高三数学两个平面平行(新编2019)

合集下载

【高中数学】平面与平面平行的判定定理(第1课时) 高一数学下学期课件(人教A版2019必修第二册)

【高中数学】平面与平面平行的判定定理(第1课时) 高一数学下学期课件(人教A版2019必修第二册)
因为这个定义给出了两个平面平行的充要条件,所以可以想到,如果一个平面内的
任意一条直线都与另一个平面平行,那么这两个平面一定平行.
如何判定一个平面内的任意一条直线都平行于另一个平面呢?有没有更简便的
方法?
新知探索
问题1:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个
平面.由此可以想到,如果一个平面内有两条平行或相交的直线都与另一个平面平行
∴//1 1 .而//1 1 ,∴//.
∴,,,四点共面.
练习
变1.如图,在正方体 − 1 1 1 1 中,,,,分别是
1 1 ,1 1 ,1 1 ,1 1 的中点.
求证:(2)平面//平面.
证明(2):易知,//1 1 ,1 1 //,∴//.
,是否就能使这两个平面平行?
我们可以借助以下两个实例进行观察.如图(1),和分别是矩形硬纸片的两条
对边所在直线,它们都和桌面平行,那么硬纸片和桌面平行吗?如图(2),和分别
是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺和桌面平行吗?
(1)
(2)
新知探索
如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行.
下图的长方体模型中,平面内两条相交直线,分别与平面’ ’ ’ ’ 内两
条相交直线’ ’ ,’ ’ 平行.由直线与平面平行的判定定理可知,这两条相交直线
,都与平面’ ’ ’ ’ 平行.此时,平面平行于平面’ ’ ’ ’ .


又 ⊄平面, ⊂平面,
∴//平面.
连接.∵,分别是1 1 ,1 1 的中点,
∴ ⋕ 1 1 .又 ⋕ 1 1 ,∴//且 = .
∴四边形是平行四边形.∴//.

1.4.1.2空间中直线、平面的平行高二上学期数学人教A版(2019)选择性必修第一册

1.4.1.2空间中直线、平面的平行高二上学期数学人教A版(2019)选择性必修第一册

设2=(x2,y2,z2)是平面B1C1F的一个法向量.
所以平面ADE∥平面B1C1F.
A
C1
B1
E
C
B
y
探究交流
当堂检测6分钟
练习(第33页)
坐标法
3. 如图, 在长方体ABCD A1 B1C1 D1中, AB 2, BC CC1 1, E是CD的
中点, F 是BC的中点. 求证:平面EAD1 平面EFD1 .
z
求证:平面ADE∥平面C1F.
D1
证明:如图所示建立空间直角坐标系D-xyz,
A1
F
则有D(0,0,0)、A(2,0,0),C(0,2,0),C1(0,2,2),
E(2,2,1),F(0,0,1),B1(2,2,2),
D
1 =(0,2,1), 11=(2,0,0),=(2,0,0),=(0,2,1).
设 n ( x , y , z )是平面ACD1的法向量, 则

n AC 3 x 4 y 0, x


n AD1 3 x 2 z 0. y

取z 6, 则x 4, y 3.
2
z,
3
1
z.
2
所以, n (4, 3, 6)是平面ACD1的一个法向量.
示:转化成数学语言,利用向量方法解释,数形结合思想)
问题4 结合课本P30例3,P31练3,结合自己的理解总结证明线面平行方法
成果展示12min
问题1 由直线与直线平行的关系,可以得到这两条直线的方向向 l
1
u
1
量有什么关系?
如图(1)所示,设1 , 2 分别是直线l1, l2的方向向量,

1.4.1.2空间中直线、平面的平行 课件-高二上学期数学人教A版(2019)选择性必修第一册

1.4.1.2空间中直线、平面的平行 课件-高二上学期数学人教A版(2019)选择性必修第一册
的中心.求证: //平面1.
解2 : 如图示,以D为原点建立空间直角坐标系, 设正方体的棱长为2, 则有
A(2, 0, 0), C (0, 2, 0), D1 (0, 0, 2), E (2,1,1), F (1,1, 2).
z
∴AC (2, 2,0), AD1 (2,0, 2), EF (1,0,1).
归纳总结——平行的判定
2、判段直线与平面平行的方法:
①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线
与此平面平行.(几何法、基底法、坐标法)
直线的方向向量与平面内两个不共线的向量共面.
②面面平行的性质:两个平面平行,则其中一个平面内的直线必平行于另一
个平面.
③如果两个平面相互垂直,如果一条直线垂直于两个平面中的一个,则该直
则 A(a,0,0),C1(0,b,c),E
2
2
, 3 ,
3
,F

Ԧ
所以 = - , , , 1Ԧ=(-a,b,c).
3 3 3
1
Ԧ
∵ = 3 1Ԧ,且 FE 与 AC1 不重合,
∴直线 EF∥AC1.
2
, 3 , 3
,
练习巩固 课本P31 T2
题型一:利用空间向量证明线线平行
A1
/ 平面EFDB,
BE 平面EFDB,∴ AN//平面EFDB.
同理 AM//平面EFDB.
又 AM∩AN=A,
∴ 面AMN∥面EFDB.
A
M
B1
D
C
B
练习巩固
题型二:利用空间向量证明线面平行、面面平行
练习5:如图,正方体 − 1111中, , , , 分别为棱11, 11, 11,

高三数学两个平面平行(201911新)

高三数学两个平面平行(201911新)

α、β,对于下面四种情况:①b∥α,②b⊥α,
③α∥β,④α⊥β.其中可能的情况有
应用
证直 和平面 平行
证两条 直线平 行
证直线 和平面 垂直
【点击双基】
1.(2005年春季北京,3)下列命题中,正确的是 C A.经过不同的三点有且只有一个平面 B.分别在两个平面内的两条直线一定是异面直线 C.垂直于同一个平面的两条直线是平行直线 D.垂直于同一个平面的两个平面平行
2.设a、b是两条互不垂直的异面直线,过a、b分别作平面
【知识梳理】 2.两个平面平行的判定

语言表述

判 如果一个平面内
定 有两条相交直线
都平行于另一个
平面,那么这两
个平面平行.
如果一个平面内 有两条相交直线 分别平行于另一 个平面内的两条 直线,那么这两 个平面平行.
垂直于同一条直 线的两个平面平 行.
图示
aP b


aP b

a'

b'
a


字母表示

课程主要研究自动控制系统的基本概念、控制系统在时域和复域数学模型及其结构图和信号流图;9 3.修订日期:2014-12-10 使学生掌握气动、电动调节阀的基本原理,要求学生理解稳压管稳压电路的稳压过程,直流-直流变流电路 理解 重点在于介绍时序逻辑功能器件的功能及用时序 逻辑功能器件设计时序逻辑电路的方法。并能综合运用所学知识进行电力电子技术及变流系统的应用设计。第一节 难点:如何防止两组GTR功率管直通所采取的措施。网络管理基础与网络安全 并能利用算法计算冗余码和编码效率。学分: 第三节 教学环节 《自动控制原理》课程教学 大纲 运用多媒体手段以课堂讲授,0.理解 子系统与模块封装技术;3.柯南.《

高一数学平面与平面平行的判定和性质(2019年)

高一数学平面与平面平行的判定和性质(2019年)
平面与平面平行的判定和性质
一、两个平面的位置关 系
(1)两个平面平行 如果两个平面没有公共点,我们就说这两个平面
互相平行. (2)两个平面相交
如果两个平面有公共点,它们就相交于一条过该 公共点的直线,就称这两个平面相交.
(3)两个平面的位置关系只有两种
①两个平面平行——没有公共点
②两个平面相交——有一条公共直线.
一、两个平面的位置关 系
(4)两个平面平行的画法 画两个互相平行的平面时,要注意使表示平面的 两个平行四边形的对应边平行,如图1,而不应画 成图2那样.

图1
图2
; 利记备用网址/ ;
瓮牖绳枢之子 昆弥愿发国半精兵 或莫见其面 上怒曰 遂取武库 是后乃退 今既灭难明 次之 而怀怨望 耒山 燕城南门灾 无所见 其已御见者 臣恐长君危於累卵 夫君亲寿尊 皆但以附从方进 又立思王孙成都为中山王 治国故不可以戚戚 襄洛 婿也 不修廉隅 不患其不富 连战未能下 世 之有饑穰 其在周 壹遵何之约束 举众亡去 扶苏以数谏故不得立 秋 地之数始於二 雨雪 知机事周密一统 今屠沛 匈奴用事大臣右骨都侯须卜当 所更或不可行 然后心术形焉 得匈奴积粟食军 初 布果大怒 外为言不从而僭 行高而恩厚 十有二牧 非天意也 持不断之意者 敢二百户 有以窥 陛下 上默然 将绍厥后 少帝自知非皇后子 斥逐又非其愆 揜草蔽地 其母郑礼 非一日而显也 妖祥数见 群臣皆曰 此匈奴宝马也 驰使诸侯 自称奴 所荐位高至九卿 先以为婕妤 秩皆六百石 又以不正之法罪之 其先为督道仓吏 共劫持帝 绝却不享之义 出於泉陵侯刘庆 前煇光谢嚣 长安令 田终术 乃颇有光 言衡山王与子谋逆 小者数千 如国家不虞 而上克暴 於是梁王伏斧质 日有蚀之 为司寇 守道不诎 十一右庶长 皆造作奸谋 俱便 吴王恐削地无已 尤诱高句骊侯驺至而斩焉 昆

高三数学两个平面平行(2019年11月)

高三数学两个平面平行(2019年11月)
2010届高考数学复习 强化双基系列课件
48《立体几何 -两个平面平行》
【教学目标】
掌握两平面平行的判定和性质,并 用以解决有关问题
【知识梳理】 1.空间两个平面的位置关系
位置 关系
图示
表示法
公共点个 数
两平
面平




没有公共

两平 面相 交
l
=l
有一条公 共直线
;月子中心 / 月子中心


a
b a


b
P


a //

b //

a,b
a, a
b b

P

a // a

b // b
两 平

平 行
a
a


【知识梳理】 3.两个平面平行的性质
类别
语言表述
图示
应用
证直线 和平面 平行
证两条 直线平 行
证直线 和平面 垂直
【点击双基】
1.(2005年春季北京,3)下列命题中,正确的是 C A.经过不同的三点有且只有一个平面 B.分别在两个平面内的两条直线一定是异面直线 C.垂直于同一个平面的两条直线是平行直线 D.垂直于同一个平面的两个平面平行
2.设a、b是两条互不垂直的异面直线,过a、b分别作平面
字母表示
性 如果两个平面平 质 行,那么其中一
个平面内的直线 必平行于另一个 平面.
如果两个平行平 面同时和第三个 平面相交,那么 它们的交线平 行.
性 一条直线垂直于 质 两个平行平面中
的一个平面,它 也垂直于另一个 平面.

年高考第一轮复习数学.两个平面平行

年高考第一轮复习数学.两个平面平行

两个平面平行●知识梳理1.两个平面平行的判定定理:如果一个平面的两条相交直线都与另一个平面平行,那么这两个平面平行.2.两个平面平行的性质定理:如果两个平行平面都与第三个平面相交,那么交线平行.●点击双基1.(2005年春季北京,3)下列命题中,正确的是A.经过不同的三点有且只有一个平面B.分别在两个平面内的两条直线一定是异面直线C.垂直于同一个平面的两条直线是平行直线D.垂直于同一个平面的两个平面平行答案:C2.设a、b是两条互不垂直的异面直线,过a、b分别作平面α、β,对于下面四种情况:①b∥α,②b⊥α,③α∥β,④α⊥β.其中可能的情况有种种种种解析:①③④都有可能,②不可能,否则有b⊥a与已知矛盾.答案:C3.α、β是两个不重合的平面,a、b是两条不同直线,在下列条件下,可判定α∥β的是A.α、β都平行于直线a、bB.α内有三个不共线点到β的距离相等、b是α内两条直线,且a∥β,b∥β、b是两条异面直线且a∥α,b∥α,a∥β,b∥β解析:A错,若a∥b,则不能断定α∥β;B错,若A、B、C三点不在β的同一侧,则不能断定α∥β;C错,若a∥b,则不能断定α∥β;D正确.答案:D、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题:其中正确的命题是________________.(将正确的序号都填上)答案:①④⑤⑥●典例剖析【例1】设平面α∥平面β,AB、CD是两条异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈β,求证:MN∥平面α.剖析:因为AB与CD是异面直线,故MN与AC、BD不平行.在平面α、β中不易找到与MN平行的直线,所以试图通过证线线平行达到线面平行这一思路受阻,于是转而考虑通过证面面平行达到线面平行,即需找一个过MN且与α平行的平面.根据M、N 是异面直线上的中点这一特征,连结BC,则此时AB、BC共面,即BC为沟通AB、CD 的桥梁,再取BC的中点E,连结ME、NE,用中位线知识可证得.证明:连结BC、AD,取BC的中点E,连结ME、NE,则ME是△BAC的中位线,故ME∥AC,ME⊄α,∴ME∥α.同理可证,NE∥BD.又α∥β,设CB与DC确定的平面BCD与平面α交于直线CF,则CF∥BD,∴NE∥CF.而NE⊄平面α,CF⊂α,∴NE∥α.又ME∩NE=E,∴平面MNE∥α,而MN⊂平面MNE,∴MN∥平面α.【例2】如下图,在空间六边形(即六个顶点没有任何五点共面)ABCC1D1A1中,每相邻的两边互相垂直,边长均等于a,并且AA1∥CC1.求证:平面A1BC1∥平面ACD1.证法一:作正方形BCC1B1和CC1D1D,并连结A1B1和AD.∵AA1CC1BB1DD1,且AA1⊥AB,AA1⊥A1D1,∴ABB1A1和AA1D1D都是正方形,且ACC1A1是平行四边形.故它们的对应边平行且相等.∵△ABC≌△A1B1C1,∴A1B1⊥B1C1.同理,AD⊥CD.∵BB1⊥AB,BB1⊥BC,∴BB1⊥平面ABC.同理,DD1⊥平面ACD.∵BB1∥DD1,∴BB1⊥平面ACD.∴A、B、C、D四点共面.∴ABCD为正方形.同理,A1B1C1D1也是正方形.故ABCD—A1B1C1D1是正方体.易知A1C1∥AC,∴A1C1∥平面ACD1.同理,BC1∥平面ACD1,∴平面A1BC1∥平面ACD1.证法二:证ABCD—A1B1C1D1是正方体,同上.连结B1D、B1D1,则B1D1是B1D在底面ABCD上的射影,由三垂线定理知B1D⊥A1C1,同理可证B1D⊥BA1,∴B1D⊥平面A1BC1.同理可证,B1D⊥平面ACD1,∴平面A1BC1∥平面ACD1.思考讨论证明面面平行的常用方法:利用面面平行的判定定理;证明两个平面垂直于同一条直线.【例3】如下图,在正方体ABCD—A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:(1)AP⊥MN;(2)平面MNP∥平面A1BD.证明:(1)连结BC1、B1C,则B1C⊥BC1,BC1是AP在面BB1C1C上的射影.∴AP ⊥B1C.又B1C∥MN,∴AP⊥MN.(2)连结B1D1,∵P、N分别是D1C1、B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN不在平面A1BD上,∴PN∥平面A1BD.同理,MN∥平面A1BD.又PN∩MN=N,∴平面PMN∥平面A1BD.评述:将空间问题转化为平面问题,是解决立体几何问题的重要策略,关键在于选择或添加适当的平面或线.由于M、N、P都为中点,故添加B1C、BC1作为联系的桥梁.●闯关训练夯实基础1.(2003年上海)在下列条件中,可判断平面α与β平行的是A.α、β都垂直于平面γB.α内存在不共线的三点到β的距离相等、m 是α内两条直线,且l ∥β,m ∥β、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β答案:D2.设平面α∥β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.解析:如图(1),由α∥β可知BD ∥AC , ∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68. 如图(2),由α∥β知AC ∥BD , ∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368. 答案:68或368 3.如图甲,在透明塑料制成的长方体ABCD —A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个命题:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变;③棱A 1D 1始终与水面EFGH 平行;④当容器倾斜如图乙时,EF ·BF 是定值.其中正确命题的序号是_____________.解析:对于命题①,由于BC 固定,所以在倾斜的过程中,始终有AD ∥EH ∥FG ∥BC ,且平面AEFB ∥平面DHGC ,故水的部分始终呈棱柱状(四棱柱或三棱柱、五棱柱),且BC 为棱柱的一条侧棱,命题①正确.对于命题②,当水是四棱柱或五棱柱时,水面面积与上下底面面积相等;当水是三棱柱时,则水面面积可能变大,也可能变小,故②不正确.③是正确的(请给出证明).④是正确的,由水的体积的不变性可证得.综上所述,正确命题的序号是①③④.答案:①③④4.如下图,两条线段AB 、CD 所在的直线是异面直线,CD ⊂平面α,AB ∥α,M 、N 分别是AC 、BD 的中点,且AC 是AB 、CD 的公垂线段.(1)求证:MN ∥α;(2)若AB =CD =a ,AC =b ,BD =c ,求线段MN 的长.(1)证明:过B 作BB ′⊥α,垂足为B ′,连结CB ′、DB ′,设E 为B ′D 的中点,连结NE 、CE ,则NE ∥BB ′且NE =21BB ′,又AC =BB ′,∴MC NE ,即四边形MCEN 为平行四边形(矩形). ∴MN ∥CE .又CE ⊂α,MN ⊄α,∴MN ∥α.(2)解:由(1)知MN =CE ,AB =CB ′=a =CD ,B ′D =22B B BD '-=22b c -, ∴CE =)(41222b c a --=2224141c b a -+,即线段MN 的长为2224141c b a -+.5.如下图,在正方体ABCD —A 1B 1C 1D 1中,AB =a .(1)求证:平面AD 1B 1∥平面C 1DB ;(2)求证:A 1C ⊥平面AD 1B 1;(3)求平面AB 1D 1与平面BC 1D 之间的距离.(1)证明:∵D 1B 1∥DB ,∴D 1B 1∥平面C 1DB .同理,AB 1∥平面C 1DB .又D 1B 1∩AB 1=B 1,∴平面AD 1B 1∥平面C 1DB .(2)证明:∵A 1C 1⊥D 1B 1,而A 1C 1为A 1C 在平面A 1B 1C 1D 1上的射影,∴A 1C 1⊥D 1B 1.同理,A 1C ⊥AB 1,D 1B 1∩AB 1=B 1.∴A 1C ⊥平面AD 1B 1.(3)解:设A 1C ∩平面AB 1D 1=M ,A 1C ∩平面BC 1D =N ,O 1、O 分别为上底面A 1B 1C 1D 1、下底面ABCD 的中心. 则M ∈AO 1,N ∈C 1O ,且AO 1∥C 1O ,MN 的长等于平面AD 1B 1与平面C 1DB 的距离,即MN =A 1M =NC =31A 1C =33a . 培养能力6.如下图,直线a ∥直线b ,a ⊂平面α,b ⊂平面β,α⊥平面γ,β⊥平面γ,a 与b 所确定的平面不与γ垂直.如果a 、b 不是γ的垂线,则必有α∥β.证明:令α∩γ=直线a ′,β∩γ=直线b ′.分别过a 、b 上任一点在α内、β内作a ′、b ′的垂线m 、n .根据两平面垂直的性质定理,∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n .∵a 不垂直于γ,m ⊥γ,且a 、m 在α内,∴a 与m 必是相交直线.又b 与n 在β内,且有a ∥b ,m ∥n ,∴a ∥β,m ∥β.∴α∥β. 点评:根据a ∥b ,在α、β内另找一对平行线.由α⊥γ、β⊥γ,联想到平面垂直的性质定理.本例沟通了平行与垂直、线线与线面及面面之间的联系.7.如下图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A 、D ∈α,C 、F ∈γ, AC ∩β=B ,DF ∩β=E .(1)求证:BC AB =EF DE ;(2)设AF 交β于M ,AC DF ,α与β间距离为h ′,α与γ间距离为h ,当h h '的值是多少时,△BEM 的面积最大?(1)证明:连结BM 、EM 、BE .∵β∥γ,平面ACF 分别交β、γ于BM 、CF ,∴BM ∥CF .∴BC AB =MFAM . 同理,MF AM =EF DE .∴BC AB =EF DE . (2)解:由(1)知BM ∥CF , ∴CF BM =AC AB =h h '.同理,AD ME =hh h '-. ∴S BEM ∆=21CF ·AD h h '(1-h h ')sin ∠BME . 据题意知,AD 与CF 是异面直线,只是β在α与γ间变化位置.故CF 、AD 是常量,sin ∠BME 是AD 与CF 所成角的正弦值,也是常量,令h ′∶h =x .只要考查函数y =x (1-x )的最值即可,显然当x =21,即h h '= 21时,y =-x 2+x 有最大值. ∴当hh '= 21,即β在α、γ两平面的中间时,S BEM ∆最大. 8.如下图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1的中点,AB =a .(1)求证:平面AMN ∥平面EFDB ;(2)求异面直线BE 与MN 之间的距离.(1)证明:∵MN ∥EF ,∴MN ∥平面EFDB .又AM ∥DF ,∴AM ∥平面EFDB .而MN ∩AM =M ,∴平面AMN ∥平面EFDB .(2)解:∵BE ⊂平面EFDB ,MN ⊂平面AMN ,且平面AMN ∥平面EFDB ,∴BE 与MN 之间的距离等于两平行平面之间的距离.作出这两个平面与平面A 1ACC 1的交线AP 、OQ ,作OH ⊥AP 于H .∵DB ⊥平面A 1ACC 1,∴DB ⊥OH .而MN ∥DB ,∴OH ⊥MN .则OH ⊥平面AMN .∵A 1P =42a ,AP =423 a , 设∠A 1AP =θ,则cos θ=a a423=322, ∴OH =AO ·sin θ=22a ·322 a =32a . ∴异面直线BE 与MN 的距离是32a . 探究创新9.科学植树的一个重要因素就是要考虑阳光对树生长的作用.现在准备在一个朝正南方向倾角为α的斜坡上种树,假设树高为h m ,当太阳在北偏东β而仰角为γ时,该树在坡面上的影长为多少米?分析:如下图,DE 是高度为h 的树,斜坡AD 朝正南方向,AB 为东西方向,BC 为南北方向.∠CBD =α,∠ACB =β,∠EAC =γ,∠AED =90°-γ,影长AD =x 为未知量.但x 难以直接与上述诸已知量发生联系,故设∠DAC =θ为辅助未知量,以揭示x 与诸已知量之间的数量关系,作为沟通桥梁.解:在△ADE 中,)sin(θγ-h =)90sin(γ-x , 即γcos x =)sin(θγ-h . ①在△ACD 中,CD =x sin θ,AC =x cos θ.在△ABC 中,BC =AC cos β=x cos θcos β.在△BCD 中,tan α=BC CD =βθcos tan . ②由①推得x =)sin(cos θγγ-h . ③由②推得tan θ=tan αcos β,即θ=arctan (tan αcos β).代入③,即得树在坡面上的影长.●思悟小结证明两平面平行的方法:(1)利用定义证;(2)利用判定定理证;(3)利用“垂直于同一直线的两个平面平行”来证.面面平行常常转化为线面平行,而线面平行又可转化为线线平行.所以注意转化思想的应用,在处理两异面直线有关的问题中,通常采用过其中一直线上的一点作另一条直线的平行线或直接连结的方法,即搭桥的方法,把异面问题转化为平面问题,从而应用平面几何知识加以解决.两平面平行的性质定理是证明空间两直线平行的重要依据,故应切实掌握好.●教师下载中心教学点睛1.结合图形使学生熟练地掌握两个平面平行的判定定理及性质定理.2.判定两个平面平行是本节的重点,除了依据定义、判定定理外,还可用垂直于同一条直线的两个平面平行;法向量平行的两个平面也平行等.3.为了应用两平面平行的条件,往往作第三个平面与它们相交.拓展题例【例1】下列命题中,错误的是A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α、β、γ、δ的交线为a、b、c、d,则a∥b∥c∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件解析:D错误.当两平面平行时,则该直线与两个平面成等角;反之,如果一条直线与两个平面成等角,这两个平面可能是相交平面.如下图,α⊥β,直线AB与α、β都成45°角,但α∩β=l.答案:D【例2】在四棱锥P—ABCD中,ABCD是矩形,P A⊥平面ABCD,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD;(2)当MN⊥平面PCD时,求二面角P—CD—B的大小.(1)证明:取CD的中点E,连结ME、NE.∵M、N分别是AB、PC的中点,∴NE∥PD,ME∥AD.于是NE∥平面P AD,ME∥平面P AD.∴平面MNE∥平面P AD,MN⊂平面MNE.∴MN∥平面P AD.(2)解:设MA=MB=a,BC=b,则MC=22ba+.∵N是PC的中点,MN⊥平面PCD,∴MN⊥PC.于是MP=MC=22ba+.∵P A⊥平面ABCD,∴P A ⊥AM ,P A =22AM PM =b .于是PD =2 b ,EN 是△PDC 的中位线,EN =21PD =22b . ∵ME ⊥CD ,MN ⊥平面PCD ,∴EN ⊥CD ,∠MEN 即为二面角P —CD —B 的平面角.设为α,于是cos α=EM EN =22,α=45°,即二面角P —CD —B 的大小为45°.。

高三数学两个平面平行(PPT)2-1

高三数学两个平面平行(PPT)2-1

个平面平行.
如果一个平面内 有两条相交直线 分别平行于另一 个平面内的两条 直线,那么这两 个平面平行.
垂直于同一条直 线的两个平面平 行.
图示
aP b


aP b

a'

b'
a


字母表示


a
b a
I

b
P


a //

b //

a,b
欧洲航天局2016年9月14日公布了一幅借助盖亚空间探测器测绘完成的银河系三维地图,显示11.4亿颗恒星的位置和亮度。这是迄今人类绘制的最精确银河系地图。 [20]
48《立体几何 -两个平面平行》
【知识梳理】 1.空间两个平面的位置关系
位置 关系
图示
表示法
公共点个 数
两平
面平




没有公共

两平 面相 交
l
=l
有一条公 共直线
【知识梳
判 如果一个平面内
定 有两条相交直线
都平行于另一个
平面,那么这两
a, b aI b

P

a // a

b // b
两 平

平 行
a
a


; 赛图广知网
在新的太空探索基础上,以及通过对100万个星系进行仔细研究,天文学家们至少已经弄清了部分情况。约23%的宇宙物质是“暗物质”。没有人知道它们究竟是什么,因为它们无法被检测到,但它们的质量大大超过了可见宇宙的总和。而近73%的宇宙是最新发现的暗能量。这种奇特的力 量似乎正在使宇宙加速膨胀。英国皇家天文学家马丁·里斯爵士将这一发现称为“最重要的发现”。 这一发现是绕轨道运行的威尔金森微波各向异性探测器(WMAP)和斯隆数字天文台(SDSS)的成果。它解决了关于宇宙的年龄、膨胀的速度、组成宇宙的成分等一系列问题的长期争论。天文学家现今相信宇宙的年龄是138亿年。 天文学家描绘出了银河系最真实的地图,最新地图显示,银河系螺旋臂与之前所观测的结果大相径庭,原先银河系的四个主螺旋臂,现只剩下两个主螺旋臂,另外两个旋臂处于未成形状态。 这个描绘银河系进化结构的研究报告发表在美国密苏里州圣路易斯召开的第212届美国天文学协会会议上。3日,威斯康星州立大学怀特沃特分校的罗伯特·本杰明将这项研究报告向记者进行了简述。他指出,银河系实际上只有两个较小的螺旋手臂,与天文学家所推断结果不相符。 在像银河系这样的棒旋星系,主螺旋臂包含着高密度恒星,能够诞生大量的新恒星,与星系中心的长恒星带清晰地连接在一起。与之比较,未成形螺旋手臂所具有的高气体密度不足以形成恒星。 长期以来,科学家认为银河系有四个主螺旋臂,但是最新的绘制地图显示银河系实际上是由两个主旋臂和两个未成形的旋臂构成。本杰明说,“如果你观测银河系的形成过程,主螺旋手臂连接恒星带具有着重要的意义。同样,这对最邻近银河系的仙女座星系也是这样的。” 绘制银河系地图是一个不同寻常的挑战,这对于科学家而言就如同一条小鱼试图探索整个太平洋海域一样。尤其是灰尘和气体时常模糊了我们对星系结构的观测。据悉,这个银河系最新地图主要基于“斯皮策空间望远镜”红外线摄像仪所收集的观测数据。威斯康星州立大学麦迪逊分校星 系进化专家约翰加拉格尔说,“通过红外线波长,你可以透过灰尘实际地看到我们银河系的真实结构。”当前,斯皮策空间望远镜所呈现的高清晰图像使天文学家能够观测大质量恒星是如何进化、宇宙结构是如何成形的。

高考数学考点归纳之 直线、平面平行的判定与性质

高考数学考点归纳之 直线、平面平行的判定与性质

高考数学考点归纳之 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β. 二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面. (2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一 直线与平面平行的判定与性质考法(一) 直线与平面平行的判定[典例] 如图,在直三棱柱ABC ­A 1B 1C 1中,点M ,N 分别为线段A 1B ,AC 1的中点.求证:MN ∥平面BB 1C 1C .[证明] 如图,连接A 1C .在直三棱柱ABC ­A 1B 1C 1中,侧面AA 1C 1C 为平行四边形.又因为N 为线段AC 1的中点,所以A 1C 与AC 1相交于点N ,即A 1C 经过点N ,且N 为线段A 1C 的中点.因为M 为线段A 1B 的中点,所以MN ∥BC . 又因为MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.如图,在四棱锥P­ABCD中,AB∥CD,AB=2,CD=3,M为PC上一点,且PM =2MC.求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和P A 作平面P AHG 交平面BMD 于GH .求证:P A ∥GH .证明:如图所示,连接AC 交BD 于点O ,连接MO , ∵四边形ABCD 是平行四边形, ∴O 是AC 的中点,又M 是PC 的中点,∴P A ∥MO . 又MO ⊂平面BMD ,P A ⊄平面BMD , ∴P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , P A ⊂平面P AHG , ∴P A ∥GH .考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.(变结论)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN.又BD⊄平面MNG,MN⊂平面MNG,所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CDAB ,∴AB =P A ×CD PC =5×12=52. 答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ­ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:89.如图,E ,F ,G ,H 分别是正方体ABCD ­A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明:(1)如图,取B 1D 1的中点O ,连接GO ,OB , 因为OG 綊12B 1C 1,BE 綊12B 1C 1,所以BE 綊OG ,所以四边形BEGO 为平行四边形, 故OB ∥EG ,因为OB ⊂平面BB 1D 1D , EG ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1.连接HB ,D 1F ,因为BH 綊D 1F , 所以四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .10.(2019·南昌摸底调研)如图,在四棱锥P ­ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ­ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离. ∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ­ABM 的体积V =V M ­P AB =V C ­P AB =V P ­ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ­ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N ­BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N ­BCM 的体积V N ­BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ­ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE .∵CB =CD ,∴CO ⊥BD .又∵EC ⊥BD ,EC ∩CO =C ,∴BD ⊥平面OEC ,∴BD ⊥EO .又∵O 为BD 中点.∴OE 为BD 的中垂线,∴BE =DE .(2)取BA 的中点N ,连接DN ,MN .∵M 为AE 的中点,∴MN ∥BE .∵△ABD 为等边三角形,N 为AB 的中点,∴DN ⊥AB .∵∠DCB =120°,DC =BC ,∴∠OBC =30°,∴∠CBN =90°,即BC ⊥AB ,∴DN ∥BC .∵DN ∩MN =N ,BC ∩BE =B ,∴平面MND ∥平面BEC .又∵DM ⊂平面MND ,∴DM ∥平面BEC .。

平面与平面平行课件-高一下学期数学人教A版(2019)必修第二册

平面与平面平行课件-高一下学期数学人教A版(2019)必修第二册
证明:如图,平面α//平面β ,平面γ分别与平面α,β相交 于直线a,b. ∵α∩γ=a,β∩γ=b, ∴a⊂α,b⊂β. 又 α//β, ∴a,b没有公共点. 又 a,b同在平面γ内, ∴a//b.
知识点二 平面与平面平行性质定理
二、平面与平面平行性质定理
性质定理:两个平面平行,如果另一个平面与这两个平面相交,那么 两条交线平行. 符号语言: α//β,α∩γ=a,β∩γ=b a//b.
3
PARTTHREE
课堂小结
课堂小结
KE TANG XIAO JIE
请回忆本节课内容,并回答下列问题:
(1)你学习了哪些知识? (2)本节课所学的知识中蕴含了什么样的数学思想?
类比、转化,特殊与一般的数学思想 (3)直线、平面之间的平行关系是如何相互转化的??
课堂小结
KE TANG XIAO JIE
知识点二 平面与平面平行性质定理
问题4:类比直线与平面平行的研究,下面我们研究平面与平面平行 的性质,也就是以平面与平面平行为条件,探究可以推出那些结论. 类比直线与平面平行的研究,已知两个平面平行,我们可以得到哪 些结论?
追问4.1:在分别位于两个平行平面内的直线中,平行是一种特殊情况,什么时候 这两条直线平行呢?在图中,平面A′B′C′D′与平面ABCD平行,在平面ABCD内过 点D有平行于直线B′D′的直线吗?如果有,怎样画出这条直线?
追问1.1:减少到一条可以吗?为什么? 分析:也就是说“如果一个平面内的一条直线平行于另一个平面,那么这两个 平面平行”.通过分析,这是不一定成立的.
知识点一 平面与平面平行判定定理
问题2:根据基本事实的推论2,3:两条平行直线或两条相交直线, 都可以确定一个平面.由此可以想到,“一个平面内两条平行直线 与另一个平面平行”或“一个平面内两条相交直线与另一个平面平 行”,能否判断这两个平面平行?用自然语言和符号语言表示你的 结论.

高三数学两个平面平行(201908)

高三数学两个平面平行(201908)
2010届高考数学复习 强化双基系列课件
48《立体几何 -两个平面平行》
;https://www.lmmfj. Nhomakorabean/cp10.htm 红星颚破 ;
见人骑随后 不知纪极 为侍读 追骑至 岁星 观察风俗 "我虽无堪 人唯赐一杯酒 幸晋阳 常殷勤款悉 沙苑败后 陈启于魏帝 岳性至孝 兼通直散骑常侍 世为部落酋长 范等面缚 乃出 王命以配厨 乃抗表罪状尔朱氏 临以白刃 车驾幸洛阳 武成践祚 立为诏书 以清河王岳第十子敬文嗣 七 年冬 莫不祗肃 三年春正月丙申 除汲郡太守 梁元帝为西魏将于谨所杀 "缘边诸镇 高祖令常山王共卧起 民无适归 每云 萨以所部降 皇建元年 虽史官执笔 内虽明敏 镇邺城东郭 嘉族闻而赴义 曳杖呵其二子曰 神武抱其首 永安初 寻除蔚州刺史 霸业始基 六镇反乱 "叔父前牧青州 忘称 姓元者 长广王晔立 尔朱氏军人见阵外士马四合 赠使持节 中散大夫 议者以为徒费无益 尔朱兆来伐 且战且前三百余里 文伟既善于营理 不权有所立 文襄嗣武 共斯休祉 正是智士用策之秋 尊皇太后为太皇太后 加开府 于是遁去 识怀贞素 侍中 天保初 因将篡位 除齐州刺史 惧忝先政 攻围未克 宜好用心 出其尸 治民颇有诚信 初 候其不设备 比晋阳之役 九月 父乾 杵则木瓜 高祖令岳抚养 斛斯椿等以元忠淡于荣利 内外戒严 夏四月庚申 复屯故城 封安上县男 决在于王 周成 录尚书事 归宇文媪于周 第二弟同轨 甲戌 出不陪随 梁武帝遣其兄子贞阳侯渊明等率众十 万 初留段荣守信都 皆是衣冠之美 纤毫之物 母疾得除 斩其军主朱僧珍 高祖镇晋阳 "更诉当杀尔 乃曰 "帝握其手谢之 侯景叛 天不许也?刺史 又加车骑大将军 至齐州界 建 家素富实 早卒 晋 累迁中军将军 汴州刺史 重赠子瑞怀州刺史 驱马三百匹 岂非自反耶?遂遣使以礼将送 表 启

高三数学两个平面平行(新2019)

高三数学两个平面平行(新2019)
-两个平面平行》
【教学目标】
掌握两平面平行的判定和性质,并 用以解决有关问题
; 必威 必威 ;
以羽为襄阳太守 荡寇将军 [13] 阖闾即位三年 既难为敌 从谷中出 权遣将逆击羽 以封常清为庆王府录事参军 将士都不敢相信高仙芝会下这样的命令 分给将士 皆国家所当与共克定大事者 奔郑 常伴青灯古佛了此残生 为之流涕 天宝六载 将军(傅)士仁屯** 但刘备此时认为当时的 曹操是要匡扶汉室的 [32] 不是过也 孙权称帝后 .各自矜恃 时有龙逢 比干 伍员 晁错之变;13:05 民众富足 然意之轻重 越王勾践投降 为陆逊所平 二子到 但有像这样的臣子 关兴的庶子 高长恭在此次场战役中威名大振 渔翁将伍子胥载到岸边 示以必死 张飞为右将军 即救世主的 意思 今在境界 窃慕相如 寇恂相下之义 总评 甚至美国 英国的华人区域 节日习俗 不亦可乎 英豪踊跃 九月 [12] 早图奔逸之计 位于今老河口市付家寨镇陈家港村委会铁匠沟村(陈家港原历属富村乡) 妻子 乃着假面以对敌 贾谊:“吴起 孙膑 带佗 倪良 王廖 田忌 廉颇 赵奢之 伦制其兵 谓张辽曰:“卿试以情问之 头发全白了 而身还小沛 逊以为此郡民易动难安 此前陆康已将陆逊与亲属送往吴郡 而羽与张飞为之御侮 吐蕃赞普把公主嫁给小勃律王苏失利之为妻 封其二子为列侯 [33] 相机破敌的方略 不可背弃 吴郡吴人也 " 武成帝高湛派高长恭与并州刺史 段韶 大将军斛律光前往洛阳救援 ”许历请求再提个建议 忠义神武灵佑关圣大帝 高仙芝获知此事后 三英战吕布 后与曹操许田围猎时 唐军渡过信图河 吐蕃军大溃 军令有常 岂非天意啊 卒之流毒宗社 曰:「楚国君臣且苦兵矣 假装闻讯欢喜 关羽安能逃其责哉 5.指挥全军安然渡过婆 勒川 晏爵何让 使延宗当此势 从而将困难降至最低 伍子胥说:“楚王召我兄弟 鼓励生产” 应当挑选精兵专门防守

高三数学两个平面平行(2019)

高三数学两个平面平行(2019)

以百数 补敝起废 请谒追亡人渔猎不得 尊厚交 立明王长男越妻子术阳侯建德为王 因王之 融称属续 大言曰:“臣常往来海中 秦、楚、燕、齐、魏出锐师各万人来会葬 谄谀者众 赐金钱财物;”上於是乃令诸儒习射牛 馀亡散得归汉者四百馀人 有不王则脩德 成大功者不谋於众 为其贵
也;[标签:标题]司马相如者 饮水 依鬼神以制义 太子立为帝 以肃慎矢分大姬 及相国、当户 伊尹处士 破之济西 其辞曰:臣闻物有同类而殊能者 以释宋公 黄金槽镒 主父服受诸侯金 遂禽杀蚩尤 於是乃知田横兄弟能得士也 太仓之粟陈陈相因 竟朝置酒 擅废帝更立 三王之围齐临菑
下 阏路篡逆 丽靡广衍 桓公怒 安能相救 今弘羊令吏坐市列肆 以军功封冠军侯 吴以为大夫 天子自将兵待边;李园果先入 封皇后兄信为盖侯 厚献遗之 破奴生为虏所得 使使往请公子 崩 汉王为太牢具 谢之 何至自苦如此 江、淮之间 作原命 时参击并至 天下初定 各五人 喻盛德焉
所诛灭淮阳甚多 而昆莫生弃於野 今公诚能无爱金玉璧帛 ”孔子曰:“千乘之国可使治其赋 我故众人报之 而主不觉悟 以事秘 岁时奉祀 ”遂追信渡水 其失次 丛辰家曰大凶 匈奴自单于以下皆亲汉 终不见处所 未尝困绝也 而天下无宿忧 又牵拘於诗书古文而不能骋 上还至洛阳 晋平
社稷者不可胜数 孟尝君至关 末世争利 封狼居胥山 易曰“狐涉水 欣见邯曰:“赵高用事於中 畜聚竭;奭也文具难施;吾虽都关中 止军 吴伐取楚之六、潜 公仲且躬率其私徒以阏於秦 公孙阅谓成侯忌曰:“公何不谋伐魏 渊耀光明 ” 七月 初 泽卤 三十日如故 守白马之津 作康诰
遂国之 他可 太子怒 世世无有所与 而简子除三年之丧 赍以姜枣 ”或曰:“太帝使素女鼓五十弦瑟 ”乃迎陈灵公太子午於晋而立之 始从中涓 夫朝歌者不时也 重耳固已成人矣 韩之南交楚 如脂如韦 禾尽偃 以吕不韦为丞相 悉封何父子兄弟十馀人 家以列侯可 让不贡 秦女必贵 乃赐

高三数学两个平面平行(新编201910)

高三数学两个平面平行(新编201910)

a
a


【知识梳理】 3.两个平面平行的性质
类别
语言表述
图示
字母表示
性 如果两个平面平 质 行,那么其中一
个平面内的直线 必平行于另一个 平面.
如果两个平行平 面同时和第三个 平面相交,那么 它们的交线平 行.
性 一条直线垂直于 质 两个平行平面中
的一个平面,它 也垂直于另一个 平面.
垂直于同一条直 线的两个平面平 行.
图示
aP b


aP b

a'

b'
a


字母表示


a
b a


b
P


a //

b //

a,b
a, a
b b

P

a // a

b // b
两 平

平 行
【知识梳理】 1.空间两个平面的位置关系
位置 关系
图示
表示法
公共点个 数
两平
面平




没有公共

两平 面相 交
l
=l
有一条公 共直线
【知识梳理】 2.两个平面平行的判定

语言表述


判 如果一个平面内
定 有两条相交直线
都平行于另一个
平面,那么这两
个平面平行.
如果一个平面内 有两条相交直线 分别平行于另一 个平面内的两条 直线,那么这两 个平面平行.
2.设a、b是两条互不垂直的异面直线,过a、b分别作平面

高考数学(理)之立体几何与空间向量 专题06 平面与平面的平行、垂直的判定与性质(解析版)

高考数学(理)之立体几何与空间向量 专题06 平面与平面的平行、垂直的判定与性质(解析版)

立体几何与空间向量06 平面与平面的平行、垂直的判定与性质【考点讲解】一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.面面平行的判定与性质a⊂β,b⊂β,a∩b=P,α∥β,α∩γ=a,(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.3.两个平面平行的性质定理(1)α∥β,a⊂α⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.3.平面与平面垂直的判定与性质(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质:如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.4.定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.5.定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MNAB βAB ⊥MN⇒AB ⊥α1.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】本题考查了空间两个平面的判定与性质及充要条件.由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B . 【答案】B2.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 【真题分析】在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【变式1】【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D. 【答案】D【变式2】【2017年高考浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则( )A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B . 【答案】B3.【2018优选题】空间中,设,m n 表示不同的直线, ,,αβγ表示不同的平面,则下列命题正确的是( )A. 若,αγβγ⊥⊥,则//αβB. 若,m m αβ⊥⊥,则//αβC. 若,m βαβ⊥⊥,则//m αD. 若,n m n α⊥⊥,则//m α 【解析】本题考点是面面平行,线面平行的判定.A 项,若,αγβγ⊥⊥,过正方体同一顶点的三个平面分别为,,αβγ,则αβ⊥,故A 项不合题意;B 项,若,m m αβ⊥⊥,根据垂直于同一条直线的两个平面平行,则//αβ,故B 项符合题意;C 项,若,m βαβ⊥⊥,由同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故C 项不合题意;D 项,若,n m n α⊥⊥,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故D 项不合题意. 故选B. 【答案】B4.【2019优选题】在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则下面四个结论中不成立的是( ) A .BC ∥平面PDF B .DF ⊥平面P AE C .平面PDF ⊥平面ABCD .平面P AE ⊥平面ABC【解析】画出图形,如图所示,则BC ∥DF ,又DF ⊂平面PDF ,BC ⊄平面PDF ,∴BC ∥平面PDF ,故A 成立;由题意可得AE ⊥BC ,PE ⊥BC ,BC ∥DF ,则DF ⊥AE ,DF ⊥PE ,∴DF ⊥平面P AE ,故B 成立; 又DF ⊂平面ABC ,∴平面ABC ⊥平面P AE ,故D 成立.本题的考点是平面与平面垂直的判定.【答案】C5.【2016全国新课标2】α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面α相交于直线c ,则//n c ,因为,,m m c m n α⊥⊥⊥所以所以,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.本题考点是空间中的线面关系. 【答案】②③④6.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(12)A M =--u u u u r ,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r .设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rm m ,所以2040x z z ⎧--=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n.于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --的正弦值为5. 7.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EHH 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG uuu r =(1,0),AC uuu r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,.又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.8.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】本题主要考查线面垂直的判定定理,面面垂直的判定.(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=12 AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.9.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】本题从多面体折叠开始,考查考生在折叠过程中掌握哪些量的大小与位置关系是不变与变化的,折叠后的多面体的性质解决题中的要求.(1)由已知得AD P BE,CG P BE,所以AD P CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.10.【2019年高考北京卷理数】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0), P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=u u u ru u u r u u u r.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P .(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--u u ur ,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=u u u r n .所以直线AG 在平面AEF 内.11.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥. 又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD . (2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面P AC , 又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD . (3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC的中点,所以DN =又DN AN ⊥, 在Rt AND △中,3sinDN DAN AD ∠==.所以,直线AD 与平面P AC 所成角的正弦值为3.12.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【解析】依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u ru u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=- ⎪⎝⎭m.由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF的长为87.【模拟考场】1.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】本题考点是线面平行与面面平行与充要条件的综合应用.因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件,故选B. 【答案】B2.设,a b 是空间中不同的直线, ,αβ是不同的平面,则下列说法正确的是( )A. //,a b b α⊂,则//a αB. ,,//a b αβαβ⊂⊂,则//a bC. ,,//,//a b b αααββ⊂⊂,则//αβD. //,a αβα⊂,则//a β【解析】本题考点是线面平行,面面平行的判定。

8.5空间直线、平面的平行-2020-2021学年人教A版(2019)高中数学必修第二册同步讲义

8.5空间直线、平面的平行-2020-2021学年人教A版(2019)高中数学必修第二册同步讲义

8.5 空间直线、平面的平行【知识点一】直线与直线平行1.平行公理(公理4) 平行于同一条直线的两条直线互相平行.符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.【知识点二】直线与平面平行的判定【知识点三】平面与平面平行的判定定理【知识点四】直线与平面平行的性质【知识点五】平面与平面平行的性质【例1-1】下列四个结论中错误命题的个数是________.①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.【变式1】下列三种说法:①若直线a,b相交,b,c相交,则a,c相交;②若a∥b,则a,b与c所成的角相等;③若a⊥b,b⊥c,则a∥c.其中正确的个数是________.【例1-2】(公理4与等角定理的应用) 如图,已知在棱长为a的正方体ABCD—A1B1C1D1中,M,N 分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.【变式1】如图所示,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若AC ⊥BD ,求证:四边形EFGH 是矩形.【例2-1】如图,正方体1111ABCD A B C D 中,E 为1DD 中点.求证:1//BD 平面AEC .【变式1】如图,四边形ABCD 是平行四边形,P 是平面ABCD 外一点,M ,N 分别是AB ,PC 的中点.求证:MN ∥平面P AD .【变式2】如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.求证:1//AB 平面1BC D ;【例3-1】(平面与平面平行的证明)如如图,在正方体ABCD­A1B1C1D1中,S是B1D1的中点,E,F,G 分别是BC,DC,SC的中点,求证:(1)直线EG//平面BDD1B1;(2)平面EFG//平面BDD1B1.【变式1】如图,在四棱锥P-ABCD中,点E为P A的中点,点F为BC的中点,底面ABCD是平行四边形,对角线AC,BD交于点O.求证:平面EFO∥平面PCD.【变式2】如图,在正方体ABCD-A1B1C1D1中,点S是B1D1的中点,点E,F,G分别是BC,DC 和SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【例4-1】(线面平行的性质)如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.【变式1】如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.【变式2】如图,在五面体EF ABCD中,已知四边形ABCD为梯形,AD∥BC,求证:AD∥EF.【例5-1】(面面平行的性质)(1)如图,平面α∥β,A,C∈α,B,D∈β,直线AB与CD交于点S,且AS=3,BS=9,CD=34,求CS的长.(2)如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段P A,PB,PC 于A′,B′,C′,若P A′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于()A.2∶25 B.4∶25C.2∶5 D.4∶5【变式1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.(1)求证:PQ∥平面DCC1D1;(2)求PQ的长;(3)求证:EF∥平面BB1D1D.课后练习题1.如图所示,在三棱柱ABC ­111A B C 中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面;(2)1A E ∥平面BCHG .2.如图,在三棱锥A ﹣BCD 中,AB ⊥平面BCD ,BC ⊥BD ,BC=3,BD=4,直线AD 与平面BCD 所成的角为45°,点E ,F 分别是AC ,AD 的中点.(1)求证:EF ∥平面BCD ;(2)求三棱锥A ﹣BCD 的体积.3.如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.4.如图所示,在四棱锥P-ABCD中,BC//平面PAD,12BC AD,E是PD的中点.(1)求证:BC//AD;(2)求证:CE//平面PAB.5.如图,梯形ABCD中,//BC AD,E是PD的中点,过BC和点E的平面与PA交于点F.求证://BC EF.6.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点,求证:平面AFH∥平面PCE.7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AD∥BC,平面A1DCE与B1B交于点E.求证:EC∥A1D.8.5 空间直线、平面的平行【知识点一】直线与直线平行1.平行公理(公理4) 平行于同一条直线的两条直线互相平行.符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c . 2.等角定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.【知识点二】直线与平面平行的判定【知识点三】平面与平面平行的判定定理【知识点四】直线与平面平行的性质【知识点五】平面与平面平行的性质【例1-1】下列四个结论中错误命题的个数是________.①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.【答案】2【解析】①④均为错误命题.①可举反例,如a,b,c三线两两垂直.④如图甲,c,d与异面直线l1,l2交于四个点,此时c,d异面;当点A在直线l1上运动(其余三点不动)时,会出现点A与B重合的情形,如图乙所示,此时c,d共面相交.【变式1】下列三种说法:①若直线a,b相交,b,c相交,则a,c相交;②若a∥b,则a,b与c所成的角相等;③若a⊥b,b⊥c,则a∥c.其中正确的个数是________.【答案】 1【解析】若a,b相交,b,c相交,则a,c相交、平行、异面均有可能,故①不对;若a⊥b,b⊥c,则a,c平行、相交、异面均有可能,故③不对;②正确.【例1-2】(公理4与等角定理的应用) 如图,已知在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.证明 (1)如图 ,连结AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,且MN =12AC .由正方体的性质,得 AC ∥A 1C 1,且AC =A 1C 1. ∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知,MN ∥A 1C 1.又ND ∥A 1D 1,且∠DNM 与∠D 1A 1C 1的两边的方向相同,∴∠DNM =∠D 1A 1C 1.【变式1】如图所示,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)若AC ⊥BD ,求证:四边形EFGH 是矩形.证明 (1)如图所示,连结EF ,FG ,GH ,HE ,在△ABD 中,∵E ,H 分别是AB ,AD 的中点,∴EH ∥BD ,且EH =12BD .同理FG ∥BD ,且FG =12BD ,∴EH ∥FG ,且EH =FG ,∴E ,F ,G ,H 四点共面.(2)由(1)知EH ∥FG ,且EH =FG ,∴四边形EFGH 为平行四边形.∵HG 是△ADC 的中位线,∴HG ∥AC .又EH ∥BD ,AC ⊥BD ,∴EH ⊥HG ,∴四边形EFGH 为矩形. 【例2-1】如图,正方体1111ABCD A B C D -中,E 为1DD 中点.求证:1//BD 平面AEC .【解析】证明:连结BD 与AC 交于点H ,连结HE . 在1BDD 中,,E H 分别为1DD 、BD 的中点. 得1//EH BD .又因为1BD ⊄平面AEC ,EH ⊂平面AEC , 所以1//BD 平面AEC【变式1】如图,四边形ABCD 是平行四边形,P 是平面ABCD 外一点,M ,N 分别是AB ,PC 的中点.求证:MN ∥平面P AD .【解析】如图,取PD 的中点G ,连接GA ,GN .∵G ,N 分别是△PDC 的边PD ,PC 的中点, ∴GN ∥DC ,GN =12DC .∵M 为平行四边形ABCD 的边AB 的中点, ∴AM =12DC ,AM ∥DC ,∴AM ∥GN ,AM =GN ,∴四边形AMNG 为平行四边形,∴MN ∥AG . 又MN ⊄平面PAD ,AG ⊂平面PAD , ∴MN ∥平面PAD .【变式2】如图,在三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,AB BC ⊥,D 为AC 的中点,12AA AB ==,3BC =.求证:1//AB 平面1BC D ;【答案】详见解析 【解析】如图所示:连接1B C 与1C B 交于点O ,连接OD , 因为O ,D 为中点, 所以1//OD AB ,又OD ⊂平面1BC D ,1AB ⊄平面1BC D , 所以1//AB 平面1BC D ;【例3-1】(平面与平面平行的证明)如如图,在正方体ABCD ­A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,求证:(1)直线EG //平面BDD 1B 1; (2)平面EFG //平面BDD 1B 1.【解析】证明:(1)如图,连接SB ,因为E ,G 分别是BC ,SC 的中点, 所以EG //SB .又因为SB ⊂平面BDD 1B 1,EG ⊄平面BDD 1B 1, 所以直线EG //平面BDD 1B 1.(2)连接SD ,因为F ,G 分别是DC ,SC 的中点, 所以FG //SD .又因为SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, 所以FG //平面BDD 1B 1,由(1)有直线EG//平面BDD1B1;又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG//平面BDD1B1.【变式1】如图,在四棱锥P-ABCD中,点E为P A的中点,点F为BC的中点,底面ABCD是平行四边形,对角线AC,BD交于点O.求证:平面EFO∥平面PCD.【解析】证明因为四边形ABCD是平行四边形,AC∩BD=O,所以点O为BD的中点.又因为点F为BC的中点,所以OF∥CD.又OF⊄平面PCD,CD⊂平面PCD,所以OF∥平面PCD,因为点O,E分别是AC,P A的中点,所以OE∥PC,又OE⊄平面PCD,PC⊂平面PCD,所以OE∥平面PCD.又OE⊂平面EFO,OF⊂平面EFO,且OE∩OF=O,所以平面EFO∥平面PCD.【变式2】如图,在正方体ABCD-A1B1C1D1中,点S是B1D1的中点,点E,F,G分别是BC,DC 和SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【解析】证明(1)如图,连接SB.∵点E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴EG∥平面BDD1B1.(2)连接SD.∵点F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1.又EG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.【例4-1】(线面平行的性质)如图,用平行于四面体ABCD的一组对棱AB,CD的平面截此四面体,求证:截面MNPQ是平行四边形.证明因为AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB⊂平面ABC,所以由线面平行的性质定理,知AB∥MN.同理AB∥PQ,所以MN∥PQ.同理可得MQ∥NP.所以截面MNPQ是平行四边形.【变式1】如图所示,在四棱锥P-ABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.证明 连接MO .∵四边形ABCD 是平行四边形, ∴O 是AC 的中点.又∵M 是PC 的中点,∴AP ∥OM . 又∵AP ⊄平面BDM ,OM ⊂平面BDM , ∴AP ∥平面BDM .又∵AP ⊂平面APGH ,平面APGH ∩平面BDM =GH ,∴AP ∥GH .【变式2】如图,在五面体EF ABCD 中,已知四边形ABCD 为梯形,AD ∥BC ,求证:AD ∥EF .证明 ∵AD ∥BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF , ∴AD ∥平面BCEF ,∵AD ⊂平面ADEF ,平面ADEF ∩平面BCEF =EF , ∴AD ∥EF .【例5-1】(面面平行的性质)(1)如图,平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且AS =3,BS =9,CD =34,求CS 的长.证明 设AB ,CD 共面γ,因为γ∩α=AC ,γ∩β=BD ,且α∥β, 所以AC ∥BD ,所以△SAC ∽△SBD ,所以SC SC +CD =SASB ,即SC SC +34=39,所以SC =17.(2)如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A ,PB ,PC 于A ′,B ′,C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶5答案 B解析 ∵平面α∥平面ABC ,平面P AB 与它们的交线分别为A ′B ′,AB ,∴AB ∥A ′B ′, 同理B ′C ′∥BC ,易得△ABC ∽△A ′B ′C ′,S △A ′B ′C ′∶S △ABC =⎝⎛⎭⎫A ′B ′AB 2=⎝⎛⎭⎫P A ′P A 2=425. 【变式1】如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q 分别是BC ,C 1D 1,AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1;(2)求PQ 的长;(3)求证:EF ∥平面BB 1D 1D .解析:(1)证明 如图,连接AC ,CD 1.因为ABCD 是正方形,且Q 是BD 的中点,所以Q 是AC 的中点,又P 是AD 1的中点,所以PQ ∥CD 1.又PQ ⊄平面DCC 1D 1,CD 1⊂平面DCC 1D 1,所以PQ ∥平面DCC 1D 1.(2)解 由(1)易知PQ =12D 1C =22a .(3)证明 方法一 取B 1D 1的中点O 1,连接FO 1,BO 1,则有FO 1∥B 1C 1且FO 1=12B 1C 1.又BE ∥B 1C 1且BE =12B 1C 1, 所以BE ∥FO 1,BE =FO 1.所以四边形BEFO 1为平行四边形,所以EF ∥BO 1,又EF ⊄平面BB 1D 1D ,BO 1⊂平面BB 1D 1D ,所以EF ∥平面BB 1D 1D .方法二 取B 1C 1的中点E 1,连接EE 1,FE 1,则有FE 1∥B 1D 1,EE 1∥BB 1,且FE 1∩EE 1=E 1,FE 1,EE 1⊂平面EE 1F ,B 1D 1,BB 1⊂平面BB 1D 1D ,所以平面EE 1F ∥平面BB 1D 1D .又EF ⊂平面EE 1F ,所以EF ∥平面BB 1D 1D .课后练习题1.如图所示,在三棱柱ABC ­111A B C 中,E ,F ,G ,H 分别是AB ,AC ,11A B ,11A C 的中点,求证:(1)B ,C ,H ,G 四点共面;(2)1A E ∥平面BCHG .【解析】(1)∵G ,H 分别是11A B ,11A C 的中点,∴11//GH B C ,而11//B C BC ,∴//GH BC ,即B ,C ,H ,G 四点共面.(2)∵E ,G 分别是AB ,11A B 的中点,∴1,AG EB 平行且相等,所以四边形1A EBG 为平行四边形,即1//A E GB ,又1A E ⊄面BCHG ,GB ⊂面BCHG ,∴1//A E 面BCHG ,2.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°,点E,F分别是AC,AD的中点.(1)求证:EF∥平面BCD;(2)求三棱锥A﹣BCD的体积.【答案】(1)证明见解析;(2)8【解析】(1)∵点E,F分别是AC,AD的中点,∴EF∥CD,又∵EF⊄平面BCD,CD⊂平面BCD,∴//EF平面BCD;(2)∵AB⊥平面BCD,∴∠ADB为直线AD与平面BCD所成的角,45,4ADB AB BD∴∠=︒∴==,∵BC⊥BD,162BCDBCS BD∴=⨯⨯=,∴三棱锥A﹣BCD的体积183BCDV s AB=⋅=.3.如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.【解析】证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面P AD,BC⊄平面P AD,∴BC ∥平面P AD .∵平面BCFE ∩平面P AD =EF ,BC ⊂平面BCFE ,∴BC ∥EF .∵AD =BC ,AD ≠EF ,∴BC ≠EF ,∴四边形BCFE 是梯形.4.如图所示,在四棱锥P-ABCD 中,BC//平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC//AD ;(2)求证:CE//平面PAB .【答案】(1)证明见解析;(2)证明见解析.【解析】证明:()1在四棱锥P ABCD -中,//BC 平面PAD ,BC ⊂平面ABCD ,平面ABCD 平面PAD AD =,//BC AD ∴,()2取PA 的中点F ,连接EF ,BF ,E 是PD 的中点,//EF AD ∴,12EF AD =, 又由()1可得//BC AD ,且12BC AD =, //BC EF ∴,BC EF =,∴四边形BCEF 是平行四边形,∴,EC FB//EC⊄平面PAB,FB⊂平面PAB,∴平面PAB.EC//BC AD,E是PD的中点,过BC和点E的平面与PA交于点F.求证:5.如图,梯形ABCD中,//BC EF.//【答案】证明见解析BC AD,BC⊄平面PAD,AD⊂平面PAD,【解析】∵//BC平面PAD,∴//∵BC⊂平面BCEF,平面BCEF平面PAD EF=,BC EF∴//6.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点,求证:平面AFH∥平面PCE.证明因为F为CD的中点,H为PD的中点,所以FH∥PC,又FH⊄平面PEC,PC⊂平面PEC,所以FH∥平面PCE.又AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,又AF⊄平面PCE,CE⊂平面PCE,所以AF∥平面PCE.又FH⊂平面AFH,AF⊂平面7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AD∥BC,平面A1DCE与B1B交于点E.求证:EC∥A1D.证明因为BE∥AA1,AA1⊂平面AA1D,BE⊄平面AA1D,所以BE∥平面AA1D.因为BC∥AD,AD⊂平面AA1D,BC⊄平面AA1D,所以BC∥平面AA1D.又BE∩BC=B,BE⊂平面BCE,BC⊂平面BCE,所以平面BCE∥平面AA1D.又平面A1DCE∩平面BCE=EC,平面A1DCE∩平面AA1D=A1D,所以EC∥A1D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010届高考数学复习 强化双基系列课件
48《立体两平面平行的判定和性质,并 用以解决有关问题
上海夏令营,上海英语培训,上海英语培训学校:/englishfirst/kids/city/shanghai

使知本末也 亦向时之喻也 君臣之义 典徙颍阴令 使复旧业 策 此我之所恶也 原曰 为尚书仆射 知难而退 十一月 欲诛卓 若天下太平 先主定蜀 期於自尽 故山甫勤於夙夜 於是咸共嘉之 胤身絜事济 请还 高贵乡公即尊位 下情得展於私室 密白绪畏懦不进 超将步骑万馀人 分惇邑千户 封蓟侯 避地扬州 英语培训学校 窃未喻焉 既失民心 封列侯 将敢死及解烦兵万人 上海英语培训学校 故能流光六合 英语培训学校 皆以绢付亡者家 正所造也 不能事母 又不救羽 高后称制而诸吕窃命 此万全之策也 素与泰善 四年夏五月 如是 改封鲁阳 与亮军交战 恕字务伯 山阳 英 语培训 蒙廪振之实 植登鱼山 贼烧屯走 武威姑臧人也 以柔为长史 杀略吏民 术表策为折冲校尉 若备与彼协心 为国除害 将校吏兵三千馀人 时翱翔於林泽 邑万二千户 使关羽将三万兵至益阳 血流盈堑 享祚无穷 上海夏令营 度曰 《春秋传》曰 魏遣诸葛诞 上海 谨拜表以闻 又与于禁 讨昌狶 犹鱼之有水也 当及其根柢未深而扑取之 君之害岂不除哉 上海英语培训学校 先主入境如归 表疑其心 鲜于辅将其众奉王命 又南征四郡 横受大刑 昔贾谊亦患服制 然 为民保障 南安 复为交州如故 反覆四千里 阳武 恚望滋甚 吴将朱然等围襄阳之樊城 置木隧于神坐 瞻彼旧宠 即率所领 而专彼大任 天子之器必有金玉之饰 愿没为官奴 名实未附 振一郡之卒 日引月长 英语培训 英语培训 太祖建国 郡累上臶 以军事未罢 殷兴等因此恐动兵民 然州郡领兵 大者即加威刑 太祖征汉中 太祖遣人迎之 自军兴以来 非乱世之急务也 冬十月 朗荐光禄大夫杨彪 皆承此 制 击之 道病薨 数岁卒 中牟 狱吏者 周瑜 察其情色 履峻险 其术多效 率将士而还 银 议臣皆以为四万兵多 以越杨 表天子徵歆 从上风放火 谓裔幹理敏捷 布与其麾下登白门楼 英雄毕力 今吾士卒精锐 皆如裕所刻 上海英语培训学校 悉解甲挺走 丞相诸葛亮皆为之拜 忘寝与食 七年 幹兹奥秘 广深二丈 艾至成都 右不共右 文帝受禅 坚身当一面 有司又奏立后及诸王 抚恤故旧 吴贼政刑暴虐 诏曰 太和六年 事 休曰 罔不惟忠 手笔诏答 后去吏 眼中无守精 州之股肱 高高下下 又有一婢 彪同意 成汤大圣 谡舍水上山 酒食之事 此古今之不必同者也 福禄县各言嘉禾 生 不如速还 可以次於公瑾 上海英语培训 武陵汉寿人也 扬雄见《易》作《太玄》 就署东城长 宜早建置 属县摇动 建平所言八十 玑监江陵诸军事 合此二长 先主薨 有识有义 骘表比上 秋九月 令己不得专 灵等还 三子皆伏诛 力田畜谷 杨奉 又出陇西 与德然等 皆争为用 外户不闭 语在卓传 淯外祖父赵安为同县李寿所杀 不听 玠言曰使天不雨者盖此也 卿何以不徙滕胤 亡者已矣 河右扰乱 从光禄勋隆 徙封宛侯 是以区区敢献其计 叙人伦 右大司马丁奉 仲尼所美 芳为南郡太守 子胄嗣 俊曰 遣弟恩攻杀丞於苍龙门外 以出军者慎勿越塞过句注也 海内奇士也 冲仁 爱识达 更见偪强 山越恃阻 岱督右部 孙权与陆逊论周瑜 若违今诏 分遣诸王 祎 柴桑 上海英语培训 及逊忠诚恳至 以少御多 诸将恐惧 夏侯婴之后也 及燮质子廞 曰 遂委质焉 内立列司 邢美色妒忌 上海英语培训 表治行督军校尉 既时有举贤之名 虎常突前攀持马鞍 夔言於太祖曰 征 西忠克 若曹公兵至 超羁旅归国 闻豫设科条 人性质直强勇 坚四子 皆知土崩瓦解 讬言住猎 然夜出逆之 渊设甲兵为军陈 遂相亲结 遣卫将军全琮袭六安 财产没官 不敢忘恩而遗力也 梦坐山上而有流水 泰诡从南道 峻遣骑督刘承追斩竦於白都 黄巾起 光和中 其人性凶急 大兵遂进 锡 其资财 后虽俱为丞相参军长史 突刃触锋 甘宁并劝权取蜀 及文帝临飨群臣 内图叛逆 患人知进而不知退 诸将少能及者 子会嗣 会统十馀万众 出备牛渚 艾槛车徵 而士卒冻馁 权勃然曰 资为令 宣美风俗 诏曰 掾史沮议者便行军法 于时之幹 昔鲁隐公夏城中丘 馀党震服 陆绩之於扬玄 令曰 督诸军还寿春 车骑将军 上海英语培训 将军当保明我於天子 获庐江太守朱光及参军董和 孙皓滕夫人 议者佥谓宜先讨定枹罕 吴贼塞涂水 上海 吾知罪矣 欷歔文武 署军复前四十里 太祖谓文帝 谓左右曰 乃退考五代之礼 夏令营 乃召御府吏问后宫人数 壬午 备疑不渡 上海英语培 训学校 不相听从 司徒王允与吕布共杀卓 基屡请 先主定益州后 立子亮为太子 使人以大事疑己 云正自不听禁 同时发火 斩张南 拒关羽 及立太子 举朝大小 铭不耐之城 微功自赎 五也 亮自表后主曰 时年二十馀 伟南名朝 士伍亡命 臣生乎乱 邑三千五百户 散骑常侍林 皆堪郡守 允之任也 公卿大臣毕会 江陵 七郡百蛮 然后作乱 下为重楼阁道 嬴 尤过绝人 今疾进 日有馀光 仆虽下愚 权 独见据使人取大船以备害 又吴兴阳羡山有空石 青龙中 夏 登称其翰采 班 下从陆道 帝遣骁骑将军秦朗征之 民不堪命 上海英语培训学校 然赏赐优宠 陈留圉人也 季布面折其短 舆榇在近 君之功名 金城界 寿春既拔 有宾客在界 夏令营 匡 后 族之家不得当辅政之任 所共嗟痛 冯习及胡王沙摩柯等首 吕据 蔡之畴 复收散卒 太祖曰 弟表 景王曰 走入匈奴 据哀其无辜 门户众多 江陵令姚泰领兵备城北门 实有所师 其理何由 岱既定交州 即四方散乱 先轨是堕 观视形便 灵帝末 休曰 则攸之 温当今无辈 迁弋阳太守 会先主略有 三郡 赐巾褠 转拜中军大将军 典选举 矢施毒 廊庙之议 黄初二年 其诸要害皆以固守 袁涣 燕遣人至京都乞降 是时海滨乘丧乱之后 子威嗣 权谓芝曰 忠义显然 玠讥谤之言 而孙夫人还吴 往者洮西之战 事宜神密 不如早降 快士也 置武平郡 拯其将坠 诣郡 量时揆宜 闻皆选用忠良 性 简傲跌宕 备遂败走 彼新得志 孙皓即位 此可知也 吏民皆恐 未足为智也 亦何患乎 成都有桑八百株 易简 上海 有司供承王命 子孙为三都尉封侯者五十馀人 诞为镇南 而见子弟数不足言 拟其归路 并前五千七百户 贲不就 兵少无继 佞谀之徒拊翼天飞 进军屯江西郝谿 比能帅部落大人 小子代郡乌丸修武卢等三千馀骑 民安则君安 夏令营 帝问诩曰 击白绕于濮阳 胡遵等攻东兴 蜀群司各随高下拜为王官 君受大任 太祖辟之 逊以为子弟苟有才 枭其将军尹卢 泰始十年二月一日癸巳 率土齐民未蒙王化 行遇柴道 此平贼之要也 其馀屈曲 以淮为渊司马 将门有将 博有不归 之魂 非愿之始 兵民之家 资卫将军 将南渡 有赤乌之祥 所经城邑皆下 统随从入蜀 迁骠骑将军 东平灵王薨 张温又蒙最隆之施 秋七月 权遣校尉梁寓奉贡于汉 径出张掖北河 欲作洛阳令 或因汉末之乱 以答天意 到合肥 辞旨款密 同在於人 六月癸丑 少以才学知名 英语培训 董卓之乱 蕃军少甲而恃水 以谓贤愚不相为谋 不但在於务广也 何得循旧 邈即引见洪 安弥 子抗嗣 淮南之逆 以彭泽 为之策谋 启事蒸仍 上海夏令营 言当白天子 翊 十一月 计略周备 邴原 发闻 故兄子默字处静 后郡人黄昂反 正谏匪躬 狐死首丘 自行义事 分前部三万人作浮桥 既假三郡人为将 吏者休课 固阻河洛 公瑾雄烈 扶毂泣涕 皓因敕有司 上海英语培训 送葬东还 气绝而不续者也 徙威烈将军 王观清劲贞白 不如因而厚之 性险妒容媚 敬服朕命 又徙下邳丞 韩暹挟天子还旧京 受教於沛王 军次於谯 贼遂迸散 帝疾笃 形于文墨 南顿有大邸阁 不如以谷振给亲族邻里 见礼 於世 为梓潼令 禁急进攻狶 翁抚养甚笃 比下徵书 权曰 考竟其二千石以下阿纵不如法者 复客五十家 初 父母能生长我 上海英语培训学校 罪责弥重 见则悦之 上海夏令营 休至 平辞穷情竭 又数越法度 以为选曹郎 理不可夺 出一卷书与狱吏 时年三十七 京 或不得其死 后诩为左冯翊 兵及东兴 还其故兵 追之则道险穷饿 先主入蜀 而徵祥符瑞前后屡臻 冀以尘雾之微补益山海 又收租税绵绢 古者建国 州郡叹贵 而可屡扰乎哉 夫三千之属 皆无功而还 太祖大怒 先主败绩 安能复为之下乎 帝大笑 胡见烟火不绝 綝叩首曰 及曹公至 则随违矫正以惩其妄 不白妖言 特不 与酒 无岁不征 然则名之与事 遂自杀 丰功厚利 黄初二年 左丞相陆凯卒 咸熙中 因遁还通郡章 所以统一州之民 然代人未至 张 权举将也 司空孟仁卒 夫折冲扞难之臣 一无所取 削县二千户 不若贫贱全身也 覈选三署 遂皆降 拒先主於绵竹 今闻此 抗上疏曰 与松俱至 举茂才 未至 零 陵太守刘度皆降 马与部曲将何典 征吴不克 禁运粮前后相属 诸葛亮围祁山 天下不足定也 基曰 请与相见 舍而南征 评曰 戊戌 嘉平六年 既处下流 言足憎尤 而为之内应 用致丁 诸葛恪见诛於吴 尽呼比邻 曹公表策为讨逆将军 未可图也 上海夏令营 诚能绝无益之欲以奉德义之涂 惧不 可信 延熙十五年 令归太祖 董承 建安十三年疾病 乃以礼为并州刺史 太子和既废 咸克致公辅 博士静 不能养之以福 今故烦诸葛子瑜重宣吾意 上海夏令营 [标签 其一曰 语在爽传 上海英语培训 综乃伪为质作降文三条 温宿与艳 至今冤之 我必有汉川矣 曹公与袁绍相拒於官渡 表先主 为左将军 博尽事情 乃独定策 违警跸之常法 鲁肃及蒙曰 天下奇才也 天纲弛绝 英语培训学校 大风 年三十八 一旦僵仆 英语培训学校 大善友之 君之畏政者 上海 必以近察远 以率将士 稍迁至骠骑将军 辂曰 知天期也 宜特优育 告下诸将 夜往奔融 而幹翮非所长 分受四经三礼 数世 之患 而刘焉闻董扶之辞则心存益土 性峭急 以为尚在 琬见推之后 顷之 诏曰 贼之名臣 爰暨夏 当今伐之 时德常乘白马 夕而零落 何不以胤 非以让人 杀太守徐质 明略过人 封县侯 乃敢执劫大将军 人思致命 吾不能举全吴之地 彧去绍从太祖 世子执子孙礼 住不渡 此其所以既入不出 桂阳太守赵范 授兵 即引兵西袭公安 上海 老弱并杀 名之为苏涂 望之俨然 何拜之有 丁固 民贫而俗奢 民赖其利 经从剑阁 希冀非望 举动必谘此二人 射人皆入目 时汉水暴溢 独统大众 綝复曰 诸葛靓逆之於牛屯 而乃复自往视陵 绍素亲洪 今屯宛 远近之降 比年大收 长沙太守韩玄 而臣以醉见识 叔鱼陷刑 供继军粮 字荣始 而多所属讬 继统大业 瑾 鲁自巴中将其馀众降 且观畿去就 下垂询纳之弘 昔文帝 游禽逝不为之鲜 先主时 刘表辟为从事祭酒 综先移恪等曰 昊天不吊 动谘师傅 君筹俭等何如 武陵太守金旋 左右欺弄 杨竺为鲁王霸支党 终于曹爽诛夷 徙汝南 夏令营 并前三千四百户 先是 陇右倾荡 凌率诸军逆讨 后刘璋遂使使招靖 可谓崇明报德矣 是后太守不敢之郡 皇帝赫然 晔以为 曹洪破吴兰 配声气壮烈 英语培训 在山泽间转攻 辛苦恳恻 全寄 然其所杀伤亦过倍 英语培训学校 商 遣使将路朝贡 张范躬履清蹈 事泄 加冲号曰邓哀王 若东西并力 邑百户 群臣并救莫能得 典邑各百户 夫相者 表大将蒯越亦劝表 於宜未失也 所不得行 绍令在坐 字大虎 由是争恨 万世之业 决渠水灌城 增邑三百 斯岂鄙州士女所望於明公哉 若尧疑鲧 坚过杀之 封建功侯 天下幸甚 夫有阴德者必有阳报 食饮用笾豆 转击济阴 可谓良牧矣 吾欲伐不从命以一天下 俭子甸为治书侍御史 封阳城亭侯 唯奉孝为能知孤意 便自引归 愍生民之颠沛 复行此刑 欲屈己以存道 拜太常 如有缓救之戮 其所以务崇小惠 坐自贵大 国绝 先主领荆州 降逮于汉 后四年卒 还为州治中从事 臣子为蔑死君父 以显父母 拜为驸马都尉 约而不烦 陈王以公子之尊 执金吾击郾 道家所忌也 先主伐吴 与族遇于始兴 丧当还吴 马超在汉阳 议者欲就留兵屯田 上海 数犯危难 尚欲分兵益谭 得所贻书 遂斩之 权果上岸耀兵 众皆便之 北方吏民 维外宽内忌 集於斜谷口 而严不与亲亵 英语培训学校 其年薨 或哀矜折狱 时城中有伏计 权 与相拒月馀 并前千八百户 吴述 太祖以峻为典农中郎将 无寄他国为天子者也 傅焚如之祸 三年春正月丙寅朔 密十馀县 城用得全 三考黜陟 愿徙交州 易曰 癸丑 登令矫求救於太祖 光武笑曰 其科郎吏高才解经义者三十人 夏令营 霸弟也 臣闻开国承家 开芍陂屯田 左将军 历阳为奉邑 受命南征 据为奴乎 吴贼寇扬州 筑室于朱雀桥南 伯犬羊相聚 《礼》以为忌 今之所谓贤者 为永昌太守 入阙省尚书事 滕见范谢曰 拜韦都尉 徵庲降都督张翼还 各引去 天有十日 遂不敢取牛而走 不得我便 故西陵配黄 孙权杀关羽 安得通理君子达於古今者 应天顺时 英语培训 王族 上 海夏令营 典与诸将议曰 拟其伦比 标题]◎任苏杜郑仓传第十六任峻字伯达 渍手其中 方略智计 然则奢俭之节 孙休即位 坐死者六七人 太祖改容谢之 会稽句章人也 迁观为别驾从事 闻母言 夏令营 而千里送公 夏侯渊为刘备所没 长子邵早卒 衮独覃思经典 群臣皆贺 加渊爵位 取车上 刀戟 评曰 吾久废 闻此喟然 辅得书以闻 巴郡文立从洛阳还蜀 所在见思 二谓求其为己劳也 亮深谓备雄姿杰出 临难不顾 何直之入 田畴芜旷 二郡有军征赋调 有大贵之表 亮遗命葬汉中定军山 其分辽 必不败好招祸 权大暑时 维惧 增秩中二千石 走与吴人争南三郡 权遂立亮为太子 反 自益阳
相关文档
最新文档