变形监测数据处理5-3

合集下载

毕业设计:建筑物的变形观测变形监测方案

毕业设计:建筑物的变形观测变形监测方案

毕业设计:建筑物的变形观测变形监测方案嘿,小伙伴,今天我要跟你聊聊一个相当有意思的课题——建筑物的变形观测变形监测方案。

别看这名字有点长,其实它就是一门研究如何监控建筑物变形的技术活儿。

下面我就用我那十年方案写作的经验,带你领略一下这个方案的精彩之处。

咱们得知道,建筑物变形是个啥玩意儿。

简单来说,就是建筑物在外力作用下,形状和尺寸发生变化。

这事儿听起来有点玄乎,但却是建筑安全的大敌。

所以,监测建筑物的变形,就成了咱们这个方案的核心任务。

一、方案背景话说这事儿起源于我国城市化进程的加速,高楼大厦拔地而起,但随之而来的就是建筑安全问题。

尤其是那些大型、超高层的建筑物,一旦出现变形,后果不堪设想。

于是,咱们这个方案应运而生,旨在为建筑物的变形监测提供一套可行的方案。

二、监测目的1.确保建筑物在施工和使用过程中,结构安全、稳定。

2.及时发现和处理建筑物的变形问题,防止事故发生。

3.为建筑物的维护、保养提供科学依据。

三、监测方法1.全站仪测量法:这是一种利用全站仪对建筑物进行三维测量,从而得到建筑物变形数据的方法。

优点是精度高,但成本较高,操作复杂。

2.光学测量法:通过光学仪器对建筑物进行拍照,然后分析照片中建筑物的变形情况。

这种方法成本较低,操作简单,但精度相对较低。

3.激光扫描法:利用激光扫描仪对建筑物进行扫描,得到建筑物的三维模型,进而分析变形情况。

这种方法精度较高,但成本较高,设备要求较高。

4.雷达监测法:通过雷达对建筑物进行监测,实时获取建筑物的变形数据。

优点是实时性强,但精度相对较低。

综合考虑,我们选择了全站仪测量法作为主要监测手段,辅以光学测量法进行验证。

四、监测步骤1.建立监测点:在建筑物上设置一定数量的监测点,用于采集变形数据。

2.数据采集:利用全站仪对监测点进行测量,获取建筑物的三维坐标。

3.数据处理:将采集到的数据输入计算机,进行数据处理,得到建筑物的变形数据。

4.变形分析:根据变形数据,分析建筑物的变形趋势,为处理变形问题提供依据。

《变形监测与数据处理》考试复习参考

《变形监测与数据处理》考试复习参考

参考书目:《工程测量》(李青岳、陈永奇)《变形监测数据处理》(武大出版社)1 变形监测的概念,目的,意义?概念:就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。

目的:首要目的是掌握变形体的实际性状,为判断其安全提供必要的信息,其次获得变形体变形的空间状态和时间特性(几何分析),同时还要解释变形的原因(物理解释)。

意义:实用上的意义:主要掌握各建筑物和地质构造的稳定性,为安全性诊断提供必要的信息,以便及时的发现问题并采取措施。

科学上的意义:更好的理解变形的机理,验证有关工程设计的理论和地壳运动的假说,进行反馈设计以及建立正确的预报变形的理论和方法。

2 变形体:变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体,包括自然和人工的构筑物。

(对可能产生变形的各种自然的或人工的建筑物或构筑体的统称)3 引起变形的因素?(可总结为3个方面,自然因素工程自身与工程有关的勘测、设计、施工、运营等)(1)人类开发自然资源的活动会破会地壳上部平衡,造成地面变形。

(2)人口密集的地方大量抽去地下水,造成地面沉陷。

(3)地下采矿引起矿体上方岩层移动。

(4)地壳中的应力长期的积累,引起地壳位移甚至地震 (5)与工程本身相联系的勘测、设计、施工、运营产生。

4 变形体的范畴:全球性变形研究(空间大地测量)、区域性变形研究(GPS、INSAR)、工程和局部性变形研究(地面常规测量技术、地面摄影测量技术、特殊和专用的测量手段、以及以GPS为主的空间定位技术)。

5.变形监测的内容及其分类分类:(1)按研究范围分类:全球性的、区域性的、局部性的(2)按时间特性分类:运动式(变形总趋势朝一个方向)、动态式(观测主要得到振动的幅值,周期等信息) 静态变形:空间位置随时间的变化特性,占多数; 动态变形:变形体空间位置在外力作用下,在某一时刻的变化.内容:应根据建筑物的性质和地基情况来定。

(1)工业和民用建筑:对于基础而言:内容是均匀沉陷和不均匀沉陷;对建筑物本身而言:是倾斜和裂缝观测; 对工业企业等各种设备而言:是水平位移和竖直位移; 对高层和高耸建筑物:还应观测瞬时变形、可逆变形、扭转; (2)水工建筑物:水平位移、垂直位移、渗透(浸润线)以及裂缝观测(3)钢筋混泥土建筑物:外部观测:水平位移、垂直位移、伸缩缝的观测 内部观测(4)地表沉降:定期进行观测,掌握其沉降与回升的规律。

变形监测数据处理与分析

变形监测数据处理与分析
2
0 000 0 000
0 94618 - 0 8186
1 982 10 1 982 11
0 000 0 000
2 398 0 23980 74
0 000 0 000
0 73926 1 37736
198212 0 000 23982 12 0 000 - 0 7365
第 27卷 第 8期 2011年 4月
甘肃科技 G ansu Sc ience and T echnology
Vol 27 N o 8 A pr 2011
变形监测数据处理与分析
杨林
(甘肃省测绘工程 院, 甘肃 兰州 730050)
摘 要: 无论是在测量 工程的实践上主要用于检查 各种工 程建筑 物和地 质构造 的稳定 性, 及 时发现 问题, 以便采 取 措施; 还是在科学研究 活动上用于包括更好理解变 形的机 理, 验证有 关工程设 计的理 论和地 壳运动 的假说, 以及 建 立正确的预报变形的理论和方法, 其变形观测占有重要的地位。通过对 云南地区 跨断层形变 过去 20 多年观测 数据 (从 1982年 2月 ~ 2005年 7月 )进行处理与分析, 得出了相应地形区 域的跨 断层地 应力积累 情况, 并与 过去二十 多 年云南当地地震情况联系在一起分析, 得出了其间的相互影响。 关键词: 变形监测; 变形观测数据; 数据处理和分析; 地应力 中图分类号: TD 842
1 变形观测
1 1 变形观测的概念及目的 在测量工程的实践和科学研究活动中, 变形观
测占有重要的位置。其在测量工程的实践上主要用 于检查各种工程建筑物和地质构造的稳定性, 及时 发现问题, 以便采取措施; 在科学研究活动上用于包 括更好理解变形的机理, 验证有关工程设计的理论 和地壳运动的假说, 以及建立正确的预报变形的理 论和方法。

基坑变形监测模板

基坑变形监测模板

基坑变形监测模板一、背景介绍。

基坑工程是城市建设中常见的工程类型,其施工过程中会受到地下水位、土体变形等因素的影响,因此需要进行变形监测以确保工程安全。

本文档旨在提供基坑变形监测的模板,以便工程监测人员能够依据此模板进行监测工作。

二、监测设备及方法。

1. 监测设备,监测基坑变形常用的设备包括测斜仪、水准仪、位移传感器等。

这些设备可以实时监测基坑周边土体和支护结构的变形情况。

2. 监测方法,监测人员应根据基坑工程的实际情况确定监测设备的布设位置和监测频率。

同时,监测人员还应制定监测方案,并在监测过程中及时记录监测数据。

三、监测数据处理。

1. 数据采集,监测人员应按照监测方案,定期对监测设备进行数据采集。

采集的数据应包括监测点的位置坐标、变形数据等。

2. 数据处理,监测人员应对采集的数据进行处理,包括数据的整理、分析和报告。

在数据处理过程中,应注意排除异常数据的影响,确保监测数据的准确性和可靠性。

四、监测报告编制。

1. 监测报告内容,监测报告应包括监测设备的布设情况、监测数据的采集情况、监测数据的处理结果等内容。

2. 报告格式,监测报告应按照规定的格式进行编制,包括封面、目录、正文、附录等部分。

报告的文字应简洁明了,图表应清晰易懂。

五、监测结果评定。

1. 结果评定标准,监测人员应根据监测数据的处理结果,对基坑变形进行评定。

评定标准应包括基坑变形的程度、变形趋势等内容。

2. 结果应用,监测结果应及时向相关部门和工程管理人员通报,以便及时采取相应的措施,确保基坑工程的安全。

六、总结与展望。

基坑变形监测是基坑工程安全施工的重要环节,监测人员应严格按照监测模板进行监测工作,确保监测数据的准确性和可靠性。

同时,监测人员还应不断总结经验,完善监测方法,提高监测水平,为基坑工程的安全施工提供可靠的数据支持。

七、附录。

1. 监测设备布设图。

2. 监测数据处理流程图。

3. 监测报告格式范例。

以上为基坑变形监测模板的内容,希望能为基坑工程的监测工作提供一定的参考价值。

变形监测数据处理

变形监测数据处理

§5.1 绝对网和相对网
1.何为绝对网和相对网(P84) 2.基准点 3.平差问题的基准(参考系) 4.监测网平差的基准与一般平差问题的
基准的区别(P86) 5.三种可选的监测网平差基准
6.模型误差(P88) 7.变形分析中,平差方法的选择
§5.3 平均间隙法
平均间隙法的基本思想(P90)
1.变形观测 2.地面监测方法有(P30) 3.地面监测方法的优点 4.测量机器人 5.测量机器人自动化变形监测的两种方
式及工程应用 6.地面摄影测量方法(P33)
7.摄影测量方法的优点 8.GPS变形监测的特点 9.GPS变形监测自动化系统 10.特殊的测量手段
§6.5 人工神经网络
1.人工神经网络的特点,五个方面 2.BP网络的拓扑结构 3.BP网络的学习过程 4.BP网络的一般学习步骤
作业 P129 6,7
第七章 变形的确定性模型和混 合模型
1.弹性力学的有关内容简介 2.有限元法的基本概念 3.大坝位移确定性模型的建立 4.混合模型的表达式 5.确定性模型和混合模型的应用实例 6.反分析理论及其应用
§2.2 假设检验原理与方法
1.假设检验的概念 2.假设检验的方法
§2.3 随机过程及其特征
1.随机过程的基本概念 2.随机过程的特征量 3.随机过程特征量的实际估计
第三章 变形监测技术
1.变形监测技术 2.变形监测方案 3.变形监测网优化设计
§3.1 变形监测技术
§5.4 GPS变形监测网的数据 处理
1.GPS变形监测网可直接测定变形体的 三维空间变形(P93)
2.GPS变形监测网的两种平差方法,静 态平差和动态平差

房屋变形监测等级标准

房屋变形监测等级标准

房屋变形监测等级标准《房屋变形监测等级标准》前言嘿,朋友们!咱们都知道房子是咱遮风挡雨的小窝,可它有时候也会“调皮”,发生变形呢。

这变形可能是因为地基不稳啦,周围环境变化啦,或者是房子自身老化等原因。

那为了保证咱住得安全、放心,房屋变形监测就特别重要啦。

这个房屋变形监测等级标准呢,就像是给房屋做体检的一个参考手册,让我们能清楚知道房子变形的情况到底有多严重,也好及时采取措施,避免发生危险。

适用范围这个标准适用的范围可广了。

首先呢,对于新建的房屋来说,在建设过程中以及刚建成后的一段时间内,都需要进行变形监测。

比如说那些高楼大厦,在打地基、往上盖楼的时候,每一层都可能对整体结构有影响,这时候就需要按照标准来监测房屋有没有变形。

其次,老房子也适用。

像一些老旧小区,房子住了几十年了,可能会出现墙体开裂、地面下沉等情况。

这时候,依据这个标准去监测,就能准确判断房子变形的程度,看看是小问题修一修就好,还是已经严重到需要整体改造了。

还有哦,如果房屋周围有大型工程施工,比如在房子旁边挖地铁隧道、建大型商场,那房子很可能会受到影响而变形。

这种情况下,这个房屋变形监测等级标准就派上大用场了,它能帮助我们评估房子受到的影响到底有多大。

术语定义1. 房屋变形说白了,房屋变形就是房子的形状或者位置发生了改变。

这可能是整体的倾斜,就像比萨斜塔那样有点歪了;也可以是局部的变形,比如说一面墙凹进去或者凸出来了。

这种变形有的时候我们肉眼能看出来,有的时候得靠专业的仪器才能检测到。

2. 监测点你可以想象成是我们给房子身上设置的一个个小标记点。

这些点是我们用来测量房屋变形的关键位置。

比如说在房子的墙角、柱子旁边等重要的地方设置监测点,就像给房子装上了一个个小感应器,通过观察这些点的变化,就能知道房子是不是变形了。

3. 沉降沉降就是房子的某个部分或者整体往地下陷了。

这就像我们站在软泥地上,脚会陷进去一样。

房子沉降可能是因为地基下面的土被压实了,或者是地下水流失等原因造成的。

变形监测与数据处理综述

变形监测与数据处理综述

2024/9/15
变形监测
3
❖ 世间万物皆变形。
❖ 静止是相对的, 运动是绝对的;
❖ 不变是相对的, 变化是绝对的。
❖ 绝对的“运动”和“变化”必然会导致物体 产生变形。
❖ 所有的变形都须有“度”(限度)。
❖ 只要变形的速度与程度不超过一定的“限 度”, 则这种变形是正常的、安全的, 否则就 是不正常的、危险的。
第三方实时监测(是指除施工单位和监理 单位的具有一定资质的第三方监测单位, 对施工过程中全天候的监测 )已逐步纳 入各大型重点工程, 成为其关键工序。
2024/9/15
变形监测
14
l 变形:
1 变形的定义
在自重和各种外力的共同作用下, 有形 物体随着时间的推移而发生的形体或 位置的改变称为变形。
变形是自然界普遍存在的现象, 各种荷 载作用于变形体, 使其形状、大小及 位置在时间域或空间域发生变化均为
2024/9/15
变形监测
19
2 变形监测的对象
广义而论, 变形观测的研究对象既包括工程建筑物变 形、板块运动、地壳变形、滑坡移动等自然现象, 也包 括人类活动(例如石油开采、矿山开挖、水库蓄水、地下 水过量开采、地下核爆炸等)导致的地表运动。 变形体的范畴可以大到整个地球, 小到一个工程建 (构)筑物的块体, 它包括自然和人工的建(构)筑物。 根据变形体的研究范围, 可将变形监测的研究对象划分 为三大类。
建筑物、大坝、防护堤、矿区等。它们产生变形的原 因一般有以下几点:
(1)自然条件及变化,包括建筑物地基的工
程地质、水文地质、土壤的物理性质、大气温度变化 影响。
(2)与建筑物本身相联系的原因,即建筑物 本身的荷重、建筑物结构型式及动荷载(如风力、震 动)等。

变形监测数据处理5-2

变形监测数据处理5-2

1 0 1 0 0 1 0 1 T H 0 0 0 0 y1 x1 y 2 x2 0 0 0 0 x1 y1 x2 y 2

1
0 0 ym x
0 m
0 1 0 xm 0 y m 42 m
第 五 章
监 测 网 的 参 考 系 和 稳 定 性 分 析
可见,采用固定基准的经典平差、重心基准的伪逆平差和相 对稳定基准的拟稳平差所得各点的沉降数值是完全不同的。 因此,变形分析中应选择何种平差方法,应从所计算的变形 值是否接近实际变形值来考虑。当网中没有稳定或相对稳定 点时,可考虑用自由网伪逆平差;当网中存在相对稳定点时 ,可考虑用拟稳平差。
0 P0 1 1 0 0 1 0 0 0 0 1 0 0 1 0
T
第 五 章
监 测 网 的 参 考 系 和 稳 定 性 分 析
三、基准方程 GT x 0 中系数矩阵 G T 的确定
AH 0
这个H就是附加约束条件的矩阵G:
H G
第 五 章
监 测 网 的 参 考 系 和 稳 定 性 分 析
一、监测网平差的参考系
我们需要注意的是,自由网平差只是解决法方 程式
Nx W
中系数阵N奇异问题的一种方法,不能误解成解决 没有起算数据的平差问题的方法。 在变形分析中,笼统地说那种平差方法最好是 不合适的,问题的关键在于平差方法中所定义的 参考系是否与实际变形情况相符合。因此,实际 中,要根据具体情况选择恰当的变形参考系。
T
G H P 0
T 0 T
其中,
I 0 0 P0 0 0 I 0 为单位矩阵,下标0表示拟稳点

变形监测工程方案

变形监测工程方案

变形监测工程方案一、引言变形监测是指对工程结构或地质体的变形情况进行长期、动态、自动化监测和记录。

通过变形监测可以了解工程结构或地质体的变形情况,为工程安全运行提供数据支持,为灾害防治提供科学依据。

因此,变形监测工程在近年来得到了越来越多的重视和应用。

本文将以某大型水利工程为例,介绍变形监测工程的方案设计,包括变形监测的对象、监测方法、监测仪器的选型、监测数据处理等方面。

二、变形监测对象大型水利工程是国家的重点工程,在建设和运行过程中,地质变形会对工程结构产生一定的影响。

因此,对大型水利工程的变形情况进行监测具有重要的意义。

本文选取某大型水利工程的变形监测作为实例,对其进行具体的方案设计。

该大型水利工程位于一个地处地震多发区的地方,地质条件复杂,因此对其进行变形监测具有重要的现实意义。

主要监测对象包括以下几个方面:1. 结构变形:主要是指大型水利工程的桥梁、坝体、闸门、边坡等结构的变形情况。

2. 地下水位变化:地下水位的变化对于大型水利工程的稳定性具有重要的影响。

因此,需要监测地下水位的变化情况。

3. 地下水压力变化:地下水压力的变化也会对工程结构产生一定的影响,因此需要进行监测。

4. 地震监测:该地处地震多发区,因此需要进行地震监测,及时了解地震情况对工程结构和地质体的影响。

三、监测方法对于大型水利工程的变形监测,一般采用多种监测方法,包括传统的测量法和现代的遥感监测技术。

具体的监测方法如下:1. 传统测量法:主要包括全站仪、水准仪等测量仪器,用于对工程结构和地质体的位移、倾斜等参数进行监测。

2. 遥感监测技术:包括卫星遥感、激光雷达遥感等现代遥感技术,用于对大范围地质体的形变情况进行监测。

3. 地震监测技术:主要包括地震仪、地震波监测等技术,用于对地震活动进行监测。

4. 水文监测技术:主要包括水位计、水压计等技术,用于对地下水位和地下水压力的变化进行监测。

四、监测仪器选型根据变形监测对象和监测方法,需要选择相应的监测仪器进行监测。

如何进行建筑物的变形监测?

如何进行建筑物的变形监测?

如何进行建筑物的变形监测?
建筑物变形监测是确保建筑物安全的重要手段。

通过定期对建筑物进行变形监测,可以及时发现建筑物的异常变形,采取相应的措施,防止建筑物损坏或造成人员伤亡。

在进行建筑物变形监测时,一般需要遵循以下步骤:
1. 确定监测目标:首先要明确监测的目标,包括需要监测的建筑物、监测的目的、监测的项目等。

这有助于确定监测方案、监测周期、监测点布设等后续工作。

2. 制定监测方案:根据监测目标,制定合理的监测方案。

包括选择合适的监测方法、确定监测点布设位置、确定监测周期等。

3. 建立监测网:根据监测方案,建立相应的变形监测网。

这包括选择合适的基准点、工作基点和观测点,并进行实地布设。

4. 进行观测:按照监测方案规定的周期,定期对建筑物进行变形观测。

观测时需要使用高精度的测量仪器,如全站仪、水准仪等,以确保测量结果的准确性。

5. 数据处理与分析:将观测得到的数据进行整理、分析,以确定建筑物的变形情况。

这包括对数据的处理、绘制变形曲线、进行统计分析等。

6. 评估与预警:根据数据处理与分析的结果,对建筑物的安全状况进行评估,并在必要时发出预警。

7. 制定措施:根据评估结果和预警,制定相应的措施,如加固、维修等,以防止建筑物进一步变形或损坏。

总之,建筑物变形监测是一项系统性的工作,需要综合考虑多种因素,确保监测结果的准确性和可靠性。

通过定期的变形监测,可以及时发现建筑物的异常变形,采取相应的措施,保障建筑物的安全和人民的生命财产安全。

变形监测流程

变形监测流程

变形监测流程
变形监测流程大致如下:
1. 资料收集:获取建筑物或构筑物的设计资料、地质条件、施工记录等相关信息。

2. 点位布设:根据监测对象特点和监测需求,合理布局监测点,包括基准点、工作点和变形监测点。

3. 初始测量:建立高精度的测量控制网,测定各监测点的初始状态参数。

4. 监测实施:运用专业仪器进行周期性或连续观测,如沉降观测、倾斜观测、裂缝监测等。

5. 数据处理:收集监测数据,分析变形规律、速率和趋势,判断是否超出预警阈值。

6. 结果评估:根据监测结果评估建筑物或结构的安全状况,必要时提出预防措施或维修建议。

7. 报告提交:整理监测报告,向业主、设计方、监理单位等相关部门汇报监测结果及结论。

变形监测数据处理

变形监测数据处理

变形监测数据处理1.变形的类型(了解):按变形性质可以分为周期性变形和瞬时变形;按变形状态则可分为静态变形和动态变形静态变形:是指变形监测结果仅表示为时间的函数;动态变形:是指在外力作用下产生的变形,它是以外力为函数来表示的动态系统对于时间的变化,其观测结果是表示建筑物在某个时刻的瞬时变形。

2.变形监测的主要任务(了解):周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。

3.变形监测分类(了解):(1)按监测范围分类:全球性变形监测:如监测全球板块运动、地极移动、地球自转速率变化等;区域性变形监测:如地壳形变监测、城市地面沉降等;工程和局部性变形监测:如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的沉陷变形等。

(2)按监测地点分类:内部变形监测:内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等;外部变形监测:又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。

(工程建筑物的内外部变形观测之间有着密切的联系,一般应同时进行,以便互相验证和补充)4.测量点分类:(1)水准基点:垂直位移监测的基准点。

一般3~4个点构成一组,形成近似正三角形或正方形,为保证其坚固与稳定,应选埋在变形区以外的岩石上或深埋于原状土上,也可以选埋在稳固的建构筑物上。

普通混凝土标;地面岩石标;浅埋钢管标;井式混凝土标;深埋钢管标;深埋双金属标 (2)工作基点:用于直接测定监测点的起点或终点。

应在变形区附近相对稳定的地方,其高程尽可能接近监测点的高程。

工作基点布置:工作基点埋设:一般采用地表岩石标,当建筑物附近的覆盖层较深时,可采用浅埋标志,当新建建筑物附近有基础稳定的建筑物时,也可设置在该建筑物上。

工作基点观测:应经常与水准基点进行联测,通过联测结果判断其稳定状况,保证监测成果的正确可靠。

变形监测方案

变形监测方案

变形监测方案第1篇变形监测方案一、概述本方案旨在对某特定区域或结构进行精确、高效的变形监测,以确保其安全性及功能性。

通过采用先进的技术手段和严谨的数据分析方法,实时掌握监测对象的变形情况,及时预警潜在风险,为决策提供科学依据。

二、监测目标1. 准确测量监测对象的变形量,包括水平位移、垂直位移、倾斜等;2. 实时掌握监测对象的变形速率,分析变形趋势;3. 及时发现监测对象的异常变形,预警潜在风险;4. 为政府部门、企业及相关单位提供科学、可靠的监测数据。

三、监测方法1. 地面测量法:采用全站仪、水准仪等设备,对监测对象的水平位移、垂直位移进行定期测量;2. 空间测量法:利用GNSS技术,对监测对象的水平位移进行实时测量;3. 倾斜测量法:采用倾斜仪等设备,对监测对象的倾斜角度进行定期测量;4. 远程监测法:利用摄像头、无人机等设备,对监测对象进行远程监控,实时掌握其变形情况。

四、监测设备与参数1. 全站仪:用于测量监测对象的水平位移、垂直位移;- 精度要求:±(2mm+2ppm);- 测量范围:≥5km;2. 水准仪:用于测量监测对象的垂直位移;- 精度要求:±0.5mm;- 测量范围:≥3km;3. GNSS接收机:用于实时测量监测对象的水平位移;- 精度要求:±(10mm+1ppm);- 测量范围:全球范围;4. 倾斜仪:用于测量监测对象的倾斜角度;- 精度要求:±0.01°;- 测量范围:±45°;5. 摄像头/无人机:用于远程监控监测对象。

五、监测数据处理与分析1. 对采集到的数据进行预处理,包括数据清洗、数据校准等;2. 采用加权平均法、最小二乘法等方法,对监测数据进行处理,计算监测对象的变形量;3. 分析监测对象的变形趋势,评估其稳定性;4. 结合历史数据和实时数据,预测监测对象的未来变形情况;5. 当监测对象的变形量超过预警阈值时,及时发布预警信息。

第七章 变形监测数据处理

第七章 变形监测数据处理
Eco 参数 X 是混凝土假定弹模与实际弹模之比。 E
i 0
§3 确定性模型和混合模型 第七章 变形监测数据处理
3.1 确定性模型 (2)确定性模型各分量的计算 ②温度分量: 分析资料,确定起始时刻,以此时刻测得的各测点温度、位 移、水位等为初始值,以初始温度代入有限元计算,得位移 值。逐次把每只温度计变化10℃,求出各温度计变化10 ℃ 时位移与初始位置差值,作为温度计系数:
T (t ) bi ( x, y, z )Ti (t )
i 1
k1
Ti (Ti T0 ), T (t ) Ti T0
k1 i 1
以参数y修正:
参数 y 是实际线胀系数与假设张胀系数之比。 co
fT (t ) y bi ( x, y, z)Ti (t )
1 统计模型及处理技术
2 统计模型在资料分析中的应用
3 确定性模型和混合模型
4 安全监测模型的数据诊断 5 变形监测的动态模型 6 灰关联分析及GM模型 7 人工神经网络基本原理及应用
§1 统计模型及处理技术 第七章 变形监测数据处理
变形分析任务:对具有一定精度的观测资料,通过合理 的数学模型,寻找出建筑物变形的时空分布情况及发展 规律;掌握变形量与各种内外因素的关系,确定出建筑 物变形是正常还是异常,防止变形朝不安全方向发展。
高层建筑物顶部位移:日照作用、大气温度、风力情况、 基础的不均匀沉陷、地下水位、渗流作用 大坝顶部位移:库水位、温度、坝基、渗流 回归分析:从数理统计理论出发,在进行了大量试验和 观测后,寻找出建筑物变形量与各种作用因素间关系的 方法。所建模型叫统计模型。
§1 统计模型及处理技术 第七章 变形监测数据处理

变形监测数据处理5-3

变形监测数据处理5-3

点 检验(即整体检验),以判明该网在两期
稳 观测之间是否发生了显著性变化。如果检
定 验通过,则认为所有参考点是稳定的。否
性 分 析
则,就采用“尝试法”,依次寻找动点, 直到图形一致性(指去掉不稳定点后的图 形)通过检验为止。
§5.3 平均间隙法

对于两期观测资料按同一基准分别进
考 点 稳 定 性
行平差,由计算可求得参考点位移向量 d
定 定的基准信息,以便选取固定基准或拟稳基准。

分 常用的参考点稳定性分析方法主要有如下几种。

第 二
§5.3 平均间隙法



▪ 平均间隙法

▪ 稳健迭代权法(稳健-S变换法、逐次


定权迭代法)

▪ 单点位移分量法



§5.3 平均间隙法
参 该方法的基本思想是,首先应用统计检
考 验的方法对变形监测网作几何图形一致性
定 (
d
T M
PMM d M
)i
,
i
。取max(
d
T M
PMM
dM
)i

性 对应的点为实际上的动点。在剔除一动点后
分 ,对剩余点重复上述整个过程,直到最后剩
析 下来的都是稳定点为止。
§5.3 平均间隙法


T 上述方法在构成统计量 时,用到了
点 网点点位间隙 d 的带权平方平均数,故称
稳 为平均间隙法。该方法是由德国Hannover
和其协因数阵 Qd。由间隙 d 可求得一个方
差估值:
ˆ
2 d
d T Qd d fd

施工工程中的变形监测与控制的方法与技巧

施工工程中的变形监测与控制的方法与技巧

施工工程中的变形监测与控制的方法与技巧1. 引言在施工工程中,变形是一个不可避免的问题,它会对工程的结构和稳定性产生重大影响。

因此,变形监测与控制是施工工程中非常重要的一项工作。

本文将对施工工程中的变形监测与控制的方法与技巧进行探讨。

2. 变形监测技术的应用变形监测技术是通过对施工工程中的变形进行实时监测和记录,为工程的安全和稳定提供有力的依据。

现代的变形监测技术包括全站仪、测量软件和无线传感器等。

这些技术能够快速、准确地获取工程变形信息,并进行实时分析和报警。

3. 变形监测方法的选择在选择变形监测方法时,需要根据工程的具体情况和要求进行判断。

一般来说,应该综合考虑工程类型、施工条件和监测目的等因素,并选择合适的监测方法。

例如,在大型桥梁工程中,可以采用全站仪进行变形监测,而在地铁隧道施工中,可以使用无线传感器进行变形监测。

4. 变形监测数据的分析与处理变形监测数据的分析与处理是变形监测工作的关键环节。

通过对监测数据的分析,可以判断施工工程的变形情况,并采取相应的措施。

同时,还可以进行数据的对比分析,找出工程中存在的问题,并进行调整和改进。

5. 变形控制的方法与技巧变形控制是在发现工程变形问题后,采取相应的措施进行调整和控制,以确保工程的安全和稳定。

常用的变形控制方法包括加固加强、压力平衡和轴力调整等。

此外,还需要注意变形控制的时机,合理选择控制时机会起到事半功倍的效果。

6. 变形监测与控制的案例分析通过对一些实际案例的分析,可以更好地了解变形监测与控制的方法与技巧。

例如,在某高速公路桥梁施工中,通过及时采取变形控制措施,成功避免了桥梁的变形问题,确保了工程的安全和稳定。

7. 变形监测与控制的挑战与展望当前,施工工程变形监测与控制面临着一些挑战和难题。

例如,监测数据的准确性和实时性需要不断提高,还需要加强与智能技术的结合,实现自动化监测与控制。

未来,随着技术的不断发展,变形监测与控制将更加精准、高效,为施工工程提供更好的保障。

使用测绘技术进行变形监测的步骤

使用测绘技术进行变形监测的步骤

使用测绘技术进行变形监测的步骤引言:随着科技的不断发展,测绘技术在各个领域的应用越来越广泛,其中之一就是变形监测。

变形监测是指通过对地面、地表设施等物体的测量,来监测其形状、位置和尺寸变化的活动。

使用测绘技术进行变形监测,可以帮助我们更好地理解和预测地表的变化,从而保护我们的生活环境和基础设施的安全。

本文将介绍使用测绘技术进行变形监测的步骤。

一、制定测量计划在进行变形监测之前,首先需要制定一个详细的测量计划。

这个计划需要包括以下几个方面的内容:1. 监测目标:明确需要监测的物体或区域,可以是地面、建筑物、桥梁等。

2. 监测周期:确定监测的时间间隔,根据监测目标的特点和变化情况来确定监测的频率。

3. 监测方法:选择合适的测量方法,根据监测目标的性质和需求,可以选择全站仪、GNSS技术、激光测距仪等不同的测量设备和技术。

4. 测量控制点:确定测量控制点的位置和数量,这些控制点用于定位和校正监测数据。

5. 数据处理和分析:确定需要进行的数据处理和分析方法,以及数据的报告形式和发布方式。

二、测量准备在进行实际测量之前,需要进行一系列的测量准备工作。

这些工作包括:1. 确定控制点:根据制定的测量计划,确定需要建立的控制点的位置和数量。

控制点应尽可能稳定并能覆盖监测目标的整个区域。

2. 建立控制网络:利用测量设备和技术,在监测区域内建立一个精密的控制网络。

这个网络可以包括基准点、定位点和校正点等,用于定位和校正监测数据。

3. 测量设备和技术的准备:准备好所需的测量设备和技术,包括全站仪、GNSS接收器、激光测距仪等,并进行校准和测试,确保其精度和准确性。

三、进行测量操作在进行实际的测量操作时,需要遵循一定的操作规范和流程,以确保测量的准确性和可靠性。

具体的操作包括以下几个方面:1. 建立观测桩:在监测目标上建立一系列的观测桩,这些桩用于安装测量设备,以及校正和校准监测数据。

2. 进行测量观测:在设立好的观测桩上进行测量观测,通过测量设备和技术获取监测目标的位置、形状和尺寸等数据。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 五 章
监 测 网 的 参 考 系 和 稳 定 性 分 析
§5.3 平均间隙法
既然变形体的变形是相对于参考基准的, 既然变形体的变形是相对于参考基准的,如 果参考点稳定,那么所求的位移才是真实位移。 果参考点稳定,那么所求的位移才是真实位移。 变形监测网进行周期性观测, 变形监测网进行周期性观测,其点位差异是由观 测误差所引起,还是点位真正的变形,必须对它 测误差所引起,还是点位真正的变形, 进行 , 还 , 是点位稳定性 监测网 稳定 。 相对稳 ,
参 考 点 稳 定 性 分 析
§5.3 平均间隙法
对于两期观测资料按同一基准分别进 行平差, 行平差,由计算可求得参考点位移向量 d 和其协因数阵 Qd 。由间隙 d 可求得一个方 + 差估值: 差估值: d T Qd d 2 ˆd = σ fd 个数。 ,d f d 个数。
参 考 点 稳 定 性 分 析
参 考 点 稳 定 性 分 析
§5.3 平均间隙法
为了判明监测网中的动点和稳定点,可 + 将 d 和 Q d 分解为两部分: PFF PFM + dF d = , Qd = dM PMF PMM 中, 点
M
动点 :
−1 MM
i


F
d M = d M + P PMF d F −1 PFF = PFF − PFM PMM PMF
上述方法在构成统计量 T 时,用到了 网点点位间隙 d 的带权平方平均数,故称 为平均间隙法。该方法是由德国Hannover 大学的H.Pelzer(1971)提出的,现已在变 网 到 用。
§5.3 平均间隙法
两期观测的单位权方差经同一性检验 通过后,可求得一个综合方差估值: 通过后,可求得一个综合方差估值:
(V T PV)(1) + (V T PV)(2) 2 ˆ σ0 = f 一 期 观测
,f
: 可 验 测 测
ˆ σ T= ˆ σ
2 d 2 0
的一 性 检验 检 T > F (α f d , f ) ,
点位稳定性 定的基准
定基准 法
稳基准。 稳基准。 如 。
的参考点稳定性
第 二 章 变 形 的 时 空 特 征 分 析
平均间隙法 稳健迭代权法(稳健-S变换法、逐次 稳健迭代权法(稳健- 变换法、 权迭代法 法
§5.3 平均间隙法
参 考 点 稳 定 性 分 析
§5.3 平均间隙法
该方法的基本思想是, 该方法的基本思想是 , 首先应用统计检 验的方法对变形监测网作几何图形一致性 检验( 即整体检验) , 以判明该网在两期 检验 ( 即整体检验 ) 观测之间是否发生了显著性变化。 观测之间是否发生了显著性变化 。 如果检 验 , 是 的。 否 的。 , 用 法 , 动 , 到图形一致性( 到图形一致性 ( 的图 形) 检验 。
参 考 点 稳 定 性 分 析
§5.3 平均间隙法
将二次型
d Q d 分解为:
T
+ d
+ T d T Qd d = d T PFF d F + d M PMM d M F
( d PMM d M ) i

T M
∨i

分解
max( d PMM d M ) i

T M
参 考 点 稳 定 性 分 析
§5.3 平均间隙法
相关文档
最新文档