分式的练习题 自制的试题 2

合集下载

初二数学《分式》练习题及答案

初二数学《分式》练习题及答案

分式练习题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列运算正确的是( )A.x 10÷x 5=x 2B.x -4·x=x -3C.x 3·x 2=x 6D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A. B. C. D.11a b +1ab 1a b +ab a b+3.化简等于( )a b a b a b --+A. B. C. D.2222a b a b +-222()a b a b +-2222a b a b -+222()a b a b +-4.若分式的值为零,则x 的值是( )2242x x x ---A.2或-2 B.2 C.-2 D.45.不改变分式的值,把分子、分母中各项系数化为整数,结果是( )52223x y x y -+A. B. C. D.2154x y x y -+4523x y x y -+61542x y x y -+121546x y x y-+6.分式:①,②,③,④中,最简分式有( )223a a ++22a b a b --412()a a b -12x -A.1个 B.2个 C.3个 D.4个7.计算的结果是( )4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭A. - B. C.-1 D.112x +12x +8.若关于x 的方程 有解,则必须满足条件( )x a c b x d-=-A. a≠b ,c≠d B. a≠b ,c≠-d C.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )A.a<3B.a>3C.a≥3D.a≤310.解分式方程,分以下四步,其中,错误的一步是( )2236111x x x +=+--A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2);(3);(4)-;(5) ; (6);(7)-; (8)y x 22732xy y x -x 8135+y 112--x x π-12m .5.023+m 12.当a 时,分式有意义.321+-a a13.若-1,则x+x -1=__________.14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.15.计算的结果是_________.1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭16.已知u=(u≠0),则t=___________.121s s t --17.当m=______时,方程会产生增根.233x m x x =---18.用科学记数法表示:12.5毫克=________吨.19.当x 时,分式的值为负数.xx --2320.计算(x+y)· =____________.2222x y x y y x+--三、计算题:(每小题6分,共12分)21.; 22..23651x x x x x+----2424422x y x y x x y x y x y x y ⋅-÷-+-+四、解方程:(6分)23.。

分式练习计算练习试题(超全)

分式练习计算练习试题(超全)

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。

5.约分:①=ba ab 2205__________,②=+--96922x x x __________。

初中数学试题分类汇编:分式的化简计算专项训练2(培优 附答案)

初中数学试题分类汇编:分式的化简计算专项训练2(培优 附答案)
例如:将分式 拆分成一个整式与一个真分式的和(差)的形式.
方法一:解:由分母为 ,可设
则由
对于任意 ,上述等式均成立,
∴ ,解得

这样,分式 就被拆分成一个整式与一个真分式的和(差)的形式.
方法二:解:
这样,分式 就拆分成一个整式与一个真分式的和(差)的形式.
(1)请仿照上面的方法,选择其中一种方法将分式 拆分成一个整式与一个真分式的和(差)的形式;
(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.
14.阅读下列材料,解决问题:
在处理分数和分式问题时,有时由于分子比分母大,或者为了分子的次数告诉于分母的次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.
请根据以上材料解决下列问题:
(1)式子:① ,② ,③ ,④ 中,属于对称式的是(填序号)
(2)已知 .
①若 ,求对称式 的值
②若 ,求对称式 的最大值
9.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如: , ,则 和 都是“和谐分式”.
(1)下列分式中,不属于“和谐分式”的是(填序号).
(1)当k=3时,求x2 的值;
(2)当k= 时,求x﹣ 的值;
(3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.
16.通过小学的学习我们知道,分数可分为“真分数”和“假分数”,并且假分数都可化为带分数.类比分数,对于分式也可以定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).

分式练习题(附答案)

分式练习题(附答案)

分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。

初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)

初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)

初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)1.若a 为整数,关于x 的不等式组22340x x x a ≤+⎧⎨-<⎩有且只有3个整数解,且关于x 的分式方程1122ax x x-=--有负整数解,则整数a 的个数为( ) A .4B .3C .2D .1 2.若a 为整数,关于x 的不等式组2(1)4340x x x a +≤+⎧⎨-<⎩有且只有3个非正整数解,且关于x 的分式方程11222ax x x -+=--有负整数解,则整数a 的个数为( )个. A .4 B .3 C .2 D .13.若a 使得关于x 的分式方程21224a x x -=-- 有正整数解,且方程2420ax x --=有解,则满足条件的所有整数a 的个数为( )A .1B .2C .3D .44.若数a 使关于x 的不等式组111(1){3223(1)x x x a x -≤--≤-,有且仅有三个整数解,且使关于y 的分式方程31222y a y y++--=1有整数解,则满足条件的所有a 的值之和是( ) A .﹣10B .﹣12C .﹣16D .﹣18 5.若关于x 的分式方程21133x m x x --=--的解为正数,且关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,则符合条件的所有整数m 的取值之和为( )A .﹣7B .﹣9C .﹣12D .﹣14 6.关于x 的分式方程2322x m m x x ++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠ 7.若数a 使关于x 的分式方程41332a x x +=--的解为正数,使关于y 的不等式组12255(2)34y y a y y --⎧⎪⎨⎪+-⎩><无解,则所有满足条件的整数a 的值之积是( ) A .360B .90C .60D .15 8.若关于x 的方程x a c b x d -=-有解,则必须满足条件( ) A .a ≠b ,c ≠d B .a ≠b ,c ≠-d C .a ≠-b , c ≠d D .a ≠-b , c ≠-d 9.从7-,5-,1-,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩的解集为x 1>,且关于x 的分式方程1x m 32x x 2-+=--有非负整数解,则符合条件的m 的值的个数是( )A .1个B .2个C .3个D .4个10.若数a 使关于x 的不等式组112352x x x x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a a y y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .211.如果关于x 的分式方程2ax x 3+--2=43x -有正整数解,且关于x 的不等式组()4x 3x 3x a 0<-⎧-≥⎨⎩无解,那么符合条件的所有整数a 的和是( )A .16-B .15-C .6-D .4-12.若关于x 的分式方程21x a x --=1的解为正数,则字母a 的取值范围是( ) A .a <2B .a≠2C .a >1D .a >1且a≠213.已知关于x 的方程33+3a x x -+=1的解为负数,且关于x 、y 的二元一次方程组27358x y x y a -=⎧⎨+=+⎩的解之和为正数,则下列各数都满足上述条件a 的值的是( ) A .23,2,5 B .0,3,5 C .3,4,5 D .4,5,614.若关于x 的分式方程412a x x -=-的解为正整数,且关于x 的不等式组1282{630x x a x -+-≤>有解且恰有6个整数解,则满足条件的所有整数a 的值之和是( )A .4B .0C .-1D .-315.(山东省济南市槐荫区2018届九年级下学期学业水平阶段性调研测试(一模)数学试题)若关于x 的分式方程m 1x 1--=2的解为非负数,则m 的取值范围是 A .m >−1B .m≥−1C .m >−1且m≠1D .m≥−1且m≠1 16.若关于x 的方程2622x a x x--=--1的解为正数,则所有符合条件的正整数a 的个数为( )A .1个B .2个C .3个D .4个 17.若数a 使关于x 的分式方程1133x a x x++=--有非负整数解,且使关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5B .﹣3C .0D .2 18.若关于x 的方程3344x m m x x ++=--的解为正数,则m 的取值范围是( ). A .92m < B .94m >-且34m ≠- C .6m < D .6m <且2m ≠ 19.已知关于x 的分式方程6111m x x+=--的解是非负数,则m 的取值范圈是( ) A .5m > B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 20.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠ 21.若关于 x 的分式方程3111m x x-=-- 的解是非负数,则 m 的取值范围是( )A .m ≥-4B .m ≥-4 且 m ≠-3C .m ≥2 且 m ≠3D .m ≥2 22.关于x 的方程2211x m m x x -+=--的解为正数,则m 的取值范围是( ) A .23m < B .23m > C .23m <且13m ≠ D .23m <且0m ≠ 23.若关于x 的方程232x m x +=-的解是正数,则m 的取值范围是( ) A .6m >- B .6m >-且2m ≠ C .6m >-且4m ≠- D .6m <-且4m ≠- 24.已知关于x 的分式方程11m x ---1=21x -的解是正数,则m 的取值范围是( ) A .m <4 且m ≠3B .m <4C .m ≤3且m ≠3D .m >5且m ≠625.已知二次函数y =(a+2)x 2+2ax+a ﹣1的图象与x 轴有交点,且关于x 的分式方程1ax x ++1=71x +的解为整数,则所有满足条件的整数a 之和为( ) A .﹣4B .﹣6C .﹣8D .3 26.若关于x 的分式方程121m x +=-的解为非负数,则m 的取值范围是( ) A .3m >- B .3m ≥-C .3m >-且1m ≠-D .3m ≥-且1m ≠- 27.对于二次函数y =2x 2﹣(a ﹣2)x +1,当x >1时,y 随x 的增大而增大;且关于x 的分式方程22x -﹣3=2ax x --有整数解,则满足条件的整数a 的和为( ) A .5 B .6 C .10 D .1728.若关于y 的不等式组122y-k 46y k k -⎧≥⎪⎨⎪≤+⎩有解,且关于x 的分式方程32222kx x x x +=---有非负整数解,则符合条件的所有整数k 的和为( )A .-5B .-9C .-10D .-16 29.关于x 的方程2334ax a x +=-的解为1x =,则a =( ) A .1 B .3 C .-1 D .-330.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1 B .2 C .3 D .431.若关于x 的分式方程1322m x x x ++=--有增根,则m 的值是( ) A .m =-1 B .m =2C .m =3D .m =0或m =3 32.(2017龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( )A .1a >B .1a ≥C .1a ≥且9a ≠D .1a ≤ 33.已知分式方程312(1)(2)x k x x x +=++-+的解为非负数,求k 的取值范围( ) A .5k ≥ B .1k ≥- C .5k ≥且6k ≠ D .1k ≥-且0k ≠ 34.已知关于x 的一次函数()210y a x a =--+的图象过一、三、四象限,且关于y 的分式方程93322ay a y y--=--有整数解,求所有满足条件的整数a 的和为( ) A .11 B .15 C .21 D .2435.若关于x 的方程3133x ax x x ++=--有正整数解,且关于y 的不等式组252510y a y -⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a 有( )个A .0B .1C .2D .3参考答案1.C【解析】【分析】先解出不等式组,然后由不等式组有且只有3个整数解可得a 的范围;再解分式方程可得x=31a-,根据分式方程有负整数解可得a 的值,两者结合最终确定a 的值. 【详解】解:解不等式223x x ≤+,得:x≥-2,解不等式4x-a <0,得:x <4a , ∵不等式组有且只有3个整数解,∴0<4a ≤1, 解得:0<a ≤4, 由方程1122ax x x -=--得:x=31a- ∵方程有负整数解,∴a=2,4又∵0<a ≤4,∴a=2,4故选:C .【点睛】本题主要考查解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.2.C【解析】【分析】由不等式组有且只有3个非正整数解可得014a <≤,即0<a ≤4,再求分式方程可得x 22a=-,根据分式方程有负整数解可得a 的值. 【详解】解不等式2(x +1)≤4+3x ,得:x ≥﹣2,解不等式4x ﹣a <0,得:x 4a <, ∵不等式组有且只有3个非正整数解, ∴014a <≤, 解得:0<a ≤4, 由方程得:x 22a =-且是负整数,∴2-a=-1或-2, ∴a =3,4.故选C .【点睛】本题考查了解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.3.D【解析】【分析】先解分式方程,求得a 的值,再由方程2420ax x --=有解得a 的取值范围,则可求得a 的值,可求得答案.【详解】 解分式方程21224a x x -=--可得x=4-2a ,x≠2, ∵a 使得关于x 的分式方程21224a x x -=--有正整数解, ∴a 的值为0、2、6,方程2420ax x --=,当a=0时,方程有实数解,满足条件,当a≠0时,则有△≥0,即16+8a≥0,解得a≥-2且a≠0,∴满足条件的a 的值为-2,0、2、6,共4个,故选:D .【点睛】本题主要考查方程的解,求得a 的整数值是解题的关键.4.B【解析】【分析】根据不等式的解集,可得a 的范围,根据方程的解,可得a 的值,根据有理数的加法,可得答案.【详解】()()111132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②, 解①得x≥-3,解②得x≤35a +, 不等式组的解集是-3≤x≤35a +. ∵仅有三个整数解,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y++--=1, 3y-a-12=y-2.∴y=102a +, ∵y≠2,∴a≠-6,又y=102a +有整数解, ∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .【点睛】本题考查了分式方程的解,利用不等式的解集及方程的解得出a 的值是解题关键. 5.A【解析】【分析】根据题意可以求得m 的取值范围,从而可以得到符合条件的m 的整数值,从而可以解答本题.【详解】 解:由方程21133x m x x--=--,解得:x =﹣2﹣m , 则2023m m -->⎧⎨--≠⎩ 可得:m <﹣2且m≠﹣5,212625y y y m +⎧+>⎪⎨⎪-≤⎩①②, 由①知,y >﹣2,由②知,y≤52m +, ∵关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,∴y =﹣1和0∴5+m≥0,解得:m≥﹣5,又m <﹣2且m≠﹣5,∴-5<m <﹣2,∴m 的整数值为﹣4,﹣3,∴符合条件的所有整数m 的值之和=﹣4+(﹣3)=﹣7,故选:A.【点睛】本题考查分式方程的解、解一元一次不等式(组)、一元一次不等式组的整数解,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.6.D【解析】【分析】先根据分式方程的解法,求出用m 表示x 的解,然后根据分式有解,且解为正实数构成不等式组求解即可.【详解】2322x m m x x++=-- 去分母,得x+m+2m=3(x-2)解得x=62m -+ ∵关于x 的分式方程2322x m m x x ++=--的解为正实数 ∴x-2≠0,x >0 即62m -+≠2,62m -+>0, 解得m≠2且m <6故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m 的式子表示x 解分式方程,构造不等式组是解题关键.7.B【解析】【分析】表示出分式方程的解,由分式方程解为正数,得到a 的取值范围;不等式组变形后,根据不等式组无解,确定出a 的范围,进而求出a 的值,得到所有满足条件的整数a 的值之积.【详解】解:分式方程去分母得:2a ﹣8=x ﹣3,解得:x =2a ﹣5,由分式方程的解为正数,得到:2a ﹣5>0且2a ﹣5≠3,解得:a >52且a ≠4. 不等式组整理得:527y a y -⎧⎨-⎩><,由不等式组无解,得到:5﹣2a ≥﹣7,即a ≤6,∴a 的取值范围是:52<a ≤6且a ≠4,∴满足条件的整数a 的值为3,5,6,∴整数a 的值之积是90.故选B .【点睛】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解答本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解. 8.B【解析】【分析】把a 、b 、c 、d 都看做已知数解方程,去分母,转化为关于x 的整式方程,讨论x 的系数,再讨论最简公分母≠0,得出结论.【详解】方程两边都乘以d(b-x),得d(x-a)=c(b-x),∴dx-da=cb-cx ,即(d+c)x=cb+da ,∴当d+c ≠0,即c ≠-d 时,原方程的解为x=cb da d c ++, 由题意知还要满足b-x ≠0,即cb da d c++≠b , 所以b ≠a ,当c+d=0时,c=-d ,0x=d(a-b),∴当a=b 时,方程有无数个解,故选B.【点睛】本题考查了解字母系数的分式方程,解含有字母系数的方程和解数字系数的方程一样,均是通过去分母,将分式方程转化为整式方程,但因为分式方程中字母的取值决定着方程的解,故对转化后的整式方程中的未知数系数应加以限制,对解出的解还要进行检验. 9.A【解析】【分析】根据分式方程有非负整数解,即可从7-,5-,1-,0,4,3这六个数中找出符合要求的m 的值,综上即可得到答案.【详解】()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩①②, 解不等式①得:x m >,解不等式②得:x 1>,该不等式组的解集为:x 1>,m 1∴≤,即m 取7-,5-,1-,0;1x m 32x x 2-+=--, 方程两边同时乘以()x 2-得:()x 1m 3x 2-+=-,去括号得:x 1m 3x 6-+=-,移项得:x 3x 16m -=--,合并同类项得:2x 5m -=--,系数化为1得:m 5x 2+=, 该方程有非负整数解,∴即m 502+≥,m 522+≠,且m 52+为整数, m ∴取5-,3,综上:m 取5-,即符合条件的m 的值的个数是1个,故选A .【点睛】本题考查了分式方程的解,解一元一次不等式组,一元一次不等式组的整数解,正确掌握解不等式组的方法,解分式方程的方法是解题的关键.10.C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a 的取值范围,解分式方程后根据解为非负数,可得关于a 的不等式组,解不等式组求得a 的取值范围,即可最终确定出a 的范围,将范围内的整数相加即可得.【详解】解不等式112352x x x x a-+⎧<⎪⎨⎪-≥+⎩,得524x a x <⎧⎪⎨+≥⎪⎩, 由于不等式组只有四个整数解,即254a a +≤<只有4个整数解, ∴2014a +<≤, ∴22a -<≤; 解分式方程2211y a a y y++=--,得2y a =-, ∵分式方程的解为非负数,∴20210a a -≥⎧⎨--≠⎩, ∴a≤2且a≠1,∴22a -<≤且a≠1,∴符合条件的所有整数a 为:-1,0,2,和为:-1+0+2=1,故选C.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.11.D【解析】【分析】根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意a 的值,求出之和即可.【详解】分式方程去分母得:2+ax ﹣2x +6=﹣4,整理得:(a ﹣2)x =﹣12(a ﹣2≠0),解得:x =﹣122a -,由分式方程有正整数解,得到:a =1,0,﹣1,﹣4,﹣10,不等式组整理得:9x x a -⎧⎨≥⎩<,解得:a ≤x <﹣9,由不等式组无解,即a ≥﹣9,∴a =1,0,﹣1,﹣4,之和为﹣4.故选D .【点睛】本题考查了分式方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解答本题的关键.12.D【解析】去分母得:21,1x a x x a -=-=- ,则10,110a a ->--≠且 ,解得:a >1且a≠2.故选D.13.A【解析】【分析】先解分式方程得:x =a ﹣6,根据分式方程的解是负数列不等式求出a 的取值;再解方程组,把方程的解相加得:x +y =a +3+2a ﹣1=3a +2>0,得出a 的取值.【详解】3a x +﹣33x +=1,去分母得:a ﹣3=x +3,(a ≠3),x =a ﹣6. 由题意得:a ﹣6<0且x ≠-3,解得:a <6且a ≠3.27358x y x y a -=⎧⎨+=+⎩①②,①+②得:5x =5a +15,x =a +3③,把③代入①得:2(a +3)﹣y =7,y =2a ﹣1,∴x +y =a +3+2a ﹣1=3a +2>0,∴a >﹣23,则a 的取值为:﹣23<a <6且a ≠3. 故选A .【点睛】本题考查了分式方程和二元一次方程组以及不等式,解分式方程时要先去分母,化成整式方程后再求解,注意分母不为0,解二元一次方程组时常运用加减法解方程组,根据已知要求列不等式,最后求其解集即可.14.B【解析】【分析】【详解】分析:根据分式方程的解为正数求a的范围,注意使x=2的a的值;由不等式组有6个整数解求a的范围,综合得到a的范围后,取整数值求解.详解:把分式方程去分母,整理得,(a+3)x=8,当a≠-3时,x=83a+,所以83a+>0,解得a>-3.因为当x=2时,a=1,所以a>-3且a≠1.解不等式组128263xxa x+>-⎧⎪⎨⎪-≤⎩得,a≤x<5.因为有解且恰有6个整数解,所以-2<a≤-1.则满足条件的所有整数a的值是-1,0和是-1.故选B.点睛:由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.15.D【解析】去分母得,m−1=2(x−1),去括号得,m−1=2x−2,移项,合并同类项得,2x=m+1,系数化为1得,x=1 2m+.因为x≥0,所以12m+≥0,解得m≥−1.把x=1代入m−1=2x−2,得m=1,所以m≥−1且m≠1.故选D.16.B【解析】【分析】分式方程去分母转化为整式方程,由分式方程有正数解确定出a的范围即可得到结论.【详解】2622x a x x--=-- 1 去分母得:2x +a ﹣6=x ﹣2,解得:x =4﹣a ,由分式方程有正数解,得到4﹣a >0,且4﹣a ≠2,解得:a <4且a ≠2,∴所有符合条件的正整数a 的个数为1,3.故选:B .【点睛】此题考查了分式方程的解,熟练分式方程的解法是解本题的关键.17.D【解析】【分析】解出分式方程,根据题意确定a 的范围,解不等式组,根据题意确定a 的范围,根据分式不为0的条件得到a ≠﹣2,根据题意计算即可.【详解】 解:()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩①②由①得y >﹣8,由②得y ≤a ,∴不等式组的解集为:﹣8<y ≤a ,∵关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,∴a ≥﹣5, 解分式方程1133x a x x++=--,得x =42a - , ∵关于x 的分式方程1133x a x x ++=--有非负整数解,且42a -≠3, ∴a ≤4且a ≠﹣2且a 为偶数;∴﹣5≤a ≤4且a ≠﹣2且a 为偶数,∴满足条件的整数a 为﹣4,0,2,4,∴所有整数a 的和=﹣4+0+2+4=2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.18.D【解析】【分析】把分式方程化为整式方程,根据解为正数,得出m 的取值范围.【详解】解:去分母得:x+m-3m=3x ﹣12,整理得:2x=﹣2m+12,解得:x=2122-+m , 已知关于x 的方程3344x m m x x++=--的解为正数, 所以﹣2m+12>0,解得m <6,当x=4时,x=2122-+m =4,解得:m=2, 所以m 的取值范围是:6m <且2m ≠.故答案选:D .【点睛】本题考查了分式方程的解,以及一元一次不等式,掌握方程和不等式的解法是解题的关键,注意要排除产生增根时m 的值.19.C【解析】【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键. 20.B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x -=--, 21x k x +∴=-, 2x k ∴=+,该分式方程有解,21k ∴+≠, 1k ∴≠-,0x ,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.21.B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可.【详解】解:分式方程去分母得:m+3=x-1,解得:x=m+4,由方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m ≥-4且m ≠-3.故选:B .【点睛】此题考查了解分式方程,分式方程的解,时刻注意分母不为0这个条件.解题的关键是熟练掌握运算法则进行解题.22.A【解析】【分析】将分式方程化为整式方程解得x=2-3m ,根据方程的解是正数列得2-3m>0,即可求出m 的取值范围.【详解】2211x m m x x-+=--, x-m-2m=2(x-1),x-3m=2x-2,∴x=2-3m , ∵方程2211x m m x x-+=--的解为正数, ∴2-3m>0, ∴23m <, 故选:A.【点睛】此题考查根据分式方程的解的情况求参数,将方程化为整式方程求出整式方程的解,列出不等式是解答此类问题的关键.23.C【解析】【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【详解】232x m x +=-, 方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x 的方程的解是正数,得:m+6>0,解得:m>−6,∴m 的取值范围是:m>−6且m≠−4,故选:C .【点睛】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键. 24.A【解析】【分析】方程两边同乘以1x -,化为整式方程,求得x ,再列不等式得出m 的取值范围.【详解】 解:12111m x x--=-- 12111m x x --=--- 方程两边同时乘以1x -()112m x ---=-4x m =-+∵已知关于x 的分式方程12111m x x--=--的解是正数,10x -≠ ∴4041m m -+>⎧⎨-+≠⎩∴4m <且3m ≠.故选:A【点睛】本题考查了分式方程的解的概念、解分式方程、数的分类、解不等式组等知识点,要注意分式的分母不为0的条件,此题是一道易错题,有一定的难度.25.A【解析】【分析】根据二次函数的定义和判别式的意义得到a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,则a≤2且a≠﹣2,再解分式方程得到x=61a+且x≠﹣1,利用分式方程的解为整数可求出解得a=0,﹣2,1,﹣3,2,﹣4,5,加上a的范围可确定满足条件的a的值,然后计算它们的和.【详解】解:根据题意得a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,解得a≤2且a≠﹣2,去分母得ax+x+1=7,解得x=61a+且x≠﹣1,因为分式方程的解为整数,所以a+1=±1,±2,±3,±6,且a≠﹣7,解得a=0,﹣2,1,﹣3,2,﹣4,5,所以满足条件的a的值为﹣4,﹣3,0,2,1.所以所有满足条件的整数a之和为﹣4+(﹣3)+0+2+1=﹣4.故选:A.【点睛】本题考查的是二次函数与x轴的交点问题,分式方程的解为整数,注意分式方程有意义的条件,掌握以上知识是解题的关键.26.D【解析】【分析】先将m视为常数,求解出分式方程的解(包含m),然后根据解的条件判断m的取值范围.【详解】121m x +=- m+1=2x-2解得:x=32m + ∵分式方程的解为非负数 ∴302m +≥ 解得:m≥-3 ∵方程是分式方程,∴312m +≠ 解得:m≠-1综上得:m≥-3且m≠-1故选:D .【点睛】本题考查解含有字母的分式方程,注意最后得到的结果,一定要考虑增根的情况. 27.C【解析】【分析】先解分式方程得x =4-3a -,根据分式方程22x -﹣3=2ax x --有整数解,可推出a 可以取的值,再根据二次函数的性质可推出a 的取值范围,即可求解.【详解】 解分式方程22x -﹣3=2ax x --, 可得x =4-3a -, ∵分式方程22x -﹣3=2ax x --有整数解, ∴a =﹣1,2,4,5,7,∵y =2x 2﹣(a ﹣2)x +1,∴抛物线开口向上,对称轴为x =24a -, ∴当x >24a -时,y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大,∴24a-≤1,解得a≤6,∴a能取的整数为﹣1,2,4,5;∴所有整数a值的和为10,故选:C.【点睛】本题考查了分式方程和二次函数的性质,掌握知识点是解题关键.28.A【解析】【分析】先解关于y的不等式组,根据不等式组有解,确定k的范围.整理分式方程,用含k的代数式表示出x,根据x有非负整数解,确定k的值,并得结论.【详解】不等式组整理得:4156 y ky k≥+≤+⎧⎨⎩,由不等式组有解,得到5k+6≥4k+1,即k≥-5,分式方程去分母得:kx=2x-4-3x-2,整理,得kx+x=-6即(k+1)x=-6,解得:x=-61k+,由方程有非负整数解,∴k+1=-6或-3或-2或-1 所以k=-7或-4或-3或-2又因为k≥-5,且-61k+≠2,所以k=-3,-2∵-3-2=-5.故选:A.【点睛】本题考查了求不等式组、求分式方程的解等知识点,题目难度较大,求分式方程非负数解的过程中,容易忘记分式方程的分母不等于0条件.29.D【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a 的新方程,解此新方程可以求得a 的值.【详解】解:把x=1代入原方程得:23314a a +=-, 去分母得,8a+12=3a-3,解得a=-3,故选:D .【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.30.B【解析】【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2.【详解】 解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数,∴1a +>0,即a>-1,又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解, ∴a-1<y ≤8-2a ,即a-1<8-2a ,解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1,则符合题意的整数a 的值有0、2,有2个,故选:B .【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.31.C【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x ﹣2=0,求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:13(2)m x x --=-,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m ﹣3=0,解得:m =3,故选:C【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.32.C【解析】【分析】【详解】解:略33.D【解析】【分析】先把分式方程转化为整式方程求出用含有k 的代数式表示的x ,根据x 的取值求k 的范围.【详解】解:分式方程转化为整式方程得,(3)(1)k (1)(2)x x x x +-=+-+解得:k 1x =+解为非负数,则k+10≥,∴k -1≥又∵x≠1且x≠-2,∴k+11k+1-2≠≠,∴k -1≥ ,且k 0≠故选D【点睛】本题考查了分式方程的解,解答本题的关键是先把分式方程转化为整式方程,求出方程的解,再按要求列不等式,解不等式.34.B【解析】【分析】先根据一次函数图像过一、三、四象限求出a 的取值范围,再解分式方程,进而确定其整数【详解】解:∵一次函数()210y a x a =--+过一、三、四象限∴20100->⎧⎨-+<⎩a a ,求得a 的取值范围为:210a << 解分式方程:93322ay a y y --=-- 得:3(2)39--=-ay y a整理得:3153(3)663333---===----a a y a a a ∵解为整数 ∴3a -能被6整除,且3a ≠∴31,2,3,6-=±±±±a解得4,2,5,1,6,0,9,3=-a又2y ≠,∴6323-≠-a ,∴9a ≠ 又210a <<∴4,5,6.=a∴所有满足条件的整数a 的和为4+5+6=15.故答案为:B.【点睛】本题考查了一次函数图像问题和分式方程解的整数个数问题,熟练掌握一次函数的图像及分式方程的解法是解决此类题的关键.35.D【解析】【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a 的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a 的值,求出之和即可.【详解】 解:3133x ax x x++=-- 解得:6x a = ∴方程有正整数解 且63a≠即2a ≠ ∴136a =、、 解不等式组252510y a y -⎧<⎪⎨⎪--≤⎩解得1521y y a ⎧<⎪⎨⎪≥-⎩关于y 的不等式组至少有两个奇数解a-≤∴15a≤∴6∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。

分式及分式方程测试题及答案

分式及分式方程测试题及答案

第五章 分式与分式方程检测题(本试卷满分:100分,时间:60分钟)一、选择题(每小题3分,共30分)1.下列分式是最简分式的是( ) A.11m m -- B.3xy y xy - C.22x y x y -+ D.6132mm- 2.将分式2x x y+中的x 、y 的值同时扩大2倍,则分式的值( )A.扩大2倍B.缩小到原来的21C.保持不变D.无法确定 3.若分式112+-x x 的值为零,则的值为( )A.或B. C.D.4.对于下列说法,错误的个数是( ) ①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-. A.6 B.5 C.4 D.3 5.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( ) A.1 B.C.1x x + D.1x x + 6.设一项工程的工程量为1,甲单独做需要天完成,乙单独做需要天完成,则甲、乙两人合做一天的工作量为( ) A.B.1a b + C.2a b + D.11a b+7.分式方程131x x x x +=--的解为( ) A.1x =B.1x =-C.3x =D.3x =-8.下列关于分式方程增根的说法正确的是( )A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根 9.某人生产一种零件,计划在天内完成,若每天多生产个,则天完成且还多生产个,问原计划每天生产多少个零件?设原计划每天生产个零件,列方程得( ) A.3010256x x -=+ B.3010256x x +=+ C.3025106x x =++ D.301025106x x +=-+10.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为天,下面所列方程中错误的是( ) A.213x x x +=+ B.233x x =+ C.1122133x x x x -⎛⎫+⨯+=⎪++⎝⎭D.113x x x +=+ 二、填空题(每小题3分,共24分)11.若分式33x x --的值为零,则x = . 12.将下列分式约分:(1)258xx ;(2)22357mn nm - ;(3)22)()(a b b a -- .13.计算:2223362cab b c b a ÷= .14.已知,则222n m m n m n n m m ---++________.15.当=x ________时,分式13-x 无意义;当=x ______时,分式392--x x 的值为.16.若方程255x mx x =---有增根5x =,则m =_________. 17.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程__________________.18.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10 km/h ,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2 km 所用时间,与以最大速度逆流航行1.2 km 所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .三、解答题(共46分)19.(8分)计算与化简: (1)222x y y x ⋅; (2)22211444a a a a a --÷-+-;(3)22142a a a ---; (4)211a a a ---.20.(6分)先化简,再求值:222693b ab a ab a +--,其中8-=a ,21-=b .21.(6分)若x1y 1,求y xy x yxy x ---+2232的值.22.(6分)当x =3时,求2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭的值.23.(6分)已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭ 的值.24.(8分)解下列分式方程: (1)730100+=x x ; (2)132543297=-----xx x x .25.(6分)某人骑自行车比步行每小时快8 km ,坐汽车比骑自行车每小时快16 km ,此人从地出发,先步行4 km ,然后乘坐汽车10 km 就到达地,他又骑自行车从地返回地,结果往返所用的时间相等,求此人步行的速度.第五章 分式与分式方程检测题参考答案1.C 解析:()11111-=---=--m m m m ,故A 不是最简分式;x x xy x y xy y xy 313)1(3-=-=-,故B 不是最简分式;32613261-=-m m ,故D 不是最简分式;C 是最简分式. 2.A 解析:因为()()yx x y x x y x x y x x +⨯=+=+=+22222224222,所以分式的值扩大2倍.3.C 解析:若分式112+-x x 的值为零,则所以4.B 解析:不是分式,故①不正确;当1x ≠时,2111x x x -=+-成立,故②正确;当 时,分式33x x +-的分母,分式无意义,故③不正确;,故④不正确;,故⑤不正确;,故⑥不正确.5.C 解析:2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭.6.D 解析:因为一项工程,甲单独做需要天完成,乙单独做需要天完成,所以甲一天的工作量为,乙一天的工作量为,所以甲、乙两人合做一天的工作量为11a b+,故选D.7.D 解析:方程两边同时乘,得,化简得.经检验,是分式方程的解.8.D 解析:如果求出的根使原方程的一个分母的值是,那么这个根就是方程的增根. 9.B 解析:原计划生产个零件,若每天多生产个,则天共生产个零件,根据题意列分式方程,得3010256x x +=+,故选B. 10.A 解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为.由题意可知,1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭,整理,得213x x x +=+,所以312+-=x x x ,即233x x =+,所以A 、B 、C 选项均正确,选项D 不正确.11.解析:若分式33x x --的值为零,则所以.12.(1)83x (2)n m5- (3)1解析:(1)258x x 83x ;(2)22357mn n m -n m 5-;(3)22)()(a b b a --()()122=--b a b a .13. c b a 323 解析:.36262322223322233cb a abc b c b a c ab b c b a =⋅=÷ 14.79解析:因为,所以n m 34=, 所以()()()()()()()()n m n m m n m n m n m n n m n m n m m nm m n m n n m m -+--+++-+-=---++2222 ()()()().799734342222222==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-+=-+-++-=n n n n n n n n m n m n n m n m m n mn mn m15.1 -3 解析:由得,所以当时,分式13-x 无意义; 由时,分式392--x x 的值为.16.5- 解析:方程两边都乘5x -,得()25x x m =--. ∵ 原方程有增根,∴ 最简公分母50x -=,解得5x =. 把5x =代入()25x x m =--,得50m =-,解得5m =-.17.420960960=+-x x解析:根据原计划完成任务的天数实际完成任务的天数,列方程即可,依题意可列方程为420960960=+-x x . 18.40 km/h 解析:设该冲锋舟在静水中的最大航速为 km/h ,则,解得.19.解:(1)原式2224x y .y x y•=• (2)原式()()()()()2221112a a a a a a +--⋅+--()()212a a a +=+-. (3)原式()()()()()()2222222222a a a a a a a a a a +---=-+-+-+=()()21222a a a a -=-++. (4)原式2111a a a +--=()()2111a a a a -+--=2211a a a -+-=11a -. 20.解:()().3336932222b a ab a b a a b ab a ab a -=--=+--当,时,原式.49162498212483==---=-b a a 21.解:因为x1y1所以所以().41422342)(322232=--=--+-=--+-=---+xy xy xy xy xy xy xy y x xy y x y xy x y xy x22.解:()222112222x x x xx ⎡⎤-÷⎢⎥---⎢⎥⎣⎦()()22221212222x x x x x x x --⋅-⋅-- 1224x x --224x --1122x x=-=--.当时,1123=-- 23.解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ()()22[][]a a b a a b a b a b a b a b----÷⋅+--22b a b ab ab a b b a b a b--⋅⋅=-+-+.当14,12b =时,21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭-=-+.24.解:(1)方程两边都乘,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.(2)方程两边都乘,得整理,得.解这个一元一次方程,得.检验:把代入原方程,左边右边. 所以,是原方程的根.25.解:设此人步行的速度是 km/h , 依题意可列方程814168104+=+++x x x ,解这个方程,得.检验可知,是这个方程的根.答:此人步行的速度为6 km/h.。

分式方程 精选试题

分式方程 精选试题

测试题(一)一、解分式方程(1)11322x x x -=--- (2)512552x x x=--- (3)255522-++x x x =1 (4) 2223-=---xx x(5) (6)21162-x 2312x x x -=--- (7)2212525x x x -=-+ (8) 2124111x x x +=+--(9)114112=---+x x x (10)11322x x x-+=---(11)30120021200=--xx (12)2213211x x x x --=--243111xx x-+=--(13) 2227461x x x x x +=+-- (14) 223433x x x x +-=+(15) 6165122++=-+x x x x (16)3513+=+x x ;测试题(二)1.若分式方程52)1()(2-=--x a a x 的解为3=x ,则a = .2.若关于x 的方程81=+xax 的解为41=x ,则a = .3.若方程xx x --=+-34731无解,则增根为 . 4.若方程3323-+=-x x x 无解,则增根为 .5.分式方程121mx x =-+无解,则增根为 .6.关于x 的方程12144a xx x-+=--无解,则a = .7.关于x 的方程1122kx x +=--无解,则k 的值为 .8.若分式方程201m xm x ++=-无解,则m 的取值是 .9.关于x 的方程21326x m x x -=--无解,则m 的值 .10.当a ,关于x 的分式方程311x a x x--=-无解.11.当m ,解方程115122-=-++x mx x 无解.12.若关于x 的方程313292-=++-x x x m 无解, m 的值 .13.已知关于x 的方程323-=--x mx x 解为正数,则m 的取值范围 . 14.若方程kx x +=+233有负数根,求k 的取值范围 .15.关于x 的方程12-=-+x mx 的解大于零, 求m 的取值范围 .。

分式测试题及答案

分式测试题及答案

分式测试题及答案第三章分式综合测试题一、选择题(每题3分,共30分)1.代数式4-x是( C )。

A。

单项式 B。

多项式 C。

分式 D。

不能确定2.有理式x/3(x+y)。

π-3/(a-x)。

4/2(a+b)。

a+b中分式有( B )个。

A。

1 B。

2 C。

3 D。

43.若分式(x+x-2)/x的值为0,则x的值是( A )。

A。

1或-1 B。

1 C。

-1 D。

-24.下列分式12a/(b-a)。

(y-x)^2/xy。

2(a+b)。

b-a中最简分式的个数是( C )。

A。

1 B。

2 C。

3 D。

45.如果x=a-b,y=a+b,计算-2b/(a-b)的值为(B)。

A。

(a-b)/2b B。

-2/a-b C。

-2a+b/4b^2 D。

|a-b|6.将(a-b)约分,正确的结果是( A )。

A。

1 B。

2 C。

±1 D。

无法确定7.下列运算正确的个数是( B )。

1.m÷n·n=m÷1=m2.x·y÷x·y=xy÷xy=13.(2x+y)/(x+y) ÷ (4x+2y)/(2a) = (2x+y)/(x+y) * (2a)/(4x+2y)4.|2-3x|/2 = (2-3x)/2 或 -(2-3x)/2A。

2 B。

1 C。

3 D。

48.如果x<3,那么3x-2的值是( A )。

A。

-1 B。

0 C。

1 D。

29.若a-b=2ab,则ab的值为( B )。

A。

2 B。

-2 C。

-1/2 D。

1/210.若a+a=4,则(a-a)的值是( C )。

A。

16 B。

9 C。

15 D。

12二、填空题(每题3分,共30分)1.已知代数式:3,x,3+x,x^2+1,1/(x+y),y/(z+x),x+1.2x,x+2x+3.整式有:3,x,3+x,x^2+1,x+1.2x,x+2x+3.分式有:1/(x+y),y/(z+x)。

初中数学试题分类汇编:分式方程的增根无解问题综合训练2(解答 附答案)

初中数学试题分类汇编:分式方程的增根无解问题综合训练2(解答    附答案)

初中数学试题分类汇编:分式方程的增根无解问题综合训练2(解答 附答案) 1.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?2.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程3111a x x+=--的解为正数,求a 的取值范围? 经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2.由题意可得a ﹣2>0,所以a >2,问题解决.小强说:你考虑的不全面.还必须保证a≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明: .完成下列问题:(1)已知关于x 的方程212mx x -+=1的解为负数,求m 的取值范围; (2)若关于x 的分式方程32233x nx x x --+--=﹣1无解.直接写出n 的取值范围. 3.当a 为何值时,关于x 的方程223224ax x x x +=-+-无解. 4.已知关于x 的分式方程2222x m x x++=--, (1)若分式方程有增根,求m 的值;(2)若分式方程的解是正数,求m 的取值范围.5.若关于x 的分式方程223242mx x x x +=--+无解,求m 的值. 6.若关于x 的方程:234393ax x x x +=--+无解,求a 的值. 7.已知关于x 的分式方程1x a a x -=+无解,求a 的值. 8.关于x 的方程:ax 121x 11x+=+--. ()1当a 2=时,求这个方程的解;()2若这个方程无解且a 1≠,求a 的值.9.已知,关于x 的分式方程1235a b x x x --=+-. (1)当1a =,0b =时,求分式方程的解;(2)当1a =时,求b 为何值时分式方程1235a b x x x --=+-无解: (3)若3a b =,且a 、b 为正整数,当分式方程1235a b x x x --=+-的解为整数时,求b 的值.10.已知关于x 的分式方程311x a x x--=+无解,求a 的值. 11.解方程:(1)3513x x =++ (2)若分式方程:342(2)=+--a x x x x 无解,求a 的值. 12.若关于x 的方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值? 13.若关于x 的方程()23011x x a x x x x -+-+=--没有实数根,则a 的值是多少? 14.解分式方程: 51x + 31x -= 261x - 15.已知关于x 的分式方程2311x a a x x x x --=+--,回答下列问题: (1) 原方程去分母后,整理成关于x 的整式方程得:_______________________. (2) 若原分式方程无解,求a 的值.16.(1)解方程:2210x x --=(2)已知关于x 的方程1011m x x x --=--无解,方程260x kx ++=的一个根是m . ①求m 和k 的值;②求方程260x kx ++=的另一个根. 17.若关于x 的方程311x a x x--=-无解,求a 的值. 18.当a 为何值时,关于x 的分式方程212(1)1232a a x x x x +-=---+总无解. 19.a 为何值时,关于x 的方程213242ax x x x +=--+会产生增根?20.a 为何值时,分式方程()31011x a x x x x +-+=++无解? 21.当k 为何值时,分式方程()62511x k x x x x +=--- 有增根? 22.若关于x 的方程4233k x x x-+=--有增根,试求k 的值. 23.已知关于x 的方程4122ax x x =+--. (1)当3a =时,解这个方程;(2)若这个方程无解,求a 的值.参考答案1.(1)0x=;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x-得()5321x+-=-解得0x=经检验,0x=是原分式方程的解.(2)设?为m,方程两边同时乘以()2x-得()321m x+-=-由于2x=是原分式方程的增根,所以把2x=代入上面的等式得()3221m+-=-1m=-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2.(1):m<12且m≠﹣14;(2)n=1或n=53.【解析】【分析】考虑分式的分母不为0,即分式必须有意义;(1)表示出分式方程的解,由解为负数确定出m的范围即可;(2)分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n的范围即可.【详解】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x的分式方程得,x=321 m-,∵方程有解,且解为负数,∴21032 21mm-⎧⎪⎨≠-⎪-⎩<,解得:m<12且m≠-14;(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=53;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=53.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3.a=1,-4或6时原方程无解.【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【详解】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.【点睛】此题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键.4.(1)m=0;(2)m<6且m≠0.【解析】【分析】(1)方程两边都乘以最简公分母()2x -,把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出的x 的值,然后代入进行计算即可求出m 的值;(2)解分式方程得2x m =+,根据方程的解为正数得出20m +>,且22m +≠,解不等式即可得出答案.【详解】(1)方程两边都乘以()2x -得,()222x m x --=-分式方程有增根20x ∴-=解得2x =()22222m ∴--=-解得0m =(2)方程两边都乘以()2x -得,()222x m x --=- 解得63m x -= 方程的根为正数603m -∴>,且0m ≠ 6m ∴<,且0m ≠【点睛】本题考查了分式方程无解的情况,将分式方程化为整式方程是解题的关键.5.m =4-或1或6【解析】【分析】先把原方程去掉分母转化为整式方程()110m x -=,然后根据原方程无解可得x =2或﹣2或1-m =0,进一步即可求出m 的值.【详解】 解:原方程即为:()()222322x x mx x x +=+--+, 方程两边同乘以()()22x x +-,约去分母,得()()2232x mx x ++=-,整理,得()110m x -=,当x =2时,原方程无解,此时()2110m -=,解得:m =4-;当x =﹣2时,原方程无解,此时()2110m --=,解得:m =6;当1-m =0时,原方程无解,解得:m =1;综上,m =4-或1或6.【点睛】本题考查了分式方程的解法和分式方程的增根及无解问题,属于常考题型,正确理解题意、熟练掌握分式方程的解法是解题关键.6.a =1或8或﹣6.【解析】【分析】分式的无解分两种情况来解:(1)是分式有增根,即分母为零;(2)是分式方程转化成整式方程后,整数方程无解,即未知数系数为0.【详解】解:分式方程去分母得:3x +9+ax =4x ﹣12,(1)由分式方程有增根,得到(x +3)(x ﹣3)=0,即x =3或x =﹣3,把x =3代入整式方程得:18+3a =0,即a =﹣6;把x =﹣3代入整式方程得:﹣3a =﹣24,即a =8,综上,a 的值为﹣6或8.(2)整式方程整理得:(a ﹣1)x =﹣21,由方程无解,得到a ﹣1=0,即a =1或8或﹣6.【点睛】注意区分分式方程无解和有增根两种情况.分式方程无解包括有增根和化成整数方程后无解的情况,而有增根仅仅是分式分母为0一种情形.7.1a =或-1【解析】【分析】分式方程无解,即化成整式方程时无解,或者求得的x 能令最简公分母为0,据此进行解答.【详解】方程去分母得:x-a=a(x+1),理得,(1-a )x=2a ,当整式方程无解时,1-a =0,a=1,当分式方程无解时:x=-1,a=-1,所以1a =或-1时,原方程无解.【点睛】本题考查了分式方程,分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.8.(1) x 4=-;(2)a=-3【解析】【分析】(1)把a=2代入方程,解分式方程即可;(2)根据增根的概念解答.【详解】()1当a 2=时,原方程为2x 121x 11x+=+--,方程两边同时乘以()x 1-得:2x 12x 1+=-+-,解这个整式方程得:x 4=-,检验:当x 4=-时,x 14150-=--=-≠,x 4∴=-是原方程的解;()2方程两边同时乘以()x 1-得:ax 12x 1+=-+-,即(a-1)x=-4,若原方程无解且a 1≠,则x 10-=,解得:x 1=,将x 1=代入整式方程得:a 14-=-,解得:a 3=-.【点睛】本题考查的是分式方程的解法,掌握解分式方程的一般步骤是解题的关键.9.(1)1011x =-;(2)5b =或112;(3)3,29,55,185b = 【解析】【分析】(1)将a ,b 的值代入方程得11235x x x +=+-,解出这个方程,最后进行检验即可; (2)把1a =代入方程得11235b x x x --=+-,分式方程去分母转化为整式方程为(112)310b x b -=-,由分式方程有增根,得11-2b=0,或230x +=(不存在),或50x -=求出b 的值即可;(3)把3a b =代入原方程得31235b b x x x --=+-,将分式方程化为整式方程求出x 的表达式,再根据x 是正整数求出b ,然后进行检验即可.【详解】(1)当1a =,0b =时,分式方程为:11235x x x +=+-解得:1011x =- 经检验:1011x =-时是原方程的解 (2)解:当1a =时,分式方程为:11235b x x x --=+- (112)310b x b -=-①若1120b -=,即112b =时,有:1302x •=,此方程无解 ②若1120b -≠,即112b ≠时,则 若230x +=,即310230112b b-⨯+=-,663320b b -=-,不成立 若50x -=,即31050112b b--=-,解得5b = ∴综上所述,5b =或112时,原方程无解 (3)解:当3a b =时,分式方程为:31235b b x x x --=+- 即(10)1815b x b +=-∵,a b 是正整数∴100b +≠ ∴181510b x b-=+ 即1951810x b =-+ 又∵,a b 是正整数,x 是整数.∴3,5,29,55,185b =经检验,当5b =时,5x =(不符合题意,舍去)∴3,29,55,185b =【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.a 的值是-4或-1【解析】【分析】分式方程无解有两种情况:①去分母后所得整式方程无解,②解这个整式方程得到的解使原方程的分母等于0.【详解】311x a x x--=+, 两边乘以x(x+1),得x(x-a)-3(x+1)=x(x+1),整理,得(a+4)x=-3,显然当a=-4时,方程无解; ∵分式方程311x a x x--=+无解, ∴x(x+1)=0,∴x=0或x=-1,当x=0时,(a+4) ×0≠-3,此时a 无解;当x=-1时,(a+4) ×(-1)=-3,解得a=-1.综上可知,当分式方程无解时,a 的值是-4或-1.【点睛】本题考查了根据分式方程的无解求参数的值,是需要识记的内容.分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0. 11.(1)x=2;(2)a=2或3.【解析】【分析】(1)通过取分母,去括号,移项,合并同类项,未知数系数化为1,即可求解;(2)先去分母,整理得(3-a )x=4-2a ,分两种情况:① 当分式有增根时,② 当方程(3-a )x=4-2a 无解时,分别求出a 的值,即可.【详解】(1)去分母得:3(3)5(1)x x +=+,去括号,移项,合并同类项得:2x=4,解得:x=2,经检验:x=2是方程的根;(2)去分母得:3x=a(x-2)+4,即:(3-a )x=4-2a ,分两种情况讨论:① 当分式有增根时,即x(x-2)=0,得x=0或2,当x=0时,a=2;当x=2时得6=4,不成立,② 当方程(3-a )x=4-2a 无解时,即3-a=0,a=3;∴原方程无解时,a=2或3.【点睛】本题主要考查分式方程的解法以及根据分式方程根的情况求参数,掌握解分式方程的步骤,把分式方程化为整式方程是解题的关键.12.5a =-或12-或2-. 【解析】【分析】 方程1221(1)(2)x x ax x x x x ++-=+--+可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+,利用方程1221(1)(2)x x ax x x x x ++-=+--+无解,求a 的值. 【详解】 解:方程1221(1)(2)x x ax x x x x ++-=+--+ 可化为方程122(1)(2)(1)(2)x ax x x x x --+=-+-+, ∴−1−2x=ax+2,把1代入可得a=−5,2代入可得a=12-,此时方程无解; 又a=−2时方程无解,∴a=−5或12-,或−2, 【点睛】 本题考查分式方程,解题的关键是熟练掌握分式方程的化简.13.a=2或-3【解析】【分析】通过去分母,去括号,合并同类项,对分式方程进行化简,得(3)50a x --+=,结合方程没有实数根,即可求解.【详解】()23011x x a x x x x -+-+=--, 方程两边同乘以x(x-1),得:(2)(1)()30x x x x a ---++=,去括号,合并同类项,得:(3)50a x --+=,把增根x=1代入(3)50a x --+=,得350a --+=,解得:a=2,当-3-a=0时,050+≠,∴当a=-3时,方程()23011x x a x x x x -+-+=--没有实数根, 综上所述:a=2或-3.【点睛】本题主要考查根据方程的解的情况求参数的值,掌握分式方程的解法和分式方程的增根的意义,是解题的关键.14.无解【解析】【分析】分式方程去分母化为整式方程,求出整式方程的解得到x 的值,再检验是否为方程的解.【详解】解: 51x + 31x -= 261x -方程两边乘(x ﹣1)(x +1),得5(x ﹣1)+3(x +1)=6.解得x =1.检验:当x =1时,x 2﹣1=0.因此x =1不是原分式方程的解.所以原分式方程无解.【点睛】本题考查了解分式方程的步骤的知识,即去分母:在方程两边都乘以最简公分母,约去分母,化为整式方程、解方程、验根:把整式方程的根代入最简公分母,若结果是零,则这个根是原方程的增根,必须舍去;若结果不为零,则是原方程的根、得出结论,掌握解分式方程的步骤是解题的关键.15.(1)(2)3a x a +=-;(2)-2、3或12. 【解析】【分析】(1)先确定最简公分母是()1x x -,方程两边同时乘以最简公分母约去分母,移项整理即可求解;(2)根据分式方程无解,分两种情况讨论,第一种,整式方程无解,第二种原分式方程有增根.【详解】(1)解:方程两边同时乘以()1x x -可得: ()()()311x x a x x x a ---=-+,整理可得: ()23a x a --=-,即(2)3a x a +=-.(2)当20a +=时,(2)3a x a +=-无解;解得:a =-2. 因为2311x a a x x x x--=+--增根是x =0和x =1, 所以当x =0时, 03a =-,解得3a =,当x =1时, 23a a +=-,解得a =12. 【点睛】本题主要考查分式方程解法和分式方程无解问题,解决本题的关键是要熟练掌握分式方程无解问题的方法.16.(1)112x =-,21x =;(2)①2m =,5k =-,②另一个根是3. 【解析】【分析】 (1)用因式分解法解方程即可;(2)①根据分式方程无解,先求出m 的值 ,然后将m 代入一元二次方程中求出k 的值即可;②根据根与系数的关系可求出另一个根.【详解】(1)原方程可化为()()2110x x +-=210x +=或10x -= 解得:112x =-,21x = (2)①解:将分式方程两边同时(1)x ⨯- ,得到10m x --= ,解得1x m =- ∵分式方程无解,11x m ∴=-=2m ∴=,把2m =代入方程260x kx ++=,得22260k ++=求得5k =-②根据一元二次方程根与系数的关系可得126x x =∵2m =∴另外一个根是3【点睛】本题主要考查解一元二次方程及一元二次方程根与系数的关系,分式方程无解问题,掌握分式方程无解问题的方法及一元二次方程根与系数的关系是解题的关键.17.1-2a =或分析:该分式方程311x a x x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x (x-a )-3(x-1)=x (x-1),去括号得:x 2-ax-3x+3=x 2-x ,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a 无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x 无解 即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形. 18.a=-1或32-或-2 【解析】【分析】先把原分式方程的两边乘以()()12x x --,然后化简,根据分式无意义的条件得出x 的取值范围即可.【详解】解:两边乘以()()12x x --得()212(1)x a x a -+-=+整理得()134a x a +=+∵方程无解∴10a +=或3411a a +=+或3421a a +=+ 解得a=-1或32-或-2.本题考查了分式方程的解,熟练掌握分式方程无解的条件是解本题的关键.19.a=﹣2或a=6【解析】【分析】先去分母化为整式方程,整理得:(a -2)x +8=0,由于关于x 的方程213242ax x x x +=--+会产生增根,则(x +2)(x -2)=0,解得x =-2或x =2,然后把x =-2或x =2分别代入(a -2)x +8=0,即可求得a 的值.【详解】解:方程两边都乘(x ﹣2)(x +2),得x +2+ax=3(x ﹣2)∵原方程有增根,∴最简公分母(x ﹣2)(x +2)=0,解得x=2或﹣2,x=2时,a=﹣2,当x=﹣2,a=6,当a=﹣2或a=6时,关于x 的方程213242ax x x x +=--+会产生增根. 【点睛】本题考查了分式方程的增根;先把分式方程转化为整式方程,解整式方程,若整式方程的解使分式方程的分母为0,则这个整式方程的解就是分式方程的增根.20.当3a =-或0a =时原分式方程无解【解析】 【试题分析】方程()31011x a x x x x +-+=++的两边同乘以()1x x +,去分母,得: ()()310x x x a +-++=,整理,得330x a ++=. 即()133x a =-+,把()133x a =-+代入最简公分母()1x x +,使其值为零,说明整式方程的根是增根. 当 ()1303x a =-+=时,3a =-;当 ()1313x a =-+=-时,0a =,于是当3a =-或0a =时原分式方程无解.【试题解析】 方程()31011x a x x x x +-+=++的两边同乘以()1x x +,去分母,得 ()()310.x x x a +-++=整理,得330x a ++=。

初二数学分式方程练习试题包括答案

初二数学分式方程练习试题包括答案

分式方程姓名——1. 在以下方程中,对于x 的分式方程的个数( a 为常数)有()① 1x22 x 4 0② . x 4③ . 2 3a⑥ x 1 x 12 . 个个个个aaa 4; ④ .x 29 1; ⑤ 1 6; xx3 x 22. 方程15 3 的根是()x 2x 111 xA. x =1B.x =-1C.x =3D.x =24 40, 那么283. 1的值是()xx 2x4 以下分式方程去分母后所得结果正确的选项是( )A.1x 2去分母得, x1(x 1)( x 2) 1 ;1x1x 1B.x51 ,去分母得, x 52 x 5 ;52x2x 5C.x2 x 2 x x ,去分母得, ( x 2)2 x 2 x(x2) ;x2 x 2 42D.21 , 去分母得,2 ( x 1)x 3 ;x3x 15 . 赵强同学借了一本书,共280 页,要在两周借期内读完 . 当他读了一半书时,发现均匀每日要多读21 页才能在借期内读完 . 他读前一半时,均匀每日读多少页假如设读前一半时,均匀每日读 x 页,则下边所列方程中,正确的是 ()A. 140140 =14B. 280280 =14 xx 21xx 21 C. 140140 =14 D.1010 =1xx 21xx 216. 对于 x 的方程m1 x x 10 ,有增根,则 m 的值是() A3x 17 若方程AB2 x 1, 那么 A 、 B 的值为()x 3x 4( x 3)( x4), 1 , 2, 1, -18 假如 xa 1,b 0, 那么ab ( )1B.x1 C. x 1 D.x 1b3a b 2xx1xx19 使分式4与的值相等的 x 等于()x 2x 6 x 24 x 2 5x 6二、填空题(每题 3 分,共 30 分)10 知足方程:12的 x 的值是 ________.x 1 x 211当 x=________时,分式1x的值等于1. 5x212分式方程x22x0 的增根是. x213一汽车从甲地开往乙地,每小时行驶v1千米, t 小时可抵达,假如每小时多行驶v2千米,可提早抵达__小时 . 14农机厂员工到距工厂15 千米的某地检修农机,一部分人骑自行车先走40 分钟后,其他人乘汽车出发,结果他们同时抵达,已知汽车速度为自行车速度的 3 倍,若设自行车的速度为x 千米/时,则所列方程为.15 已知x4 ,则x2y 2. y5x 2y 216 a时,对于 x 的方程x12a3的解为零 . x2a517飞机从 A 到 B 的速度是v1,,返回的速度是v2,来回一次的均匀速度是.18当 m时,对于 x 的方程m21有增根 . x29x 3x 319某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实质工作效率比原计划提升了20%,结果提早8 小时达成任务.求原计划每小时修路的长度.若设原计划每小时修路x m,则依据题意可得方程.三、解答题(共 5 大题,共 60 分)20.解以下方程(1)14x4x 3x 1(3)x1.23(2)x2 4 x 2x 21x2x 3x x 2421 有一项工程,若甲队独自做,恰幸亏规定日期达成,若乙队独自做要超出规定日期 3 天达成;此刻先由甲、乙两队合做 2 天后,剩下的工程再由乙队独自做,也恰幸亏规定日期达成,问规定日期多少天22 小兰的妈妈在供销大厦用元买了若干瓶酸奶,但她在百货商场食品自选室内发现,相同的酸奶,这里要比供销大厦每瓶廉价元钱,所以,当第二次买酸奶时,便到百货商场去买,结果用去元钱,买的瓶数比第一次买的瓶数多35倍,问她第一次在供销大厦买了几瓶酸奶第一讲分式的运算(一)、分式定义及相关题型题型一:考察分式的定义b , x2y21【例 1】以下代数式中:x ,1x y,a, x y ,是分式的有:.2a b x y x y 题型二:考察分式存心义的条件【例 2】当x有何值时,以下分式存心义( 1)x4(2)3x( 3)2(4)6x( 5)1 x 4x22x21| x | 31xx题型三:考察分式的值为0 的条件【例 3】当x取何值时,以下分式的值为0.( 1)x1(2) | x | 2(3) x 22x 3 x3x24x 2 5 x6题型四:考察分式的值为正、负的条件【例 4】( 1)当x为什么值时,分式4为正;8x( 2)当x 为什么值时,分式5x3(x1)2 为负;( 3)当x为什么值时,分式x 2为非负数 .x3练习:1.当x取何值时,以下分式存心义:( 1)1(2)3x( 3)16 | x | 3( x 1) 2111x2.当x为什么值时,以下分式的值为零:( 1)5| x 1 |(2)25x2 x 4x26x 53.解以下不等式( 1)| x | 20(2)x2x50x12x3(二)分式的基天性质及相关题型1.分式的基天性质:A A M A MB B M B M2.分式的变号法例:a a a a bbbb题型一:化分数系数、小数系数为整数系数【例 1】不改变分式的值,把分子、分母的系数化为整数.12xy( 1) 23(2)1 x 1 yb34题型二:分数的系数变号【例 2】不改变分式的值,把以下分式的分子、分母的首项的符号变成正号 .( 1)x y ( 2)a ( 3)ax ya bb题型三:化简求值题【例 3】已知:11 5,求 2x3xy 2y的值 .xyx2xyy提示:整体代入,①x y5xy ,②转变出11 .xy【例 4】已知: x1 2 ,求 x 2 1的值 .xx 2【例 5】若 | x y1 | (2x3)2 0 ,求1 2y 的值 .4x练习:1.不改变分式的值,把以下分式的分子、分母的系数化为整数.0.2 y3 b( 1)(2) 50.5 y11ab4 102.已知: x 13 ,求 x 21的值 .x3.已知:11 3 ,求2a3ab2b的值 .a bb ab a4.若a 22 a b 26 10 0,求 2a b 的值 .b 3a 5b5.假如 1x 2 ,试化简| x 2 |x 1 | x | 2x| x 1 |.x(三)分式的运算题型一:通分【例 1】将以下各式分别通分 .( 1)cb a;( 2)ab;2ab,3a 2 c ,5b 2c,a b 2b 2a( 3)1 x2;( 4) a2, 1 2x,1 2x x2 ,x 2x 2 2 ax题型二:约分【例 2】约分:( 1) 16 x 2y ;( 3) n2m 2;(3) x2x 2 .20xy 3m nx 2x 6题型三:分式的混淆运算【例 3】计算:( 1) ( a 2b )3 (c 2)2( bc ) 4 ;( 2) ( 3a3)3 ( x2y 2)(yx ) 2 ;c abaxyy x( 3)m2 nn2 m ;( 4)a 2a 1 ;m nn1n m m a ( 5) ( 2 x 24x 1) ( x 22x )x 4x 42x 1题型四:化简求值题【例 4】先化简后求值( 1)已知: x1 ,求分子 1x 284[( x24 1) ( 1 1)] 的值;4x 2 x( 2)已知:xy z ,求 xy2 yz 3xz 的值;234x 2y 2 z 2( 3)已知:23 1 02 11a,试求 (aa 2 )(aa ) 的值 .a题型五:求待定字母的值【例 5】若13x MN ,试求 M , N 的值 .x 2 1x 1 x 1练习:1.计算( 1)2a 5a 12a 3 ; ( 2) a 2b b 2 2ab ;2( a 1)2(a 1)2(a 1)a b a( 4) a b2b 2 ;(5)(ab4abb4ab ) ;aa)( aa b bb2.先化简后求值( 1) a 1 a 241,此中 a1a 2 a22a 1 a231( 2)已知 x : y2 :3 ,求 ( x2y 2) [( xy) (xy )3 ] x 的值 .xyxy 23.已知:5x 4AB ,试求 A 、 B 的值 .1)( 2x 1)x 12x1( x(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例 1】计算:(1) (a2 ) 3(bc 1) 3 ( 2) (3x 3 y 2 z 1) 2 (5xy 2 z 3 ) 2 ( 3) [ ( a b) 3( ab)5 ] 2( 4) [( x y)3 ( x y) 2 ] 2 (x y) 624(a b) ( a b)题型二:化简求值题【例 2】已知 xx 1 5 ,求( 1) x 2 x 2 的值;( 2)求 x 4 x 4 的值 .题型三:科学记数法的计算【例 3】计算:(1) (310 3 )102 )2;( 2) (4 10 3 ) 2 (2 10 2 ) 3 .练习 :1.计算:( 1) (11) ( 1) 2|1 | (1 3 )0 ( 0.25)2007 420083 553( 2) (3 1 m 3n 2 ) 2 (m 2 n) 3( 3)(2ab 2 ) 2 (a 2b) 2(3a 3 b 2 ) (ab 3 ) 22.已知 x 25x 1 0 ,求( 1) x x 1 ,( 2) x 2x 2 的值 .二讲 分式方程题型一:用惯例方法解分式方程【例 1】解以下分式方程( 1) 13;( 2) 21 0 ;(3)x 1x 241 ;( 4)5 x x 5x 1 xx 3xx 1 1x 3 4 x提示易犯错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘掉验根 .题型二:求待定字母的值【例 4】若对于 x 的分式方程2 1 m有增根,求 m 的值 .x 3x3【例 5】若分式方程2 x a 1的解是正数,求a 的取值范围 .x2提示: 2 a 0 且 x2 ,a 2 且 a4 .x3题型三:解含有字母系数的方程【例 6】解对于 x 的方程x a c (c d0)b xd提示:( 1) a, b, c, d 是已知数;( 2) c d0 .题型四:列分式方程解应用题(略)练习:1.解以下方程: ( 1)x 12 x 0 ; (2)x 24 ;x 11 2xx 3x 3( 3)2x32 ; (4)7 37 x 2x 2 x 2x2x x x212 1x 2.解对于 x 的方程:( 1)11 2(b 2a) ;( 2)1a 1 b(ab) .a xb a x b x3.假如解对于 x 的方程k 2x会产生增根,求 k 的值 .x 2x24.当 k 为什么值时,对于x 的方程x3k1的解为非负数 . x2(x 1)( x2)5.已知对于x的分式方程2a1 a 无解,试求 a 的值. x1。

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .y x ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d a D .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( )A .减小了B .不变C .增大了D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b 二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。

分式与分式方程单元测试题(带答案)

分式与分式方程单元测试题(带答案)

分式与分式方程单元测试题 (满分 150分 时间 120分钟)一、选择题(每小题3分,满分30分) 1.若分式x-32有意义,则x 的取值范围是………………………………………( )A .x ≠3B .x =3C .x <3D .x >32.当a 为任何实数时,下列分式中一定有意义的一个是………………………( )A .21aa +B .11+aC .112++a aD .112++a a 3.下列各分式中,最简分式是……………………………………………………( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值……………………( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍 5.分式方程313-=+-x mx x 有增根,则m 为……………………………………( )A .0B .1C .3D .66.若xy y x =+,则yx11+的值为…………………………………………………( )A .0B .1C .-1D .27.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是………( ) A .448020480=--xx B .204480480=+-x xC .420480480=+-x xD .204804480=--xx8.下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有……………()A .1个B .2个C .3个D .4个9.下列各式的约分运算中,正确的是…………………………………………( )A .326x xx = B .b ac b c a =++ C .0=++b a b a D .1=++b a b a10.把分式2222-+-+-x x x x 化简的正确结果为……………………………………( )A .482--x xB .482+-x xC .482-x xD .48222-+x x二、填空题(每小题3分,满分24分) 1.当x = 3± 时,分式35-x 没有意义. 2.已知432z y x ==,则=+--+z y x z y x 232 43. 3.xyzx y xy 61,4,13-的最简公分母是 yz x 312 .4.分式392--x x 当x 3-= 时分式的值为零.5.若关于x 的分式方程3232-=--x m x x 有增根,则m 为 3± .6.已知2+x a 与2-x b 的和等于442-x x,则a = 2 ,b = 2 .7.要使15-x 与24-x 的值相等,则x = 6 .8.化简=-+-a b bb a a 1 . 三、解答题:(每题8分,共48分)1.22221106532xy x y y x ÷⋅ 2.mn nn m m m n n m -+-+--23.(22+--x x x x )24-÷x x 4.2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-a b a b a b5.231341651222+-++--+-x x x x x x6.xx x x x x +-÷-+-2221112四、解方程:(每题8分,共32分)1.141-22-=x x2.13132=-+--xx x3.5221332-=-x xx4.71618151+++=+++x x x x五、应用题(每题8分,共16分)1.八年级(11)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.5倍,求慢车的速度.2.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.分式与分式方程单元测试题参考答案一、选择题(每小题3分,满分30分) 1-5 ADCBC 6-10 BCBDA二、填空题(每小题3分,满分24分)1.3±; 2.43; 3.yz x 312; 4.3-=; 5.3±. 6.2,2 . 7.6 8.1三、解答题:(每题8分,共48分)1..67102165323222yx y x x y y x =⋅⋅=解:原式2..22m n m m n n m n m m n n m n m m n n m -=-+--=-+----=解:原式 3..2142)2)(2(442)2)(2()2()2(+=-⋅-+=-⋅-+--+=x x x x x x x x x x x x x x 解:原式 4..4164642233ab b a a b a b =⋅⋅-=解:原式.)3)(1(1)3)(2)(1(2)3)(2)(1()3()2()1()2)(1(1)3)(1(1)3)(2(1--=----=----+---=--+-----=x x x x x x x x x x x x x x x x x x 解:原式5.6..1)1()1)(1()1(2x x x x x x x =-+⋅-+-=解:原式 四、解方程:(每题8分,共32分)1.解:方程两边同时乘以最简公分母12-x 得4)1(2=+x①解①得1=x经检验:1=x 为原分式方程的增根. 2.解:方程两边同乘以3-x 得312-=--x x①解①得2=x经检验:2=x 为原分式方程的解.3.解:原方程可化为整式方程)13(2)52(32-=-x x x解之得215=x 经检验:215=x 为原分式方程的解. 4.解:原方程可化为51617181+-+=+-+x x x x 整理后得)5)(6()6(5)7)(8()8(7+++-+=+++-+x x x x x x x x 即)5)(6(1)7)(8(1++-=++-x x x x 即)5)(6()7)(8(++=++x x x x即 3011561522++=++x x x x解之得213-=x经检验:213-=x 为原分式方程的解.五、应用题(每题8分,共16分)1.解:设慢车的速度为x km/h ,则快车的速度为x 5.1km/h.依题意可得分式方程 x x 5.11201120=-解之得40=x 经检验:40=x 为所列分式方程的解. 答:慢车的速度为40km/h 。

分式测试题及答案

分式测试题及答案

分式测试题及答案一、选择题1. 请选出下列分数中,最简分数是:A. 3/5B. 4/9C. 5/8D. 6/10答案:A. 3/52. 下列分数中,与1/3相等的是:A. 2/6B. 4/10C. 3/9D. 5/15答案:C. 3/93. 将5/6化为百分数是:A. 83.33%B. 50%C. 66.67%答案:A. 83.33%4. 请将两个分数相加:2/3 + 1/4,得到的结果是:A. 2/7B. 5/12C. 11/12D. 7/12答案:B. 5/125. 将小数0.625化为分数是:A. 5/8B. 3/5C. 2/3D. 1/4答案:A. 5/8二、填空题1. 将2/5写成百分数是______%。

答案:40%2. 将0.75写成分数是______。

3. 将1/2和1/3相加,得到的结果是______。

答案:5/64. 将3/4化为小数,得到的结果是______。

答案:0.755. 将0.3化为分数,得到的结果是______。

答案:3/10三、解答题1. 简化分数4/6至最简形式,并写出化简的步骤。

答案:4/6 = (2×2)/(2×3) = 2/32. 将7/8和5/6相加,并将结果化为最简分数形式。

答案:7/8 + 5/6 = (7×3)/(8×3) + (5×4)/(6×4) = 21/24 + 20/24 = 41/24 = 1 17/243. 将一个分数3/5转化为百分数,并写出转化的步骤。

答案:3/5 = 3/5 × 100% = (3×20)% = 60%4. 将0.625化为最简分数,并写出化简的步骤。

答案:0.625 = 625/1000 = 5/85. 将小数0.4和分数1/2相加,并将结果转化为百分数形式。

答案:0.4 + 1/2 = 2/5 + 1/2 = (2×2)/(5×2) + 5/10 = 4/10 + 5/10 = 9/10 = 90%总结:通过此次分式测试题的练习,我们可以更深入地理解分数的概念和运算法则。

分式 专项练习(50题练习)

分式 专项练习(50题练习)

分式计算专题(填空题)1.若分式33x x --的值为零,则x = ; 2.若2121+=+x x ,则x = 或 。

3.如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; 4.若)0(54≠=y y x ,则222yy x -的值等于________; 5.当分式44x x --=-1时,则x__________; 6.化简分式xx ---112的结果是________. 7.将分式的分子与分母中各项系数化为整数,则b a b a 213231++=__________. 8..化简x xx x 2-+的结果为 ; 9.约分:22222ba b ab a -+-= 。

10.计算:(1)b a ÷22b a=_______;(2)3252a b c ·53410c a b =________; (3)23x x ÷23x x =________;(4)x ÷1y ×1y =________; (5)21a a -÷22a a a-=_______;(6)=÷-ab 3b a 2123 ; (7)432a )a 21(÷= (8)÷m 2a =n m a +; (9)=-+-x y y y x x ;(10)b1b a ⋅÷= ; 11.(1)已知115x y +=,则分式2322x xy y x xy y-+++的值为_______ ;(2)已知113x y -=,则分式2322x xy y x xy y+---的值为 ; (3)已知bab 2a b ab 3a ,2b 1a 1+++-=+则=____________. (4)已知x-y=4xy ,则2322x xy y x xy y+---的值为 12.若-1,则x+x -1=__________. 13.(1)已知31=+x x ,则_________122=+x x (2)已知=+=+22a 1a ,3a 1a则_______________; (3)若=+=-22121xx x x 则 14.已知222222M xy y x y x y x y x y--=+--+,则M= . 15.已知02322=-+y xy x (x ≠0,y ≠0),求xy y x x y y x 22+--的值_______________;16.已知11x -有意义,且2111A x x =--成立,则x 的值不等于 . 17.方程513=-x 的根是 . 18.当m=______时,方程233x m x x =---会产生增根. 19.若分式方程03231=+-+x x x 无解,则x 的值一定为 。

新最新初中数学—分式的知识点训练(2)

新最新初中数学—分式的知识点训练(2)

一、选择题1.使代数式726x x --有意义的x 的取值范围是( ) A .x≠3 B .x <7且x≠3 C .x≤7且x≠2 D .x≤7且x≠32.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( ) A .5个 B .2个 C .3个 D .4个3.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )A .B .C .D .4.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++5.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( )A .2B .﹣2C .﹣2或﹣2D .2或26.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 7.已知:分式的值为零,分式无意义,则的值是( ) A .-5或-2B .-1或-4C .1或4D .5或2 8.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 29.把分式22x yx y -+中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变10.已知,则的值是( )A .B .﹣C .2D .﹣211.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .a b d c <<<12.计算1÷11m m+-(m 2-1)的结果是( ) A .-m 2-2m -1 B .-m 2+2m -1C .m 2-2m -1D .m 2-1 13.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c 14.把分式2210x y xy+中的x y ,都扩大为原来的3倍,分式的值( ) A .不变 B .扩大3倍 C .缩小为原来的13D .扩大9倍 15.在式子31x - 、2xy π 、2334a b c 、2x x 中,分式的个数是( ) A .1个B .2个C .3个D .4个 16.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( ) A .m≥1 B .m>1 C .m≤1 D .m<117.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤ 18.有个花园占地面积约为 800000平方米,若按比例尺 1 : 2000缩小后,其面积大约相当于( ) A .一个篮球场的面积 B .一张乒乓球台台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积19.已知0≠-b a ,且032=-b a ,则ba b a -+2的值是( ) A .12- B . 0 C .8 D .128或20.若04(2)(3)x x ----有意义,那么x 的取值范围是( )A .x >2B .x >3C .x ≠2或x ≠3D .x ≠2且x ≠321.在代数式,,+,,中,分式有( ) A .1个 B .2个 C .3个 D .4个22.计算的结果是( )A .a+bB .2a+bC .1D .-123.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5C .2.1×10-6D .21×10-624.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-625.下列各式从左到右的变形正确的是 ( )A .220.220.33a a a a a a --=-- B .11x x x y x y +--=-- C .116321623a a a a --=++D .22b a a b a b -=-+【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】有意义, ∴7-x≥0,且2x-6≠0,解得:x≤7且x≠3,故选D .2.C解析:C【解析】试题分析:根据x 为整数,且分式23363(1)x x x -+-的值为整数,可得3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3,故x-1=-3,x=-2;x-1=1,x=2;x-1=3,x=4,故选C .考点:分式的值.3.A解析:A【解析】 试题分析:原有的同学每人分担的车费应该为元,而实际每人分担的车费为元,方程应该表示为:.故选A .考点:由实际问题抽象出分式方程. 4.D解析:D【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为a b 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1.1从分数到分式一、选择题:1、下列式子是分式的是 ( )A 、2x B 、1+x x C 、y x +2 D 、∏x2、下列式子是分式的是 ( ) A 、a 22+B 、32y x -C 、∏1D 、)(21b a + 3、使分式1212-+x x 无意义的x 的值是 ( ) A 、21-=x B 、21=x C 、x ≠21- D 、x ≠21 4、当x 为任何实数时,下列分式一定有意义的是( ) A 、22xB 、122+x C 、2)1(2+x D 、15+x 5、分式1-x x无意义,则x 的值是( ) A 、1 B 、1- C 、0 D 、1±6、若分式112--x x 的值为0,则( )A 、1=xB 、1-=xC 、1±=xD 、1≠x 7、分式2)1(2+-x x 的值为正数的条件是( )A 、1 xB 、2 x 且1-≠xC 、21 x -D 、2 x 二、填空题:1、在下列式子:a2、245y xy -、54-、21-x 、5ba -中,是分式的有: 。

2、要使分式32-x x有意义,则x 满足的条件是: 。

3、已知12+x x 有意义,则x 的取值范围是: 。

4、使分式212--x x 有意义的x 取值范围是: 。

5、若分式112+-x x 的值为0,则x 满足的条件是:。

6、当x 时,分式132-+x x 有意义;当x 时,分式24-x 无意义。

7、当8-=x 时,分式34+x 的值为 。

8、当x 时,分式123-x 无意义,当21-=x 时,分式的值是 。

9、当x 时,分式312-+x x 有意义;当x 时,分式1632+-x x 的值为负数。

10、若14+x 表示一个整数,则所有满足条件的整数x 的值为 。

三、解答题:1、当x 取何值时,分式121--x x 的值为正?2、已知分式ax bx +-2,当2=x 时,分式的值为0;当2-=x 时分式没有意义,求b a +的值。

3、若分式m x x +-212不论x 取任何实数总有意义,求m 的取值范围。

16.1.2 分式的基本性质 一、选择题:1、下列各式中,正确的是( ) A 、03=-+YX YX B 、22x y x y =C 、1=--+-y x y x D 、YX Y X --=+-11 2、下列运算错误的是( )A 、)0(≠=c bc ac b aB 、ab b a ba ab a +=+22C 、ba ba b a b a 621056.02.05.0-+=-+ D 、x y x y y x y x +-=+- 3、与分式nm nm +-的值相等的是( ) A 、n m m n +-- B 、n m mn +- C 、n m m n ---D 、nm nm ---- 4、化简4422+--x x y xy 的结果是( )A 、2+x x B 、2-x x C 、2-x y D 、2+x y5、分式2293m m m --化简的结果是( )A 、3+m m B 、3-m mC 、3--m mD 、mm-3 6、根据分式的基本性质,分式ba a---可变形为( ) A 、b a a -- B 、b a a + C 、b a a --- D 、ba a+-7、下列各式中最简分式是( ) A 、b a 1512 B 、162+x x C 、331++x x D 、a a 5 8、分式ba 223与cab b a 2-的最简公分母是( )A 、c b a 222 B 、c ab 22 C 、c b a 22 D 、c b a 2269、下列约分正确的是( ) A、326x x x = B、0=++yx yx C 、xxy x yx 12=++ D 、x y y x y x =22242 10、分式xx 212-与412-x 的最简公分母是( )A 、)2)(2(-+X X XB 、)4)(2(22--X X XC 、)2)(2(-+X XD 、)4)(2(-+X X X二、填空题: 1、分式yx xy 22042中分子、分母的公因式为 。

2、化简分式122-+a a a 的结果是 。

3、不改变分式的值,将分式ba x x 32.002.02+-中各项系数均化为整数,结果为 。

4、约分xx x x 1)1(1=--成立的条件是x 。

5、通分:()ba ab b a 2=+;() 22y x x xy x +=+ 6、约分:=-4293x x ⿱ ;=-+-a a a 2442 。

7、已知x 为整数,且分式1222--x x 的值为整数,则=x 。

8、不改变分式的值,使分子、分母的第一项系数 都是正数,则=--+-yx yx 。

9、分式12,11,112--++x xy x x x 的最简公分母是 。

三、解答题:1、通分:(1)bc a y abx 229,6 (2)16,12122-++-a a a a(3)321ab 和cb a 2252 (4)11-y 和11+-y2、约分:(1)99622-+-x x x ;(2)mm m m -+-22233、已知:0432≠==z y x ,求代数式z y x zy x -+-+2的值。

16.2.1 分式的乘除(1)一、填空题:1、分式乘法法则: 。

用式子表示为: 。

2、分式除法法则: 。

用式子表示为: 。

3、计算:cb a a b 2242∙= 。

4、化简mm m m m --∙-+-3249622= 。

5、计算:=-∙)8(43222yz z xy 。

6、计算:=-÷cdaxcd ab 4322 。

7、计算:233y x xy ∙-= 。

8、计算:=∙abb a 2 。

9、化简:=--∙--aba b a aba b a 242222 。

10、化简:xx x+÷-21)1(= 。

二、计算题: 1、xxy x y xy x 12222÷+++ 2、y y x x y -+∙-2239 3、xx x x x x +-÷-+-2221112 4、211aa a a -÷-5、化简并求值:442242222+-+∙+-x x xx x x x ,其中=x 3- 6、先化简,再求值:xx x x x x x 39396922322-+∙++-,其中31-=x7、化简求值:)2(24422x x x x x +÷+++,其中2=x8、已知03=-y x ,求)(2222y x y xy x y x -∙+-+的值。

9、已知m 米布料能做n 件上衣,m 2米布料能做n 3 条裤子,则一件上衣用料是一条裤子用料的多 少倍?10、你能做当37;225;3+-=x 时,求代数式12211222+-÷-+-x x x x x 的值吗?若能,请写出过程。

16.2.1 分式的乘除(2)一、填空题:1、计算:xy a ayx ∙÷332= 。

2、计算:=-32)(yx 。

3、计算:=-32)32(xy 。

4、化简:=∙÷xy x x 1 。

5、计算:nab 22)(-= 。

6、如果÷223)(ba 3)(23=ba ,则=48b a 。

7、计算:=--3223)()(2ab ba 。

8、若363827)2(x y xm =,则=m 。

9、计算:=-÷∙43222)()()(x yx y y x 。

10、n nn ab a b =)(成立的条件是 。

二、计算: 1、423)23(ba c - 2、323)2(xy a -3、3252)()(x y y x -∙-4、a cbd c a cd b a 722183332222-∙÷- 5、23223)2()()2(b b a b a ∙-÷- 6、22222)(xyx xy y xy x x xy -∙+-÷- 7、32)3(44622--∙+÷+--x x x x x x8、23319622+-∙-÷+-+x x x x x x 9、32124112942-∙-÷--x x x x 10、1)4)(3()1(96122+++∙-÷++-x x x x x x x11、若 2)14(-a +03=+b 求ab ab a ab a 28164222∙+--的值。

12、已知1,2-==b a ,求aaba b a 11222÷--+的值。

16.2.2分式的加减(1)一、填空题:1、同分母分式相加减, , 用式子表示为:=±c bc a 。

2、异分母分式相加减, , 用式子表示为:=±dc ba 。

3、计算:=+-++3134m m m 。

4、计算:=+-+3932a a a 。

5、化简:=++-329122m m 。

6、计算:=-+-1311a a 。

7、计算:=--+aa 242 。

8、计算:=+--xyx xy x 2243 。

9、计算:=++311n n 。

10、计算:=+++)1(111a a a 。

二、计算题:1、同分母分数的加减法 (1)、2222223223y x y x y x y x yx y x --+-+--+ (2)、abn m abn m ++-(3)、mn nm m n n nm m -++---22 (4)、ab bba a-+-22(5)、yx yx y y x y x x 47443---++- (6)、ba b a ba b a -++--32、异分母分数的加减法: (1)、baab b a --22 (2)、1111--+x x (3)、mm -+-329122 (4)、a b c ac ab 433265+-(5)、2123242--+-+-x x x x3、化简求值: (1)、aa a a a a 33632+-+--,其中23=a 。

(2)、21422++--a a a ,其中3=a(3)、已知2,1=+-=b a ab 求ba ab +的值。

16.2.2分式的加减(2)一、计算题:1、)1()1(mn nm -÷- 2、ab ab ab ba 22222)(÷-∙3、a a ÷--)111( 4、a a a a a 3)393(2+÷-+-5、)1121(1222+---÷--x x x x x x6、2)224424(2-÷+-++--x xx x x x x7、xx x x x xx x -÷+----+4)44122(22二、化简并求值:1、4442)1225(22++-÷+++-a a a a a a ,其中32+=a2、24)2121(aa a ÷--+,并求出当1-=a 时的值。

相关文档
最新文档