常见的光电耦合电路及其应用分析
光耦电路详解
光耦电路详解
光耦电路也称为光隔离器、光耦合器或光电耦合器,是一种将发光源和受光器组装在同一密闭的壳体内的电子元件。
它的发光源通常为发光二极管,而受光器则可以是光敏二极管、光敏三极管等。
以下是关于光耦电路的一些详解:
1. 隔离作用:在电路中,尤其是低电压或高噪声敏感电路中,光耦电路用于隔离电路以防止电气碰撞机会或排除不需要的噪声。
它的内部结构使得发光源和受光器之间的空间被透明的非导电材料隔离,这样,两个独立的电路就可以通过光耦电路进行控制。
2. 工作原理:当给发光源(如LED)供电时,它会发出红外光,这束光照射到受光器(如光电晶体管)的基极上。
被激活的受光器会控制与其相连的输出电路。
这就是光耦电路如何将电信号转换为光信号,然后再转换回电信号的过程。
3. 信号放大:光电耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光源,使之发光,被光探测器接收而产生光电流,再经过进一步放大后输出。
4. 良好的电绝缘能力和抗干扰能力:由于光耦电路的输入输出间互相隔离,因此它具有良好的电绝缘能力和抗干
扰能力。
此外,由于光耦电路的输入端属于电流型工作的低阻元件,它具有很强的共模抑制能力。
所以,它在长线传输资讯中作为终端隔离元件可以大大提高信噪比。
光电耦合器几款应用电路图
今天大鹏电子与大家分享光电耦合器的几款应用电路图,在这里介绍的光电耦合器是由发光二极管和光敏三极管组合起来的器件,发光二极管是把输入边的电信号变换成相同规律变化的光,而光脉敏三极管是把光又重新变换成变化规律相同的电信号,因此,光起着媒介的作用。
由于光电耦合器抗干扰能力强,容易完成电平匹配和转移,又不受信号源是否接地的限制。
所以应用日益广泛。
一、用光电耦合器组成的多谐振荡电路用光电耦合器组成的多谐振荡电路见图1。
当图1(a)刚接通电源Ec时,由于UF随C充电而增加,直到UF≈1伏时,发光二极管达到饱和,接着三极管也饱和,输出Uo≈Ec。
三极管饱和后,C放电(由C→F→E1→Er和由C→RF→+Ec→Re两条路径放电),uo 减小,二极管在C放电到一定程度后就截止,而三极管把储存电荷全部移走后,接着也截止,uo为零。
三极管截止后,电源Ec又对C充电,重复上述过程,得出图示的尖峰输出波形,其周期,为(当RF》Re时):T=C(RF+Re)In2是原理相同的另一种形式电路二、用光电耦合器组成的双稳态电路用光电耦合器组砀双稳态电路如图2所示。
电路接通电源后的稳态是BG截止,输出高电位。
在触发正脉冲作用下,ib增加使BG 进入放大状态,形成ib↑→if↑→ib↑↑,结果BG截止,这种电路比普通的触发顺具有更高的抗干扰能力。
若设BG的极限电流Ic=6毫安,则R2=取为:R2≥(13-1)/(6×10)=24欧限流电阻R1可按下式计算R1≥(E-IbmRce2min)/Ibm式中:Ibm是晶体管的最大基极电流,Rce2min是光敏三极管集射间的最小电阻值三、用光电耦合器组成的整形电路,用的地方不一样,光电耦合器是将光信号转换成电信号传输出去,光电隔离器虽然也有类似的功能,但是它更重要的功能是起到保护的作用,例如你的某个设备上的接口本身没有光电保护,那么它就需要一个光电隔离器,一旦出现浪涌,就直接烧坏这个隔离器,而不会伤害到你的设备,一个是直流的、一个是交流的电压。
光电耦合器及其应用
光电耦合器及其应用[作者:佚名转贴自:未知点击数:933 更新时间:2006-3-31【字体:A 】光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、过流保护、长线传输、高压控制及电平匹配等。
为使读者了解与应用光电耦合器,今介绍几种光电耦合器件及应用电路,供大家参考与开拓。
1.器件选择(1)三极管输出型光电耦合器三极管输出型光电耦合器电路如图46—1中(a)所示,它是由两部分组成的。
其中,1、2端为输入端,通常由发光器件构成;4、5、6端接一只光敏三极管构成输出端,当接收到发射端发出的红外光后,在三极管集电极中便有电流输出。
图46-1三极管输出型光电耦合器的特点,是具有很高的输入输出绝缘性能,频率响应可达300kHz,开关时间数微秒。
(2)可控硅输出型光耦合器可控硅输出型光耦合器的电路如图46?中(b)所示。
该器件为六脚双列式封装。
当1、2端加入输入信号后,发射管发出的红外光被接在4、5、6脚的光敏可控硅接收,使其导通。
它可应用在低电压电子电路控制高压交流回路的开启。
(3)光耦合的可控硅开关驱动器图46—2中(a)为光敏双向开关器件;图46?中(b)为过零控制电路及光敏双向开关器件组合体。
它们的工作原理是:利用输入端红外光控制输出端的光敏双向开关导通,进而触发外接双向可控硅导通,达到控制负载接入交流220V回路的目的。
图中(a)为非过零控制,图中(b)为过零控制。
本驱动器有非常好的输入与输出绝缘性,可构成固态继电器的控制电路,其输出的控制功率由可控允许功率决定。
图46-2(4)达林顿管输出的光检测器达林顿管输出的光检测器如图46?中(a)所示。
它是由两只管子组成复合管,具有很高的电流放大能力,形成下一级或负载的驱动电流,有较强的光检测灵敏度。
常见的光电耦合电路及其应用分析
常见的光电耦合电路及其应用分析光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。
同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。
可见光电耦合电路在各位的设计应用中发挥着重要的作用。
光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。
最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。
光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。
(1)组成的多谐振荡器电路图工作流程为接通电源后:A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态;B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec)C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???;D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。
作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。
将直流电变为交流电。
通过上述电路,可以更好的取出干扰。
特别是直流和交流电信号转化的时候,电磁干扰是一个不容忽视的干扰,这样可以更好的将信号进行转化和利用。
光电耦合器作用和原理
光电耦合器作用和原理光电耦合器(Optocoupler)是一种光学器件,具有隔离性、放大性、线性性、稳定性等特点,广泛应用于电子电路中。
它主要由光发射器、光接收器、隔离层和输出级组成。
光电耦合器的作用是将输入信号转换成光脉冲信号,并通过隔离层隔离与输出№级,同时光脉冲信号被接收器转换为输出信号,从而实现输入输出信号的隔离和传输。
光电耦合器可以起到电气隔离和信号转换的作用,为电子电路提供安全可靠的保护。
同时,光电耦合器还可以提高电路的抗干扰能力和共模抑制比。
光电耦合器的原理是光电效应。
当有光照射到半导体材料上时,根据光电效应,半导体中一部分电子被激发,从而电子从价带跃迁至导带,形成空穴和电子对,从而产生光生载流子。
当半导体中有足够的轻子和空穴,光生载流子迅速扩散和漂移,并在光电接收器结构内的pn结区域结合产生电流。
光电接收器的输出信号与输入光发射器的输入信号一致。
光电耦合器的使用步骤如下:1.根据电路的需求选择合适的光电耦合器,包括光电器件类型、隔离电压等参数。
2.接线时应注意输入端和输出端的电极连接,一般采用直插式或SOP引脚式连接。
3.在电路中正确接入光电耦合器,将输入端连接到输入信号源,输出端连接到需要控制的电路中。
4.在电路通电前,应先检查光电器件的极性和隔离性能是否正确,以免引起损坏。
5.对于高频信号输入,需注意进行匹配和阻抗调节,以保证输入和输出信号传输的准确和稳定。
总之,光电耦合器是一种重要的光学器件,在现代电子电路中广泛应用。
它通过光电效应将输入电信号转换为光信号,隔离并放大信号,提高电路的抗干扰能力和共模抑制比,保证了电路的稳定性和可靠性。
同时,使用光电耦合器还可以避免电路中的接地问题和供电噪音问题。
光耦电路应用
光耦电路应用光耦电路是一种基于光电效应的电路,它通过光电传感器将电信号转换为光信号,再通过光电耦合器将光信号转换为电信号,实现电路的隔离和信号传输。
光耦电路具有高隔离性、低干扰性、高速响应和安全可靠等特点,广泛应用于工业自动化、医疗设备、通信网络、家用电器和汽车电子等领域。
一、光耦电路的基本原理光耦电路由光电传感器和光电耦合器两部分组成。
光电传感器是将电信号转换为光信号的元件,通常采用LED或激光二极管作为光源,光敏二极管或光电三极管作为光接收器。
当电流通过LED或激光二极管时,它会发出一定波长的光信号,光敏二极管或光电三极管会将光信号转换为电信号。
光电传感器的输出电流与输入电压成正比例关系,可以通过调节电流限制电阻或反向并联电容的值来控制输出电流的大小和稳定性。
光电耦合器是将光信号转换为电信号的元件,通常采用光电二极管或光电晶体管作为光接收器,输出信号可以是电压信号或电流信号。
当光信号照射在光电二极管或光电晶体管上时,它会引起电荷的移动和电流的产生,从而产生一个与光信号强度成正比例的输出电压或电流。
光电耦合器的输出电压或电流与输入光功率成正比例关系,可以通过调节限流电阻或反向并联电容的值来控制输出电压或电流的大小和稳定性。
二、光耦电路的应用1、工业自动化在工业自动化中,光耦电路常用于隔离和传输控制信号、传感器信号和驱动信号。
例如,将PLC输出的控制信号经过光耦隔离后传输到电机驱动器,可以防止电机驱动器对PLC的反馈信号产生干扰,保证控制系统的稳定性和可靠性。
另外,将温度、压力、流量等传感器信号经过光耦隔离后传输到数据采集器或控制器,可以保护传感器不受电磁干扰和高电压破坏,提高信号的精度和稳定性。
2、医疗设备在医疗设备中,光耦电路常用于隔离和传输生物信号、控制信号和数据信号。
例如,将心电信号、脑电信号、肌电信号等生物信号经过光耦隔离后传输到放大器或数据采集器,可以保护患者不受电流刺激和电磁干扰,提高信号的准确性和可靠性。
光耦常见电路
光耦常见电路
光耦合器(光耦)是一种常用的电子元件,用于电气信号和光信号之间的隔离和传递。
它由光发射器和光接收器组成,通过光信号的发射和接收,实现输入和输出电路之间的电气隔离。
以下是几种常见的光耦合器电路:
1.光电晶体管(Phototransistor)电路:该电路将光发射器
与晶体管连接,以实现电气信号的隔离和传递。
光发射器
发出的光可以激活光电晶体管,使其产生电流,从而实现
输入和输出电路之间的隔离。
2.光敏二极管(Photodiode)电路:光敏二极管是一种用于
检测光信号的光电探测器。
它可以将接收到的光信号转换
为电流或电压输出。
在电路中,光敏二极管通常与放大器
或其他电路元件结合使用,以实现隔离和信号放大的功能。
3.光耦合继电器电路:光耦合继电器是一种将光耦合器和继
电器相结合的装置。
它具有继电器的开关功能和光耦合器
的电气隔离功能。
通过控制光耦合器的光发射器,能够控
制继电器的开关状态,实现电气信号的隔离和传递。
4.光耦合隔离放大器电路:该电路将光耦合器与放大器相结
合,实现电气信号的隔离和放大。
通过光发射器将输入信
号转换为光信号,然后通过光接收器将光信号转换回电信
号,并经过放大器放大,实现输入和输出电路之间的电气
隔离和信号放大。
此外,还有其他类型的光耦合器电路,例如光耦合比较器、光耦合开关等,根据具体的应用需求选择适合的光耦合器电路。
光耦合器在工业控制、通信设备、医疗设备等领域具有广泛的应用。
光电耦合器原理及使用
光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。
型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。
点击进入万联芯城点击进入万联芯城光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。
光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。
目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。
光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。
对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。
但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。
1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。
由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。
图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。
如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。
由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。
常用光耦
常用光耦一、光电耦合器的种类较多,但在家电电路中,常见的只有4种结构:1.第一类,为发光二极管与光电晶体管封装的光电耦合器,结构为双列直插4引脚塑封,内部电路见表一,主要用于开关电源电路中。
2.第二类,为发光二极管与光电晶体管封装的光电耦合器,主要区别引脚结构不同,结构为双列直插6引脚塑封,内部电路见表一,也用于开关电源电路中。
3.第三类,为发光二极管与光电晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于AV转换音频电路中。
4.第四类,为发光二极管与光电二极管加晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于AV转换视频电路中。
PC810PC502 LTV817 TLP521-ON3111PC714 PS208B PS2009BTLP503 TLP508 TLP531TLP551 TLP651 TLP751):1.电阻检测法(见表2)2.加电检测法,在光电耦合器的初级,即第1~3类的①~②脚间或第4类的②~③脚间加上+5V电压,电源电流限制在35mA 左右,可在+5V电源正极串一支150Ω1/2W的限流电阻。
加电用RX1K档测次级正向电阻,即第1类的③~④脚间,即第2~3类的④~⑤脚间,即第4类的⑦~⑧脚间的正向电阻,一般在30Ω~100Ω之间为正常,偏差太大为损坏。
测量上述引脚间的反向电阻为无穷大,如偏小则为漏电或击穿。
三、光电耦合器的代换:本类间所有型号均可直接互换,第1类与第2类可以代换,但需对应其相同引脚功能接入。
第3类可以代换第1~2类,选择功能相同引脚接入即可,无用引脚可不接。
但第1~2类不可以代换第3类。
例:用PC817代换TLP632时,PC817的①②脚对应接入TLP632的①②脚,PC817的③脚对应接入TLP632的④脚,PC817的④脚对应接入TLP632的⑤脚即可。
如用4N35代TLP632时,可直接接入原TLP632的位置,4N35的⑥不用。
光耦在逻辑电路上的应用
光耦作为一种常用的光电耦合器件,在逻辑电路中的应用具有重要意义。
本文将围绕光耦在逻辑电路中的应用进行探讨,介绍光耦的工作原理和优势,并分析其在逻辑电路中的应用场景和实际效果。
一、光耦的工作原理和优势光耦是一种将电信号与光信号相互隔离的器件,其工作原理基于光电效应。
当电流通过具有光敏特性的材料时,光线能够激发出光信号,进而改变材料中的导电性能,实现电信号与光信号的隔离传输。
光耦具有以下优势:1. 隔离性能好:光耦可以实现电信号与光信号的完全隔离,避免了电路之间的直接电气连接,提高了电路的安全性和可靠性。
2. 热稳定性高:光耦中的光敏元件对温度相对不敏感,因此具有较高的热稳定性。
3. 成本低:相比于其他常用的逻辑电路元器件,如晶体管、集成电路等,光耦的成本较低,适合应用于低成本应用场景。
二、光耦在逻辑电路中的应用场景1. 数字逻辑电路:光耦可以应用于数字逻辑电路中,实现电信号与光信号的隔离传输。
例如,可以使用光耦连接微控制器和外部电路,从而实现微控制器的数字信号输出和控制外部电路的数字输入。
2. 模拟电路:光耦还可以应用于模拟电路中,实现信号的隔离传输。
例如,可以将光耦应用于音频放大器中,实现音频信号的隔离传输,从而提高音频质量并增强系统的稳定性。
3. 传感器接口:光耦还可以与各种传感器接口进行连接,实现电信号与光信号的隔离传输。
例如,可以将光耦应用于光电传感器中,实现传感器输出信号的隔离传输和控制。
三、实际效果分析使用光耦在逻辑电路中具有以下实际效果:1. 提高系统的安全性和可靠性:光耦的隔离性能可以有效避免不同电路之间的电气干扰和短路等问题,提高了系统的安全性和可靠性。
2. 降低成本:使用光耦可以降低系统成本,尤其是对于低成本应用场景来说,使用光耦可以有效地减少元器件的数量和种类。
3. 提高系统的稳定性:光耦具有较高的热稳定性和抗干扰能力,因此可以提高系统的稳定性。
总之,光耦在逻辑电路中的应用具有重要意义,可以提高系统的安全性和可靠性,降低成本并提高系统的稳定性。
光电耦合器的工作原理以及应用
光电耦合器的工作原理以及应用1. 工作原理光电耦合器(Optocoupler)是一种能够将输入端和输出端电气信号进行隔离的装置。
它由发光二极管(LED)和光敏三极管(Phototransistor)构成。
当输入端加上电压时,LED发出光信号,该光信号被光敏三极管接收后产生电流。
这种光电耦合的原理实质上是一种光控转换和能量传递的过程。
具体工作原理如下: 1. 输入端的电流通过限流电阻(Rx)流过发光二极管,使其发出一定功率的光信号。
2. 光信号经传输介质到达光敏元件,并激发出光敏元件的电子。
3. 光敏元件将光信号转换为电流信号,并通过输出端引出。
2. 主要构成部分光电耦合器的主要构成部分包括以下几个方面: - 发光二极管(LED):将输入电流转换为光信号。
- 光敏三极管(Phototransistor):将接收到的光信号转换为电流信号。
- 传输介质:用于将光信号从发光二极管传递到光敏三极管。
- 封装结构:提供外部环境下的物理保护和隔离。
3. 应用领域光电耦合器具有隔离、调制和数传等特点,广泛应用于以下领域:3.1 工业自动化控制系统光电耦合器在工业自动化控制系统中起到隔离和信号调制的作用。
它能够将电气信号转换为光信号并进行隔离,防止输入端的噪声、干扰等影响输出端的稳定性。
常见的应用包括: - PLC(可编程逻辑控制器)输入/输出模块 - 隔离式继电器输出模块 - 工业通信接口隔离3.2 通信设备光电耦合器在通信设备中用于隔离输入和输出信号,避免信号干扰和电气故障。
通信设备中常用到的应用包括: - 光纤调制解调器(光猫) - 光电耦合器串并转换器 - 光电耦合器隔离阵列模块3.3 医疗设备光电耦合器在医疗设备中起到信号隔离和电气保护的作用。
它能够将信号从控制电路隔离,确保患者和医护人员的安全。
常见的应用有: - 医疗设备输入/输出模块 - 医疗设备控制系统 - 医疗器械接口隔离3.4 电力电子设备光电耦合器在电力电子设备中用于信号隔离、电气保护和触发控制。
光电耦合器原理及应用
④ 暗 电流 I uA ,即 I 0时的 I 。 ( ) t = 。 ⑤ 输 出端 耐压 值 V 。 。 ⑥输入与输 出间绝缘 电阻 R , s 1 。R > 0Q。 ⑦ 输入 与输 出间 的耐 压值 B 。 > V ,B
50 V 。 0
光 电耦 合 器 又 称 光 电隔 离 器 ,通 常 用 图 l所 示 的 符 号 表 示 。 它 是 由发 光 器 件 和 光 敏 器 件 组 合 起 来 的 四 端 器 件 。它 的 输 入 端 配 置
⑧ 输入 与输 出间 的 电容 C ,C lF 。 s p。 ⑨ 输 入端 的 正 向压 降 V ,V ≈1 r r V。 ⑩ 输 入 的反 向击 穿 电压 B R V 。 光 电耦 合 器 的输 出特 性 表 示 以 I为 参 量 的 Vc—I特 性 ,类似 于 三 极 管 的输 出特 性 。 而 传 输特 性 则表 示 在 一 定 的 V ( 出 电压 ) 输
图 4
高 ,要 求 调 整 管 的 耐 压 越 高 。 大 功 率 高 反压 管 通 常 都 比较 贵 , 且 在 那 样 的条 件 下 工 作 , 而 可 靠性 就 差 。 图 3所 示 的 电路 .尽 管输 出的
电压达 5 O 0 V, 而 调 整 管 的参 数 要 求 并 不 高 。 这 个 电 路 的 工 作 原 理 大 致 如 图 3 。 当输 出 电压 ( 0 V)因 负 载变 化 而 下 降 50 时 , 则 光 电耦 合 器 内 发 光 二极 管 I下 降 ,使 r
② 输入端和输 出端 的接地 点可 以分别任 意 选择 。 ③ 具有抑制噪声 的作用 ,即使 是输 出端 有 较 强 的干 扰 ,对 其 输 入 端 的 影 响 也 是 非 常
光电耦合器的应用电路
光电耦合器的应用电路
光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强.无触点且输入与输出在电气上完全隔离等特点,因而在各种电子设备上得到广泛的应用.光电耦合器可用于隔离电路、负载接口及各种家用电器等电路中.下面介绍最常见的应用电路.
1.组成开关电路
图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态.
2.组成逻辑电路
图3电路为“与门”逻辑电路。
其逻辑表达式为P=A.B.图中两只光敏管串联, 只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路.
3.组成隔离耦合电路
电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。
光电耦合器应用电路
光电耦合器应用电路光电耦合器(Optocoupler)是一种能够将电信号和光信号进行隔离的器件。
它由LED发射器和光敏电阻等元件组成,能够将输入端的电信号转换成输出端的光信号,从而实现输入输出端之间的隔离。
在实际应用中,光电耦合器被广泛应用于各种电路中,因为它具有隔离性好、噪声小、反应速度快等优点。
下面将介绍几种典型的光电耦合器应用电路。
1. 交流隔离电路交流隔离电路是一种常用的光电耦合器应用电路,它能够实现输入输出端之间的高速隔离和信号传输。
该电路通常由光电耦合器、电阻、电容等元件组成,其中光电耦合器的输入端接收交流信号,输出端输出相应的光信号,从而实现输入输出端之间的隔离。
该电路的优点是隔离性好、反应速度快、噪声小等,适用于各种高速通信和控制系统中。
2. 逻辑隔离电路逻辑隔离电路是一种常用的数字信号隔离电路,它能够实现输入输出端之间的数字信号隔离和逻辑转换。
该电路通常由光电耦合器、反向器、电阻等元件组成,其中光电耦合器的输入端接收数字信号,输出端输出相应的数字信号,从而实现输入输出端之间的隔离和逻辑转换。
该电路的优点是隔离性好、反应速度快、噪声小等,适用于各种数字电路和单片机系统中。
3. 电源隔离电路电源隔离电路是一种常用的电源隔离和稳压电路,它能够实现输入输出端之间的电源隔离和稳压。
该电路通常由光电耦合器、电容、稳压芯片等元件组成,其中光电耦合器的输入端接收电源信号,输出端输出相应的隔离和稳压信号,从而实现输入输出端之间的电源隔离和稳压。
该电路的优点是隔离性好、稳压精度高、噪声小等,适用于各种电源和电器控制系统中。
光电耦合器应用电路具有广泛的应用前景,能够实现输入输出端之间的信号隔离和转换,从而提高电路的可靠性和稳定性。
在实际应用中,我们需要根据具体的电路要求和性能指标选择合适的光电耦合器应用电路,以达到最佳的效果和性能。
光电耦合器的应用电路
光电耦合器的应用电路光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强.无触点且输入与输出在电气上完全隔离等特点,因而在各种电子设备上得到广泛的应用.光电耦合器可用于隔离电路、负载接口及各种家用电器等电路中.下面介绍最常见的应用电路.1.组成开关电路图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态.2.组成逻辑电路图3电路为“与门”逻辑电路。
其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路.3.组成隔离耦合电路电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。
4.组成高压稳压电路电略如图5所示.驱动管需采用耐压较高的晶体管(图中驱动管为3DG27)。
当输出电压增大时,V55的偏压增加,B5中发光二极管的正向电流增大,使光敏管极间电压减小,调整管be结偏压降低而内阻增大,使输出电压降低,而保持输出电压的稳定.5.组成门厅照明灯自动控制电路电路如图6所示。
A是四组模拟电子开关(S1~S4):S1,S2,S3并联(可增加驱动功率及抗干扰能力)用于延时电路,当其接通电源后经R4,B6驱动双向可控硅VT,VT直接控制门厅照明灯H;S4与外接光敏电阻Rl等构成环境光线检测电路。
当门关闭时,安装在门框上的常闭型干簧管KD受到门上磁铁作用,其触点断开,S1,S2,S3处于数据开状态。
光电耦合器的应用
光电耦合器件发展趋势及地位光电耦合器是一种光电结合的新型器件。
光电祸合器件制作工艺发展很快,新的光电耦合器件不断出现。
因为光电耦合器件有其它电子器件不具备的性能,因此它被广泛地应用于计量仪器、精密仪器、过程控制、计算机系统、通信设备、医疗设备及家用电器中。
随着工艺技术的不断提高,可望将有更高集成水平、更大工作电流、更高工作速度、原副边耐压更高的光电耦合器件出现。
光电耦合器件有更广泛的应用前景,它将会替代一些与之相比性能较差的电子器件。
光电耦合器的结构特点和特点光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内,然后利用发光器件的管脚作输入端,而把光接收器的管脚作为输出端。
当在输入端加电信号时,发光器件发光。
这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。
从而实现了以“光”为媒介的电信号传输,而器件的输入和输出两端在电气上是绝缘的。
这样就构成了一种中间通过光传输信号的新型半导体光电子器件。
光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。
图1是三种系列的光电耦合器电路图。
光电耦合的主要特点如下:•输入和输出端之间绝缘,其绝缘电阻一般都大于1010Q ,耐压一般可超过1kV,有的甚至可以达到10kV以上。
•由于“光”传输的单向性,所以信号从光源单向传输到光接收器时不会出现反馈现象,其输出信号也不会影响输入端。
•由于发光器件(砷化镓红外二极管)是阻抗电流驱动性器件,而噪音是一种高内阻微电流的电压信号。
因此光电耦合器件的共模抑制比很大,所以,光电耦合器件可以很好地抑制干扰并消除噪音。
•容易和逻辑电路配合。
•响应速度快。
光电耦合器件的时间常数通常在微秒甚至毫微秒级。
•无触点、寿命长、体积小、耐冲击。
——100 <b)G0——200 <c)GO—-300光耦的主要性能特点如下:①隔离性能好,输入端与输出端完全实现了电隔离,其绝缘电阻RISO 一般均能达到1010Q以上,绝缘耐压VISO在低压时都可满足使用要求,高耐压一般能超过lkV,有的可达10kV以上。
光电耦合器的作用及特点
光电耦合器的作用及特点
由于光耦种类繁多,结构独特,优点突出,因而其应用十分广泛,主要应用以下场合:(1) 在逻辑电路上的应用光电耦合器可以构成各种逻辑电路,由于光电耦合器的抗干扰性能和隔离性能比晶体管好,因此,由它构成的逻辑电路更可靠。
(2) 作为固体开关应用在开关电路中,往往要求控制电路和开关之间要有很好的电隔离,对于一般的电子开关来说是很难做到的,但用光电耦合器却很容易实现。
(3) 在触发电路上的应用将光电耦合器用于双稳态输出电路,由于可以把发光二极管分别串入两管发射极回路,可有效地解决输出与负载隔离地问题。
(4) 在脉冲放大电路中的应用光电耦合器应用于数字电路,可以将脉冲信号进行放大。
(5) 在线性电路上的应用线性光电耦合器应用于线性电路中,具有较高地线性度以及优良地电隔离性能。
(6) 特殊场合的应用光电耦合器还可应用于高压控制,取代变压器,代替触点继电器以及用于A/D 电路等多种场合。
光电耦合器简介:
光电耦合器是一种把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。
当输入电信号加到输入端发光器件LED 上,LED
发光,光接受器件接受光信号并转换成电信号,然后将电信号直接输出,或者将电信号放大处理成标准数字电平输出,这样就实现了“电-光-电”的转换及
传输,光是传输的媒介,因而输入端与输出端在电气上是绝缘的,也称为电隔离。
光电耦合器特点光电耦合器因为其独特的结构特点,因此在实际使用过程中,具有以下明显的优点:(1) 能够有效抑制接地回路的噪声,消除地干扰,使信号现场与主控制端在电气上完全隔离,避免了主控制系统受到意外损坏。
(2)。
几种常用的光耦反馈电路应用
在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。
但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。
而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。
本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。
1 常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。
副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431结合TLP521进行反馈。
这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。
常见的光耦反馈第1种接法,如图1所示。
图中,Vo为输出电压,Vd为芯片的供电电压。
com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。
注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。
图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP 521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com 引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。
光耦合电路
光耦合电路光耦合电路是一种将光电器件和电子器件相互耦合的电路,它通过光电转换的方式实现电路的隔离和信号的传输。
光耦合电路广泛应用于各种工业控制系统、仪器仪表、通信设备等领域,具有隔离性好、传输速度快、干扰抗能力强等优点。
光耦合电路的基本原理是利用光电器件(如光电二极管、光敏三极管、光敏电阻等)将电信号转换为光信号,然后通过光纤或光电缆将光信号传输到接收端,再由光电器件将光信号转换为电信号。
这样就实现了电路的隔离,有效地防止了电源干扰、地线干扰和互连干扰等问题。
光耦合电路的主要组成包括光电发射器、光电接收器和光纤(或光电缆)。
光电发射器负责将电信号转换为光信号,通常采用红外光发射二极管或红外光发射三极管。
光电接收器负责将光信号转换为电信号,通常采用光电二极管或光电三极管。
光纤(或光电缆)用于传输光信号,具有抗干扰能力强、传输损耗小等特点。
在实际应用中,光耦合电路常用于隔离输入输出信号、隔离控制信号和隔离电源信号等场合。
例如,在工业控制系统中,为了保护控制器和执行器之间的互连线路不受电源干扰和地线干扰,可以采用光耦合电路进行隔离。
又如,在通信设备中,为了防止信号传输过程中产生干扰和串扰,可以采用光耦合电路进行隔离。
光耦合电路的设计和应用需要考虑一些关键因素。
首先是光电器件的选择,要根据具体应用场景和要求选择适合的光电器件。
其次是光纤(或光电缆)的选择,要考虑传输距离、传输速度和传输损耗等因素。
此外,还需要考虑电路的隔离性能、传输速度、干扰抗能力和可靠性等方面的要求。
光耦合电路是一种利用光电转换技术实现电路隔离和信号传输的重要电路。
它在工业控制系统、仪器仪表、通信设备等领域发挥着重要作用。
随着光电器件和光纤技术的不断发展,光耦合电路将在更多领域得到应用,并发挥更大的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的光电耦合电路及其应用分析
光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。
同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。
可见光电耦合电路在各位的设计应用中发挥着重要的作用。
光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。
最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。
光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。
(1)组成的多谐振荡器电路图
工作流程为接通电源后:
A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态;
B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec)
C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???;
D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。
作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。
将直流电变为交流
电。
通过上述电路,可以更好的取出干扰。
特别是直流和交流电信号转化的时候,电磁干扰是一个不容忽视的干扰,这样可以更好的将信号进行转化和利用。
(2)组成开关电路图
工作流程以左图为例:
A、输入信号ui低电平,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;
B、ui高电平,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.
C、该电路因Ui为低电平时,开关不通,故为高电平导通状态.图2输入无信号或为低电平时,开关导通,故为低电平导通状态.
作用:开关电路是进行开和关状态的跳转,现在很多开关电路都已经实现通过自身的特性就可以进行开和关智能操作。
而上述的电路,通过光信号来判断状态的关闭,由于光信号的敏感性和准确性,可以使整个电路更加灵敏,反应时间更短。
(3)组成逻辑电路图
工作流程以与门逻辑为例:
A、与门逻辑表达式为P=A*B;
B、两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1;
C、还可以组成或门、与非门、或非门等逻辑电路。
作用:逻辑电路是数字电路中常用的基本电路之一。
通过光来进行信号的转换,可以让整个系统运行起来更加快速并且信号的传递不容易受到干扰和影响,从而让在实际应用中可以更好的得到理想的结果。
(4) 组成隔离耦合电路
工作原理以交流耦合放大电路为例:
适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。
交流耦合由于是交流电,电磁感性是不容忽视的,本身交流电由于本身就不是恒定稳定的,因而要很好的控制和反应它,就需要灵敏的器件,LED就是很好的一个选择。
通过上述的组合,可以让整个系统的输出更加理想。
(5)组成双稳态输出电路
工作原理:
(a)光电耦合器控制的双稳态输出开关电路,光电耦合开关接在两管的发射极回路上,能有效地解决输出与负载间的隔离问题。
(b)光电耦合开关的施密特电路。
当输入电压U1为低电平时,光电三极管C、e间呈高电阻,BG1导通,BG2截止,则输出电压U0为低电平;当输入电压U1大于鉴幅值时,光电三极管c、e间呈低电阻,则BG1截止,BG2导通,输出的电压U0为高电平。
调节电阻R3,即改变鉴幅电平。
但是在实际的应用中,我们在设计光耦光电隔离电路时,也必须正确选择光耦合器的型号及参数。
在通常情况下,单芯片集成多路光耦的器件速度下相比之下比较慢,大多都是单路的速度快,而且在制作工艺上大量的隔离器件需要占用很大布板面积导致设计的成本大大增加。
在设计中需要在性能参数可以满足的条件上,应该看看是否电路板尺寸、传输速度、设计成本等因素也符合要求。
光电耦合电路品种和类型非常多,在光电子DATA手册中,其型号超过上千种,一般都是按照光路径、输出形式、封装形式、传输信号、输出速度、通道数量、隔离特性、工作电压等来划分,在选择的时候根据实际的要求来查看手册就可以找到合适的产品用来设计和应用。
本文主要对常见的光电耦合电路及其应用分析,以组成多谐振荡器、组成开关、组成逻辑、隔离耦合、双稳态输出等电路作为例子深入的分析,常见光电耦合电路有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等,它们都是利用光电效应进行转化和利用,实现电一光一电的转换,从而实现更多的功能,各种都有自身的特点和优势。