高考数学中利用空间向量解决立体几何的向量方法三-资料.ppt

合集下载

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

空间向量与立体几何PPT课件

空间向量与立体几何PPT课件
⑶∵已知点 A、B 、C 在平面 内且 AB a , AC b ,对于空间任意一点 O ∴点 P 在平面 上 是存在唯一有序实数对(x, y), 使 OP OA x AB y AC ③
(4)对于不共线的三点 A、B 、C 和平面 ABC 外的一点 O , 空间一点 P 满足关系式 OP xOA yOB zOC ,则点 P 在平 面 ABC 内的充要条件是 x y z 1 .
则 D(0,0,0),B
⑴ CD 0, 2,0
2,0,0
,PB
,C 2 2
0, 2,0 ,0, 2
2
,P ,
2 2
,0,
2 2
CD PB 0,CD PB,CD PB
⑵取平面 BDx,y,z)
PB
2021
6
4、两个向量的数量积
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
空间两个向量的数量积的性质
注:空间向量的数量积具有和平面202向1 量的数量积完全相同的性质7 .
(三)空间向量的理论
1.共线向量定理:对空间任意两个向量
a,b(b0),a//b的充要条件是存在实数 使
17
例 1.一副三角板 ABC 和 ABD 如图摆成直二面角, 若 BC=a,求 AB 和 CD 的夹角的余弦值.
分析:用几何法求两异面直 线所成的角关键在于巧妙地利 用平行线构造角,且能通过解三 角形的知识求出该角的大小.
若在异面直线上选取两个非零向量 a 和 b ,借助向量的夹角 公式计算出这两个向量的夹角的大小就可得出两异面直线所
VD PBC
1 3
1 2
PB
PD
DC
1 3
1 2

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

,即14x+ 43y+12z=0

令 y=2,则 z=- 3,∴n=(0,2,- 3).
∵ PD =0,23 3,-1,显然 PD =
3 3 n.
26
∵ PD ∥n,∴ PD ⊥平面 ABE,即 PD⊥平面 ABE.
探究提高 证明线面平行和垂直问题,可以用 几何法,也可以用向量法,用向量法的关键在 于构造向量,再用共线向量定理或共面向量定 理及两向量垂直的判定定理。若能建立空间直 角坐标系,其证法较为灵活方便.
7
r 平面的法向量:如果表示向量 n的有向线段所在
直线垂直于r平面 ,则称r这个向量垂直于平r
面 ,记作 n⊥ ,如果 n⊥ ,那 么 向 量n
叫做平面 的法向量.
r
l
给定一点Ar 和一个向量 n,那么 过点A,以向量 n 为法向量的平面是
r 完全确定的.
n
几点注意:
1.法向量一定是非零向量;
17
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1
中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
18
证明 方法一 如图所示,以 D 为原点,DA、DC、DD1 所在
直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的
1,得
x
1 2
y 1
r n
(
1
,
1,1),
2
10
思考2:
因为方向向量与法向量可以确定直线和平面的 位置,所以我们应该可以利用直线的方向向量与平 面的法向量表示空间直线、平面间的平行、垂直、 夹角等位置关系.你能用直线的方向向量表示空间两 直线平行、垂直的位置关系以及它们之间的夹角吗? 你能用平面的法向量表示空间两平面平行、垂直的 位置关系以及它们二面角的大小吗?

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

高考数学中利用空间向量解决立体几何的向量方法(三)——空间向量求距离

高考数学中利用空间向量解决立体几何的向量方法(三)——空间向量求距离

G
x D F A
C
E
y
B
例1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是 :
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点 z B 到平面 EFG 的距离. G 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2). E F ( 2 , 2 , 0 ), E G ( 2 , 4 , 2 ), D C
G
x D
F A
C
E
y
B
练习3: 正方体AC1棱长为1,求BD与平面GB1D1的 距离
D1 A1 Z B1
DD
C1 d
1
n
n
G A X
D
B
C Y
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
D1 A1 Z B1
AD
n
C1 d
n
D
A X B
C Y
| PA n | = |n |
.
这个结论说明,平面外一点到平面的距离等于连结此点与平面 上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的 绝对值.
例1、已知正方形ABCD的边长为4, CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
∴n M C 2 2 ax ay 0
a , 0, 0) N (
2 2
a,
1 2
a,
1 2
a)

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。

第3章空间向量与立体几何§3.2立体几何中的向量方法(三)——利用向量方法求距离

第3章空间向量与立体几何§3.2立体几何中的向量方法(三)——利用向量方法求距离

§3.2立体几何中的向量方法(三>利用向量方法求距离-对点讲练知识点一求两点间的距离八〔I已知矩形ABCD中,AB = 4 , AD = 3,沿对角线AC折叠, ADC垂直,求BD间的距离.解方法一过D和B分别作DE丄AC于E, BF丄AC于F, 则由已知条件可知AC = 5,••• DE =错误!=错误!,BF =错误!=错误!.•/ AE =错误!=错误!= CF,• EF= 5 —2X错误!=错误!,-I =错误!+ -I +错误!.| -1 |2=(错误!+错误!+错误! >2=错误!2+ -1 2+错误!2+ 错误!错误!+ 2 -1错误!.•••面ADC丄面ABC,而DE丄AC ,•DE 丄面ABC ,•DE丄BF,错误!丄错误!,| — |2=错误!2+错误!2+错误!2=错误!+错误!+错误!=错误!,• | 1 |=错误!.故B、D间距离是错误!.方法二同方法一.过E作FB的平行线EP,以E为坐标原点,以EP, EC, 为x、y、z轴建立空间直角坐标系如图.则由方法一知DE = FB =错误!,EF=错误!,• D错误!,B错误!,使面ABC与面2错误!•一 + 2 ED所在直线分别| -I 匸错误!=错误!.ABEF ,点M 在AC 上移动,点 N 在BF 上移动,若 CM = BN = a(O v a v 错误! >.(1>求MN 的长;(2>当a 为何值时,MN 的长最小. 解(1>建立如图所示的空间直角坐标系,则 A(1,0,0>,F(1,1,0>,C(0,0,1>•/ CM = BN = a(0<a <错误! >, 且四边形 ABCD 、ABEF 为正方形,••• M(错误!a,0,1 —错误!a >,N(错误! a ,错误!a,0>, •••I 错误! = (0,错误! a ,错误! a — 1>,二|错误! |=错误!. (2>由(1>知MN =错误!, 所以,当a =错误!时,MN =错误!.即M 、N 分别移到AC 、BF 的中点时,MN 的长最小,最小值为 错误!. 知识点二求异面直线间的距离U 如图所示,在三棱柱 ABC — 中,AB 丄侧面BBQ I C ,E 为棱CC i 上异于C 、C i 的一点,EA 丄EB i ,已知 AB =错误!,BB i = 2,BC = 1,Z BCC i =错误!,求异 面直线AB 与EB i 的距离.解.以B 为原点,错误!、错误!所在直线分别为 y 、z 轴,如图建立空间直角坐标系.由于 BC = I ,BB i = 2, AB =错误!,/ BCC i =错误!,在三棱柱 ABC — A i B i C i 中有 B(0,0,0>,A(0,0,错误!>,B i (0,2,0>,即错误!错误! = 0,【反思感悟】 求两点间的距离或某线段的长度的方法:(1>把此线段用向量表示,然后用|af 二a a 通过向量运算去求 间坐标系,利用空间两点间的距离公式 d =错误!求解.如图所示,正方形ABCD , ABEF 的边长都是1,而且平面a |.(2>建立空设E ( >,由EA ^EB ,得 凹•回=0,得错误!错误! = 0,即a =错误!或a =错误!(舍去>, 故E 错误!. 设n 为异面直线AB 与EB i 公垂线的方向向量, 由题意可设n = (x , y,0> , 则有 n • —! =0. 易得n =(错误!,1,0> ,•••两异面直线的距离 d = 工 =错误! = 1.【反思感悟】 求异面直线的距离,一般不要求作公垂线,若公垂线存在,则直接求解即可;若不存在,可利用两异面直线的法向量求解.如图所示,在长方体 ABCD — A I B I C I D I 中,AB = 4,AD = 3,AA 1= 2,M 、N 分别为 DC 、BB I 的中点,求异面直线 MN 与A I B 的距离.解以A 为原点,AD 、AB 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 贝V A 1(0,0,2>,B(0,4,0>,M(3,2,0>,N(0,4,1> . •I 错误! = (- 3,2,1>,I = (0,4,- 2> . 设MN 、A 1B 公垂线的方向向量为 n = (x ,y ,z >,即错误!.令 y = 1,贝U z = 2,x =错误!, 即n =错误!,|n |=错误!.—1= (— 3,- 2,2>在n 上的射影的长度为d= I ,故异面直线MN与A I B的距离为错误!.知识点三求点到平面的距离卜卫在三棱锥 B —ACD中,平面ABD丄平面ACD,若棱长AC = CD = AD = AB =1,且/ BAD = 30 °求点D到平面ABC的距离.解如图所示,以AD的中点0为原点,以0D、OC所在直线为x轴、y轴,过0作0M丄面ACD 交AB于M,以直线0M为z轴建立空间直角坐标系,则A错误!,B错误!,C错误!,D错误!,•••=错误!,-I =错误!,丨=错误!,设n = (x, y, z>为平面ABC的一个法向量,• y=—错误! x, z=—错误! x,可取n =(—错误!,1,3> ,代入d = □ ,得d=错误!=错误!,即点D到平面ABC的距离是错误!.【反思感悟】禾U用向量法求点面距,只需求出平面的一个法向量和该点与平面内任一点连线表示的向量,代入公式求解即可.正方体ABCD —A1B1C1D1 的棱长为4, M、N、E、F 分别为A1D1、A1B1、C1D1、B1C1的中点,求平面AMN平面与EFBD间的距离.解如图所示,建立空间直角坐标系 D —xyz,贝U A(4,0,0> , M(2,0,4> , D(0,0,0> ,B(4,4,0> , E(0,2,4> , F(2,4,4> , N(4,2,4> ,从而一 =(2,2,0> ,错误!= (2,2,0>,I亠=(—2,0,4>,错误!= (- 2,0,4>,二一I =错误!,I亠=错误!,••• EF // MN , AM // BF ,•••平面AMN //平面EFBD.设n = (x, y, z>是平面AMN的法向量,解得错误!•取z = 1 得n = (2, —2,1>,由于一在n上的投影为|创=错误!=—错误!.•两平行平面间的距离课堂小结:1. 求空间中两点A , B的距离时,当不好建系时利用|AB| |=错误!来求.2. 两异面直线距离的求法.如图(1>, n为l i与12的公垂线AB的方向向量, d=|」匸错误!.图⑴3点B到平面a的距离:|•(如图(2>所示>4•面与面的距离可转化为点到面的距离课时作业-一、选择题1•若0 为坐标原点,口=<1 , 1 , 2) , —=<3 , 2, 8),-=<0, 1 , 0),则线段AB的中点P到点C的距离为<)A.错误! B . 2错误! C.错误! D.错误!答案D解读由题意 I = (1 — t>错误!=错误!(错误! +错误! > = (2,错误!,3>,错误!=错误!—二=(1 — t>错误! = (— 2,—错误!,— 3> , PC = |错误! |=错误!=错误! •2. 如图,正方体 ABCD — A i B i C i D i 的棱长为1 , O 是底面 A 1B 1C 1D 1的中心,贝V O 至U平面ABC 1D 1的距离是(>□ ______ C,EA •弐B.错误!C.错误!D.错误! 答案B 解读以D 为坐标原点,以 DA , DC , DD 1所在直线分别为 x,y,z 轴建立空间直角坐标 系,则有 D 1<0, 0, 1), D<0 , 0, 0), A<1 , 0, 0), B<1 , 1 , 0), A 1<1 , 0, 1),C 1<0, 1, 1).因O 为A 1C 1的中点,所以 0<习,耳,1), 回=胡,口勺,0),设平面ABC 1D 1的法向量为n=<x,y,z ),则有则 n = <1 , 0, 1),••• O 到平面ABC 1D 1的距离为:3 .在直角坐标系中,设A(— 2,3> , B(3, — 2>,沿x 轴把直角坐标平面折成 120。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

则点 P0 到直线 l 的距离 d= =|1a| |P→P0|·|a|2-|P→P0·a|2.
|P→P0|2-P→P|a0|·a2
11/64
(2)点到平面距离 用空间向量法求点到平面距离详细步骤以下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的法向量上的射影长.如图,设 n=(a,b,c)是平面 α 的一个法向量, P0(x0,y0,z0)为 α 外一点,P(x,y,z)是平面 α 内
答案 解析
A. 2
√B. 3
C. 5
D.3
以O为坐标原点,建立如图所表示空间直角坐标系.
由题意可知A(1,0,0),B(0,2,0),C(0,0,2),
∴A→B=(-1,2,0),B→C=(0,-2,2),
|A→B|=
1+4+0=
→→ 5,|AB→·BC|=
2.
|BC|
∴点 A 到直线 BC 的距离 d= 5-2= 3.
∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA= 3,求异面直线
A1B与AO1所成角余弦值大小.
解答
14/64
反思与感悟
在处理立体几何中两异面直线所成角问题时,若能构建空间直角坐标系, 则建立空间直角坐标系,利用向量法求解.但应用向量法时一定要注意向 量所成角与异面直线所成角区分.
√D.
615或-
15 6
0,-1,3·2,2,4 由 1+9× 4+4+16 =
-2+12 10× 24=
615,
知这个二面角的余弦值为 615或- 615,故选 D.
1 2 3 4 555/64
2.已知三棱锥O-ABC,OA⊥OB,OB⊥OC,OC⊥OA,且OA=1,OB

3.2.2立体几何中的向量方法-三种空间角

3.2.2立体几何中的向量方法-三种空间角
引入:
空间向量的引入为代数方法处理立体几
何问题提供了一种重要的工具和方法,解题
时,可用定量的计算代替定性的分析,从而 避免了一些繁琐的推理论证。求空间角与距 离是立体几何的一类重要的问题,也是高考 的热点之一。本节课主要是讨论怎么样用向 量的办法解决空间角问题。
•引入 •复习 •线线角 •线面角 •二面角 线面角 题型二:线面角
直线与平面所成角的范围: [0, ] 2 A 思考: n


B

O
n, BA 与的关系?
结论: sin
•引入 •复习
|
•线线角
cos n, AB
•线面角
|
•小结
•二面角
题型二:线面角 例二: 在长方体 ABCD A B1C1D1 中, = 5,AD 8, AB 1
关键:观察二面角的范围
•引入 •复习 •线线角 •线面角 •二面角 •小结
题型三:二面角
例三 如所示,ABCD是一直角梯形,∠ABC = 900 , 1 SA ⊥ 平面ABCD,SA = AB = BC = 1 ,AD = ,求面SCD与面SBA 2 所成二面角的余弦值.
S
B
A D
C
解: 建立空直角坐系A - xyz如所示, 1 B - 1, , A ( 0, , C ( 1, 0) D (0, , 0), S (0, 0,1) 0, 0) C 2 1 易知面SBA的法向量n1 AD (0, , 0) 2 A D y 1 1 CD (1, , 0), SD (0, , 1) 2 2 设平面SCD的法向量n2 ( x, y, z), 由n2 CD, n2 SD, 得: y y x 2 0 x 2 任取n2 (1,2,1) y z0 z y 2 2 n n2 6 6 1 cos n1 , n2 即所求二面角得余弦值是 3 | n1 || n2 | 3

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

C
D CA, DB
进行向量运算
d2

2
AB

( AC

CD

DB)2
A
图3
2
2
2
AB CD BD 2(AC CD AC DB CD DB)
a2 c2 b2 2AC DB
a2 c2 b2 2CA DB
于是,得 2CA DB a2 b2 c2 d 2
3.2立体几何的向量方法(3)
• 空间向量与空间角
例 1、如图,在正方体 ABCD A1B1C1D1中,M、N 分别是
棱 CD、CC1的中点,则异面直线 A1M 与 DN 所成的角
的大小是
.
法二 以 D 为原点,DA、DC、DD1所在直线为坐标轴建立 空间直角坐标系,设 AB=1,
则 D(0,0,0),N0,1, 1 ,
15
例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B
处。从A,B到直线 l(库底与水坝的交线)的距离AC和BD分别为
a 和 b ,CD的长为 c, AB的长为d。求库底与水坝所成二面角的余弦值。
解:如图,AC a,BD b,CD c,AB d.
化为向量问题

B
根据向量的加法法则 AB AC CD DB
a, b), 1 a2 b2
2

0
C1(0, 0, b),
z C1
2
∵ CC1B在坐标平面yoz中
C
∴ 可取 n=(1,0,0)为面CC1B的法向量 x
D
设面 C1BD 的一个法向量为 m ( x, y, z)

选修2-1课件3.2.2_立体几何中的向量方法(全面)

选修2-1课件3.2.2_立体几何中的向量方法(全面)
化为向量问题
D1 C1
B1
依据向量的加法法则, AC1 AB AD AA1
进行向量运算
A1 D A 图1
B
C
AC1 ( AB AD AA1 ) 2
2 2 2
2
AB AD AA1 2( AB AD AB AA1 AD AA1 )
1 1 1 2(cos60 cos60 cos60) 6 所以 | AC1 | 6
空间“距离”问题(1)
一、复习引入
用空间向量解决立体几何问题的“三步曲”。 (1)建立立体图形与空间向量的联系,用空间向
量表示问题中涉及的点、直线、平面,把立体几
何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题; (进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意 义。 (回到图形)
P
n

A
O
这个结论说明,平面外一点到平面的距离为:连结此点与平面 上的任一点(常选择一个特殊点)的向量与该平面的法向量数量积的 绝对值与该法向量模长的商.
练习(用向量法求距离): 1.如图, ABCD 是矩形, PD 平面 ABCD , PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.
z
G
C

1 1 n ( , ,1) ,BE (2,0,0) A 3 3 | n BE| 2 11 d . 11 n
E
y
B
2 11 答:点 B 到平面 EFG 的距离为 . 11
空间“距离”问题(2)

空间向量法解决立体几何问题

空间向量法解决立体几何问题

A
C B
Y
1 1 y 0 于是 2 n 1, 1, 1 2 X x y 0
学习小结: 本节课主要是认识了直线的方向向量及 平面的法向量的概念,这两个向量是运用向 量工具解决平行、垂直、夹角等立体几何问 题必要的条件.
用向量方法解决几何问题
因为方向向量与法向量可以确定 直线和平面的位置,所以我们可以利 用直线的方向向量与平面的法向量表 示空间直线、平面间的平行、垂直、 夹角、距离等位置关系.
一.引入两个重要的空间向量
1.直线的方向向量 把直线上任意两点的向量或与它平行的向 量都称为直线的方向向量.如图,在空间直角 坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是 z
AB (x2 x1, y2 y1, z2 z1)
B A y
Z
A’ B’
O1 (0,0, a) E(a b, a,0) A1F (a, b, a) O1E (a b, a, a) x 1 1 A1F O1E A F O E 0
O C
F A
y
B
E
A1F O1 E
例2. 四棱锥P - ABCD中, 底面ABCD是正方形, PD 底面ABCD, PD DC , 点E是PC的中点, 作EF PB交PB于点F . (2) 求证 : PB 平面EFD.
证1:如图所示建立 空间直角坐标系,设DC=1. 1 1 PB (1, , 1) DE (0, , ) 1 2 2 1 1 故PB DE 0 0 2 2 所以PB DE
⑷解方程组,取其中的一个解,即得法向量.
例 2.在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) , C (0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6)

高考数学空间向量的综合应用ppt课件

高考数学空间向量的综合应用ppt课件

上一页
返回导航
下一页
第八章 立体几何与空间向量
5
设平面 PAD 的法向量为 n=(x,y,z),
则nn··AP→→AD==00,,即-2x+ x+y=y-0,3z=0,令 x=1,则 y=-2,z=- 3,故 n=(1,
-2,- 3)为平面 PAD 的一个法向量.
所以点 E 到平面 PAD 的距离 d=|n·|nP→|E|=
上一页
返回导航
下一页
第八章 立体几何与空间向量
10
设平面 A1BD 的法向量为 n=(x,y,z), 由D→A1·n=0 得 x+z=0,由D→B·n=0 得 x+y=0, 取 x=1,则 n=(1,-1,-1), 所以点 D1 到平面 A1BD 的距离是 d=|D→D|n1·| n|= 23=233.
下一页
第八章 立体几何与空间向量
24
翻折与展开问题
(2021·江西红色七校第一次联考)如图 1.梯形 ABCD 中,AB∥CD,过 A,B 分别作 AE⊥CD,BF⊥CD,垂足分别为 E,F.AB=AE=2,CD=5, DE=1,将梯形 ABCD 沿 AE,BF 折起,得空间几何体 ADE-BCF,如图 2.
上一页
返回导航
下一页
第八章 立体几何与空间向量
21
所以 AD⊥AN,所以 AN⊥MN, 因为 AP=AB,所以 AN⊥PB,MN∩PB=N,所以 AN⊥平面 PBC,
因为 AN⊂平面 ADM,所以平面 ADM⊥平面 PBC.
(2)存在符合条件的 λ. 以 A 为原点,建立如图所示的空间直角坐标系 A-xyz,
12×1+0×(-2)+- 23×(- 12+(-2)2+(- 3)2
3) =

高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件

高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件

【例1】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD
的中点.AB=AP=1,AD= √3 ,试建立恰当的空间直角坐标系,求平面ACE的
一个法向量.
解因为PA⊥平面ABCD,底面ABCD为矩形,所以AB,AD,AP两两垂直.
如图,以 A 为坐标原点, , , 的方向为 x 轴,y 轴,z 轴的正方向,建立空间
· = 0,


- = 0,
· = 0,
= 3,
解得
令 z=1,则 x=y=3,
= .
故平面 ABC 的一个法向量为 n=(3,3,1).
探究点二 有关空间向量的证明问题
角度1利用空间向量证明平行问题
【例2】 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,
第一章
1.2.2 空间中的平面与空间向量
课标要求
1.理解平面的法向量的定义并能在空间直角坐标系中正确地求出某一平
面的法向量;
2.能用向量语言表达线面、面面的垂直、平行关系;
3.理解三垂线定理及其逆定理.




01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
共线向量表示且直线不在平面内;③证明直线的方向向量与平面的法向量
垂直且直线不在平面内,如例2(1)中,FC1⊄平面ADE一定不能漏掉.
(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.当然要
注意当法向量坐标中有0时,要使用n1=λn2这一形式.
变式训练2
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面

高三数学《空间向量》PPT复习课件

高三数学《空间向量》PPT复习课件
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
d A,B ( x2 x1)2 ( y2 y1)2 (z2 z1)2
2.两个向量夹角公式
cos a,b a b | a || b |
注意:
a1b1 a2b2 a3b3
;
a12 a22 a32 b12 b22 b32
A(2,0,0)、C(0,2,0)、 C1(0,2,2)、E(2,2,1)、 F(0,0,1),所以
FC1 (0,2,1) DA (2,0,0) AE (0,2,1)
设 n1 (x1, y1, z1 ) ,n2 (x2 , y2 , z2 ) 分别是 平面ADE、平面B1C1F的法向量,则,n DA n AE ,
注意: 数量积不满足结合律 (a b)c a (bc)
向量数量积的应用
1、应用a
b
a
可b 证 0明两直线垂直,
2、利用
a
2
可a2求线段的长度。
3.1.4空间向量正交分解及其坐标表示
空间向量基本定理:如果三个向量a,b,c 不共面,那么对空间任一向量p,存在有序 实数组{x,y,z},使得p=xa+yb+zc.
| b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式
终点坐标减 在空间直角坐标系中,已知 A(x1起, y点1 ,坐z1)标、
B(x2 , y2 , z2 ) ,则 AB ( x2 x1 , y2 y1 , z2 z1)
n
二、求点到平面的距离
如图点P为平面外一点,点A为平面内的任
一点,平面的法向量为n,过点P作平面的垂

人教版高中数学选修第三章-空间向量与立体几何ppt课件

人教版高中数学选修第三章-空间向量与立体几何ppt课件

空间向量及其运算 立体几何中的向量方法
本章总结提升 整章课件共256页
第三章 空间向量与立体几何
3.1 空间向量及其运算
3.1.1 空间向量及其加减运算 空间向量的数乘运算
3.1.2
3.1.2 │ 三维目标 三维目标
1.知识与技能 (1)了解空间向量、相等的向量等概念; (2)掌握空间向量的加减运算及运算律,并能利用其解决简单的计算问题; (3)理解空间向量的数乘运算及运算律;培养学生的空间思维能力和想象能 力.
3.1.2 │ 新课导入 新课导入
[导入一] 在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么 叫作向量?向量是怎样表示的呢? 类比平面向量的加减运算你能得到空间向量的加减运算法则吗?
3.1.2 │ 预习探究 预习探究
► 知识点一 空间向量及其加减运算 1.几类特殊向量 名称 定义及表示 长度为 0 的向量叫零向量, 0 零向量 _________ 记为________ 单位 _________ 模为 1 的向量叫单位向量 向量 相等 而方向_____ 相反 的向量, 相反 与向量 a 长度_____ 向量 叫 a 的相反向量,记为-a 相等 的向量称为相等向量, 方向相同 ____且模_____ 相等 同向 且_____ 等长 的有向线段表示同一 在空间,_____ 向量 向量或相等向量
3.1.2 │ 预习探究
► 知识点二 空间向量的数乘运算 1.数乘运算的定义 实数 λ 与空间向量 a 的乘积 λa 仍然是一个向量,称为向量的 相同 ; 数乘运算. 如图 312 所示, 当 λ>0 时, λa 与向量 a 方向______ 相反 ;当 λ=0 时,λa=0.λa 的 当 λ<0 时,λa 与向量 a 方向______ 长度是 a 的长度的|λ|倍.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N
A
方法指导:若点P为平面α外一点,点A为平面α内任 一点,平面的法向量为n,则点P到平面α的距离公式 为
如何用向量法求点到平面的距离:
如图 A, 空间一点 P 到平面 的距离为 d,已知平面 的
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
分析:过 P 作 PO⊥ 于 O,连结 OA.
P
N
DCMA NhomakorabeaB
:如图,以 D 为原点建立空间直角坐标系 D-xyz
则 D(0,0,0),A( 2 a ,0,0),B( 2 a ,a ,0),C(0,a ,0),P(0,0,a )
∵ M 、N 分别是 AD 、PB 的中点,∴ M ( 2 a , 0, 0) N ( 2 a , 1 a, 1 a)
P
n
则 d=| PO |= | PA | cos APO.
∵ PO ⊥ , n , ∴ PO ∥ n .
A O
∴cos∠APO=|cos PA, n |.
∴d=| PA||cos PA, n |= | PA | | n | | cos PA, n | = | PA n | .
|n|
|n|
M
22
解得 2 x y z ,
A
2
x
B
∴可取 m ( 2,1, 1)
∴ MA 在 n 上的射影长 d MA n a 即点 A 到平面 MNC 的距离为 a .
n2
2
二、求直线与平面间距离
例2、已知正方形ABCD的边长为4,CG⊥平面ABCD,
CG=2,E、F分别是AB、AD的中点,求直线BD到平面
2
2 22
∴ MC ( 2 a, a, 0) , MN (0, 1 a, 1 a) ,
z
2 MA ( a, 0, 0)
2
22
P
2
设 n ( x, y, z) 为平面 MNC 的一个法向量, ∴ n MN , n MC
∴ n MC 2 ax ay 0 且 2
N D
C
y
n MN a y a z 0
z
C1
A1
B1
C
A
B
xE
y
例4
. 已 知 直 三 棱 柱 ABC ─A1B1C1 的 侧 棱 AA1 4 , 底 面
△ABC 中, AC BC 2 , BCA 90 , E 是 AB 的中点,
求异面直线CE 与 AB1 的距离.
解: 如 C 图 xy ,建 则 z C (0 ,立 0 ,0 )E ,(1 坐 ,1 ,0 )A ,标 (2 ,0 ,0 )系 B ,1(0 ,2 ,4 ).
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点
B 到平面 EFG 的距离.
z
解:如图,建立空间直角坐标系 C-xyz.
G
由题设 C(0,0,0),A(4,4,0),B(0,4,0),
D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).
E F ( 2 , 2 ,0 ) ,E G ( 2 , 4 ,2 ) ,
方法指导:①作直线a、b的方向向量a、b,求a、 b的法向量n,即此异面直线a、b的公垂线的方 向向量;②在直线a、b上各取一点A、B,作向
量AB;③求向量AB在n上的射影d,则异面直线 a、b间的距离为
AB n d
n
B
b
na
A
例4
. 已 知 直 三 棱 柱 ABC─A1B1C1 的 侧 棱 AA1 4 , 底 面 △ABC 中, AC BC 2, BCA 90 , E 是 AB 的中点, 求异面直线CE 与 AB1 的距离.
空间向量之应用3 利用空间向量求距离
课本P42
如果表示向量a的有向线段所在直线
垂直于平面,则称这个向量垂直于平面 ,记作a⊥.
如果a⊥,那么向量a叫做平面的
法向量.
l
a
课本P33
已知向量 AB a和轴 l,e是 l 上与 l 同方向的单位向量. 作点 A 在 l 上的射影 A1,作点 B 在 l 上的射影 B1,则 A1B1 叫 做向量 AB在轴上或在e方向上的正射影, 简称射影.
设平面 EFG 的一个法向量为 n ( x, y, z)x
D
C
n E F , n E G 22xx24yy020 F
n (1 , 1 ,1) ,BE(2,0,0) A 33
E
d|nBE| 2 11.
B
y
n
11
答:点 B 到平面 EFG 的距离为 2
11 .
11
练习1:
SA 平A 面BC , DDAB ABC90,
GEF的距离。
z
G
|nBE| 2 11
d
.
n
11
xD
C
F
A
E
B
y
练习3:
正方体AC1棱长为1,求BD与平面GB1D1的
距离
Z D1
DD 1 n C1 d
A1
B1
n
G D
A X
C Y
B
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C
与平面A1BC1的距离
Z D1
A1
B1
AD n C1 d n
l B1
n A1
A
已知向量 AB a和轴 l,e是 l 上与 l 同方向的单位向量. 作点 A 在 l 上的射影
B
A1,作点 B 在 l 上的射影 B1,则 A1B1 叫 做向量 AB在轴上或在e方向上的正射影, 简称射影.
b
AB n A1B1 n
一、求点到平面的距离
P
PA n d
n
M
O
n
这个结论说明,平面外一点到平面的距离等于连结此点与平面
上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的
绝对值.
例1、已知正方形ABCD的边长为4,
CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
G
xD F
A
E
C B y
例:1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是
D
A X
C Y B
练习4、在边长为1的正方体ABCD-A1B1C1D1中, M、N、E、F分别是棱A1B1、A1D1、B1C1、 C1D1的中点,求平面AMN与平面EFDB的距离。
z
AB n d
n
N D1 F
C1
A1
E M B1
D
Cy
A
B
x
四、求异面直线的距离
A a M
n
N Bb
AB n d
n
SA AB BC a, AD 2a, 求 A到 平 SC 面 的 D 距 离z 。
S
A
D
y
B
C
x
练习2:
练习(用向量法求距离): 如图, ABCD 是矩形, PD 平面 ABCD ,PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.
相关文档
最新文档