为:=22n﹣5π.所以第6个半圆的面积为:128π.故答案为:128π.【总结升华】此题主要考查了图形的变化规律,注意数字之间变化规律,根据已知得出第n个半圆的直径为:2n﹣1是解题关键.。

相关文档
最新文档