最新人教A版必修5高中数学 1.2 应用举例教案(精品)
高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》教案
《解三角形应用举例》教案一、教学目标1.知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.2.过程与方法(1)通过解决“底部不可到达的物体高度测量”的问题,初步掌握将实际问题转化为解斜三角形的问题的方法.(2)进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力.3.情感、态度与价值观进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力二、教学重点和难点教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学关键:将实际问题中的高度问题转化为数学问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法,步步改进方法,探求最佳方法.三、教法与学法导航教学方法:本节课是解三角形应用举例的延伸.采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架.通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法.教学形式要坚持“引导——讨论——归纳”,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.作业设计思考题,提供学生更广阔的思考空间.学习方法:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.四、教学过程1.创设情境,导入新课提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.2.主题探究,合作交流例1 如图1,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.图1分析:求AB 长的关键是先求AE ,在△ACE 中,如能求出点C 到建筑物顶部A 的距离CA ,再测出由点C 观察A 的仰角,就可以计算出AE 的长.解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD =a ,测角仪器的高是h ,那么,在△ACD 中,根据正弦定理可得: )sin(sin βαβ-=a AC , h a h AC h AE AB +-=+=+=)sin(sin sin sin βαβαα. 例 2 如图2,在山顶铁塔上B 处测得地面上一点A 的俯角0454'︒=α,在塔底C 处测得A 处的俯角150'︒=β.已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1m ).图2教师:根据已知条件,大家能设计出解题方案吗(给时间给学生讨论思考)?若在△ABD 中求CD ,则关键需要求出哪条边呢?学生:需求出BD 边.教师:那如何求BD 边呢?学生:可首先求出AB 边,再根据∠BAD=α求得.解:在△ABC 中,∠BCA =90°+β,∠ABC =90°-α,∠BAC =αβ-,∠BAD =α.根据正弦定理, )sin(βα-BC =)90sin(β+︒AB.所以 AB =)sin()90sin(βαβ-+︒BC =)sin(cos βαβ-BC .在Rt △ABD 中,得:BD =AB sin ∠BAD =)sin(sin cos βααβ-BC .将测量数据代入上式,得:BD =)1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'''︒︒︒≈177.4(m ).CD =BD -BC ≈177-27.3=150(m ).学生:山的高度约为150 m.教师:有没有别的解法呢?学生:若在.△ACD 中求CD ,可先求出AC .教师:分析得很好,请大家接着思考如何求出AC ?学生:同理,在△ABC 中,根据正弦定理求得.(解题过程略)例3 如图3,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15°的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25°的方向上,仰角为8°,求此山的高度CD (精确到1m ).图3教师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?学生:在△BCD 中教师:在△BCD 中,已知BD 或BC 都可求出CD ,根据条件,易计算出哪条边的长? 学生:BC 边解:在△ABC 中, ∠A =15°,∠C = 25°-15°=10°,根据正弦定理,A BC sin =CAB sin , BC =C A AB sin sin =︒︒10sin 15sin 5≈7.452 4(km ). tan tan81047(m)CD BC DBC BC =⨯∠≈⨯︒≈答:山的高度约为1047m.教材第15页练习第1、2、3题.3.小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.4.课外作业(1)教材第19、20页习题1.2 A 组第6,7,8题(2)为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?答案:20+3320m。
新人教A版必修5高中数学学案教案:《1.2 应用举例(二)》
数学必修五《1.2 应用举例(二)》教案教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法 师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m ) ③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C , BC =sin sin AB A C=5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:20+2033(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_28
《秦九韶-海伦公式》教案【教学内容】人教版数学必修五《秦九韶-海伦公式》【教学对象】高一学生【教材分析】本节内容是高中数学必修五的第一章,是阅读与思考部分中的内容,本节课的主要意在引领学生运用所学知识对“秦九韶-海伦公式”进行证明,并进行有效的应用,让同学们从中体会到数学之美。
【知识背景】海伦公式与秦九韶公式古希腊的几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式“如果一个三角形的三边长分别为a,b,c,记那么三角形的面积为:..这一公式称为海伦公式;海伦公式又译作希伦公式、海龙公式、希罗公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式。
中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。
它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。
所以他们想到了三角形的三条边。
如果这样做求三角形的面积也就方便多了。
但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。
“术”即方法。
三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。
相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
我国南宋时期数学家秦九韶也曾提出利用三角形的三边长求面积的秦九韶公式:.其实这两个公式实质是一致的,聪明的你能够推导出来吗?对比这两个公式,我们发现海伦公式形式漂亮,便于记忆,但是如果一个三角形的三边长是无理数的时候,还是秦九韶公式处理比较方便,现在请您选择适当的公式解决一些问题吧。
【学情分析】高二学生在进入本节课的学习之前,需要熟悉前面已学过的余弦定理、三角形面积公式以及平方差公式和完全平方公式。
新课标人教A版必修5教案(全)
数学必修5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
新人教A版必修5高中数学第一章1.2应用举例(一)导学案
§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题 1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45° 解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin∠ACBsin ∠ABC =50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小.二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24(n mile).(2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km.能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos 45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_31
海伦和秦九韶教学设计教材分析《海伦和秦九韶》是人教A版2003课标版必修5第一章第二节的阅读与思考,是学生学习了正弦和余弦定理,推导了已知三角形的两边及其夹角求三角形面积之后,对求三角形面积的进一步拓展学习。
海伦公式和秦九韶的“三斜求积”公式弥补了已知三角形三边求三角形面积的空白,并在生产实际中的应用很广泛。
本阅读材料可以作为一个引子可以激起学生进一步了解他们二位的兴趣,从而激发起学习数学的兴趣。
学情分析我校处于西南地区,我们班学生一半以上是留守儿童,由于家庭和学习压力等因素,网上学习机会少,自学能力相对较差。
在学生眼中的数学学习大多就是定义、定理、公式的学习,还有就是练习。
这一节课对于学生来说是新颖的,不只是公式学习,还有人文文化的学习。
高一年级的学生有一定的解三角形的基础与类比学习的能力,但是学生计算能力和计算技巧比较差。
教学目标1.知识与能力:(1)了解“三斜求积”公式,记忆海伦公式,掌握公式推导的方法;(2)能较熟练选择、应用海伦或“三斜求积”公式计算三角形的面积。
(3)数学语言转化能力。
(3)掌握基本量思想。
2.过程与方法:回顾旧知,接着问题引入,引发学生学习的兴趣,整个公式推导用类比的学习手法,学生很容易入手,在推导过程中,培养学生的计算能力以及计算技巧。
3.情感态度与价值观:在公式的推导过程,采用小组讨论的形式进行,既培养学生的运算能力,又培养学生的团体合作精神。
通过海伦和秦九韶的人物介绍,学生可以学习他们身上勇于探索的精神。
激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
教学重难点海伦和“三斜求积”公式的推导突破重难点运用基本量思想,采用类比的学习方法,从一般到特殊的学习方法,计算过程中仔细分析式子结构,运用平方差公式和完全平方公式。
设计理念以学生为主体,知识由浅入深、层层深入,增强学生学好数学的心里体验,产生学习数学的兴趣,体验在学习中获得成功。
高中数学新人教A版必修5学案 1.2 应用举例(第3课时)
1.2 应用举例(第3课时)学习目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.2.本节课是在学习了相关内容后的第三节课,在对解法有了基本了解的基础上,通过综合训练强化相应的能力.3.提升提出问题、正确分析问题、独立解决问题的能力,并在学习过程中发扬探索精神. 合作学习一、设计问题,创设情境提问:前面我们学习了如何测量距离和高度,这些实际上都可转化为已知三角形的一些边和角求其余边的问题.然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题.二、信息交流,揭示规律在实际的生活中,人们又会遇到新的问题,仍然需要用我们学过的解三角形的知识来解决,大家身边有什么例子吗?三、运用规律,解决问题【例1】如图,一艘海轮从A出发,沿北偏东75°的方向航行67.5n mile后到达海岛B,然后从B出发,沿北偏东32°的方向航行54.0n mile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01n mile)问题1:要想解决这个问题,首先应该搞懂“北偏东75°的方向”这指的是什么?【例2】某巡逻艇在A处发现北偏东45°相距9海里的C处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多长时间才追赶上该走私船?问题2:你能否根据题意画出方位图?问题3:以上是用正弦定理、余弦定理来解决的,我们能不能都用余弦定理来解决呢?四、变式训练,深化提高【例3】如图,海中小岛A周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里到C处,在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?练习:如图,有两条相交成60°角的直线XX',YY',交点是O,甲、乙分别在OX,OY上,起初甲在离O点3千米的A点,乙在离O点1千米的B点,后来两人同时以每小时4千米的速度,甲沿XX'方向,乙沿Y'Y方向步行.(1)起初,两人的距离是多少?(2)用包含t的式子表示t小时后两人的距离;(3)什么时候两人的距离最短?五、限时训练1.在某电场中,一个粒子的受力情况如图所示,则粒子的运动方向为( )A.南偏西B.北偏西C.北偏东D.南偏东2.如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cosθ=.3.一辆汽车从A点出发,沿一条笔直的海岸公路以100km/h向东匀速行驶,汽车开动时,在点A的南偏东方向距点A 500km的B处的海上有一快艇,此时,快艇所在B处距海岸300km.现快艇上有一快递要送给汽车的司机,求快艇以最小速度行驶时的行驶方向与AB所成的角,并求出快艇的最小速度.六、反思小结,观点提炼解三角形应用题的一般步骤:参考答案三、运用规律,解决问题【例1】解:在△ABC中,∠ABC=180°-75°+32°=137°,根据余弦定理,AC=≈113.15(n mile),根据正弦定理,,sin∠CAB=≈0.3255,所以∠CAB≈19.0°,75°-∠CAB=56.0°.答:此船应该沿北偏东56.0°的方向航行,需要航行113.15n mile.问题1:这是方位角,这实际上就是解三角形,由方位角的概念可知,首先根据三角形的内角和定理求出AC边所对的角∠ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB,就可以知道AC的方向和路程.【例2】解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x,AB=14x,AC=9,∠ACB=75°+45°=120°,则由余弦定理,可得(14x)2=92+(10x)2-2×9×10xcos120°,化简得32x2-30x-27=0,即x=或x=-(舍去).所以BC=10x=15,AB=14x=21.又因为sin∠BAC=,所以∠BAC=38°13',或∠BAC=141°47'(钝角不合题意,舍去).所以38°13'+45°=83°13'.答:巡逻艇应沿北偏东83°13'的方向追赶,经过1.5小时追赶上该走私船.问题2:在解三角形中有很多问题都要画出平面示意图,图画的好坏有时也会影响到解题,这是建立数学模型的一个重要方面.问题3:同例2中解得BC=15,AB=21,在△ABC中,由余弦定理,得cos∠CAB=≈0.7857,所以∠CAB≈38°13',38°13'+45°=83°13'.所以巡逻艇应沿北偏东83°13'的方向追赶,经过1.5小时追赶上该走私船.四、变式训练,深化提高【例3】解:在△ABC中,BC=30,B=30°,∠ACB=180°-45°=135°,则A=15°.由正弦定理知,即.所以AC==60cos15°=15+15.所以A到BC所在直线的距离为AC·sin45°=(15+15)×=15(+1)≈40.98>38(海里).答:不改变航向,继续向南航行,无触礁的危险.练习:解:(1)因为甲、乙两人起初的位置是A,B,则AB2=OA2+OB2-2OA·OBcos60°=32+12-2×3×1×=7,所以起初,两人的距离是千米.(2)设甲、乙两人t小时后的位置分别是P,Q,则AP=4t,BQ=4t,当0≤t≤时,PQ2=(3-4t)2+(1+4t)2-2(3-4t)(1+4t)cos60°=48t2-24t+7;当t>时,PQ2=(4t-3)2+(1+4t)2-2(4t-3)(1+4t)cos120°=48t2-24t+7,所以,PQ=48t2-24t+7.(3)PQ2=48t2-24t+7=48+4,所以当t=时,即在第15分钟末,PQ最短.答:在第15分钟末,两人的距离最短.五、限时训练1.D2.解析:如图所示,在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理,知BC2=AB2+AC2-2AB·AC·cos120°=2800,即得BC=20(海里).由正弦定理,,所以sin∠ACB=sin∠BAC=.由∠BAC=120°,知∠ACB为锐角,cos∠ACB=.由θ=∠ACB+30°,则cosθ=cos(∠ACB+30°)=cos∠ACBcos30°-sin∠ACBsin30°=.3.分析:设快艇在B处以v km/h的速度出发,在△ABC中,由正弦定理求解.解:如图,设快艇在B处以v km/h的速度出发,沿BC方向航行t小时与汽车相遇(在C点). 在△ABC中,AB=500km,BQ=300km,AC=100t,BC=vt.则sin∠BAC=.在△ABC中,由正弦定理得,即,则v=≥60,当且仅当∠ABC=90°时等号成立.故快艇最小速度为60km/h且行驶方向与AB成直角.六、反思小结,观点提炼①根据题意作出示意图;②明确所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案.。
高中数学人教A版必修5 1.2.2三角形中的几何计算学案
高中数学人教A版必修5第一章解三角形1.2解三角形的实际应用举例1.2.2三角形中的几何计算学案【课前自主学习】预习课本P16~18,思考并完成以下问题(1)已知三角形的两边及内角怎样求其面积?(2)已知三角形的面积如何求其他量?【新知探究•夯实知识基础】三角形的面积公式(1)S=12a·h a(h a表示a边上的高).(2)S=12ab sin C=12bc sin A=12ac sin B.[点睛]三角形的面积公式S=12ab sin C与原来的面积公式S=12a·h(h为a边上的高)的关系为:h=b sin C,实质上b sin C就是△ABC中a边上的高.【学练结合】1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)公式S=12ab sin C适合求任意三角形的面积()(2)三角形中已知三边无法求其面积()(3)在三角形中已知两边和一角就能求三角形的面积()解析:(1)正确,S=12ab sin C适合求任意三角形的面积.(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正弦值,进而求面积.(3)正确.已知两边和两边的夹角可直接求得面积,已知两边和一边的对角,可求得其他边和角,再求面积.答案:(1)√ (2)× (3)√2.在△ABC 中,已知a =2,b =3,C =120°,则S △ABC =( ) A.32 B.332 C. 3D .3解析:选B S △ABC =12ab sin C =12×2×3×32=332.3.已知△ABC 的面积为32,且b =2,c =3,则A 的大小为( ) A .60°或120° B .60° C .120°D .30°或150°解析:选A 由S △ABC =12bc sin A 得 32=12×2×3×sin A , 所以sin A =32, 故A =60°或120°,故选A.4.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 解析:由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +⎝ ⎛⎭⎪⎫1-sin A 42=1,sin A =817.答案:817【学以致用•探究解题方法】题型一 三角形面积的计算[典例] 已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. [解] 由正弦定理,得sin C =AB sin B AC =23sin 30°2=32.∵AB >AC ,∴C=60°或C=120°.当C=60°时,A=90°,S△ABC =12AB·AC=23;当C=120°时,A=30°,S△ABC =12AB·AC sin A= 3.故△ABC的面积为23或 3.[解题规律总结][活学活用]△ABC中,若a,b,c的对角分别为A,B,C,且2A=B+C,a=3,△ABC的面积S△ABC=32,求边b的长和B的大小.解:∵A+B+C=180°,又2A=B+C,∴A=60°.∵S△ABC =12bc sin A=32,sin A=32,∴bc=2.①又由余弦定理得3=b2+c2-2bc cos A=b2+c2-2×2×1 2,即b2+c2=5.②解①②可得b=1或2.由正弦定理知asin A=bsin B,∴sin B=b sin Aa=b2.当b=1时,sin B=12,B=30°;当b=2时,sin B=1,B=90°.题型二三角恒等式证明问题[典例]在△ABC中,求证:a-c cos Bb-c cos A=sin Bsin A.证明:[法一化角为边]左边=a-c(a2+c2-b2)2acb-c(b2+c2-a2)2bc=a2-c2+b22a·2bb2-c2+a2=ba=2R sin B2R sin A=sin Bsin A=右边,其中R为△ABC外接圆的半径.∴a-c cos Bb-c cos A=sin Bsin A.[法二化边为角]左边=sin A-sin C cos Bsin B-sin C cos A=sin(B+C)-sin C cos Bsin(A+C)-sin C cos A=sin B cos Csin A cos C=sin Bsin A=右边(cos C≠0),∴a-c cos Bb-c cos A=sin Bsin A.[解题规律总结][活学活用]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .求证:cos B cos C =c -b cos Ab -c cos A .证明:法一:由正弦定理,得c -b cos Ab -c cos A=2R sin C -2R sin B cos A 2R sin B -2R sin C cos A =sin (A +B )-sin B cos A sin (A +C )-sin C cos A =sin A cos B sin A cos C =cos Bcos C .法二:由余弦定理,得c -b cos Ab -c cos A =c -b 2+c 2-a 22c b -b 2+c 2-a 22b=a 2+c 2-b 22c b 2+a 2-c 22b =a 2+c 2-b 22ac b 2+a 2-c 22ab=cos B cos C.题型三 与三角形有关的综合问题命题点一:与三角形面积有关的综合问题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a cos B -c =b 2. (1)求角A 的大小;(2)若b -c =6,a =3+3,求BC 边上的高. 解:(1)由a cos B -c =b2及正弦定理可得, sin A cos B -sin C =sin B2,因为sin C =sin(A +B )=sin A cos B +cos A sin B , 所以sin B2+cos A sin B =0. 因为sin B ≠0,所以cos A =-12, 因为0<A <π,所以A =2π3. (2)由余弦定理可知,a 2=b 2+c 2-2bc cos 2π3=b 2+c 2+bc ,所以(3+3)2=b 2+c 2+bc =(b -c )2+3bc =6+3bc , 解得bc =2+2 3.设BC 边上的高为h ,由S △ABC =12bc sin A =12ah , 得12(2+23)sin 2π3=12(3+3)h, 解得h =1. 命题点二:三角形中的范围问题2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)求3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围.解:(1)由正弦定理得:(2sin C -sin A )cos B -sin B cos A =0, 即sin C (2cos B -1)=0,∵sin C ≠0,∴cos B =12,∵B ∈(0,π),∴B =π3. (2)由(1)知B =π3,∴C =2π3-A , ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6=3sin A +cos A =2sin ⎝ ⎛⎭⎪⎫A +π6.∵A ∈⎝ ⎛⎭⎪⎫0,2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴2sin ⎝ ⎛⎭⎪⎫A +π6∈(1,2], ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围是(1,2].命题点三:三角形中的最值问题3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知sin (A -B )sin (A +B )=b +cc .(1)求角A 的大小;(2)当a =6时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状. 解:(1)由sin (A -B )sin (A +B )=b +cc ,得sin (A -B )sin (A +B )=sin B +sin Csin C .又sin(A +B )=sin(π-C )=sin C , ∴sin(A -B )=sin B +sin C , ∴sin(A -B )=sin B +sin(A +B ).∴sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B , ∴sin B +2 cos A sin B =0, 又sin B ≠0,∴cos A =-12. ∵A ∈(0,π),∴A =2π3.(2)S =12bc sin A =34bc =34×2R sin B ·2R sin C =3R 2sin B ·sin C =3R 2sin B ·sin ⎝ ⎛⎭⎪⎫π3-B=32R 2sin ⎝ ⎛⎭⎪⎫2B +π6-34R 2,B ∈⎝ ⎛⎭⎪⎫0,π3. 由正弦定理2R =a sin A =6sin 2π3=43,∴R =2 3.当2B +π6=π2,即B =C =π6时,S max =33,∴△ABC 面积的最大值为33,此时△ABC 为等腰钝角三角形. 题点四:多边形面积问题4.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .解:如图,连接BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C . ∵A +C =180°,∴sin A =sin C ,∴S=12sin A(AB·AD+BC·CD)=16sin A.在△ABD中,由余弦定理得BD2=AB2+AD2-2AB·AD cos A=20-16cos A,在△CDB中,由余弦定理得BD2=CD2+BC2-2CD·BC cos C=52-48cos C,∴20-16cos A=52-48cos C.又cos C=-cos A,∴cos A=-12,∴A=120°,∴S=16sin A=8 3.[解题规律总结]高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 32.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.873.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.15.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 26.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.7.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.8.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.9.在△ABC中,求证:b2cos 2A-a2cos 2B=b2-a2.10.如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .82.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .33.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 5.已知△ABC 的面积S =3,A =π3,则AB ·AC =________. 6.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B=________. 7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin A sin B =sin C tan C .(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.8.在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2B+C2+sinA=4 5.(1)若满足条件的△ABC有且只有一个,求b的取值范围;(2)当△ABC的周长取最大值时,求b的值.高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测解析基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 3解析:选B S△ABC =12AB·AC·sin A=32.2.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.87解析:选B设等腰三角形的底边长为a,顶角为θ,则腰长为2a,由余弦定理得,cos θ=4a2+4a2-a28a2=78.3.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°解析:选B∵S=14(a2+b2-c2)=12ab sin C,由余弦定理得:sin C=cos C,∴tan C=1.又0°<C<180°,∴C=45°.4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.1解析:选C依题意得,c=2a,b2=a2+c2-2ac cos B=a2+(2a)2-2×a×2a×14=4a2,所以b=c=2a.因为B∈(0,π),所以sin B=1-cos2B=154,又S△ABC =12ac sin B=12×b2×b×154=154,所以b=2,选C.5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 2解析:选A设另两边长为8x,5x,则cos 60°=64x2+25x2-14280x2,解得x=2或x=-2(舍去).故两边长分别为16与10,所以三角形的面积是12×16×10×sin 60°=40 3.6.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.解析:∵cos C=13,0<C<π,∴sin C=223,∴S△ABC =12ab sin C=12×32×23×223=4 3.答案:4 37.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.解析:在△ADC中,cos C=AC2+DC2-AD22·AC·DC=72+32-522×7×3=1114.又0°<C<180°,∴sin C=53 14.在△ABC中,ACsin B=ABsin C,∴AB=sin Csin B·AC=5314×2×7=562.答案:56 28.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.解析:不妨设b=2,c=3,cos A=1 3,则a2=b2+c2-2bc·cos A=9,∴a=3.又∵sin A=1-cos2A=22 3,∴外接圆半径为R=a2sin A=32·223=928.答案:92 89.在△ABC 中,求证:b 2cos 2A -a 2cos 2B =b 2-a 2.证明:左边=b 2(1-2sin 2A )-a 2(1-2sin 2B )=b 2-a 2-2(b 2sin 2A -a 2sin 2B ), 由正弦定理a sin A =bsin B ,得b sin A =a sin B , ∴b 2sin 2A -a 2sin 2B =0,∴左边=b 2-a 2=右边, ∴b 2cos 2A -a 2cos 2B =b 2-a 2.10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.解:在△ABC 中,AB =5,AC =9,∠BCA =30°, 由正弦定理,得AB sin ∠BCA =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BCA AB =9×sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°, 由正弦定理,得AB sin ∠ADB =BDsin ∠BAD,解得BD =922,故BD 的长为922.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .8 解析:选C 如图,由题意得 ⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40, ∴a =7.2.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .3 解析:选A 因为b 2-bc -2c 2=0, 所以(b -2c )(b +c )=0,所以b =2c .由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4, 因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.3.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°, ∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4,∴R =2.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 解析:选D ∵c sin C =a sin A =403, ∴c =403sin C .∴0<c ≤403.5.已知△ABC的面积S=3,A=π3,则AB·AC=________.解析:S△ABC =12·|AB|·|AC|·sin A,即3=12·|AB|·|AC|·32,所以|AB|·|AC|=4,于是AB·AC=|AB|·|AC|·cos A=4×12=2.答案:26.在锐角三角形ABC中,角A,B,C的对边分别是a,b,c,若ba+ab=6cos C,则tan Ctan A+tan Ctan B=________.解析:∵ba+ab=6cos C,∴a2+b2ab=6×a2+b2-c22ab,∴2a2+2b2-2c2=c2,又tan Ctan A+tan Ctan B=sin C cos Asin A cos C+sin C cos Bsin B cos C =sin C(sin B cos A+cos B sin A)sin A sin B cos C=sin C sin(B+A)sin A sin B cos C=sin2Csin A sin B cos C=c2ab cos C=c2aba2+b2-c22ab=2c2a2+b2-c2=4.答案:47.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知sin A sin B=sin C tan C.(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.解:(1)由已知sin A sin B =sin C tan C 得cos C =c 2ab . 又cos C =a 2+b 2-c 22ab ,故a 2+b 2=3c 2,故a 2+b2c 2的值为3.(2)由a =22c, a 2+b 2=3c 2得b =102c . 由余弦定理得cos C =255,故sin C =55. 所以12×22c ×102c ×55=4,解得c =4.8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =2,2cos 2 B +C2+sinA =45.(1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值. 解:2cos 2B +C 2+sin A =45⇒1+cos(B +C )+sin A =45⇒sin A -cos A =-15. 又0<A <π,且sin 2A +cos 2A =1,有⎩⎪⎨⎪⎧sin A =35,cos A =45.(1)若满足条件的△ABC 有且只有一个,则有a =b sin A 或a ≥b ,则b 的取值范围为(0,2]∪⎩⎨⎧⎭⎬⎫103.(2)设△ABC 的周长为l ,由正弦定理得 l =a +b +c =a +asin A (sin B +sin C ) =2+103[sin B +sin(A +B )]=2+103[sin B +sin A cos B +cos A sin B ] =2+2(3sin B +cos B ) =2+210sin(B +θ),其中θ为锐角,且⎩⎪⎨⎪⎧sin θ=1010,cos θ=31010 ,l max =2+210,当cos B =1010,sin B =31010时取到. 此时b =asin A sin B =10.。
高中数学必修5高中数学必修5《1.2应用举例(一)》教案
1.2解三角形应用举例 第一课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图三、教学设想1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、设置情境请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。
如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
3、 新课讲授(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。
求A 、B 两点的距离(精确到0.1m)提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。
最新高中数学必修5《应用举例》教案
最新高中数学必修5《应用举例》教案高中数学必修5《应用举例》教案【一】教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一. 基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.二.问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
一. 小结:1.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。
利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.三.作业:P80 闯关训练高中数学必修5《应用举例》教案【二】教学准备教学目标1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:.com测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学重难点1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学过程一、知识归纳1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;二、例题讨论一)利用方向角构造三角形四)测量角度问题例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_29
《海伦——秦九韶公式》教案【教学内容】人教A版普通高中课程标准试验教科书必修5 第一章“阅读与思考”海伦与秦九韶.【教学对象】高一学生.【教材分析】本节内容选自高中数学必修五的第一章,是阅读与思考部分的内容,在《高中数学新课程标准》中并没有做要求,教材中只占用一篇幅叙述了海伦公式与秦九韶公式(“三斜求积”公式)的记载历史,并未给出证明和应用.本节内容之前学生已经学习了解三角形,从而这节课是三角形面积公式的延续与拓展.本节课的主要设计对象为数学学习程度较好的学生——在完成《高中数学新课程标准》中要求的学习之后仍有余力的学生,意在引领学生了解数学文化史,同时启发学生运用所学知识由“三斜求积”公推导海伦公式,并让学生从中体会数学之美.【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的三角形面积公式,余弦定理的推论,同角三角函数的平方关系以及平方差公式和完全平方公式.【教学目标】∙知识与技能:(1)会推导秦九韶公式与海伦公式,并理解海伦公式的本质;(2)理解秦九韶公式与海伦公式的本质相同.(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题.∙过程与方法:(1)经历推导秦九韶公式与海伦公式的全过程,培养学生严谨的的数学逻辑思维;(2)提高学生会应用海伦公式解决涉及到三角形三边与面积之间关系问题的能力.∙情感态度与价值观:(1)体会公式书写的简洁美;(2)体会数学以不变应万变的魅力.【教学重点】秦九韶公式与海伦公式的推导及其应用.【教学难点】秦九韶公式与海伦公式的本质.【教学方法】引导探究、实力应用.【教学过程】(一)旧知回顾1.三角形的面积公式:(1)ah S ABC 21=∆(h 为边a 上的高); (2)==∆C ab S ABC sin 21 = . 2.余弦定理的推论:bca cb A 2cos 222-+=;=B cos ;=C cos . 3.同角三角函数的平方关系:+α2sin 1=.[师生活动]通过提问,让学生回答出本节课涉及到的已经学习过的公式.(二)新课引入【引例】问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_24
海伦公式探究如右图,假设有一个三角形,边长分别为a 、b 、c ,三角形的面积S 可由图下公式求得。
证明Ⅰ:与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。
设三角形的三边a 、b 、c 的对角分别为A 、B 、C ,则余弦定理为:abc b a 2cosC 222-+= C ab S sin 21⨯=① C ab 2cos 121-⨯=② 2222224)(121ba cb a ab ⨯-+-⨯=③ )(44122222c b a b a -+-=④ )2)(2(41222222c b a ab c b a ab +---++=⑤ ])(][)[(412222b a c c b a ---+=⑥ ))()()((41b b a c b a c b a c b a ++-+--+++=⑦ 设2b b a p ++=则,2,2,2c b a c p c b a b p c b a a p -+=-+-=-++-=- 上式16))()()((c b a c b a c b a c b a ++-+--+++= ))()((c p b p a p p ---=所以,))()((ABC c p b p a p p S ---=△证明Ⅱ:我国著名的数学家九韶在《数书九章》提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。
“术”即方法。
三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。
相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。
以△、a,b,c表示三角形面积、大斜、中斜、小斜。
定理:若三角形的三条边分别是:大斜、中斜、小斜,则三角形面积为:原文见<数书九章>卷五第二题:以小斜幂并大斜幂,减中斜幂,余,半之.同乘于上,以小斜幂并大斜幂,减上.余,四约之为实,开平方,得积.证明:如图,a=u+v,b2=h2+u2,c2=h2+v2所以,u2-v2=b2-c2(u+v)(u-v)=(b+c)(b-c)a(u-v)=(b+c)(b-c)(u-v)=(b+c)(b-c)/a因(u+v)=a,所以又 h2=b2-u2,三角形面积=a.h/2此即:,其中c>b>a.将根号下的多项式分解因式,便成为可见,三斜求积术与古希腊海伦公式是等价的所以这一公式也被称为“海伦-秦九韶公式”。
新人教A版必修5高中数学1.2应用举例—③测量角度学案
高中数学 1.2应用举例—③测量角度学案新人教A 版必修5 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.学习重难点应用正弦定理、余弦定理解决有关测量角度的实际问题一、知识链接 问题1:在ABC △中,已知2c =,3C π=,且1sin 32ab C =,求a b ,.问题2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,3c =,求a c 的值.二、试一试1. 如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B ,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)(分析:首先由三角形的内角和定理求出角∠ABC ,然后用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB . )2. 某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※ 模仿练习练1. 甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南偏东60°的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.练2. 某渔轮在A 处测得在北偏东45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南偏东75°的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升※ 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※ 知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos 5θ是有理数,还是无理数?因为5C πθ=-,由余弦定理知:222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.当堂检测1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90D .α+β=1802. 已知两线段2a =,22b =,若以a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6πC .(0,)2πD .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=有相等实根,且A 、B 、C 是∆的三个内角, 则三角形的三边a b c 、、满足( ).A .b ac =B .a bc =C .c ab =D .2b ac =4. △ABC 中,已知a :b :c =(3+1) :(3-1): 10,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法:(1)若A ≥90°,且a ≤b ,则此三角形不存在(2)若A ≥90°,则此三角形最多有一解(3)若A<90°,且a=b sin A,则此三角形为直角三角形,且B=90°(4)当A<90°,a<b时三角形一定存在(5)当A<90°,且b sin A<a<b时,三角形有两解其中正确说法的序号是 .课后作业我舰在敌岛A南偏西50︒相距12海里的B处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?课后反思。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课件_25
c
B
1 a2c2 4
1 4
a
2c
2
a2
c2 b2 2ac
2
1 [a2c2 (a2 c2 b2 )2 ]
4
2
即 S 1 [a2c2 (a2 c2 b2 )2] .
4
2
思考:除了 S 1 acsin B ,我们还学习过哪些三角形面积公式? 2
方法:利用余弦定理求出 cos B ,再根据 S 1 acsin B 进行证明.
2
证明:由余弦定理: cos B a2 c2 b2 2ac
S 1 ac sin B 1 ac
2
2
1 cos2 B 1 ac 2
1
a2
c2 2ac
b2
2
C
b
a
A
秦九韶的“大衍求一术”
比西方 1801 年著名数学家高斯建立的同余理论早 554 年,被西方 称为“中国剩余定理”。
秦九韶的任意次方程的数值解
领先英国人霍纳 572 年。
秦九韶的三斜求积术
秦九韶在 1247 年独立提出了“三斜求积术”, 虽然它与海伦公式形式上有所不同,但它完全与 海伦公式等价,它填补了中国数学史中的一个空 白,从中可以看出中国古代已经具有很高的数学 水平。
2、《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的 一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水 平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜 幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即
高中数学:1.2应用举例第二课时:测量高度问题(新人教A版必修5)
1. 2应用举例第二课时:测量高度问题一、教学目标:1、能力要求:①综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题; ②体会数学建摸的基本思想,掌握求解实际问题的一般步骤;③能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力2、过程与方法:利用仰角和俯角等条件测量底部不可到达的建筑物高度这类问题不能直接用解直角三角形的方法解决,但常常用正弦定理和余弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题。
二、教学重点、难点:重点:综合运用正弦定理、余弦定理等知识和方法解决一些实际问题。
难点:底部不可到达的建筑物高度的测量。
三、名词解释:1、仰角:朝上看时,视线与水平面夹角为仰角。
2、俯角:朝下看时,视线与水平面夹角为俯角。
3、方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。
4、坡度:坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率。
四、例题讲解:例1、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。
设计一种测量建筑无高度AB 的方法。
解:选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上。
由在H ,G 两点用测角仪器测得A 的仰角分别为βα,,a CD =,测角仪器的高度为h 。
在ACD ∆中,βα-=∠CAD∴在ACD ∆中,由正弦定理可得:在ACE ∆中,()βαβαα-==sin sin sin sin a AC AE 例2、在某建筑物顶部有一铁塔,在铁塔上B 处测得地面上一点A 的俯角 45=α,在塔底C 处测得A 处的俯角30=β。
已知铁塔BC 部分高为30m ,求出此建筑物的高度CD 。
(精确到m 01.0)解:由已知条件可知 4590=-=∠αABC , 6090=-=∠βACD ,在ABC ∆中,由正弦定理可得:()13304262230sin sin +=-⨯=∠∠=BAC ABC BC AC , 在直角ACD ∆中, 60,90=∠+∠=∠=∠CAB ABC ACD ADC所以,山的高度约为98.40米。
高中数学第一章解三角形1.2应用举例第2课时高、角问题课件新人教A版必修5[1]
CDsin ∠BDC s·sin β
所以 BC=
=
.
sin∠CBD sin (α+β)
s·tanθ sin β
在 Rt△ABC 中,AB=BCtan∠ACB=
.
sin (α+β)
第二十七页,共51页。
类型 3 角度问题 [典例 3] 如图所示,在坡度一定的山坡上的一点 A 测得山顶上一建筑物顶端 C 对于山坡的斜度为 15°,向山 顶前进了 100 米后到达 B 点,又从 B 点测得建筑物顶端 C 对于山坡的斜度为 45°,已知建筑物的高度为 50 m,求 此山坡相对于水平面的倾斜角 θ 大小(精确到 1°).
故山的高度为 15(1+ 3)(米).
第二十页,共51页。
类型 2 用正弦定理求空间中高度问题 [典例 2] 如下图所示,一辆汽车在一条水平的公路 上向正东行驶,到 A 处时测得公路南侧远处一山脚 C 在 东偏南 15°的方向上,行驶 5 km 后到达 B 处,测得此山 脚在东偏南 30°的方向上,且山顶 D 的仰角为 8°,求此 山的高度 CD(精确到 1 m,参考数据:tan 8°≈0.140 5).
C.d1>20 m
D.d2<20 m
解析:仰角大说明距离小,仰角小说明距离大,即 d1<d2.
答案:B
第九页,共51页。
4.某校运动会开幕式上举行升旗仪式,旗杆正好处 在坡角为 15°的看台的某一列的正前方,从这一列的第一 排和最后一排测得旗杆顶部的仰角分别为 60°和 30°,第 一排和最后一排的距离为 10 6 米(如图所示),旗杆底部 与第一排在一个水平面上.若国歌长度约为 50 秒钟,则 升旗手匀速升旗的速度为________.
(人教版)高中数学 第一章1.2应用举例(二)学案课件 新人教A版必修5
解
1.2(二)
本 课 栏 目 开 关
设四个内角 A、B、C、D 的大小为 3x、7x、4x、10x(x>
0),由四边形内角和为 360° 可得,
3x+7x+4x+10x=360° ,∴x=15° ,
=AB2+AD2- 2AB· AD.
练一练· 当堂检测、目标达成落实处
1.2(二)
同理,在△ABC 中有 AC2=AB2+BC2-2AB· BC· cos ∠ABC =AB2+BC2-2AB· BC· cos 135° =AB2+AD2+ 2AB· AD
AC2· BD2=(AB2+AD2+ 2AB· AD)· (AB2+AD2- 2AB· AD) =(AB2+AD2)2-2AB2· AD2 =AB4+AD4.
在△CBD 中, 利用正弦定理, BC sin∠BDC = .② CD sin∠DBC
研一研· 问题探究、课堂更高效
1.2(二)
∵BD 是角 B 的平分线,
∴∠ABD=∠CBD,
又∵∠ADB+∠CDB=180° ,
本 课 栏 目 开 关
∴sin∠ADB=sin∠CDB, AB BC BA AD 所以①=②,得 = .即 = 成立. AD CD BC DC
∴20-16cos A=52-48cos C.
本 课 栏 目 开 关
又 cos C=-cos A, 1 ∴cos A=-2.∴A=120° . ∴S=16sin A=8 3.
小结 本题将四边形面积转化为三角形面积问题,将实际问
题转化为数学问题,是转化与化归思想的应用.
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_1
我国南宋著名数学家秦九韶也发现了与海伦公式等价的从三角形三边求面积的公式,他把这种方法称为“三斜求积”. 在他的著作《数书九章》里有一个题目:“问有沙田一段,有三斜,其小斜一十二里,中斜一十四里,大斜一十五里. 里法三百步. 欲知为田几何? 答曰:田积三百一十五顷.” 这道题实际上是已知三角形的三边长,求三角形面积. 《数书九章》中的求法是:“以小斜幂并大斜幂减中斜幂 ,余半之,自乘于上. 以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方,得积.” 译成现代式子是])2([41222222b a c a c S -+-= 这个式子称为秦九韶“三斜求积”公式.通过上述证明可以看出:秦九韶公式与海伦公式的本质是一样的! 从中充分说明我国古代已具有很高的数学水平.秦九韶 (约公元 1 2 0 2~ 1 2 61年 ) ,字道古,字道古,祖籍为鲁郡(今山东兖州),与李冶、杨辉、朱世杰并称宋元数学四大家,是我国古代数学家杰出代表之一. 著有《数书九章》,全书为十八卷,共 81题,分九大类. 系统总结和发展了高次方程的数值解法(在必修三《算法初步》中有“秦九韶算法”)和一次同余问题的解法,提出了相当完备的“正负开方术”和“大衍求一术”,对数学发展产生了广泛的影响,奠定了其时人难以望其项背的数学地位.他被外国科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”. 如果将秦九韶和意大利文艺复兴时期的风云人物相比,竟有几分相似:他多才多艺,懂得星占、数学、音乐、建筑,还擅长诗文,会骑术、剑术、踢球等.4. 海伦公式的应用示例海伦公式除了可以解决“已知三角形三边长求面积”的问题外,还有什么应用呢?例1 三边长a ,b ,c 的三角形,满足c>a>b ,2a=b+c ,且它的周长是12,面积是6,试判断这个三角形的形状.分析:由已知得,a=4,b+c=8,p=6,于是。
必修5课件 1.2 应用举例(3)
320
750
A
B
例2、某巡逻艇在A处发现北偏东450相距9 海里的C处有一艘走私船,正沿南偏东750的方 向以10海里/小时的速度向我海岸行驶,巡逻 艇立即以14海里/小时的速度沿着直线方向追 去,问巡逻艇应该沿什么方向去追?需要:
一货轮航行到M处,测得灯塔S在货轮 的北偏东150相距20km处,随后货轮按北偏 西300的方向航行,半小时后,又测得灯塔在 货轮的北偏东450的方向上,求货轮的速度.
人教版 必修五
第一章
解三角形
1.2 应用举例(第三课时)
例1、如图,一艘海轮从A出发,沿北偏东750的 方向航行67.5 n mile后到达海岛B,然后从B出发, 沿北偏东320的方向航行54.0 n mile后达到海岛C. 如果下次航行直接从A出发到达C,此船应该沿怎样 的方向航行,需要航行多少距离?(角度精确到0.10, 距离精确到0.01n mile)
S
450
N
30
0
150
M
作 业
教材P22
4,5,6,8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理及其应用的教案
教学目标
(一)知识与能力目标
1.通过对正余弦定理的应用,加深对正余弦定理的理解.会用正余弦定理解三角形.
(1)已知两角和任一边,求其它两边和一角.
(2)已知两边和其中一边的对角,求另一边的对角及其它的边和角.
(3)已知三边,用余弦定理,必有唯一解;
(4)已知两边及其中一边的对角,(不妨设为a,b,A)解法有两种:
2.理解掌握已知两边和其中一边的对角解三角形时,有一解或两解或无解三种情况,并会判断哪些条件使解三角形时出现一解、两解、无解.(二)过程与方法目标
通过对正余弦定理及其变形式的应用,达到边角互化的目的,在题型中的操练,达到熟练掌握的同时,并掌握一定的解题技巧和方法。
(三)情感态度与价值观
感受正余弦定理与其他知识间的紧密联系,体会万事万物间也存在着千丝万
缕的关系。
教学重点和难点
重点:1、正余弦定理的应用,用正余弦定理解三角形,特别是在已知两
边和其中一边的对角解三角形时,解的情况
2、利用正余弦定理实现边角互化,体现正余弦定理搭建边角互化的桥梁,
是解三角形有利的两大工具。
难点:在具体的题型中真正体现正余弦定理作为桥梁的作用,并能挖掘出
题目中的隐含条件,达到求解的目的。
教学设计:由复习引入到本节主要三个环节,分环节进行,典例剖析,讲练
结合,层层递进,环环相扣。
教学过程设计 一、复习正余弦定理
1、正弦定理:正弦定理精确地表达了三角形中各边和它所对角
的正弦成正比.
a =2RsinA ,
b =2RsinB ,
c =2RsinC .
)(2sin sin sin 外接圆的半径表示ABC R R C
c
B b A a ∆==
=2R sinC
c
2R,sinB b 2R,sinA a ===2R
c
,sinC 2R b ,sinB 2R a sinA ===
2
、余弦定理:
二、教师指导学生完成,教师最后总结.
正余弦定理精确地表达了三角形中的边与角之间的关系,我们就可利用
它根据三角形中的已知元素去求出未知元素.
(一)解三角形
二、合理使用正、余弦定理,使角边互相转化
,
2bc a c b cosA 2
22-+=,
2ca b a c cosB 2
22-+=。
2ab
c b a cosC 2
22-+=。
22
6,c 15,C 120(2)A ;22
6,c 75,C 60(1)A 用正弦定理):
所以本题有两解(,180B A 因为这两个A均满足或12060A ,2
3sinA ,sin452sinA 3由正弦定理得
:破解1-===+=
==<+===︒︒︒︒︒︒
︒︒再。
理变式),下同破解1题有两解(再用余弦定个c均为正数,所以本这两,2
2
6c 0,1c 6-得c 2cacosB,-a c 由余弦定理b :破解22222±==++=
例3:在 ABC 中,已知acosA=bcosB ,判断三角形的形状。
三、注意三角形中的隐含条件
2sinA.
BC 2sinC,所以AB 2,sin60
3
sinB AC sinA BC sinC AB 正弦定理知解:在ΔABC中,由======。
72BC的最大值为2所以AB ),,120(0C ,23
其中tan ),sin(C 72cosC 324sinC sinC)2
1
cosC 234(
2sinC C)
4sin(1202sinC 4sinA 2sinC 2BC 所以AB ,120C 又A +∈=+=+=++=-+=+=+=+
ϕϕ
思考:此题还有别的解法吗?。