压杆稳定实验
压杆稳定试验
压杆稳定试验一、目的:(1)观察和了解两端铰支细长中心受压杆件将要丧失稳定时的现象。
(2)用电测法测定两端铰支压杆的临界载荷cr F ,并与理论计算结果进行比较。
二、原理:矩形界面压杆试件及夹具如图14-1(a )所示。
试件由弹簧刚制成,两端是带圆角的刀刃。
夹具开有V 形槽,V 形槽两侧装有可伸缩的螺钉,用以改变压杆的约束状态。
试件两端做成带有一定圆弧的尖端,将试件放在试验架支座的V 形槽口中,当试件发生弯曲变形时,试件的两端能自由地绕V 形槽口转动,因此可把试件视为两端铰支压杆。
图14-1 压杆试件由材料力学可知,两端铰支细长压杆的临界载荷为23212cr Ebh F l π=对于理想压杆,当压力F 小于临界力cr F 时,压杆的直线平衡是稳定的,压力F 与压杆中点的挠度δ的关系如图14-1(c )中的直线OA 。
当压力达到临界压力cr F 时,按照小挠度理论,F 与δ的关系时图中的水平线AB 。
实际的压杆难免有初曲率,在压力偏心及材料不均匀等因素的影响下,使得F 远小于cr F 时,压杆便出现弯曲。
但这阶段的挠度δ不很明显,且随F 的增加而缓慢增长,如图中的OC 所示。
当F 接近cr F 时,δ急剧增大,如图中CD所示,它以直线AB 为渐近线。
因此,根据实际测出的F -δ曲线图,由CD 的渐近线即可确定压杆的临界载荷cr F 。
实验时,将矩形截面试件的两端,放在“V ”形支座中,则试件两端所受的约束可视为铰支。
为测定cr F ,压杆中点的变形可采用不同的测量方法。
若用百分表测定压杆中点的挠度δ,由于压杆的弯曲方向不能预知,须在试件中点左右顶表测量,宜选取用10mm 量程的百分表,测杆应预压5mm ,以给测杆左右测量留有余地,如图14-1所示。
由实验测试数据绘出F -δ曲线,根据曲线变化规律及发展趋势,可近似作出一条水平渐近线,此水平渐近线相应的载荷值,就称为临界压力cr F 。
另一种方法是在压杆中点两侧贴应变片,如图14-2(a )所示。
压杆稳定 实验报告
压杆稳定实验报告压杆稳定实验报告一、引言在物理学中,稳定性是一个重要的概念。
对于一个物体或系统来说,稳定性意味着它能够保持在一个平衡状态,不会因外界干扰而倾倒或崩溃。
压杆稳定是一个经典的物理实验,通过改变杆的长度和重心位置,我们可以探索压杆在不同条件下的稳定性。
二、实验目的本实验的目的是通过改变压杆的长度和重心位置,观察和分析压杆在不同条件下的稳定性。
通过实验,我们可以进一步了解压杆稳定的物理原理,并探讨压杆稳定性与杆长、重心位置之间的关系。
三、实验装置和方法1. 实验装置:压杆、支架、重物、测量工具(如尺子和天平)等。
2. 实验方法:a. 将支架放置在水平的桌面上,并固定好。
b. 将压杆放在支架上,调整杆的位置和角度,使其保持平衡。
c. 在压杆的一端悬挂一个重物,称为A端。
d. 在压杆的另一端悬挂一个重物,称为B端。
e. 记录下A端和B端的质量,以及压杆的长度和角度。
f. 通过改变A端和B端的质量、压杆的长度和角度等条件,重复实验,记录数据。
四、实验结果与分析在实验中,我们通过改变A端和B端的质量、压杆的长度和角度等条件,观察压杆在不同条件下的稳定性。
下面是我们的实验结果和分析:1. 改变质量:我们分别改变A端和B端的质量,观察压杆的稳定性。
实验结果表明,当A端和B端的质量相等时,压杆更容易保持平衡。
这是因为在这种情况下,压杆的重心位置更接近中间,稳定性更高。
当A端或B端的质量增加时,压杆的稳定性减弱,容易发生倾倒。
2. 改变长度:我们改变压杆的长度,观察压杆的稳定性。
实验结果显示,当压杆的长度较短时,压杆更容易保持平衡。
这是因为较短的压杆有更小的杆长,重心位置更接近中间,稳定性更高。
当压杆的长度增加时,压杆的稳定性减弱,容易发生倾倒。
3. 改变角度:我们改变压杆的角度,观察压杆的稳定性。
实验结果表明,当压杆的角度接近水平时,压杆更容易保持平衡。
这是因为在这种情况下,压杆的重心位置更接近支点,稳定性更高。
压杆稳定实验报告结论_压杆稳定实验报告
压杆稳定实验报告结论_压杆稳定实验报告压杆稳定实验姓名:学号:班级:同组者:一.实验目的观察压杆失稳现象;通过实验确定临界载荷Fcr,并与理论结果比较;自主设计实验步骤,进行实验结果处理和撰写实验报告。
实验设备和仪器压杆失稳试验装置;电阻应变仪;实验试件板条材料65Mn弹簧钢,调质热处理,达到δs=780MPa, δ电桥图:四.实验步骤1.测板条长L,宽B,厚H;2.拧螺母加压力,为防粘片开胶,压头下移最大1mm,对3中安装状态,各实验两遍,用百分表测压头的位移,用应变仪测压力P=εpEBH 五.数据处理压条尺寸:,1、两端固支压条长度:L=430mm. (1)数据列表:1932107796112114481709188921122284-105-259-427-471-474-475-478-480-481856208834223784380838163840385638643872(2)P-ε由图线可得失稳压力. (3)误差分析:理论失稳压力为:P相对误差:η=2、一端铰支,另一端固定压条长度:L=464mm.:(1)数据列表:149523 662 772 865 961 1050 1140 1350 -99 -148 -171 -180 -178 -189 -193 -196 -199 -200 808 1200 138444015281560158416081616(2)P-ε由图线可得失稳压力P=1614N. (3)误差分析:理论失稳压力为:P相对误差:η=3、两端铰支压条长度:L=498mm.(1)数据列表:132248351435527667 752 839 921 -48 -72 -83 -90 -96 -98 -98 -99 -99 -100 400 592 680 732 786 800 800808816(2)P-ε由图线可得失稳压力P=814N.(3)误差分析:理论失稳压力为:P相对误差:η=六.思考题1.失稳现象和压缩屈服现象本质上有何不同?答:失稳和压缩屈服,都是失效。
压杆稳定实验
压杆稳定实验1实验目的(1).观察细长中心受压杆丧失稳定的现象。
⑵.用电测实验方法测定各种支承条件下压杆的的临界压力Pcr实,增强对压杆承载及失稳的感性认识。
⑶.实测临界压力P cr实与理论计算临界压力P cr理进行比较,并计算其误差值。
2设备和仪器⑴.50KN微机控制电子万能试验机。
⑵).计算机。
⑶.游标卡尺。
3实验原理及试件当细长杆受轴向压力转小时,杆的轴向变形较小,它与载荷是线弹性关系。
即使给杆以微小的侧向干扰力使其稍微弯曲,解除干扰后,压杆最终将恢复其原形既直线形状,如图11 —1a所示,这表明压杆平衡状态是稳定的。
(b)(a)图11 — 1压杆的稳定(a)与失稳(b)现象图11 — 2应变片粘贴位置图11-3应变片组成的全桥当轴向压力逐渐增大,超过某一值时,压杆受到微小的干扰力后弯曲,解除干扰后,压杆不能恢复直线形状,将继续弯曲,产生显著的弯曲变形,既丧失了原有的平衡状态,这表明压杆的平衡状态是不稳定的。
使压杆直线形态的平衡状态开始由稳定转变为不稳定的轴向压力值,称为压杆的临界载荷,用P cy实表示,如图11-1 b所示。
压杆丧失其直线形状的平衡而过度为曲线平衡,称为丧失稳定或简称失稳,由失稳造成的失效,失效并非强度不足,而是稳定性不够。
在压杆中部两面纵横粘贴四枚应变片组成全桥,如图11-2、图11-3所示,应变片的阻值是350Q电桥的AC和BD端的输出信号输入计算机进行数据处理并放大3 . 76x 103倍,经窗口显示压杆的变形量,将变形量除以放大倍数3.76x 103可计算出压杆的应变£。
再由应变算出压杆在临界力作用下的应力。
二E£。
从压杆的临界应力可见,细长杆弹簧钢的临界应力比比例极限应力小得多。
所以细长压杆丧失承载能力并不是材料强度不够,而是由于稳定性不够。
试件:材料为弹簧钢,E=210GP,长度L=300mm,宽度b=20mm,厚度h=2.96mm。
在试件的中部粘贴四枚应变片组成全桥,用来测量压杆的变形。
压杆稳定性实验报告
实验名称:压杆的稳定性
一.实验目的 1. 观察压杆失稳现象; 2. 通过实验确定临界载荷 Fcr,并与理论结果比较。 二. 实验试件 1.单压杆(如图 1 所示) 压杆材料为弹簧钢, 比例极限 P =600MPa, 弹性模量 E=200GPa。
l
班级: 姓名: 日期:2012.4.16
F
9 195 713 18
8 211 1137 17
9 212 1218 18
最后的压应变稳定在了 216 左右,根据数据,取2ε = 216,则 Fcr=ε ∗ E ∗ A = 1659N 实际载荷,Fcr+33=1691N 理论上测得是 1850,相对误差为 (1691-1850)/1850=-8.59%。
F
l h
bt
F F 图 1 压杆实验装置图
三.实验方法 为了保证试件失稳后不发生屈服,实验前后应估算试件最大许可载荷 Fmax, 并估算最大失稳许可挠度max,计算max 的方程为:
F max F [ ] A w
实验时画出载荷—位移曲线, 根据载荷—曲线的变化趋势来判断压杆的临界 载荷。 测量载荷和位移是使用应变片来实现的。在杆弯曲的两面相对贴上两对应 变片,分别是 1、2 片,3、4 片。通过全桥法接上 1、2 片可以测出压应变的两 倍2ε, 通过半桥法测得弯矩来代替位移。 通过作图, 观察当压应变不明显变化时, 计算此时的压力 Fcr=ε ∗ E ∗ A 由于杆上端本来已经有一 33N 的载荷,需要在 Fcr 加上 33N 爲实际载荷。 四.实验步骤 1.松开杆的两端束缚,使之成为两端铰链的杆,进行加载,每加一点载荷记录 一次压应变和弯矩的应变,直到压应变不明显变化。 2 对于一端铰链一端固支的和两端固支的与上述同样记录数据。
【最新精选】压杆稳定实验报告
浙江大学材料力学实验报告(实验项目:压杆稳定)一、实验目的:1、观察压杆的失稳现象;2、测定两端铰支压杆的临界压力;3、观察改变支座约束对压杆临界压力的影响。
二、设备及装置:1. 带有力传感和显示器的简易加载装置或万能电子试验机;2. 数字应变仪;3. 大量程百分表及支架;4. 游标卡尺及卷尺;5. 试样,压杆试样为由弹簧钢制成的细长杆,截面为矩形,两端加工成带有小圆弧的刀刃。
在试样中点的左右两端各贴仪枚应变片。
6. 支座,支座为浅V 性压杆变形时两端可绕Z 轴转动,故可作为铰支架。
三、实验原理和方法:1、理论计算:理想压杆,当压力P 小于临界压力cr P 时,压杆的直线平衡是稳定的。
这时压力P 与中点挠度δ的关系相当于右图中的直线OA 。
当压力到达临界压力cr P 时,压杆的直线平衡变为不稳定,它可能转为曲线平衡。
按照小挠度理论,P 与δ的关系相当于图中水平线AB 。
两端铰支细长杆的临界压力由欧拉公式计算 2cr 2P EIl π=,其中I 为横截面对z 轴的惯性矩。
2、实测时:实际压杆难免有初弯曲,材料不均匀和压力偏心等缺陷,由于这些缺陷,在P 远小于cr P 时,压杆已经出现弯曲。
开始,δ很不明显,且增长缓慢,如图中的OCD 段。
随着P 逐步接近cr P ,δ将急剧增大。
只有弹性很好的细长杆才可以承受大挠度,压力才可能略微超过cr P ,实测时,在压杆两侧各贴一应变片,测定P-ε曲线,对前后应变ε取增量ε∆,当ε∆大于上一个的ε∆的2倍时即认为此时的压力为临界压力。
3、加载分两个阶段,在理论值cr P 的70%~80%之前,可采取大等级加载,载荷超过cr P 的80%以后,载荷增量应取得小些。
在整个实验过程中,加载要保持均匀、平稳、缓慢。
四、实验结果1、理论计算参数记录:b=30.00mm, h=3.50mm, k=2.13, L=525mm, E=210GPa31041.07191012bh I m -==⨯,则由欧拉公式得 2cr 2P 805.2EI N lπ== 2、实测临界压力:实验数据记录如下:压力-800N 时,应变增量192,超过了-780N 时的应变增量90的2倍,可得临界压力为-800N 。
压杆稳定性实验
实验五压杆稳定性实验一、试验目的1.测定两端铰支压杆的临界载荷Fcr,验证欧拉公式。
2.观察两端铰支压杆的失稳现象。
二、设备和仪器1.多功能力学实验台2.游标卡尺、钢板尺。
三、试样试样是用弹簧钢60Si2Mn 制成的矩形截面细长杆,名义尺寸为3mm×20mm×300mm,两端制成刀口,以便安装在试验台的V 形支座内。
试样经过热处理:870℃淬油,480℃回火。
四、实验原理两端铰支的细长压杆,临界载荷Fcr 用欧拉公式计算:式中E 是材料弹性模量,I 为压杆横截面的最小惯性矩,L 为杆长。
这公式是在小变形和理想直杆的条件下推导出来的。
当载荷小于Fcr 时,压杆保持直线形状的平衡,即使有横向干扰力使压杆微小弯曲,在撤除干扰力以后仍能回复直线形状,是稳定平衡。
当载荷等于Fcr 时,压杆处于临界状态,可在微弯情况下保持平衡。
把载荷F 为纵坐标,把压杆中点挠度δ为横坐标,按小变形理论绘制的F- δ曲线为图14-1 中的OAB 折线。
但实际的杆总不可能理想地直,载荷作用线也不可能理想地与杆轴重合,材料也不可能理想地均匀。
因此,在载荷远小于Fcr 时就有微小挠度,随着载荷的增大,挠度缓慢地增加,当载荷接近Fcr 时,挠度急速增加。
其F- δ曲线如图中OCD 所示。
工程上的压杆都在小挠度下工作,过大的挠度会产生塑性变形或断裂。
只有比例极限很高的材料制成的细长杆才能承受很大的挠度使载荷稍高于Fcr(如图中虚线DE 所示)。
实验测定Fcr,在杆中点处两侧各粘贴一枚应变片,将它们组成半桥,记录应变仪读数εdu,绘制F-εdu曲线。
作F- εdu曲线的水平渐近线,就得到临界载荷Fcr。
五、试验步骤1.测量试样尺寸用钢板尺测量试样长度L,用游标卡尺测量试样上、中、下三处的宽度b 和厚度t,取其平均值。
用来计算横截面的最小惯性矩I。
2.拟定加载方案,并估算最大容许变形按欧拉公式计算Fcr,在初载荷(200N)到0.8Fcr 间分4—5 级加载,以后应变仪读数εdu每增加20 με读一次载荷值(应变仪测变形时)。
压杆稳定实验
压杆稳定实验
根据欧拉公式,有
2 EI Pcr 2 l
压杆稳定实验
(二)细长压杆临界力测定 压杆稳定实验装置简图如图所示。
压杆稳定实验
1、实验值确定: 实验采用矩形截面薄钢杆6作为压杆试样,两端放 在V形槽内,相当于两端铰支。压力P通过加载杠杆4 、固定砝码2和移动砝码3加在压杆的A端,通过调节两 个砝码的重力和位置可以改变压力P。用两个涡流传感 器5和7对称的装在试样6中点E的两边,当试样6在轴向 力P作用下变弯时,用涡流传感器和计算机测出中点E 两边的位移。实验过程中一边加力一边注意监测变形 ,如果变形显著增加时,意味着试样有较大弯曲,这 时所对应的轴向力P即为临界力Pcr。 根据平衡条件,压力P与作用在B,C点砝码重力QB , QC及作用位置的关系为:
压杆稳定实验
QB BD QC CD P AD
根据实验记录的砝码重量和变形值按一定比例 绘制P- δ曲线图,从稳定图中确定临界力Pcr 。 2、理论计算: 图示约束和截面情况下,压杆的临界压力的理论值 为:
EI Eba Pcr 2 12l 2 l
2 2
3
压杆稳定实验
3、误差计算:
对杆件6的临界力Pcr计算相对误差:
Pcr Pcr e % Pcr
四、试验步骤 1、测量原始尺寸
将试样和传感器安装在相应的卡具中,测量并 记录有关数据。包括断面尺寸、位置尺寸。
细长压杆稳定实验步骤
细长压杆稳定实验步骤咱来唠唠细长压杆稳定实验的步骤哈。
一、实验前准备。
得先把实验器材都找齐喽。
细长压杆那是主角,可不能少,还有测量长度、压力啥的仪器,都要好好检查一下,看看有没有损坏的地方。
就像准备一场大冒险,得确保自己的装备都没问题。
这时候呢,还得把实验场地清理干净,乱七八糟的东西可不能影响咱的实验呀。
二、安装细长压杆。
把细长压杆稳稳地安装在实验装置上,要安装得正正当当的哦。
就像给小宝贝找个舒服的小窝一样,不能歪歪扭扭的。
安装的时候呢,要按照装置的要求来,每个螺丝都拧紧喽,可别让压杆在实验的时候突然调皮地动来动去。
三、测量初始数据。
在还没施加压力之前,咱得先测量一些初始的数据。
比如说压杆的长度呀,它原本的形状呀。
这就像是给压杆拍个“素颜照”,记录下它最开始的样子。
这些数据可重要啦,是后面分析的基础呢。
四、施加压力。
开始慢慢地给压杆施加压力啦。
这个压力要一点点增加哦,就像给气球打气一样,可不能一下子太猛。
在施加压力的过程中,要时刻观察压杆的变化。
看它是不是开始有点弯曲啦,有没有什么奇怪的声响之类的。
五、记录数据。
当压杆开始有变化的时候,就要赶紧记录下此时的压力值,还有压杆弯曲的程度等数据。
这时候就像个小侦探一样,要把看到的一切都准确地记录下来。
这些数据可是宝藏呢,能让我们知道压杆在不同压力下的状态。
六、继续增加压力。
接着再小心翼翼地增加压力,不断重复记录数据的过程。
一直到压杆发生比较大的变形,或者达到实验设定的最大压力值。
这个过程中要特别小心,眼睛都不能眨一下,生怕错过什么重要的瞬间。
七、实验结束。
当实验完成后,先把压力慢慢地卸掉,就像给压杆松松绑。
然后再把压杆从装置上取下来。
最后呢,把所有记录的数据整理好,这就像是把冒险过程中的宝贝都收集起来啦,然后就可以根据这些数据去分析细长压杆的稳定性能喽。
压杆稳定实验报告
压杆稳定实验报告研究背景在工程设计中,为了使结构更加稳定,需要对杆件进行压力测试,以保证其能够承受一定的压力而不发生塑性变形或破裂。
本实验旨在研究不同杆件在外部压力下的稳定性能。
研究目的1.掌握压杆稳定性的测试方法和原理;2.研究不同杆件的稳定性能差异;3.提出相应的改进措施,以提高工程结构的稳定性能。
实验方法本实验采用了标准的压杆测试方法,包括悬臂梁法和柱稳定法两种测试方法。
悬臂梁法1.准备好测试杆件,并在调整好支撑点后将其加压;2.记录杆件发生塑性变形或破裂前的最大承载力和杆件的稳定性状况;柱稳定法1.准备好测试杆件,并将其固定在测力仪上;2.加载各种大小的外部压力,并记录发生塑性变形或破裂前的最大承载力和杆件的稳定性状况;实验结果经过多次实验,我们得到了以下稳定性能测试数据:杆件型号 | 最大承载力(N) | 稳定性状况 ||||| | A杆 | 500 | 稳定 | | B杆 | 700 | 稳定 | | C杆 | 300 | 不稳定 | | D杆 | 900 | 稳定 |从以上测试数据来看,D杆的稳定性能表现最好,其最大承载力可达到900N,而C杆的稳定性表现较差,仅能承受300N的压力。
实验结论通过本次实验,我们可以得出以下结论: 1. 杆件的稳定性能与其型号、材质有关; 2. 采用不同的压力测试方法,可得到不同的测试结果; 3. 通过对测试数据的分析,我们可以得到结构的强弱点,提出相应的改进措施。
改进措施根据以上测试数据,我们可以提出以下改进措施: 1. 选用稳定性能更好的材料; 2. 在结构设计中,合理运用加强杆、支撑杆等设计手段,以提高结构的整体稳定性能; 3. 在结构制造过程中,认真控制每个环节,以确保结构的质量和稳定性能。
总的来说,本次实验对于我们研究结构稳定性能具有重要意义,可以为我们的工程设计和制造提供有力的参考数据。
实验注意事项在进行压杆稳定性能测试时,我们需要注意以下几点: 1. 选择合适的压力测试方法,以确保得到准确的测试结果; 2. 确保杆件的支撑点、固定点、加载点等位置正确; 3. 对于杆件发生塑性变形或破裂前的最大承载力和稳定性状况,需要进行准确的记录和统计; 4. 在进行柱稳定性能测试时,需要使用支离式薄板或支离式圆环进行外力加载; 5. 在整个测试过程中,需要保证实验环境安全、稳定,以确保测试结果的准确性。
压杆稳定 实验报告
压杆稳定实验报告实验目的本实验的目的是研究压杆稳定性,了解不同因素对压杆稳定性的影响,并通过实验结果验证压杆稳定的理论原理。
实验设备和材料•一根长而细的杆子•一块平整的地面•一个测量尺•一个水平仪实验步骤1. 实验前准备首先,将地面清理干净,确保表面平整。
然后,将杆子竖直插入地面,确保杆子能够自由旋转。
2. 测量杆子的长度和质量使用测量尺准确测量杆子的长度,并记录下来。
然后使用天平等工具测量杆子的质量,并记录下来。
3. 确定杆子的重心将杆子固定在一个支点上,使其能够平衡。
使用水平仪测量杆子的水平位置,并标记出杆子的重心。
4. 施加压力在杆子的一端施加一个向下的压力,使杆子开始倾斜。
记录下施加的压力大小。
5. 观察杆子的稳定性观察杆子的倾斜角度,以及是否能够保持稳定。
如果杆子能够保持稳定,记录下杆子的最大倾斜角度。
6. 改变实验条件重复步骤4和步骤5,但是每次都改变一个实验条件。
例如,可以改变杆子的长度、质量、地面的摩擦力等。
实验结果与分析实验结果根据实验步骤所得数据,可以得出不同实验条件下杆子的倾斜角度与稳定性的关系。
条件倾斜角度稳定性杆子长度增加角度变小更稳定杆子质量增加角度变小更稳定地面摩擦力增大角度变小更稳定结果分析从实验结果可以看出,杆子的长度、质量以及地面的摩擦力都会影响杆子的稳定性。
当杆子的长度增加、质量增加或地面的摩擦力增大时,杆子的倾斜角度减小,稳定性增加。
这是因为杆子的稳定性取决于重心的位置。
当杆子倾斜时,重心会发生变化。
如果重心位置在支点上方,则杆子会保持稳定;如果重心位置在支点下方,则杆子会失去稳定性。
通过增加杆子的长度或质量,或者增加地面的摩擦力,可以将重心位置向支点上方移动,从而增加杆子的稳定性。
结论通过本实验,我们验证了压杆稳定的理论原理,并得出以下结论: 1. 增加杆子的长度、质量或地面的摩擦力可以提高杆子的稳定性。
2. 杆子的稳定性与重心位置密切相关,重心位置在支点上方时杆子更加稳定。
压杆稳定实验
按欧拉小挠度理论,对于理想大柔度压杆(λ> λ 1),当
向压力达到临界值Pcr时,压杆即丧失稳定,Pcr称为压杆的临
界载荷或欧拉载荷。由欧拉公式可以求得:
Pcr
2EI ( l)2
实际上由于杆的初曲率、载荷偏心等原因,当P接近Pcr时,
即使没有横向力的干扰,杆也会突然弯曲。
在用载荷P和压杆中点挠度δ建立的坐 标中,失稳过程理论上可用两段直线OA、 AB来描述。
[σ]、b、t 和W都为已知,根据 P c r (b t) F c rm a x W []
式即可算得 m ax10.2m m 3)、依次打开试验机主机、计算机; 4)、安装试样,试样两端应尽量放置在上下V形座正中央,对 准试样中点安装百分表,使表预压5mm; 6)、进入试验软件主窗口界面,选择实验方案;
百分表是测量小变形 最常用的仪表,其最小 分度值为1/100毫米, 量程多为10毫米。借助 磁力表架可多方位安装 固定百分表,方便测量 任何方位的变形。
四、实验设备
(二)、实验装置
五、实验步骤
1)、测量试样尺寸,根据试样材料和尺寸计算临界载荷Pcr ; 2)、计算实验中允许最大挠度值,压杆受压变弯曲后,其中Pcr 、
荷。
2、磁性表架 实际曲线与理论曲线之间的偏离,表征初曲率、偏心等因素的影响,这种影响愈大,偏离也愈大。
最小惯性矩I(mm4) 短粗的压杆是强度问题, 细长压杆则是稳定性问题。
3、百分表 8、不要使用本机无关的存储介质在试验机控制用计算机上写盘或读盘;
达到80%Pcr以后,曲线逐渐平缓,应等间隔控制挠度( 0. 百分表读数Ai(mm) δi=|Ai-A0|(mm) 3、任何时候都不能带电插拔电源线和信号线; 6、试验结束后,一定要关闭所有电源; 观察两端绞支压杆的失稳现象; 中心受压的直杆压杆当荷载小于Pcr时,保持直线形状的平衡,即使有横行的干扰力使压杆微小弯曲,在撤除干扰力以后仍能恢复直线 形状,是稳定平衡。 借助磁力表架可多方位安装固定百分表,方便测量任何方位的变形。 用测定横向变形的方法确定两端绞支压杆的临界荷载Pcr,并与理论计算结果进行比较。 4、试验过程中,不能远离试验机; 百分表读数Ai(mm) 9)、分级加载测试:在80% Pcr以下,曲线陡直,在初载荷(200N)到0. 7)、点击“运行”,开始实验; 由于δ的迅速增加,使压杆不仅承受压力而且附加弯矩也迅速增加。 3)、依次打开试验机主机、计算机;
压 杆 稳 定 实 验
压 杆 稳 定 实 验一.实验目的:1. 观察压杆丧失稳定的现象。
2. 用绘图法测定两端铰支压杆的临界荷载cr F ,并与理论值进行比较。
二.实验设备及工具:电子万能试验机、程控电阻应变仪三.试验原理:对于两端铰支受轴向压力的细长杆,根据欧拉公式,其临界荷载为2min2l EI F cr π=式中min I 为最小惯性矩,l 为压杆长度。
当cr F F <时压杆保持直线形式,处于稳定平衡。
当crj F F ≥时,压杆即丧失稳定而弯曲。
对于中柔度压杆,其临界应力公式为λσb a cr -=式中a 、b 为常数。
由于试样的初曲率往往很难避免,所以加载时压力比较容易产生偏心,实验过程中,即使压力很小时,杆件也发生弯曲,其挠度也随着荷载的增加而不断增加。
本实验采用由碳钢制成的矩形截面的细长试件,表面经过磨光,试件两端制成刀刃形,如图a 所示:实验前先在试样中间截面的左右两侧各贴一个应变片1和2,以便测量其应变,见图b ,假设压杆受力后向左弯曲,以1ε和2ε分别表示压杆中间截面左、右两点的压应变,则2ε除了包括由轴向力产生的压应变外,还附加一部分由弯曲产生的压应变,而1ε则等于轴向力产生的压应变减去由弯曲产生的拉应变,故1ε略小于2ε。
随着弯曲变形的增加,1ε与2ε差异愈来愈显著。
当cr F F <时,这种差异尚小,当F 接近cr F 时,2ε迅速增加,1ε迅速减小,两者相差极大。
如以载荷F 为横坐标,压应变为纵坐标,可绘出1ε-F 和2ε-F 曲线(见下图所示)。
由图中可以看出,当1ε达到某一最大值后,随着弯曲变形的继续发生而迅速减小,朝着与2ε曲线相反的方向变化。
显然,根据此两曲线作出的同一垂直渐近线AB ,即可确定临界荷载cr F 的大小。
以载荷P 为横坐标,压应变为纵坐标,人工绘制1ε-P 和2ε-P 曲线,两曲线的同一垂直渐近线与力轴的交点,即为临界荷载cr F四.实验步骤1.测量试样尺寸,在试样的两端及中部分别测量试样的宽度和厚度,取用三次测量的算术平均值2.启动电子万能试验机,手动立柱上的“上升”或“下降”键,调整活动横梁位置,使上、下压板之间的位置相对比较小,把试样放在两压槽的正中间位置上。
压杆稳定试验
压 杆 稳 定 实 验一.实验目的1. 观察并用电测法确定两端铰支撑条件下细长压杆的临界力lj P 。
2. 理论计算两端铰支撑条件下细长压杆的临界力lj P 并与实验值测试值进行比较。
二.实验仪器和设备1.拉压实验装置一台2. 矩形截面压杆一根(已粘贴应变片)3.YJ-4501静态数字电阻应变仪一台三.实验原理和方法压实验装置见图1,它由座体1,蜗轮加载系统2,支承框架3,活动横梁4,传感器5和测力仪6等组成。
通过手轮调节传感器和活动横梁中间的距离,将已粘贴好应变片的矩形截面压杆安装在传感器和活动横梁的中间,见图2,压杆尺寸为: 厚度h=3mm ,宽度b=20mm ,长度l=350mm ,见图3(a ), 材料为65Mn ,弹性模量E =210 GN/m 2。
图1 图2对于两端铰支的中心受压的细长杆,其临界压力为 2min2l EI P lj π=l — 压杆长度min I — 压杆截面的最小惯性矩假设理想压杆,若以压力P 为纵坐标,压杆中点挠度f 为横坐标,按小挠度理论绘出的P- f曲线图,见图4。
当压杆所受压力P 小于试件的临界压力P lj 时,中心受压的细长杆在理论上保持直线形状,杆件处于稳定平衡状态,在P- f 曲线图中即为OC 段直线;当压杆所受压力lj P P ≥时, 图3杆件因丧失稳定而弯曲,在P- f 曲线图中即为CD 段直线。
由于试件可能有初曲率,压力可能偏心,以及材料的不均匀等因素,实际的压杆不可能完全符合中心受压的理想状态。
在实验过程中,即使压力很小时,杆件也会发生微小弯曲,中点挠度随压力的增加而增大。
见图5,若令压杆轴线为x 坐标,压杆下端点为坐标轴原点,则在2l x =处横截面上的内力为 Pf M l x ==2, P N -=横截面上的应力为 minI My A P ±-=σ图4 图5 在2l x =处沿压杆轴向已粘贴两片应变片,按图3(b )半桥测量电路接至应变仪上,可消除由轴向力产生的应变,此时,应变仪测得的应变只是由弯矩M 引起的应变,且是弯矩M 引起应变的两倍,即 2dM εε=由此可得测点处弯曲正应力 222min min d M E E I h Pf I h Mεεσ==== 并可导出2l x =处压杆挠度f 与应变仪读数应变之间的关系式 d PhEI f εmin = 由上式可见,在一定的力P 作用下,应变仪读数应变d ε的大小反映了压杆挠度f 的大小,可将图4中的挠度f 横坐标用读数应变d ε来替代,绘制出P-d ε曲线图。
材料力学实验 压杆稳定实验
《工程力学实验》项目五:
压杆稳定实验
哈尔滨工业大学力学实验教学中心
五、应变测量电路与测试技术
应变测量电路 应变片的电阻变化由电阻应变仪进 行测量,其测量电路是惠斯顿电桥。 • 流经电阻R1的电流为: • R1两端的电压降为: • R4两端的电压降为: • B、D端输出电压为: • 当 时,输出电压为零, 称为电桥平衡。 惠斯顿电桥
哈尔滨工业大学力学实验教学中心
几种常用的组桥方式
三、实验原理
• 对于轴向受压的理想细长杆件,按小变形理论, 其临界载荷可以按照欧拉公式计算:
2 EI Fcr ( l ) 2
• 应该注意,压杆的弯曲是在其弯曲刚度最小的平 面内发生,因此欧拉公式中的I因为截面的最小形 心主惯性矩,即
2 EI min Fcr ( l ) 2
• 实验测定临界载荷,可将两组电阻应变片沿加工好的细长 杆杆长方向两侧粘贴好,并将杆置于三种不同的约束条件 下(两端固定、两端铰支、一端固定一端铰支),使杆件 轴向受压,测试各点应变。绘制应力——应变曲线,做应 力——应变曲线的水平渐近线就得到临界载荷Fcr。
1.单臂测量 • 若R1为测量片,则输出桥压为:
2.半桥测量 • 若R1和R2为测量片,则输出桥压为:
3.全桥测量 • 若四个应变片同时接入测量电桥,则电桥的输出电压为:
哈尔滨工业大学力学实验教学中心
温度补偿
• 若测试过程中环境温度变化明显,则对 测试结果影响很大。因为:1.温度变化 将引起应变片电阻值改变;2.温度变化 时,由于应变片敏感栅与被测构件材料 线膨胀系数不同而将产生附加应变。 为此应采取温度补偿措施。 • 若R1为测量片,则R2与R1相同的应变片, 并把它粘贴在与被测构件相同的材料 上,放在与R1相同的环境中,但不受载 荷。 • 应变片R2称之为温度补偿片。必须注 意,工作片和温度补偿片的电阻值、灵 敏系数以及电阻温度系数应相同。
压杆稳定实验报告
压杆稳定实验报告压杆稳定实验报告引言:压杆稳定实验是力学实验中常见的一种实验方法,通过对压杆的稳定性进行研究,可以深入了解物体在受力作用下的行为规律。
本实验旨在通过实际操作和数据分析,探究压杆的稳定性与其几何形状、材料特性以及受力情况之间的关系。
实验目的:1. 掌握压杆稳定实验的基本原理和操作方法;2. 通过实验数据的采集和分析,研究压杆稳定性与几何形状、材料特性的关系;3. 培养实验设计和数据处理的能力。
实验器材:1. 压杆:长约1米,直径约2厘米的圆柱形压杆;2. 实验台:平整稳定的实验台面;3. 测量工具:尺子、游标卡尺、电子天平等。
实验步骤:1. 准备工作:a. 将实验台面清洁干净,并确保其平整稳定;b. 检查压杆表面是否有明显的损伤或凹陷;c. 使用尺子和游标卡尺测量压杆的几何参数,如长度、直径等。
2. 实验操作:a. 将压杆竖直放置在实验台上,并使用水平仪进行调整,确保其垂直度;b. 在压杆的一端放置一个称重物,记录下该称重物的质量;c. 逐渐增加称重物的质量,记录下每次增加后的质量和压杆的变形情况;d. 当压杆出现明显的侧倾或变形时,停止增加质量,并记录下此时的质量。
3. 数据处理:a. 绘制质量与压杆变形的曲线图,通过观察曲线的变化趋势,分析压杆的稳定性;b. 计算压杆的临界负荷,即使压杆失去稳定的质量;c. 对实验数据进行统计和分析,探究压杆稳定性与几何形状、材料特性的关系。
实验结果与分析:通过实验数据的处理和分析,我们得到了如下结果:1. 压杆的稳定性随着负荷的增加而逐渐降低,当负荷达到一定值时,压杆失去稳定;2. 压杆的临界负荷与其几何形状有关,较长的压杆相对于较短的压杆来说,其临界负荷更大;3. 压杆的临界负荷与材料的强度有关,材料强度越大,压杆的临界负荷越大。
结论:通过本次压杆稳定实验,我们得出以下结论:1. 压杆的稳定性与其几何形状、材料特性以及受力情况密切相关;2. 在设计和制造压杆时,应根据实际需求选择合适的几何形状和材料,以提高其稳定性;3. 进一步研究压杆的稳定性,可以为工程设计和结构分析提供参考依据。
压杆稳定实验
压杆稳定实验一、实验目的1.观察压杆丧失稳定的现象。
2.用实验方法测定两端铰支的大柔度压杆的临界荷载,并与理论值进行比较,以验证欧拉公式。
二、实验设备万能实验机、电阻应变仪、游标卡尺。
三、实验原理及装置对于两端铰支受有轴向压力的细长杆,根据欧拉公式,其临界荷载为式中为最小惯性矩,为压杆长度。
当时压杆保持直线形式,处于稳定平衡。
当时,压杆即丧失稳定而弯曲。
对于中柔度压杆,其临界应力公式为式中a、b为常数。
由于试件的初曲率往往很难避免,所以加载时压力比较容易产生偏心。
试验过程中,即使压力很小时,杆件也发生弯曲,其挠度也随着荷载的增加而不断增加。
本实验采用由碳钢制成的矩形截面的细长试件,表面经过磨光,试件两端制成刀刃形。
实验前先在试件中间截面的左右两侧各贴一个电阻片1和2,以便测量其应变(见参考图a)。
假设压杆受力后向左弯曲(见参考图b),和分别表示压杆中间截面左、右两点的压应变,则除了包括由轴向力产生的压应变外,还附加一部分由弯曲产生的压应变,而则等于轴向力产生的压应变减去由弯曲产生的拉应变,故略小于。
随着弯曲变形的增加,与差异愈来愈显著。
当P<时,这种差异尚小,当P接近时,迅速增加,迅速减小,两者相差极大。
如以荷载P为横坐标,压应变为纵坐标,可绘出-P和-P曲线(见参考图c)。
由图看出,当达到某一最大值后,随着弯曲变形的持续而迅速减小,与曲线的变化相反。
显然,根据此两曲线作出的同一垂直渐近线AB,即可确定临界荷载的大小。
四、实验步骤1.量取试件长度、宽度、高度。
2.安装试件和仪器将试件放入加力装置中。
为了保证压力通过试件轴线,可用铅垂线来检验试件是否垂直。
接好电阻应变仪导线。
3.检查及试车4.进行实验先加一初荷载,记录应变仪的初读数。
然后缓慢加载,每加1kN荷载,记录一次读数。
当应变迅速增加时,可根据一定大小的应变增量,读取荷载的对应数值。
直至达到规定的变形为止。
5. 根据上边所测数据在方格纸上按一定比例尺绘-P图,并作、的渐近线,以确定此试件的临界荷载。
压杆稳定实验
实验五 压杆稳定实验一、实验目的细长杆受轴向压缩时,载荷增加到某一临界值P cr 时压杆将丧失稳定。
构件的失稳可以引起工程结构的屈曲破坏,故对于细长的构件,必须考虑它的稳定问题。
本试验将观察压杆丧失稳定的现象,同时用实验方法来确定压杆的临界载荷P cr ,并与理论计算结果进行比较。
二、实验原理根据欧拉小挠度理论,对于两端铰支的大柔度杆(低碳钢λ≥λP=100),在轴向力作用下,压杆保持直线平衡最大的载荷,保持曲线平衡最小的载荷即为临界载荷P cr ,按照欧拉公式可得:22)(l EJP cr μπ=(5-1) 式中:E ——材料的弹性模量; J ——试件截面的最小惯性矩;L ——压杆长度; μ——和压杆端点支座情况有关的系数,两端铰支μ=1。
当P<P cr 时,压杆保持直线形状而处于稳定平衡状态。
当P= P cr 时,压杆处于稳定与不稳定平衡之间的临界状态,稍有干扰,压杆即失稳而弯曲,其挠度迅速增加,载荷P 与压杆中点挠度δ之关系曲线如 图5-1,在理论上(小挠度理论)应为OAB 折线所示。
但在实验过程中,由于杆件可能有初曲率,载荷可能有微小的偏心及杆件的材料不均匀等,压杆在受力后就会发生弯曲,其挠度随着载荷的增加而增加。
当cr P P 时,δ增加缓慢。
当P接近P cr 时,虽然P增加很慢,但δ却迅速增大,如OA′B′或OA″B″所示。
曲线OA′B′、OA″B″与折线OAB的偏离,就是由于初曲率,载荷偏心等影响造成,此影响越大,则偏离也越大。
在试验过程中随时测出P及δ值,可根据P-δ曲线的渐近线AC确定临界载荷P cr 的大小。
三、实验设备游标卡尺。
试验台 (图5-2)一架。
试件:多功能弹性压杆稳定试件图3-9材料为弹簧钢,E=218GP a(由三点弯曲 试验测定,即由板条的弯曲钢度反求得。
)各式支座一套,电阻应变仪一台(用以测定荷载)。
试验台上 的压力传感器系应变计式,标定值:K=()()N 压力值应变仪读数με。
压杆稳定性实验
1压杆稳定性实验工程实际中,失稳破坏往往是突然发生的,危害性很大,因此充分认识压杆的失稳现象,测定压杆的临界载荷,具有十分重要的工程意义。
一、试验目的1.测定两端铰支细长压杆的临界载荷F cr ,并与理论值进行比较,验证欧拉公式。
2.观察两端铰支细长压杆的失稳现象。
二、设备和仪器1.力学实验台;2.百分表(或电阻应变仪); 3.游标卡尺、钢板尺。
三、试样弹簧钢(60Si 2Mn )制成的矩形截面细长杆,经过热处理(8700C 淬油,4800回火)。
两端制成刀刃,以便安装在试验台的V 形支座内。
试样名义尺寸:4mm ×20mm ×300mm 。
四、实验原理对于轴向受压的理想细长直杆,按小变形理论其临界载荷可由欧拉公式求得:22)(l EIF cr µπ=式中:E 为材料的弹性模量,I 为压杆横截面的最小惯性矩,l 为压杆的长度。
µ为长度系数,对于二端铰支情况,µ=1。
当载荷小于F cr 时,压杆保持直线形状的平衡,即使有横向干扰力使压杆微小弯曲,在撤除干扰力以后压杆仍能回复直线形状,是稳定平衡。
当载荷等于F cr 时,压杆处于临界状态,可在微弯情况下保持平衡。
如以压力F 为纵坐标,压杆中点挠度w 为横坐标。
按小变形理论绘出的F -w 图形可由二段折线OA 和AB 来描述,如图7.1所示。
而实际压杆由于不可避免地存在初始曲率,或载荷可能有微小偏心,以及材料不均匀等原因,在加载初始就出现微小挠度,开始时其挠度w 增加较慢,但随着载荷增加,挠度也不断增加,当载荷接近临界载荷时,挠度急速增加,其F -w 曲线如图7.1中OCD 所示。
实际曲图F-w 曲线2线OCD 与理论曲线之间的偏离,表征初始曲率、偏心以及材料不均匀等因素的影响,这种影响愈大,偏离也愈大。
显然,实际曲线的水平渐进线即代表压杆的临界载荷F cr 。
工程上的压杆都在小挠度下工作,过大的挠度会产生塑性变形或断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压杆稳定实验
4、加载测试记录 、 先逐渐在杠杆4的 处加砝码 每加一个砝码( 处加砝码, 先逐渐在杠杆 的B处加砝码,每加一个砝码( 5N)后点击“加荷”并输入载荷重量,然后再点击“ )后点击“加荷”并输入载荷重量,然后再点击“ 数采” 此时计算机便测出对应的变形。 数采”,此时计算机便测出对应的变形。列表记录每 次砝码重量和变形值。 次砝码重量和变形值。当变形增量明显变大时加力改 为小号砝码( , ), ),最后试样出现较大变形时加 为小号砝码(2N,1N),最后试样出现较大变形时加 力停止。 力停止。 5、结束实验 、 实验完毕,卸掉砝码,关闭电源。 实验完毕,卸掉砝码,关闭电源。进行实验结果 的处理。 的处理。
′
ห้องสมุดไป่ตู้
压杆稳定实验
2、调整平衡砣 在未加力前,调整杠杆4两端的平衡砣1和8,使 试样6的轴向力P为零。 3、安装测试装置 将涡流传感器、适配器、计算机相连,使传感器 的触头对称地安在试样6中点E处,并尽量保持与试样 表面垂直。打开计算机进入测试软件,从实验类型中 选择“压杆稳定实验”,按提示输入两涡流传感器的 编号。按提示调整传感器探头与被测杆之间的间隙为 5mm左右。
压杆稳定实验
三、试验原理 1、细长压杆的压力、变形关系 、细长压杆的压力、 如果把压杆所受压力 p和平衡时压杆中 的关系做成曲线,则如图所示 则如图所示。 点挠度δ 的关系做成曲线 则如图所示。
对于理想压杆,在压力小 对于理想压杆, 于临界压力 pcr 时,压杆保持 平衡, 对应图中直线OA 平衡, = 0 ,对应图中直线 δ 当压力达到临界压力时, ;当压力达到临界压力时,压 杆的直线平衡变为不稳定, 杆的直线平衡变为不稳定,按 P 照欧拉的小挠度理论 p 与 δ 的 关系相当于图中的水平线AB。 关系相当于图中的水平线 。
压杆稳定实验
(二)细长压杆临界力测定 二 压杆稳定实验装置简图如图所示。 压杆稳定实验装置简图如图所示。
压杆稳定实验
1、实验值确定: 、实验值确定: 实验采用矩形截面薄钢杆6作为压杆试样,两端放 实验采用矩形截面薄钢杆 作为压杆试样, 作为压杆试样 形槽内, 通过加载杠杆4 在V形槽内,相当于两端铰支。压力 通过加载杠杆 形槽内 相当于两端铰支。压力P通过加载杠杆 固定砝码2和移动砝码 加在压杆的A端 和移动砝码3加在压杆的 、固定砝码 和移动砝码 加在压杆的 端,通过调节两 个砝码的重力和位置可以改变压力P。 个砝码的重力和位置可以改变压力 。用两个涡流传感 对称的装在试样6中点 的两边, 器5和7对称的装在试样 中点 的两边,当试样 在轴向 和 对称的装在试样 中点E的两边 当试样6在轴向 作用下变弯时, 力P作用下变弯时,用涡流传感器和计算机测出中点 作用下变弯时 用涡流传感器和计算机测出中点E 两边的位移。 两边的位移。实验过程中一边加力一边注意监测变形 如果变形显著增加时,意味着试样有较大弯曲, ,如果变形显著增加时,意味着试样有较大弯曲,这 时所对应的轴向力P即为临界力 。 即为临界力Pcr。 时所对应的轴向力 即为临界力 根据平衡条件,压力P与作用在 与作用在B,C点砝码重力 B , 点砝码重力Q 根据平衡条件,压力 与作用在 点砝码重力 QC及作用位置的关系为: 及作用位置的关系为:
压杆稳定实验
3、误差计算: 、误差计算: 对杆件6的临界力 计算相对误差 计算相对误差: 对杆件 的临界力Pcr计算相对误差: 的临界力
Pcr Pcr e= % Pcr
四、试验步骤 1、测量原始尺寸 、 将试样和传感器安装在相应的卡具中, 将试样和传感器安装在相应的卡具中,测量并 记录有关数据。包括断面尺寸、位置尺寸。 记录有关数据。包括断面尺寸、位置尺寸。
压杆稳定实验
一、实验目的
1、观察细长杆件在轴向压力作用下的失稳现象。 、观察细长杆件在轴向压力作用下的失稳现象。 2、测量细长压杆的临界压力,验证欧拉公式。 、测量细长压杆的临界压力,验证欧拉公式。
二、实验仪器
1、压杆稳定实验装置。 、压杆稳定实验装置。 2、涡流传感器及适配器 套。 、涡流传感器及适配器2套 3、计算机测试系统1套。 、计算机测试系统 套 4、砝码、直尺、扳手等器材。 、砝码、直尺、扳手等器材。
压杆稳定实验
根据欧拉公式, 根据欧拉公式,有
π 2 EI Pcr = 2 ( l )
实际压杆难免存在初弯曲、 实际压杆难免存在初弯曲、材料不均匀以及压力偏心等 缺陷。由于这些缺陷,实验表明,在承受的轴向压力P 缺陷。由于这些缺陷,实验表明,在承受的轴向压力 远小于 Pcr时,压杆就已经出现了弯曲。开始挠度 δ 很小 压杆就已经出现了弯曲。 且增长缓慢,如图中曲线OCD所示。随着 P力逐渐接 所示。 ,且增长缓慢,如图中曲线 所示 力逐渐接 将急剧增大.当 大到一定程度时, 近 Pcr ,δ将急剧增大 当 δ 大到一定程度时,将引起塑性 将急剧增大 变形,直到破坏。一般压杆要在小挠度下工作, 变形,直到破坏。一般压杆要在小挠度下工作,工作压 力小于Pcr 。 力小于
压杆稳定实验
QB BD + QC CD P= AD
根据实验记录的砝码重量和变形值按一定比例 绘制P- 曲线图 从稳定图中确定临界力Pcr 。 曲线图, 绘制 δ曲线图,从稳定图中确定临界力 2、理论计算: 理论计算: 图示约束和截面情况下, 图示约束和截面情况下,压杆的临界压力的理论值 为:
π 2 EI π 2 Eba 3 ′ Pcr = = 2 12l 2 (l )