九年级数学上册视图(3)导学案

合集下载

第1课时 简单图形的三视图导学案北师大版九年级上册数学 第1课时 简单图形的三视图导学案2

第1课时  简单图形的三视图导学案北师大版九年级上册数学      第1课时  简单图形的三视图导学案2

5.2 视图第1课时简单图形的三视图【学习目标】1.经历由实物抽象出几何体的过程,进一步发展空间观念。

2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。

【学习重点】掌握部分几何体的三视图的画法。

【学习难点】几何体与视图之间的相互转化。

【学习过程】一、自主探究学生利用准备好的大小相同的正方形方块,搭建如课本图5-12的立体图形,让同学们画出三视图。

而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。

二、合作交流议一议1.图5-12中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?学生分四人小组,合作学习。

2.在图5-13中找出图5-12中各物体的主视图。

学生观察、动手、动脑,同桌交流。

3.图5-12中各物体的左视图是什么?俯视图呢?学生观察、画图、交流,上台演示。

三、巩固提高如图5-16,是一个蒙古包的照片,小明认为这个蒙古包可以看成用5-17所示的几何体,并画出了这个几何体的三种视图,你同意小明的做法吗? 学生观察、理解、同桌交流。

四、课堂小结五、当堂检测1、下图中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2、在下图中找出上图各物体的主视图。

3、上图各物体的左视图是什么?俯视图呢?【课后反思】本节课主要通过对由实物抽象出几何体的过程,发展学生的空间想像能力。

在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。

北师大版数学九年级上册5.2视图(第三课时)教学设计

北师大版数学九年级上册5.2视图(第三课时)教学设计
1.学生对视图概念的理解程度:通过课前测试,了解学生对主视图、左视图、俯视图的理解程度,以便在教学中有的放矢地进行针对性讲解。
2.学生的空间想象力:观察学生在课堂上的表现,了解他们在观察和想象物体形状时的困难,以便及时给予指导和帮助。
3.学生的合作与交流能力:在小组合作环节,关注学生的参与程度,鼓励他们积极发表观点,提高团队协作能力和表达能力。
二、新课讲解
1.讲解主视图、左视图、俯视图的概念,强调它们之间的相互关系。
2.通过实例演示,让学生观察和思考如何从不同角度观察物体,并绘制出相应的视图。
3.分析视图在工程设计、建筑、制造等领域的应用,让学生认识到视图知识的重要性。
三、课堂练习
1.让学生独立完成教材中的练习题,巩固所学知识。
2.引导学生运用视图知识解决实际问题,如根据视图设计物体、计算物体的表面积和体积等。
(二)过程与方法
1.通过观察、操作、实践等教学活动,让学生体验从不同角度观察物体,培养空间想象力和观察力。
2.引导学生运用类比、归纳、推理等方法,发现视图之间的内在联系,提高逻辑思维能力和解决问题的能力。
3.通过小组合作、交流讨论等形式,培养学生的团队协作能力和表达能力。
(三)情感态度与价值观
1.培养学生对视图学习的兴趣,激发学生的学习热情,使学生在轻松愉快的氛围中学习数学。
3.教师布置课后作业,要求学生运用所学知识解决实际问题,如根据视图设计物体、计算物体的表面积和体积等。
4.教师提醒学生关注生活中的视图现象,培养学生的观察力和空间想象力,为下一节课的学习打下基础。
五、作业布置
为了巩固本节课所学知识,培养学生的空间想象力和解决问题的能力,特布置以下作业:
1.完成教材课后练习题:要求学生独立完成,注意在绘制视图时保持准确性和规范性。通过完成练习题,使学生进一步熟悉三视图的绘制方法和技巧。

视图3导学案

视图3导学案

班级:九年级学生姓名:使用时间:11月5日
学者如禾如稻,不学者如蒿如草。

议一议:
根据下面三种视图,你能想象出相应几何体的形状吗?(先独立思考,再小组交流)
做一做:
1、根据物体的三视图(如下图)描述物体的形状.(画出草图)
(比一比那个小组最先画出草图)2、由小组内一名同学给出一个几何体并画出它的三视图,然后请同伴根据你所画的三种视图,描述出这个几何体?(小组成员间比一比看谁描述的准确)
掌握一个解题方法,比做一百道题更重要。

人贵有志,学贵有恒。

北师大版九年级数学上册第五章5.2视图(3)导学案

北师大版九年级数学上册第五章5.2视图(3)导学案

北师版九年级数学(上)第五章5.2视图(3)导学案班级:_____________姓名:_____________ 家长签字:_____________一、学习目标1.能由三视图想象出简单几何体的形状,并且能画出草图.2.能画出除了圆柱、圆锥、正方体等几何体外,其他较复杂几何体的三视图.二、温故知新1.画物体的三视图时,应首先确定的位置,画出,然后在主视图的下面画出,在主视图的右面画出。

2.主视图反映物体的和,俯视图反映物体的和,左视图反映物体的和,因此在画三视图时,主、俯视图要.........相等........对正,主、左视图要.........平齐,左、俯视图要3.在画视图时,看得见部分的轮廓线要画成线,看不见部分的轮廓线要画成线。

4.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______.5.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子.6.某几何体的三种视图分别如下图所示,那么这个几何体可能是().(A)长方体(B)圆柱(C)圆锥(D)球三、自主探究:阅读课本p141—142探究(一)1、观察图①的三种视图,你能在图②找到与之对应的几何体吗?2、根据下面的三种视图,你能相象出相应几何体的形状吗?请画出几何体的草图归纳:由三种视图想象几何体的方法:由看俯视图,确定_______的形状;由主视图确定_______的形状;由左视图确定_______的形状。

四、随堂练习1.一个几何体的三视图如图所示,则这个几何体是( )A.长方体B.圆柱C.圆锥D.正三棱柱2.长方体的主视图、俯视图如图所示,则其左视图面积为( )A.3 B.4 C.12 D.163.下列四个水平放置的几何体中,三视图如图所示的是( )(A)(B)(C)(D)4.下面的三视图所对应的物体是( )(A)(B)(C)(D)5.与图中的三视图相对应的几何体是( )(A) (B) (C) (D) 五:本课小结:本节课知识点:你还有什么收获或困惑?六:当堂检测:1.如图是某几何体的三视图,其侧面积为( )A.6 B.4πC.6πD.12π(1)(2)2.下面是某一个几何体的三视图,该几何体的名称是_______..3.如图是一个几何体的三视图,则该几何体的展开图可以是( )(2题)(3题)(A) (B) (C) (D)4.如图是某几何体的三视图及相关数据,则下面判断正确的是( )A.a>c B.b>c C.4a2+b2=c2 D.a2+b2=c2(4)(5)5.如图是一个几何体的三视图,则这个几何体的侧面积是( )A.18cm2 B.20cm2 C.(18+23)cm2 D.(18+43)cm26.如图是由几个相同的小立方块组成的三视图,小立方块的个数是( ) A.3个B.4个C.5个D. 6个课堂作业:P142:随堂练习 1、2习题5.5: 1、2、3、4、答案:二.温故知新1.主视图,主视图,俯视图,左视图.2.长和高,长和宽,宽和高,长,高,宽.2.实,虚 4.圆锥 5.12 6.B四、随堂练习1.D 2.A 3.D 4.A 5.B六:当堂检测:1.D 2.圆柱 3.A 4.D 5.A 6.B。

第1课时 简单图形的三视图导学案北师大版九年级上册数学 第1课时 简单图形的三视图导学案1

第1课时  简单图形的三视图导学案北师大版九年级上册数学      第1课时  简单图形的三视图导学案1

5.2 视图第1课时简单图形的三视图【学习目标】能说出圆柱、圆锥、球的三种视图对应的形状,会辨认物体三种视图的名称,会画简单物体的三种视图.【学习重点】由实物抽象出几何体的过程,进一步发展空间观念.【学习难点】会画圆柱、圆锥、球的三种视图,体会这几种几何体及其视图之间的转化.【学习过程】一.激趣导入问题:日晷是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.金字塔的测量也是利用太阳光的性质. 你见过皮影戏吗?你了解灯光的性质吗?问题2(1)什么是一个物体的主视图、左视图和俯视图?(2)你能画出右图的主视图、左视图和俯视图吗?主视图左视图俯视图二.自主探究(1)下图中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?(2)在下图中找出上图各物体的主视图。

(3)上图各物体的左视图是什么?俯视图呢?知识点1圆柱﹑圆锥﹑球的三种视图:圆柱的主视图是( ),左视图是( ),俯视图是( );圆锥的主视图是( ),左视图是( ),俯视图是( );球的主视图﹑左视图﹑俯视图都是( )想一想右图是一个蒙古包的照片,你能画出这个几何体的三种视图吗?知识点2画一个物体的三视图时,主视图下面画( ),主视图右面画( ),主、俯视图要( ),主、左视图要( ),左、俯视图要( )。

三.合作探究(1)利用物体找其对应的主视图.P136 1题(2)找组合体的主视图.P136 2题(3)由主视图和俯视图找对应的物体.P137 2题四.知识迁移画出右图中各物体的主视图、左视图和俯视图。

(5题图)五.能力拓展.(1)、关于几何体 下面有几种说法,其中说法正确的( )A 、它的俯视图是一圆B 、它的主视图与左视图相同C 、它的三种视图都相同D 、它的主视图与俯视图都是圆。

九年级数学《三视图(3)》导学案

九年级数学《三视图(3)》导学案

九年级数学《三视图(3)》导学案【学习目标】1、学会根据物体的三视图描述出几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。

【学习重难】重点:根据物体的三视图描述出几何体的基本形状或实物原型。

难点:掌握物体的三视图反映的几何体的一些数量大小关系。

【学习准备】常见几何体实物投影模型。

【导学流程】(一)感知情境,导入课题。

根据技术员绘制的三视图,工人就能制造出符合设计要求的零配件。

你能说明其中的数学道理吗?由于三视图不仅反映了物体的,还反映了各个方向的尺寸的,设计人员可以把自己构思的创造物用三视图表示出来,再由工人制造出符合各种要求的机器、工具、生活用品等。

因此,三视图在许多行业有着广泛的应用。

这节课我们研究由三视图想象出简单几何体。

(课题)(二)自主探究,学习新知。

活动1:根据常见几何体的三视图,温故知新。

1、主视图、俯视图、左视图都是正方形的几何体是。

2、主视图、左视图、俯视图都是圆的几何体是。

3、俯视图是圆的简单几何体可能是。

活动2:阅读教材P98页的例3,观察、理解、归纳:1、由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的、和,然后再综合起来考虑整体图形是什么形状的几何体。

2、从三个方向看立体图形的视图都是矩形,可以想象出这个几何体的整体形状是。

3、从正面、侧面看立体图形的视图都是等腰三角形;从上面看图象是圆;可以想象出几何体整体是。

4、三视图中有两个是全等矩形,另一个是圆的几何体是。

5、主视图、左视图是矩形,俯视图是正三角形的几何体是。

活动3:在各组成员完成的基础上,小组展示:画图或利用实物展示。

(三)合作学习,小组评比。

活动4:阅读教材P98-99页的例4,观察、理解、归纳:由主视图知,物体的正面是形;由俯视图知,由上向下看物体有面的视图是矩形,它们的交线是一条,虚线可见判断另有条棱被遮挡;由左视图知,物体的左侧有面的视图是矩形,它们的交线是一条可看见到。

北师大版初中数学九年级上册《2 视图 三视图》 优质课导学案_2

北师大版初中数学九年级上册《2 视图 三视图》 优质课导学案_2

第五章投影与视图2.视图(一)一、学生起点分析学生的知识技能基础:学生在七年级已经学习过从三个方向观察物体的形状,并画出形状图。

学生的活动经验基础:在相关知识的学习过程中,学生已经经历了判断一个几何体从不同方向看得到的形状图,解决了一些生活中简单的现实问题,感受到了数学和现实生活的密切联系,获得了数学来源于生活的切身感受和体验;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析本节课的教学目标是:①经历由实物抽象出几何体的过程,进一步发展空间观念;②探索基本几何体(圆柱、圆锥、球)与其三种视图(主视图、左视图、俯视图)之间的关系;③会判断简单物体的三视图,发展合情推理能力和数学表达能力;④结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识。

三、教学过程分析本节课共分三个课时,第一课时主要是探索基本几何体(圆柱、圆锥、球)与其三种视图(主视图、左视图、俯视图)之间的关系,会判断简单物体的三视图;第二课时主要研究棱柱的三种视图;第三课时根据三种视图描述基本几何体或实物原型。

第一课时设计了六个教学环节:第一环节:情境问题引入;第二环节:活动探究;第三环节:合作学习;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

第一环节:情境问题引入活动内容:“横看成岭侧成峰,远近高低各不同。

”一句中蕴含着怎样的数学道理?活动目的:第1个活动通过学生感兴趣的事物入手,由文学诗歌引入数学概念,体现教师的“亲和力”和学科之间的“联系性”,展示了数学的深层价值。

在第2个活动中,旨在让学生意识到先把物体抽象成几何模型,既延续了上节课的内容,自然过渡到新课的学习,又让学生通过自己的判断思考或者与他人交流,经历一个探索的过程,并在此过程中培养学生勇于探索、团结协作的精神。

同时这两个活动在课堂中用源于学生日常生活中的情景和问题展开教学,必将极大地激发了学生学习的积极性与主动性。

九年级上册数学 4.2视图(三)教学设计

九年级上册数学 4.2视图(三)教学设计

第四章投影与视图2.视图(三)一、学生知识状况分析本节课是视图的第三课时,主要内容是学习如何根据三视图来想象几何体的形状,并且画出草图。

由于前面两节课学生已经学习了圆柱、圆锥、球及其组合图形的三种视图,初步了解了视图的作用,为本节课的学习打下了一定的基础。

本课时的学习将运用逆向思维,思维形式也已经从一般的操作层面上升到了理性思考的层面,对平面与空间的感受更加深刻,学生在前面的观察、操作、想象、推理的基础上形成的空间观念为学好本课提供了可能。

二、教学任务分析学生已经掌握了三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,因此本节课主要讨论简单立体图形与它的三视图的相互转化.这一节是全章的难点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,这些内容与培养空间想象能力有直接的关系. 本课时的教学不能仅仅是学生掌握最终的结果,还应注重得到结果的过程和对学生动手操作能力的培养,为此,本节课的教学目标是:(1)能由三视图想象出简单几何体的形状,并且能画出草图。

(2)能画出除了圆柱、圆锥、正方体等几何体外,其它较复杂几何体的三视图。

(3)进一步理解三视图与几何体之间的联系。

(4)在教学过程中培养学生的动手操作能力和合作交流意识,发展空间想象能力。

三、教学过程分析本节课设计了六个教学环节:第一环节:知识回顾;第二环节:探索实践;第三环节:延伸提高;第四环节:巩固练习;第五环节:课堂小结;第六环节:布置作业。

第一环节:知识回顾活动内容:复习上一节课所学过的三种视图的画法,1.提问:如何画一个几何体的三种视图?(顺序和位置)应先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图。

2.三种视图分别反映几何体长、宽、高中的哪几方面?主视图反映长和高,俯视图反映长和宽,左视图反映高和宽3.完成下列练习(1)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______.(2)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子.(3)某几何体的三种视图分别如下图所示,那么这个几何体可能是().(A)长方体(B)圆柱(C)圆锥(D)球活动目的:前两个问题是对一二课时的重点知识回顾,这也是本节课学习的基础,问题3设计的练习都是学生比较熟悉的简单几何体的三视图,让学生初步体会由三视图推断几何体,逐步还原立体图形或实物,进一步理解三视图的位置与大小的对应关系,发展学生空间想象能力、逆向思维能力.实际效果:因为练习(1)(3)提供的都是圆柱、圆锥、长方体等前两课时常见的几何体,学生对这几种几何体的三视图很熟悉,所以大多数学生能很快选择正确答案。

北师大版初中数学九年级上册《2 视图 三视图》 优质课导学案_0

北师大版初中数学九年级上册《2 视图 三视图》 优质课导学案_0

5.2.视图(一)教学目标:1、了解视图,及主视图、俯视图、左视图的概念。

经历从物体抽象出几何体的过程,发展空间观念。

2、会画圆柱、圆锥、球体和简单几何体的三种视图,发展观察和动手能力。

3、经历视图的观察、想象、操作、概括的过程,体会三视图与几何体之间的关系,发展空间观念。

教学重点:会画圆柱、圆锥、球等简单几何体的三种视图。

教学难点:几何体与三视图之间的关系;教学方法:情境法、演示法教学过程:第一环节:情境引入师:庐山的景色优美,苏轼在诗中提到:“横看成岭侧成峰,远近高低各不同。

”其中蕴含着怎样的数学道理?生:从不同的方向看,景色各有不同。

师:先不谈庐山的美景,看一个简单的零件,如何准确描述它的尺寸呢?生:画出不同方向的图形。

师:对,这就是我们将要学习的内容。

感谢诗人苏轼的点拨!视图是设计师的语言。

在许多方面都有广泛应用。

要想成为一名超牛的设计师,就让我们从《视图》开始吧!第二环节:学习目标投影展示本节课的学习目标:1、2、会画简单几何体的三视图,发展学生的观察和动手能力。

3、体会几何体与它的三视图之间的关系第三环节:回顾与思考展示中心投影、平行投影,要求学生进行区分。

并说明什么是正投影,明确它与平行投影的区别。

为新课的学习打下基础。

师:用正投影的方式,改变投影的方向,投影相同吗?动画展示从不同方向看一个长方体。

引发学生思考:这些投影各反映了物体的哪些特征?师:用正投影的方式,从不同方向获得物体的投影是不同的,反映物体的特征也各不相同。

第四环节:视图物体的正投影称为物体的视图,由此自然引出主视图、左视图、俯视图的定义,随之准确给出上述三种图形的名称。

第五环节:合作学习(议一议)参照教材提供的几何体,提出问题:(1)下图中物体的形状分别可以看成什么样的几何体?(2)你能想找出它们的主视图吗?(3)你能想象它们的左视图和俯视图吗?动手画一画。

第六环节:练习提高1、说一说这个蒙古包的形状,并画出它的三视图。

北师大版九年级上册数学 第2课时 复杂图形的三视图导学案2(2)

北师大版九年级上册数学      第2课时  复杂图形的三视图导学案2(2)

第2课时复杂图形的三视图
【学习目标】
1.经历由实物抽象出几何体的过程,进一步发展空间观念。

2.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。

【学习重点】掌握直棱柱的三视图的画法。

【学习难点】培养空间想像观念。

【学习过程】
一、自主探究
同学们拿出事先准备好的直三棱柱、直四棱柱,根据所摆放的位置经过想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。

将抽象出来的三种视图画出来。

二、合作交流
课本图5-18是底面为等边三角形的三棱柱,尝试画出它的主视图、左视图和俯视图,并与同伴进行交流。

三、巩固提高
已知某四棱柱的俯视图如下图所示,尝试画出它的主视图和左视图.
四、课堂小结
五、当堂检测
下图是底面为等腰直角三角形和等腰梯形的三棱柱、四棱柱的俯视图,尝试画出它们的主视图和左视图,并与同伴进行交流.
【课后反思】
本节课主要是通过观察――绘制――比较――拓展,来完成学习内容的。

在学习中要注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。

九年级上数学视图课件及导学案(北师大版)最新版

九年级上数学视图课件及导学案(北师大版)最新版
视图.你与小明的做法相同吗?
主视图
左视图
俯视图
随堂练习 8
挑战“自我”
画出下面每种物品所对应的三视图
与同伴交流你的看法和具体做法.
探索思考 9
“行家”看“门道”
如图. 将两个圆盘,一个茶叶桶,一个足球,一 个蒙古包模型摆放在一起,画出其主视图.
名 茶
与同伴交流你的看法和具体做法.
试一试 10
挑战“自我”
第五章 5.2.1视图(1)
建筑平面图
空间想象力 1 w用小正方体搭建 一个几何体:
左视图 从左面看到的图
“三视图” 从

上 面 看 到
俯 视 图

w你还记得
三视图吗?
驶向胜利 彼岸
w你能画出这个几何体的三视图吗?
空间想象力 2
“三视图”
左视图 从左面看到的图


上 面 看 到
俯 视 图

请画出这个 几何体的三视 图
• 挑战“自我”,提高画三视图的能力.
俯视图(1)
俯视图(2)
俯视图(3)
俯视图(4)
我思我进步 4
实物的三视图
下面各图中物体形状分另可以看成什么样的几何体?
圆柱
圆锥

从正面,侧面,上面看这些几何体,它们的形状各是 什么样的?
正面看:长方形 等腰三角形

侧面看:长方形 等腰三角形

上面看: 圆


你能画出各物体的三视图吗?
实物与数学 5
回顾与思考 3
主视图 高

俯视图
左视图“三视图” 知多少
画 一 个 物 体 的 三视图时,主视图 ,左视图,俯视图 所画的位置如图 所示,且要符合如 下原则: 长对正,

北师大版九年级上册数学 第2课时 复杂图形的三视图导学案1

北师大版九年级上册数学      第2课时  复杂图形的三视图导学案1

第2课时复杂图形的三视图
【学习目标】能说出画直棱柱的对应的三种视图,会画直棱柱的三种视图,知道视图中实线和虚线的含义;知道画物体三种规则。

【学习重点】会画直棱柱的三种视图
【学习难点】直棱柱与其视图之间转化
【学习过程】
一、自主学习:。

1、画物体的三视图时,应首先确定的位置,画出,然后在主视图的下面画出,在主视图的右面画出。

2、主视图反映物体的和,俯视图反映物体的和,左视图反映物体的和,因此在画三视图时,主、俯视图要
.........相等
.....平齐,左、俯视图要
..
....、左视图要
......对正,主
3、在画视图时,看得见部分的轮廓线要画成线,看不见部分的轮廓线要画成线。

4、画出下图的三视图。

二、合作交流
如图是底面为等腰直角三角形和等腰梯形的三棱柱、四棱柱的俯视图,尝试画出它们的主视图和左视图,并与同桌交流。

三、知识延伸
已知某四棱柱的俯视图如下图所示尝试画出它的主视图和左视图.
四、能力拓展
1、一个物体的主视图是三角形,则该物体的形状可能是;若主视图是矩形,则该物体的形状
可能是;若主视图是圆形,则该物体的形状可能是。

2、下列各物体从不同的角度观看,它们的形状可能各不相同,请试着从不同的角度想像它们的形状.并画出它们的三视图。

九年级数学上册视图(3)学案

九年级数学上册视图(3)学案

九年级数学上册视图(3)导学案年级九班级学科数学课题 5.2.3 视图(3)第课时总课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1.能由三视图想象出简单几何体的形状,并且能画出草图.2.能画出除了圆柱、圆锥、正方体等几何体外,其他较复杂几何体的三视图.学法指导温故知新1:如何画一个几何体的三种视图?1:课前独立完成,组长检查。

(3分钟)教学一.新课导入:阅读教材P 141页的内容二.本节课的学习目标是:(指定一名学生宣读)三.新旧知识链接:按要求完成“温故知新”栏中的问题四.探究新知:自主探究:内容:(一)观察图①的三种视图,你能在图②找到与之对应的几何体吗?,),)在回顾练习之后引入的探索活动由浅入深,由简单到复杂,学生在观察与推理时有一定的难度,解决的办法可以先由主视图与实物对比,排除(2)(3),再由左视图和俯视图排除(1),选择的过程就是空间想象能力的提升过程.2:自己阅读课本,把看不明白的用红笔画出来,然后组内交流。

(8分钟)3:自己独立完成,有困难的与组员合作完成。

(10分钟)流程(二)根据下面的三种视图,你能相象出相应几何体的形状吗?先独立思考,再小组交流.4:组长带领本组成员审题并分析该题的解题思路,达到共同完成的目的。

(10分钟)课堂小结反思查漏补缺收获:___________________________________。

2.存在困惑:_______________________________。

5:教师提问,每组抽两名同学回答。

(4分钟)课堂检测1.下列四个水平放置的几何体中,三视图如图所示的是(),A),B),C),D)6:学生独立完成,教师巡查,组长负责批阅。

(10分钟)。

九年级数学上册 5.2 视图 第3课时 由视图描述几何体导

九年级数学上册 5.2 视图 第3课时 由视图描述几何体导

第3课时由视图描述几何体1.能由三视图想象出简单几何体的形状,并且能画出草图。

2.能画出除了圆柱、圆锥、正方体等几何体外,其它较复杂几何体的三视图。

3.进一步理解三视图与几何体之间的联系。

4.在教学过程中培养学生的动手操作能力和合作交流意识,发展空间想象能力。

阅读教材P141-143,能根据三视图确定实物原型.自学反馈1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形面、面、面,然后再结合起来考虑整体图形.2.一个立体图形的俯视图是圆,则这个图形可能是 .3.下列几何体中,其主视图、左视图与俯视图均相同的是( )A.正方体B.三棱柱C.圆柱D.圆锥像这类给出选项的选择题可以根据选项反推理,从而得出答案.活动1 小组讨论例1观察图1的三种视图,你能在图2找到与之对应的几何体吗?图1 图2解:与图1对应的几何体是(4).由于给出了供辨认的几何体,我们可以先分析图2中每个几何体的三视图,将之与图1相比较,从而得出答案.例2 根据三视图说出立体图形的名称.图1 图2解:图1从三个方向看立体图形都是矩形,可以想象出:整体是长方体.图2从正面和侧面看立体图形,图象都是等腰三角形,从上面看,图象是圆,可以想象出:整体是圆锥体.如图所示.由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.活动2 跟踪训练1.如图,三视图所表示的物体是 .2.由下列三视图想象出实物形状.3.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是个.4.已知一个几何体的三视图如图所示,想象出这个几何体.有些三视图反映的是两个或多个基本几何体,我们可以从三视图中分解出各个基本几何体的三视图,先想象出各个基本几何体,再根据它们三视图的位置关系确定这些基本几何体的组合关系.5.由下面的三视图想象出实物的形状.视图中的虚线是被遮挡的物体的轮廓线,要根据其在视图中的位置去想象它在对应的实物中的形状和位置.课堂小结学生试述:这节课你学到了些什么?教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈1.前上侧2.球体3.A【合作探究】活动2 跟踪训练1.五棱锥2.A是四棱锥 B是球体 C是三棱柱子3.84.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.5.略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2视图(3)
教学目标:
(1)能由三视图想象出简单几何体的形状,并且能画出草图。

(2)能画出除了圆柱、圆锥、正方体等几何体外,其它较复杂几何体的三视图。

一、复习知识
1.提问:如何画一个几何体的三种视图?(顺序和位置)
2.三种视图分别反映几何体长、宽、高中的哪几方面?
3.完成下列练习
(1)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______.
(2)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子.
(3)某几何体的三种视图分别如下图所示,那么这个几何体可能是().
(A)长方体(B)圆柱(C)圆锥(D)球
二、探索新知
观察图4-24的三种视图,你能在图4-25找到与之对应的
几何体吗?
三、延伸提高
活动内容:根据图4-26的三种视图,你能想象出相应几何体的形状吗?先独立思考,再小组交流。

四、巩固练习
练习1:活动内容:根据物体的三视图(如下图)描述物体的形状.(画出草图)
练习2:
活动内容:画出如图所示几何体的三视图:。

相关文档
最新文档