什么叫做零电压开关

合集下载

LLC原理讲解

LLC原理讲解

LLC原理讲解与传统PWM(脉宽调节)变换器不同,LLC是一种通过控制开关频率(频率调节)来实现输出电压恒定的谐振电路。

它的优点是:实现原边两个主MOS开关的零电压开通(ZVS)和副边整流二极管的零电流关断(ZCS),通过软开关技术,可以降低电源的开关损耗,提高功率变换器的效率和功率密度。

学习并理解LLC,我们必须首先弄清楚以下两个基本问题:1.什么是软开关;2.LLC电路是如何实现软开关的。

由于普通的拓扑电路的开关管是硬开关的,在导通和关断时MOS管的Vds电压和电流会产生交叠,电压与电流交叠的区域即MOS管的导通损耗和关断损耗。

如图所示:为了降低开关管的开关损耗,提高电源的效率,有零电压开关(ZVS) 和零电流开关(ZCS)两种软开关办法。

1零电压开关 (ZVS)开关管的电压在导通前降到零,在关断时保持为零。

2零电流开关(ZCS)使开关管的电流在导通时保持在零,在关断前使电流降到零。

由于开关损耗与流过开关管的电流和开关管上的电压的成绩(V*I)有关,当采用零电压ZVS导通时,开关管上的电压几乎为零,所以导通损耗非常低。

►Vin为直流母线电压,S1,S2为主开关MOS管(其中Sc1和Sc2分别为MOS管S1和S2的结电容,并联在Vds上的二极管分别为MOS管S1和S2的体二极管),一起受控产生方波电压;►谐振电容Cr 、谐振电杆Lr 、 励磁电杆Lm一起构成谐振网络;►np,ns为理想变压器原副边线圈;►二极管D1, 二极管D2,输出电容Co一起构成输出整流滤波网络。

那么LLC电路是怎么实现软开关的呢?要实现零电压开关,开关管的电流必须滞后于电压,使谐振槽路工作在感性状态。

LLC 开关管在导通前,电流先从开关MOS管的体二极管(S到D)内流过,开关MOS 管D­S之间电压被箝位在接近0V(二极管压降),此时让开关MOS管导通,可以实现零电压导通;在关断前,由于D­S 间的电容电压为0V而且不能突变,因此也近似于零电压关断(实际也为硬关断)。

移相全桥零电压开关电路

移相全桥零电压开关电路

移相全桥零电压开关PWM电路图:
波形图:
原理: t0~t1时段,S1和S4都导通,直到t1时刻S1关断。

t1~t2时段:t1时刻开关
S1关断后,电容Cs1、Cs2与电感r L 、L 构成谐振回路。

谐振开始时i A U t u =)(
1 ,在谐振的过程中,0=A u ,S2VD 导通,电流Lr i 通过S2VD 续流。

t2~t3时段:t2时刻开关S2开通,由于此时其反并联二极管S2VD 正处于导通状态,因此S2开通时电压为零,开关过程中不会产生开关损耗,S2开通后电路状态不会改变,继续保持到t3时刻S4关断。

t3~t4时段:t3时刻开关S4关断后,这时变压器二次整流侧1VD 和2VD 同时导通,变压器一次和二次电压均为零,相当于短路,因此变压器一次侧Cs3、Cs4与r L 构成谐振回路。

谐振电感r L 的电流不断减小,B 点电压不断上升,直到S3的反并联二极管S3VD 导通。

这种状态维持到S3
开通。

S3开通前S3VD 导通,因此S3是在零电压的条件下开通,开通损耗为零。

t4~t5时段:S3开通后,谐振电感r L 的电流继续减小。

电感电流Lr i 下降到零后,便反向,不断增大,直到t5时刻T L Lr k I i / ,变压器二次侧整流管VD1的电流下降到零反而关断,电流L I 全部移到VD2中。

t0~t5时段正好是开关周期的一半,而在另一半开关周期t5~t0时段中,电路的工作过程与t0~t5时段完全对称。

【电力电子技术习题解答】期末考试题库第7章

【电力电子技术习题解答】期末考试题库第7章

第7章 思考题与习题7.1高频化的意义是什么?为什么提高开关频率可以减小滤波器和变压器的体积和重量?答:高频化可以减小滤波器的参数,减小变压器的体积从而使装置小型化、轻型化; 提高开关频率,可以减小滤波器的电感和电容的参数,减小滤波器的体积和重量;当变压器输入正弦波时,fNBS U 44.4 ,频率升高时,可以减小N 和S 的参数,从而减小变压器各绕组的匝数和铁心的尺寸,使变压器的体积减小,重量减轻,。

7.2何谓软开关和硬开关?怎样才能实现完全无损耗的软件关过程?答:如果开关器件在其端电压不为零时开通则称为硬件通,在其电流不为零时关断则称为硬关断。

硬开通、硬关断统称为硬开关。

在硬开关过程中,开关器件在较高电压下承载有较大电流,故产生很大的开关损耗。

如果在电力电子变换电路中采取一些措施,如改变电路结构和控制策略,使开关器件被施加驱动信号而开通过程中其端电压为零,这种开通称为零电压开通;若使开关器件撤除其驱动信号后的关断过程中其承载的电流为零,这种关断称为零电流关断。

零电压开通和零电流关断是最理想的软开关,其开关过程中无开关损耗。

如果开关器件在开通过程中端电压很小,在关断过程中其电流也很小,这种开关过程的功率损耗不大,称之为软开关。

7.3零开关,即零电压开通和零电流关断的含义是什么?答:使开关开通前的两端电压为零,则开关导通过程中就不会产生损耗和噪声,这种开通方式为零电压开通;而使开关关断时其电流为零,也不会产生损耗和噪声,称为零电流关断。

7.4试分析图题7.4两个电路在工作原理上的差别,并指出它们的异同点。

图题7.4答:相同点:都是零电压开关准谐振电路。

不同点:(a )图在(b )图软开关的电容上串了一个电阻,7.5软开关电路可以分为哪几类?其典型拓扑分别是什么样的?各有什么特点?答:准谐振变换电路、零开关PWM 变换电路和零转换PWM 变换电路。

见教材“7.1 , 7.2”7.6准谐振变换器与多谐振变换器的区别是什么?答:准谐振变换电路分为零电压开关准谐振变换电路(ZVS QRC )与零电流开关准谐振变换电路(ZCS QRC )。

什么是软开关-软开关的分类

什么是软开关-软开关的分类

什么是软开关?软开关的分类凡用控制的方法使电子开关在其两端的电压为零时导通电流,或使流过电子开关的电流为零时关断,则此开关称为软开关。

它能克服传统的硬开关的开关损耗,理想的软开关的开关损耗为零,从而可提高功率变换器的传输效率。

一、软开关概述硬开关是在控制电路的开通和关断过程中,电压和电流的变化剧烈,产生较大的开关损耗和噪声,开关损耗随着开关频率的提高而增加,使电路效率下降;开关噪声给电路带来严重的电磁干扰,影响周边电子设备的工作。

软开关是在硬开关电路的根底上,增加了小电感、电容等谐振器件,构成辅助换流网络,在开关过程前后引入谐振过程,开关在其两端的电压为零时导通;或使流过开关的电流为零时关断,使开关条件得以改善,降低传统硬开关的开关损耗和开关噪声,从而提高了电路的效率。

软开关包括软开通和软关断。

理想的软开通过程是:电压先下降到零后,电流再缓慢上升到通态值,所以开通时不会产生损耗和噪声,软开通的开关称之为零电压开关。

理想的软关断过程是:电流先下降到零后,电压再缓慢上升软开关技术大体上分为零电压开关和零电流开关,到通态值,所以关断时不会产生损耗和噪声,软关断的开关称之为零电流开关。

二、软开关的分类根据开关元件开通和关断时电压电流状态,可分为零电压电路和零电流电路两大类。

根据软开关技术发展的历程可以将软开关电路分成准谐振电路、零开关PWM电路和零转换PWM电路。

1.零电压开关①零电压开通:开关开通前其两端电压为零开通时不会产生损耗和噪声。

②零电压关断:与开关并联的电容能延缓开关关断后电压上升的速率,从而降低关断损耗。

2.零电流开关①零电流关断:开关关断前其电流为零关断时不会产生损耗和噪声。

②零电流开通:与开关串联的电感能延缓开关开通后电流上升的速率,降低了开通损耗。

3.准谐振电路准谐振电路中电压或电流的波形为正弦半波,因此称之为准谐振。

是最早出现的软开关电路。

其电压峰值很高,要求器件耐压必须提高;谐振电流有效值很大,电路中存在大量无功功率的交换,电路导通损耗加大;谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制方式来控制。

移相全桥零电压PWM软开关电路的研究

移相全桥零电压PWM软开关电路的研究

略大于开关管自身的寄生电容可减小管子之间的差
异。 实际中,可根据实验波形对其进行调整。 计算得
Llk=7.2 μH,实际取10~20 μH。 由于 要 兼 顾 轻 载 和 重 载,同 时 电 感 在 超 前 臂 谐 振 和 续 流 时 有 能 量 损 失 ,故
实际中取值较计算值略大为宜。
5 整机最大占空比合理性计算
第 43 卷第 1 期 2009 年 1 月
电力电子技术 Power Electronics
移相全桥零电压 PWM 软开关电路的研究
胡红林, 李春华, 邵 波 (黑龙江科技学院, 黑龙江 哈尔滨 150027)
Vol.43 No.1 January,2009
摘要:介绍了移相全桥零电压 PWM 软开关电路的组成及工作原理,从时域上详细分析了软开关的工作过程,阐述了
在开关电源中具有谐振开关和 PWM 控制特点 的移相全桥零 电 压 PWM 变 换 器 得 到 了 广 泛 应 用 , 该 类 变 换 器 实 现 了 零 电 压 开 关 (ZVS),减 小 了 开 关 损耗,提高了电源系统的稳定性。 同时,电源可在较 高的开关频率下工作,因而大大减小了无源器件的 体积。 但移相全桥 ZVS 电路存在对谐振电感和电容 的合理选择及占空比丢失的问题,这就要求 ZVS 软 开关有一个合理的最大占空比。
实现 VQ1 零电压关断需要有:
uC1=
iCb 2C1
td1=
is 2nC1
td1≥Uin
(6)
式中:td1 为 VQ1,VQ3 死区时间;n 为变比。
要在全范围内实现超前臂的零电压开通, 必须
以 最 小 输 出 电 流 Iomin 和 最 大 输 入 电 压 Uinmax 来 选 取 C1,C3,即 C1=C3≤Iomintd1/(2nUinmax)。 4.2 串联电感的取值及滞后臂并联电容的选取

ZVS零电压开关电路原理与设计

ZVS零电压开关电路原理与设计

ZVS零电压开关电路原理与设计一、初识ZVSZVS是什么,度娘查的为”零电压开关(Zero Voltage Switch)“。

即开关管关断时,开关管导通时,其两端的电压已经为0。

这样开关管的开关损耗可以降到最低。

我们平时使用的电磁炉和LLC电源都是这种谐振电源,普通的充电器等都是硬开关的,比这种谐振电源损耗要大些。

所以ZVS可以做到很高效率,但是有一个缺点,就是其调节范围一般都比较窄。

例如电磁炉,当我们把功率调到比较大时,为持续加热;当功率调的较小时,就开始断断续续加热,因为那个时候已经不能达到谐振状态了。

像我们普通充电器那种硬开关的电源,不管空载和满载都是持续震荡的。

初次看到ZVS电路,我惊呆了,两个MOS管加几个电阻电容就能组成谐振开关。

真是佩服人民的想象力啊。

该电路只需要少量元件即可达到零电压开关。

功率有人做到2KW以上,几百瓦的话两个开关管只需加小型散热器即可。

于是花了几天时间对ZVS电路进行了下深入研究,让大家明白其工作原理。

一、基本电路现在我们来进行分析其原理,首先使用proteus仿真电路进行仿真。

二、原理图分析1. 上电时L1通入的电流为零,电源通过R1、R2是Q1、Q 2导通,L1电流逐渐增加,由于两个开关管特性差异,将导致流入两个开关管的电流不同,假设Q1电流大于Q2电流,T1将产生b为正,a为负的感应电压,于是通过T1形成正反馈,使Q1导通,Q2截止。

完成启动过程。

2. (t0~t1时间)稳态Q1导通时,由于上个周期T1电流为a到c,并且C 1两端电压为零。

由于电流不能突变,T1电流将对C1充电,C1逐渐为a负c正的电压,并且正弦变大,T1电流正弦变小。

此时a电压被Q1下拉到0V,所以C点电压正弦变大,Q1栅极电压被D3稳压管钳位,Q1时钟保持导通。

3. (t1时间)当T1中电流下降为零,其能量全部释放到C1,此时C1电压达到最大值。

4. (t1~t2时间)C1开始通过T1由c到a放电,C1电压即c点电压正弦变小,T1电流由c到a正弦变大。

开关电源有哪些类型-开关电源的主要类型

开关电源有哪些类型-开关电源的主要类型

开关电源有哪些类型-开关电源的主要类型开关电源有哪些类型-开关电源的主要类型现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。

下面,店铺就为大家讲讲开关电源的主要类型,快来看看吧!直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。

直流开关电源的核心是DC/DC转换器。

因此直流开关电源的分类是依赖DC/DC转换器分类的。

也就是说,直流开关电源的分类与DC/DC转换器的分类是基本相同的,DC/DC 转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。

隔离式DC/DC转换器也可以按有源功率器件的个数来分类。

单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。

双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter) 和半桥式(Half-Bridge Converter)四种。

四管DC/DC 转换器就是全桥DC/DC转换器(Full-Bridge Converter)。

非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。

单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。

在这六种单管DC/DC转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。

LLC是什么?

LLC是什么?
LLC是什么?
十年前,LLC还只是停留在大学的实验 室里面。今天,LLC已经作为一种优秀 的拓扑被业界所广泛的接受和使用

LLC是串联谐振的一种,由于由两个电感(下 图中的Lm和Lkp)和一个电容(Cr)组成,所 以叫LLC
LLC是一种零电压开/关(ZVS)拓补电路
对于LLC 而言,通常让开关管在电流 为负时导通。在导通前,电流从开关 管的体内二极管流过,开关管D-S 之 间电压被箝位在0V(忽略二极管压 降),此时开通二极管,可以实现零 电压开通;在关断前,由于D-S 间的 电容电压为0v 而且不能突变,因此也 近似于零电压关断。
传统电源在开关管开关时,MOSFET 的D-S间的电压与电流产生交叠,因 此产生开关损耗。如图所示。
第一个优点:更少的损耗
• 节能,更高的能效比:正常的LLC效率都在90%以 上,业界已经可以做到96%。这在传统电源上几 乎是不可能实现的。 • 体积小,更高的功率密度:绝大多少LLC电路不需 要额外的大体积散热片或散热风扇。功率器件甚 至可以直接选择贴片封装。 • 寿命长,更长的保质期:由于两大发热器件(开 关管和输出二极管)都几乎没有开关损耗,所以 温升低,不但自身寿命延长,还间接降低了对外 部其它器件的影响。
第二个优点:更好的噪声
• 更容易通过认证:绝大多数电磁辐射(EMI)是由 功率器件开关时的非线性引起的,由于LLC的正弦 波软开关技术,EMI指标显著降低。 • 减小对其它设备的干扰:在图像和语音领域,LLC 的优势更加明显,不必为电源做过多的滤波考虑。 • 优秀的纹波特性:对比其它拓补flayback的三角波 和桥式电路的方波,电流波形为正弦波的LLC能提 供更稳定平滑的输出电压。
第三个优点:更高的耐压
在医疗领域4000V耐压一直是一个跨不过的门槛,变压 器的工艺要求很高并且容易老化损坏,造成安全隐患。

电源名词解释

电源名词解释

1.脉宽调制(Pulse Width Modulation–PWM)开关电源中常用的一种调制控制方式。

其特点是保持开关频率恒定,即开关周期不变,改变脉冲宽度,使电网电压和负载变化时,开关电源的输出电压变化最少。

2.占空比(Duty Cycle Ratio)一个周期T内,晶体管导通时间t oN所占比例。

占空比D=t oN/T。

3.硬开关(Hard Switching)晶体管上的电压(或电流)尚未到零时,强迫开关管开通(或关断),这是开关管电压下降(或上升)和电流上升(或下降)有一个交叠过程,因而,开关过程中管子有损耗,这种开关方式称为硬开关。

4.软开关(Soft Switching)使晶体管开关在其中电压为零时开通,或电流为零关断,从而在开关过程中管子损耗接近于零,这种开关方式称为软开关。

5.谐振(Resonance)谐振是交流电路中的一种物理现象。

在理想的(无寄生电阻)电感和电容串联电路输入端,加正弦电压源,当电源的频率为某–频率时,容抗与感抗相等,电路阻抗为零,电流可达无穷大,这一现象称为串联谐振。

同理,在理想的LC并联电路加正弦电流源时,电路的总导纳为零,元件上的电压为无穷大,称为并联谐振。

电路谐振时有两个重要参数:谐振频率–谐振时的电路频率,w0=1/√LC,称为谐振频率。

特征阻抗–谐振时,感抗等于容抗。

其值为:Zo=√L/C,称为特征阻抗。

当LC串联突加直流电压时,电路中电流按正弦规律无阻尼振荡,其频率即电路的谐振频率,或称振荡频率.6.准谐振(Quasi–Resonance)对于有开关的LC串联电路,当电流按谐振频率振荡时,如果开关动作,使电流正弦振荡只在一个周期的部分时间内发生,电流呈准正弦,这一现象称为准谐振。

同样,在LC并联电路中,借助开关动作,也可获得准谐振。

7.零电压开通(Zero–Voltage–Switching,简称ZVS)利用谐振现象,在开关变换器中器件电压按正弦规律振荡到零时,使器件开通,称为ZVS。

他激ZVS-RCC式零电压软开关开关电源充电器的研究与实践(行业一类)

他激ZVS-RCC式零电压软开关开关电源充电器的研究与实践(行业一类)

他激ZVS-RCC 式零电压软开关开关电源充电器的研究与实践关键词:自激振荡,无源、无辅助开关准谐振,零电压开关(ZVS ),PWM 自适应同步,分布电容电流尖刺消除。

一、小功率AC/DC 开关电源的技术现状:现有离线式小功率AC/DC 开关电源从线路结构形式来分类大致有正激式、反激式、 半桥式等等几种;按驱动结构分类大致有自激式、它激式;按控制结构分类大致有PWM 控制、PFM 控制。

AC/DC 开关电源从核心技术上讲主要是控制方式。

PWM 控制方式制作的开关电源是当今开关电源方式制作的主流。

由于PWM 控制方式控制特性好,控制电路较简单,控制频率固定,成本低,在小功率开关电源中应用广泛。

但随着对开关电源的高功率密度,高可靠性、低成本要求的市场需求,对硬开关PWM 控制电路提出了挑战。

由于主开关器件结电容,变压器及线路板的分布电容的不可避免。

硬开关PWM 控制电路暴露出了主开关器件随功率增大、频率进一步提高损耗会明显增大的缺点,表现为主开关器件温升高,影响了开关电源的可靠性,且变换效率无法再进一步提高。

常规(非正向式)硬开关PWM 控制线路的主开关电压、电流波形(图1)及功耗分析:由以上V/I 波形可以看到,两种电路的波形有一个共同的特点:在主开关开通(T on )时,都有一电流上冲尖刺,并且尖刺电流与主开关电压波形明显重叠。

在主开关关断(T off )时,主开关电压和电流波形明显重叠。

正是由于这种重叠的存在,使主开关的动态损耗在电流大及频率高时更加严重。

Vin Vin Vf Vf 0重负载时主开关V /I 波形轻负载时主开关V /I 波形 图1:主开关电压、电流波形如果用一个MOSFET作主开关,这个MOSFET的C oss为300P,变压器及线路板的分布电容为100P,Cr总共为400P,假设频率f=100KHz。

由线路原理可知,MOSFET在开通时的电压(即Cr上的电压)为V f=V in+V clamV clam=N·(V out+V d+V tsr),V f:MOSFET漏极上的回扫电压,V in:电源的DC输入电压,N:变压器初次级匝比,V out:输出DC电压,V d:输出整流二极管上的压降,V tsr:变压器次级绕组上内阻引起的压降,得到:V f=V in+ N·(V out+V d+V tsr)假设有一回扫线路V f= V in+N·(V out+V d+V tsr)=310+10×(12+1+0.2)=442(V),V cr=V f=442V,MOSFET开通(Ton)时Cr电容的损耗可用下式计算:P cr=(C r·V cr2·f)/2代入计算:P cr= (400×10-12×4422×100×103 )/2=7.81456/2=3.90728(w)≈4W。

软开关技术6-3-2015-2

软开关技术6-3-2015-2

t2
t3
反并二 极管导通
t4
(d)[t3,t4]自然续流阶段
半波模式
全波模式工作波形
v gs t
Lr DQ 1 i Lr Cr
D1
v Cr
V
0
v Cr V0 i Lr t
Q1 Ii
2 Ii
Ii t
(a)[t0,t1] 电容充电阶段
Lr i Lr Cr v Cr V
0
D1
iQ 1 Ii t
DQ 1
Q1 Ii
Z ,则不可能自然谐振回零, 从而造成开关器件零电流关断失败,只有满足 I V ,才能保 Z 证软开关操作。在谐振参数确定后,负载电流只能在一定范围 内变化,负载不能过重。
r
in r 0 max
V in I0
(3) 常规Buck电路是通过脉宽调制来调节输出,而
ZCS- QRCs是通过调节脉冲频率来调节输出的。可
Q1
M
Lr iLr I0
i Lr
I0
Vin I0 + Zr
V in
t
vCr
Cr
D1
v Cr
V in
2Vin t
(c)[t2,t3] 电容放电阶段
Q1
M
Lr iLr I0
v ds
V in
V in
t
vCr
Cr
D1
t 0 t1
t1 a t 2
t3
串联二极 管所承受
t4
(d)[t3,t4]自然续流阶段(a)半波模式Q1V inVin
t
t0
t1
t1 a t1 b
t2 t3
t4
(d)[t2,t3] 电容放电阶段

开关电源技术

开关电源技术
开关电源:
➢ 转变时用自动控制闭环稳定输出并有保护环节。
开关电源基本构成框图
输入回路
Uin
滤波
整流及 滤波
功率变换器
功率开 高频 关器件 变压器
整流
滤 波 Uout
AC/DC
DC/DC
开关电源控制器
开关电源的特点
1.重量轻,体积小:
– 是相控电源体积的1/10
2. 功率因数高:
– 相控 0.7 ,小负载 0.3, 有功率因数的开关电源在0.93以上
用计算机进行监控
通信中对开关电源的要求
欧洲通信标准化委员会制定的第二级电源与通信设 备界面上的技术规范(ETS300132)
➢ 直流电压允许变化范围 -40.5 ~ -57 VDC ➢ 直流电压变化
dU DC 5V / ms dt
➢ 直流冲击电流 < 5I 额定 (10ms) ➢ 杂音电压 ➢ 无线电频率干扰符合EN55022或IEC CISPR22标准 ➢ 安全、接地要求等
验B:高温试验方法 GB/T 2423.9-1989 电工电子产品基本环境试验规程 试验Cb:
设备用恒定湿热试验方法 GB/T 2423.10-1995 电工电子产品基本环境试验第二部分,试
验方法试验Fc和导则:振动(正弦)
相关国家标准
GB/T 2828-1987 逐批检查计数抽样程序及抽样表
二、开关电源 基础电路
开关电源的功率转换电路模型 控制电路 谐振变换器 功率因数校正电路
基本电路模型 -- Buck 变换器
降压变换器、串联开关稳压电源 开关闭合时,电能储存于电感和电容中(同时也馈 向负载)。 开关打开后,储存于电感和电容中的能量继续供 给负载。 二极管构成电流回路

前氧传感0电压

前氧传感0电压

前氧传感0电压
前氧传感器的0电压通常是指传感器输出电压的基准点,它应该是一个稳定的电压值,通常在0.1伏特左右。

如果前氧传感器的0电压不正常,可能会导致发动机控制单元(ECU)无法正确读取氧传感器的信号,从而影响发动机的燃油经济性和排放性能。

如果前氧传感器的0电压不正常,可能有以下原因:
1. 氧传感器本身损坏或老化,需要更换新的氧传感器。

2. 氧传感器电缆连接不良或松动,需要重新连接电缆。

3. 氧传感器插头或ECU插头接触不良,需要重新插拔插头,确保连接良好。

4. 发动机故障码或其他故障码导致氧传感器无法正常工作,需要进行诊断和修理。

如果您遇到前氧传感器0电压不正常的问题,建议您先检查氧传感器和连接电缆是否正常,如果问题依然存在,请联系专业技术人员进行进一步的诊断和修理。

第八篇软开关电路

第八篇软开关电路
辅助开关S1超前于主开关S开通, S开通后S1关断。
– t0~t1时段:,S1导通,VD尚处 于通态,电感Lr两端电压为Uo, 电流iLr线性增长, VD中的电流 以同样的速率下降。t1时刻, iLr=IL,VD中电流下降到零,关 断。
图8-19 升压型零电压转 换PWM电路的原理图
S
O
t
S1
O
uS
– t4~t5时段:S3开通后,Lr的电
S1
流继续减小。iLr下降到零后反
O S2
t
向增大,t5时刻iLr=IL/kT,变压
O S4
t
器二次侧VD1的电流下降到零
O S3
t
而关断,电流IL全部转移到
O u AB
t
VD2中。
O
t
– t0~t5是开关周期的一半,另一
u Lr O
t
半工作过程完全对称。
iLr
– 准谐振电路-准谐振电路中电压或电流的波形为正弦 半波,因此称之为准谐振。是最早出现的软开关电路。
特点:
谐振电压峰值很高,要求器件耐压必须提高; 谐振电流有效值很大,电路中存在大量无功功率的 交换,电路导通损耗加大; 谐振周期随输入电压、负载变化而改变,因此电路 只能采用脉冲频率调制(Pulse Frequency Modulation—PFM)方式来控制。
uCr
Uin
O
t
iLr
IL
O
t
t0 t1 t2 t3 t4 t0
图 8-14 谐振直流环电路的理想化波形
8.3.3 移相全桥型零电压开关PWM电路
移相全桥电路是目前应用最广泛的软开关电路之一,它 的特点是电路简单。同硬开关全桥电路相比,仅增加 了一个谐振电感,就使四个开关均为零电压开通。

什么叫零序电压

什么叫零序电压

什么叫零序电压、零序电流?正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

移相全桥性零电压开关PWM电路 - 电子信息网论坛-elecinfo

移相全桥性零电压开关PWM电路 - 电子信息网论坛-elecinfo

移相全桥性零电压开关PWM 电路 有效占空比:S
i T L r eff T U k I L D D 2-=(这里Lr 是原边谐振电感,作用是零输入电压/软开关电源)
从上式看出有效占空比D eff 不但与原边占空比D 有关,而且于负载电流I o ,输入电压U i 有关,因此,D 、I o 、U i 、稍有扰动,就会引起有效占空比D eff 的变化,这样对于三种不同的扰
动量o i ˆ、i u ˆ、d ˆ,使得有效占空比D eff 产生相应的扰动量i d ˆ、u d ˆ、d
d ˆ。

在建立小信号模型等效电路时必须考虑到这三个扰动量。

取D eff 对I o 的扰动L s i T r i
i T U k L d ˆ2ˆ-=; 取D eff 对U i 的扰动i S
i T r u u T U k L d ˆ2ˆ2=; 取D eff 对D 的扰动d d d
ˆˆ=; 由此可知:u
i eff d d d d ˆˆˆˆ++= 。

我这里设计小信号模型是:
然后就进行不下去了!
请教各位大侠,怎么建模啊!!!!!!我快愁死了!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么叫做零电压开关
什幺是零电压开关
PWM开关电源按硬开关模式工作(开/关过程中电压下降/上升和电流上升/下降波形有交叠),因而开关损耗大。

高频化虽可以缩小体积重量,但开关损耗却更大了。

为此,必须研究开关电压/电流波形不交叠的技术,即所谓零电压开关(ZVS)/零电流开关(ZCS)技术,或称软开关技术,小功率软开关电源效率可提高到80%~85%。

零电压开关原理
零电压开关原理无非就是和普通变压器一样,铁心发热,又或者一个简单的电磁炉。

交变得磁场加到线圈上,当你将铁棒放入线圈内,铁棒产生感应电流,随即发热被烧红。

图是一张典型的zvs电路图。

好多人都是按图制作,只要连线正确,元器件选择合理一般都能制作成功,但是这个电路怎幺工作的你知道吗?下面我给大家详细的分析一下。

先看图:
我们知道,晶体管,电阻电容等电子元件及时型号完全相同的两个元件,其本身也会存在细小的差异。

在初始上电期间Q1与Q2总会有个先导通一个后导通,假设上电期间Q1最先导通,Q2后导通,如上图我们可以看到。

相关文档
最新文档