2014年中考数学模拟试卷
2014年中考数学模拟试卷及答案
第1页 共10页 2014年中考数学模拟试卷及答案(满分120分,考试用时120分钟)一、选择题:(本大题共10小题,每小题3分,满分30分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不不给分)1.-3的倒数是( )A .13B .— 13C .3D .—3 2.如图中几何体的主视图是 ( )A .B .C .D .3.下列运算正确..的是 ( ) A . B . C . D .4.预计A 站将发送旅客342.78万人,用科学记数法表示342.78万正确的是( )A .3.4278×107B .3.4278×106C .3.4278×105D .3.4278×1045.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( )A .相交B .内切C .外切D .内含6. 如图,函数11-=x y 和函数xy 22=的图像相交于点M (2,m ),N (-1,n ),若21y y >,则x 的取值范围是 A. 1-<x 或20<<x B. 1-<x 或2>xC. 01<<-x 或20<<xD. 01<<-x 或2>x7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858. 如图是一个正六棱柱的主视图和左视图,则图中的=a A. 32 B. 3 C. 2 D. 19.如图,直线l 1//l 2,则α为( ) A .150° B .140° C .130° D .120°l 1 l 2 50°70°α。
2014年中考数学模拟试卷
2014年中考数学模拟试卷(一)注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号。
每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1. 5-的绝对值是( )A .5B .15C .5-D .0.52.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20 B .50,30 C .50,50 D .135,504.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )A .15 B .25 C .12 D .355.下列各运算中,错误的个数是( )①01333-+=-②523-= ③235(2)8a a = ④844a a a -÷=- A .1 B .2 C .3 D .46.如图是由4个大小相同的正方体搭成的几何体,其主视图是( )(第6题)7.下列调查方式中,合适的是( )A .要了解约90万顶救灾帐蓬的质量,采用普查的方式B .要了解外地游客对旅游景点“新疆民街”的满意程度,采用抽样调查的方式C .要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D .要了解全疆初中学生的业余爱好,采用普查的方式 8.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( )A .8种B .9种C .16种D .17种9.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ) A .15° B .30° C .45° D .60°10.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③12ADFE S AF DE =四边形AF.DE ④2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.如下图,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.12.已知双曲线k y x=经过点(2,5),则k = . 13.如下图,将一副七巧板拼成一只小猫,则下图中AOB ∠= . 14.分式方程513x =+的解是______. 三、(本题共 2 小题,每小题 9 分,满分 18 分)15.计算()116133-⎛⎫-+-- ⎪⎝⎭16.如图,在等腰梯形ABCD 中,AD BC ∥,M 是AD 的中点,求证:MB MC =.ADBFCE(第10题)bac d 123 4合计四、(本题共 2 小题,每小题 9 分,满分 18 分)17.已知一次函数y=ax+b的图像与反比例函数4yx=的图像交于A(2,2),B(-1,m),求一次函数的解析式.18.如图,在平面直角坐标系xoy中,(15)A-,,(10)B-,,(43)C-,.(1)求出ABC△的面积.(5分)(2)在下图中作出ABC△关于y轴的对称图形111A B C△.(3分)(3)写出点111A B C,,的坐标.(3分)五、(本题11 分)19.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?20.(12分)如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连结AC.(1)若∠CP A=30°,求PC的长;(2)若点P在AB的延长线上运动,∠CP A的平分线交AC于点M. 你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.六、(本题满分 14 分)21.我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A、B、C三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:超市态度A B C赞同27555 150不赞同2317无所谓57228 105(1)此次共调查了多少人?(2)请将图表补充完整;(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度.七、(本题满分 14 分)22.如图,在ABCD中,E,F分别为边AB,CD的中点,连接E、BF、BD.(1)求证:ADE CBF△≌△.(6分)(2)若A D⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.(6分)MPOCBA15010050无所谓不赞同赞同态度人数A、B两超市共计50%15%无所谓不赞同赞同A、B、C三家超市共计中考数学模拟试卷(二)注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本题共10 小题,每小题4 分,满分40分)1.55°角的余角是( ) A. 55° B.45° C. 35° D. 125°2.如图1,数轴上A 、B 两点所表示的两数的( ) A. 和为正数 B. 和为负数 C. 积为正数D. 积为负数(第2题)3.如果点M 在直线1y x =-上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1) 4.如图2,直线l 截两平行直线a 、b ,则下列式子不一定成立的是( ) A .∠1=∠5 B . ∠2=∠4C . ∠3=∠5D . ∠5=∠25.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是() A .内切 B .相交 C .外切 D .外离 6. 如图,已知D 、E 分别是ABC ∆的AB 、AC 边上的点,,DE BC //且S ⊿ADE :S 四边形DBCE =1:8,那么:AE AC 等于( ) A .1 : 9 B .1 : 3C .1 : 8D .1 : 27.下列计算正确的是( ) (第6题) A .246x x x +=B .235x y xy +=C .326()x x =D .632x x x ÷=8.下列调查中,适合用全面调查方式的是( ) A .了解某班学生“50米跑”的成绩 B .了解一批灯泡的使用寿命 C .了解一批炮弹的杀伤半径 D .了解一批袋装食品是否含有防腐剂9.两个完全相同的长方体的长、宽、高分别是5cm ,4cm ,3cm ,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是( )A .2158cm B .2176cm C .2164cm D .2188cm10.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.方程02=-x x 的解是 .12.反比例函数ky x=的图象经过点(-2,1),则k 的值为 .13.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2.cm14.如图4,在12×6的网格图中(每个小正方形的 边长均为1个单位),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 相切,那么⊙A 由图示位置需向 右平移 个单位.三、(本题共 2 小题,每小题 8 分,满分 16 分)15.计算:019(π4)sin 302--+--16. 如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB , 过C 作CF ⊥DE ,垂足为F .(1)猜想:AD 与CF 的大小关系; (2)请证明上面的结论.四、(本题共 2 小题,每小题 8 分,满分 16 分)17.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛 的门票价格(如表1),小明预定了B 等级、C 等级门票共 7张,他发现这7张门票的费用恰好可以预订3张A 等级 门票.问小明预定了B 等级、C 等级门票各多少张?A BO -3 第4题54321lbaB A CDE AB(图4)BACD EF等级 票价(元/张) A 500 B 300 C 150合计18.如下图,某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行,请你根据图中数据计算回答:小敏身高1.85米,他乘电梯会有碰头危险吗?(sin28o ≈0.47,tan28o ≈0.53)五、(本题共 2 小题,每小题 10 分,满分 20分)19.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?20.我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A 、B 、C 三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:超市态度 ABC赞同 20 75 55 150 不赞同 2317 无所谓57 2028105(1)此次共调查了多少人? (2)请将图表补充完整;(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度.六、(本题满分 12 分)21.一条抛物线2y x mx n =++经过点()03,与()43,.(1)求这条抛物线的解析式,并写出它的顶点坐标;(2)现有一半径为1、圆心P 在抛物线上运动的动圆,当⊙P 与坐标轴相切时,求圆心P 的坐标;(3)⊙P 能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线2y x mx n =++使⊙P 与两坐标轴都相切(要说明平移方法).七、(本题满分 12 分)22.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB、BC匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?八、(本题满分 14 分)23..如图,已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴交于点C ,直线y =-2x-1经过抛物线上一点B (-2,m ),且与y 轴、直线x =2分别交于点D 、E . (1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点;(3)若P (x ,y )是该抛物线上的一个动点,是否存在这样的点P ,使得PB =PE ,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由.1米1米15010050无所谓不赞同赞同态度人数A 、B 两超市共计50%15%无所谓不赞同赞同A 、B 、C 三家超市共计OxyAB C O DEx yx =22014年中考数学模拟试卷答案 (一)一、1.A 2. D 3.C 4.B 5.B 6.A 7..A 8. B 9. B 10. B 二、11.60 12.10 13.90° 14.2x =三、15.4 16.证明:四边形ABCD 是等腰梯形, AB DC A D ∴=∠=∠,. M 是AD 的中点, AM DM ∴=.在ABM △和DCM △中,AB DC A D AM DM =⎧⎪∠=∠⎨⎪=⎩,,, ABM DCM ∴△≌△(SAS ). MB MC ∴=.四、17.解:因为B (-1,m )在4y x=上, 所以4m =- 所以点B 的坐标为(-1,-4) ·········································································· 3分 又A 、B 两点在一次函数的图像上,所以42,222a b a a b b -+=-=⎧⎧⎨⎨==-⎩⎩解得:+ ······························································· 7分 所以所求的一次函数为y =2x -2 ·········································· 8分 18.(1)()()平方单位或7.52153521=⨯⨯=∆ABC S ………………4分(2)如下图…………………………………2分(3)A 1(1,5),B 1(1,0),C 1(4,3)…2分五、19.(1)设2007职业中专的在校生为x 万 人 根据题意得:1500×1.2x -1500x =600 ································································ 3分 解得:2x = ··················································· 5分 所以.()2 1.2 2.4⨯=万人, ()2.415003600⨯=万元 ·················································· 9分 答:略. ·············································· 10分 20.解:(1)连结OC ,4,2,AB OC =∴=PC 为O 的切线,30,CPO ∠=︒22 3.t a n 3033OC PC ∴===︒ ················ 5分(2)CMP ∠ 的大小没有变化 ················································································· 6分 CMP A MPA ∠=∠+∠ ···················································································· 7分1122COP CPO =∠+∠ ······················································································ 8分 1()2COP CPO =∠+∠190452=⨯︒=︒ ·································································································· 10分六、21.(1)300(人) ······························································· 2分 (2)5, 45, 35%, 图略 ·········································· 8分 (3)C 超市 可以从平均数或中位数等方面说明,说理合理就行……………12分 七、22.(1)在平行四边形ABCD 中,∠A =∠C ,AD =CD ,∵E 、F 分别为AB 、CD 的中点∴AE=CF ……………………………………………………2分()分中,和在 ...5......................................................................SAS CFB AED CF AE C A CB AD CFB AED ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆(2)若AD ⊥BD ,则四边形BFDE 是菱形. …………………………1分.5............................................................ .BFDE BFDE DF,EB EB//DF 3...................................................................... BE AB 21DE ,AB E ..2..........).........90ADB AB Rt ABD BD AD 分是菱形四边形是平行四边形四边形且由题意可知分的中点是分是斜边(或,且是,证明:∴∴===∴=∠∆∆∴⊥ o 八、23.解:(1)由题意得:255036600a b c a b c c ++=⎧⎪++=⎨⎪=⎩ ··· 1分解得150a b c =-⎧⎪=⎨⎪=⎩······················································ 3分故抛物线的函数关系式为25y x x =-+ ··············· 4分 (2)C 在抛物线上,2252,6m m ∴-+⨯=∴= ·· 5分C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上MPO CBAxy-4 -6C EPDB5 1 24 6 F AG 2 -2∴6266k b k b '=+⎧⎨'-=+⎩ 解得3,12k b '=-= ∴直线BC 的解析式为312y x =-+ ············································································· 7分 设BC 与x 轴交于点G ,则G 的坐标为(4,0)1146462422OBCS∴=⨯⨯+⨯⨯-= ········································································ 9分 (3)存在P ,使得⊿OCD ∽⊿CPE ····················································································· 10分设P (,)m n ,90ODC E ∠=∠=︒故2,6CE m EP n =-=-若要⊿OCD ∽⊿CPE ,则要OD DC CE EP =或OD DCEP CE= 即6226m n =--或6262n m =-- 解得203m n =-或123n m =-又(,)m n 在抛物线上,22035m n n m m =-⎧⎨=-+⎩或21235n mn m m=-⎧⎨=-+⎩ 解得12211023,,6509m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或121226,66m m n n ==⎧⎧⎨⎨==-⎩⎩ 故P 点坐标为1050()39,和(6,6)- ················································································ 14分。
2014中考数学模拟试题含答案(精选5套)
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014年江苏省学业水平测试中考数学模拟试卷
2014年江苏省学业水平测试中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分)1.下图能说明∠1>∠2的是()A. B. C. D.2.下列运算正确的是()A.a3+a3=2a6B.a6÷a-3=a3C.a3•a3=2a3D.(-2a2)3=-8a63.一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=()A.-1B.3C.1D.-1或34.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.75.关于x、y的方程组的解是,则|m-n|的值是()A.5B.3C.2D.16.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有()A.8048个B.4024个C.2012个D.1066个7.已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<-1B.-1<a<C.-<a<1D.a>8.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.广D.安9.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8C.9D.1010.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和-1,则点C所对应的实数是()A.1+B.2+C.2-1D.2+1二、填空题(本大题共7小题,共28.0分)11.已知1纳米=0.000000001米,则2012纳米用科学记数法表示为.12.已知y=x-1,则(x-y)2+(y-x)+1的值为.13.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .14.分解因式:x3-4x2-12x= .15.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即),已知200度近视眼镜的镜片焦距为0.5m,则y与x之间的函数关系式是.16.等腰三角形的周长为16,其一边长为6,则另两边为.17.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式组0<kx+b<x的解集为.三、解答题(本大题共4小题,共42.0分)18.如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.19.今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:(1)表中a= ,b= ;(2)这个样本数据的中位数在第组;(3)下表为≤体育与健康≥中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上()学生约有多少人?排球30秒对墙垫球的中考评分标准20.为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费情况如下表:(1)求该市每吨水的基本价和市场价.(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?21.如图在平面直角坐标系x O y中,函数y=(x>0)的图象与一次函数y=kx-k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.。
江苏省泰州市高港区2014年中考数学一模试题
高港区九年级第一次模拟考试数学试题(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题纸上,答案写在试卷上无效.第一部分 选择题(共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.−5的绝对值是 ( ▲ ) A. 5 B. −5 C.51 D. 51- 2.下列计算正确的是 ( ▲ )A.5)5(2-=- B.16412=⎪⎭⎫⎝⎛--C.236x x x =÷ D.()523x x =3.已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 ( ▲ ) A.1B.2C. 2-D. 1-4.下列标志图中,既是轴对称图形,又是中心对称图形的是 ( ▲ )A B C D5. 如图所示的几何体的左视图是 ( ▲ )A B C D6. 在一副扑克牌中,洗好,随意抽取一张,下列说法错误的是 ( ▲ )A .抽到大王的概率与抽到红桃3的概率相同B .抽到黑桃A 的概率比抽到大王的概率大C .抽到A 的概率与抽到K 的概率相同D .抽到A 的概率比抽到小王的概率大第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接写在答题卡相应位置.......上) 7.-27的立方根是 ▲ .8.计算:223a a ⋅= ▲ .9.命题“同位角相等”是 ▲ 命题(填“真”或“假”).10.2014年江苏省泰州市经信委对重点工业投资储备项目调查摸底, 工业总投资314.86亿元, 314.86亿这个数可用科学记数法表示为 ▲ . 11.不等式组⎩⎨⎧>+>-.36;02x x x 的解集是 ▲ .13.对角线 ▲ 的平行四边形是矩形.14.图中S □ABCD =18cm 2,P 为BC 边上任意一点,M 为AP 上的一个点,且MP AM 21=,图中阴影部分面积是 ▲ cm 2.15.如图△ABD 与△AEC 都是等边三角形,AB ≠AC ,下列结论中:①BE =DC ;②∠BOD =60°;③△BOD ≌△COE .正确的序号是 ▲ .16.如图,直线y =-x +b 与双曲线xy 1=(x >0)交于A 、B 两点,与x 轴、y 轴分别交于E 、F 两点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,当b= ▲ 时,△ACE 、△BDF 与△ABO 面积的和等于△EFO 面积的43. 三、解答题(本大题共10小题,满分102分。
2014年中考数学模拟试卷含答案(精选3套)
济南市2014年初三年级学业水平考试数学全真模拟试卷(时间:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( )11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A.20°B.25°C.30°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10B.a b a b +=+C.(-a 3)6=a 18D.2a a =6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )1125A. B. C. D.23367.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C.3 D.无解8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )111A. B. C. D.248π π π π9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )x 10x 10A. B.2x 02x 0x 10x 10C. D.x 20x 20+≥+≤⎧⎧ ⎨⎨-≥-≥⎩⎩+≤+≥⎧⎧ ⎨⎨-≥-≥⎩⎩10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )11.化简2(21)÷-的结果是( )A.221B.22C.12D. 22- - - +12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1613.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.1014.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=( )A.28°B.42°C.56°D.84°15.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B→C→D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:(a+2)(a-2)+3a=________.17.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_________.18.如图,两建筑物的水平距离BC为18 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为________ m(结果不作近似计算).19.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_______.21.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)化简222x1x2x1. x1x x--+÷+-(2)解方程:15x2(x1)8x. 24++=+23.(本小题满分7分)(1)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(本小题满分8分)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1 575元,若合在一起购买折扣票,总计应付门票费1 080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(本小题满分8分)某市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽取了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14∶9∶6∶1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽取了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(本小题满分9分)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O 的距离为5,则r的取值范围为_________.27.(本小题满分9分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.28.(本小题满分9分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于点F,∠1=∠2,连接CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.参考答案1.D2.C3.B4.A5.C6.A7.C8.A9.A 10.A 11.D 12.D 13.C 14.A 15.C 16.(a-1)(a+4) 17.-10 18.123 19.6 20.n 13-()21.25522.(1)解:原式=()()()2x 1x 1x x 1x.x 1x 1+--=+- () (2)解:原方程可化为3x+2=8+x,合并同类项得:2x=6, 解得:x=3.23.(1)证明:∵∠1=∠2, ∴∠1+∠EAC=∠2+∠EAC, 即∠BAC=∠EAD.∵在△ABC 中和△AED 中,D C,BAC EAD,AB AE,∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED(AAS) (2)证明:∵BE=DF,∴BE-EF=DE-EF,∴DE=BF.∵四边形ABCD 是平行四边形, ∴AD=BC,AD ∥BC, ∴∠ADE=∠CBF,在△ADE 和△CBF 中,DE BF,ADE CBF,AD BC,=⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF(SAS), ∴AE=CF. 24.解:(1)全票为15元,则八折票价为12元,六折票价为9元. ∵100×15=1 500<1 575,∴参加郊游的七、八年级同学的总人数必定超过100人,∴由此可判断参加郊游的八年同学不少于50人.(2)设七、八年级参加郊游的同学分别有x 人、y 人. 由(1)及已知可得,x<50,50<y<100,x+y>100. 依题意可得:()15x 12y 1 575,9x y 1 080,+=⎧⎨+=⎩ 解得:x 45,y 75.=⎧⎨=⎩答:参加郊游的七、八年级同学分别为45人和75人. 25.解:(1)D 等级所占比例为:111496130=+++,则共抽取的人数为:1260().30÷=人 (2)样本中B 等级的频率为:9100%30%;14961⨯=+++C 等级的频率为:6100%20%.14961⨯=+++ (3)样本中A 等级在扇形统计图中所占圆心角度数为:1430×360=168(度); D 等级在扇形统计图中所占圆心角度数为:130×360=12(度). (4)可报考示范性高中的总人数: 300×149()3030+=230(名). 26.(1)证明:∵∠CBF=∠CFB , ∴BC=CF. ∵AC=CF , ∴AC=BC ,∴∠ABC=∠BAC.在△ABF 中,∠ABC+∠CBF+∠BAF+∠F=180°, 即2(∠ABC+∠CBF)=180°, ∴∠ABC+∠CBF=90°, ∴BF 是⊙O 的切线;(2)解:连接BD.∵点D ,点E 是弧AB 的三等分点,AB 为直径, ∴∠ABD=30°,∠ADB=90°,∠A=60°. ∵AD=5,∴AB=10,()BFtan603ABBF 103;3535r 53 5.∴︒==∴=-<<+,27.解:(1)设二次函数的解析式为:y=ax 2+bx+c.221a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.21D(2m)m 224 4.2⎧⎧=-⎪⎪=⎪⎪++==⎨⎨⎪⎪=⎪⎪-=⎩⎩=-++=-⨯++= ,,由题意有:,解得:,,所以,二次函数的解析式为:点,在抛物线上,即∴点D 的坐标为(2,4);(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得:BD=25,∵E 是BD 的中点, ∴BE=5.BE BQ 1QBE ABD BD BA 2AB 2BQ Q 10BQ BE 5QBE DBA BD BA 6557BQ 25OQ 6337Q 0.3==∴=∴==∴=⨯==∴ 当≌时,,,点的坐标为(,);当≌时,,,则,点的坐标(,) (3)如图,由A(-2,0),D(2,4),可求得直线AD 的解析式为:y=x+2,则点F 的坐标为:F(0,2).过点F作关于x轴的对称点F′,即F′(0,-2),连接CD,再连接DF′交对称轴于M′,交x轴于N′.由条件可知,点C,D关于对称轴x=1对称,∴DF′=210,F′N′=FN′,DM′=CM′,∴CF+FN′+M′N′+M′C=CF+DF′=2210+,∴四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=2210+,即四边形CFNM的最短周长为:2210+,此时直线DF′的解析式为:y=3x-2,所以存在点N的坐标为2(,0)3,点M的坐标为(1,1)使四边形CMNF周长取最小值.28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠ACO=∠1,∴∠ACO=∠2,∵∠CAM=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO ·cos ∠BOC=4×14=1, 由此可得:BE=3,AE=5,由勾股定理可得:222222222222CE CO OE 4115AC CE AE (15)5210,BC CE BE (15)326,=-=-==+=+==+=+= ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=215,∵△ACM ∽△DCN ,∴CM AC,CN CD= ∵点M 是CO 的中点,11CMOA 42,22==⨯= CM CD 2215CN 6,AC 210BN BC CN 266 6.⨯∴===∴=-=-=济南市2014年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )1111A. B. C. D.34567.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B. 22C.1D.211.如图,数轴上a,b两点表示的数分别为3和-1,点a关于点b的对称点为c,则点c所表示的数为( )A.23B.13C.23D.13-- -- -+ +12.如图,A、B、C是反比例函数kyx=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3∶1∶1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条13.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元14.已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a 的取值范围是( )A.-2≤a-1B.-2≤a <-1C.-2<a ≤-1D.-2<a <-1 15.如图,直线l :y=-x-2与坐标轴交于A 、C 两点,过A 、O 、C 三点作⊙O 1,点E 为劣弧 AO上一点,连接EC 、EA 、EO ,当点E 在劣弧上运动时(不与A 、O 两点重合),EC EA EO-的值是( )A.2 B.3 C.2 D.变化的第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a 3-ab 2=________. 17.计算124183-⨯=_________. 18.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a ().22a 2a 1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD ,垂足为E. 求证:BE=DE.(2)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC=FE. 求证:FC 是⊙O 的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1yx 4=与双曲线ky x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D ,与y 轴的正半轴交于点E ,且△AOE 的面积为10,求CD 的长.28.(本小题满分9分) 如图,抛物线21y x 1=-交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标; (3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.A3.D4.C5.B6.B7.C8.B9.A10.D 11.A 12.A 13.C 14.C 15.A19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100, ∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人. 答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC , ∴四边形OBEC 为平行四边形, 又∵AC ⊥BD ,即∠COB=90°, ∴平行四边形OBEC 为矩形; (3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2). 27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1,∴B 的坐标是(-4,-1). ∵把B 的坐标代入ky k 4x==得:, ∴反比例函数的解析式是4y .x=∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,,∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,②由①,②可解得:a=5,b=5,即OD=5. ∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15, ∴x=2,y=3, ∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1), ∴OA =OB= 1 ,∴∠OBA= 45°. 过点 C 作CD ⊥x 轴于点D, ∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.2014届中考数学模拟测试卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有8小题,每小题3分,共24分) 1.12-的倒数为【 】 A .12B .2C .2-D .1-2.下列图形中,既是轴对称图形,又是中心对称图形的是【 】 A .平行四边形 B .等边三角形 C .等腰梯形 D .正方形3.已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)【 】A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 4.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距0102=7cm ,则两圆的位置关系为【 】 A .外离 B .外切 C .相交 D .内切5.如图是由七个相同的小正方体堆成的几何体,这个几何体的俯视图是【 】6.某校在开展“爱心捐助”的活动中,初三(一)班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】A .10B .9C .8D .4 7.如图7,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于【 】 A .20°B .30°C .40° D.50°8.已知二次函数2(0)y ax bx c a =++≠的图象如右图8所示,下列结论①abc >0 ②b<a+c③2a-b=0 ④4a+2b+c >0 ⑤2c<3b⑥a+b >m(am+b)(m 为任意实数), 其中正确的结论有【 】 A . 1个 B .2个 C . 3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-3℃,那么当天的日温差是 ▲ .10.函数12-+=x x y 中自变量x 的取值范围是 ▲ . 11.如图11,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 ▲ .(填一个即可).12.因式分解:m 3n -9mn= ▲ .13.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是▲ .14.在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是 ▲ . 15.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ▲ .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .17.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 ▲ . 18.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: ▲ .(用n 的代数式 )三、解答题(本大题共有10小题,共96分) 19.(本题8分)(1) (4分)解方程组 ⎩⎨⎧=-=-;1383,32y x y x(2) (4分)821)14.3(45sin 2)31(02+-+︒--π 20.(本题8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的 a 值代入计算.21.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。
最新人教版八年级数学上册 专题复习:整式的运算
专题 整式的运算☞2年中考【2015年题组】 1.(2015北海)下列运算正确的是( )A .3412a b a +=B .326()ab ab = C .222(5)(42)3a ab a ab a ab --+=- D .1262x x x ÷=【答案】C . 【解析】试题分析:A .3a 与4b 不是同类项,不能合并,故错误;B .3226()ab a b =,故错误; C .正确;D .1266x x x ÷=,故错误;故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.去括号与添括号;4.同底数幂的除法. 2.(2015南宁)下列运算正确的是( )A .ab a ab 224=÷B .6329)3(x x =C .743a a a =•D .236=÷【答案】C .考点:1.整式的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的乘除法. 3.(2015厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .22xy -B .23xC .32xyD .32x【答案】D . 【解析】试题分析:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A .22xy -系数是﹣2,错误;B .23x 系数是3,错误;C .32xy 次数是4,错误;D .32x 符合系数是2,次数是3,正确; 故选D .考点:单项式.4.(2015厦门)32-可以表示为( )A .2522÷ B .5222÷ C .2522⨯ D .(2)(2)(2)-⨯-⨯-【答案】A . 【解析】试题分析:A .2522÷=252-=2522÷,故正确;B .5222÷=32,故错误; C .2522⨯=72,故错误;D .(2)(2)(2)-⨯-⨯-=3(2)-,故错误;故选A .考点:1.负整数指数幂;2.有理数的乘方;3.同底数幂的乘法;4.同底数幂的除法. 5.(2015镇江)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y + C .2x y -- D .2x y -+ 【答案】A .考点:整式的加减. 6.(2015广元)下列运算正确的是( )A .23222()()ab ab ab -÷=-B .2325a a a +=C .22(2)(2)2a b a b a b +-=-D .222(2)4a b a b +=+【答案】A . 【解析】试题分析:A .23222()()ab ab ab -÷=-,正确;B .325a a a +=,故错误;C .22(2)(2)4a b a b a b +-=-,股错误; D .222(2)44a b a b ab +=++,故错误. 故选A .考点:1.平方差公式;2.合并同类项;3.同底数幂的除法;4.完全平方公式.7.(2015十堰)当x=1时,1ax b ++的值为-2,则()()11a b a b +---的值为的值为( )A .﹣16B .﹣8C .8D .16 【答案】A . 【解析】试题分析:∵当x=1时,1ax b ++的值为﹣2,∴12a b ++=-,∴3a b +=-,∴()()11a b a b +---=(﹣3﹣1)×(1+3)=﹣16.故选A .考点:整式的混合运算—化简求值. 8.(2015黄冈)下列结论正确的是( )A .2232a b a b -= B .单项式2x -的系数是1-C .使式子2+x 有意义的x 的取值范围是2x >-D .若分式112+-a a 的值等于0,则1a =±【答案】B .考点:1.合并同类项;2.单项式;3.分式的值为零的条件;4.二次根式有意义的条件.9.(2015佛山)若n mx x x x ++=-+2)1()2(,则m n +=( ) A .1 B .﹣2 C .﹣1 D .2【答案】C . 【解析】试题分析:∵(2)(1)x x +-=2+2x x -=2x mx n ++,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选C .考点:多项式乘多项式. 10.(2015天水)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 【答案】A .考点:1.整式的混合运算;2.有理数的混合运算;3.新定义. 11.(2015邵阳)已知3a b +=,2ab =,则22a b +的值为( ) A .3 B .4 C .5 D .6 【答案】C . 【解析】试题分析:∵3a b +=,2ab =,∴22a b +=2()2a b ab +-=9﹣2×2=5,故选C .考点:完全平方公式.12.(2015临沂)观察下列关于x 的单项式,探究其规律: x ,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( )A .2015x2015B .4029x2014C .4029x2015D .4031x2015 【答案】C . 【解析】 试题解析:系数的规律:第n 个对应的系数是2n ﹣1.指数的规律:第n 个对应的指数是n .故第2015个单项式是4029x2015.故选C . 考点:1.单项式;2.规律型. 13.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66【答案】B .考点:1.完全平方公式;2.规律型;3.综合题.14.(2015连云港)已知m n mn +=,则(1)(1)m n --= . 【答案】1. 【解析】试题分析:(1)(1)m n --=mn ﹣(m+n )+1,∵m+n=mn ,∴(m ﹣1)(n ﹣1)=mn ﹣(m+n )+1=1,故答案为:1.考点:整式的混合运算—化简求值.15.(2015珠海)填空:2+10x x + =2(_____)x +.【答案】25;5. 【解析】试题分析:∵10x=2×5x ,∴2+1025x x +=2(5)x +.故答案为:25;5.考点:完全平方式. 16.(2015郴州)在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为 .【答案】12.考点:1.列表法与树状图法;2.完全平方式.17.(2015大庆)若若52=n a ,162=n b ,则()nab = . 【答案】45±. 【解析】试题分析:∵52=n a ,162=n b ,∴2280n na b ⋅=,∴2()80nab =,∴()n ab =45±,故答案为:45±.考点:幂的乘方与积的乘方.18.(2015牡丹江)一列单项式:2x -,33x ,45x -,57x ,…,按此规律排列,则第7个单项式为 . 【答案】213x -.【解析】试题分析:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x 的指数为8,所以,第7个单项式为213x -.故答案为:213x -.考点:1.单项式;2.规律型.19.(2015安顺)计算:201320111(3)()3-⋅-= .【答案】9.考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2015铜仁)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则6()a b += .【答案】654233245661520156a a b a b a b a b ab b ++++++. 【解析】试题分析:6()a b +=654233245661520156a a b a b a b a b ab b ++++++.故本题答案为:654233245661520156a a b a b a b a b ab b ++++++.考点:1.完全平方公式;2.规律型:数字的变化类;3.综合题. 21.(2015南宁)先化简,再求值:(1)(1)(2)1x x x x +-++-,其中12x =.【答案】2x ,1. 【解析】试题分析:先利用乘法公式展开,再合并得到答案,然后把12x =代入计算即可.试题解析:原式=22121x x x -++-=2x ,当12x =时,原式=2×12=1.考点:整式的混合运算—化简求值. 22.(2015无锡)计算: (1)02(5)3)3--+-;(2)2(1)2(2)x x +--. 【答案】(1)1;(2)25x +.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.23.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+. 【答案】(1) 22a b -,33a b -,44a b -;(2) n na b -;(3)342. 【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -; 3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=nna b -,故答案为:nna b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.24.(2015咸宁)(1)计算:0 128(2)-++-;(2)化简:2232(2)()a b ab b b a b--÷--.【答案】(1)32;(2)22b-.考点:1.整式的混合运算;2.实数的运算;3.零指数幂.25.(2015随州)先化简,再求值:5322(2)(2)(5)3()a a a ab a b a b+-+-+÷-,其中12ab=-.【答案】42ab-,5.【解析】试题分析:利用平方差公式、单项式乘以多项式法则、单项式除法运算,合并得到最简结果,把ab的值代入计算即可求出值.试题解析:原式=22453a a ab ab-+-+=42ab-,当12ab=-时,原式=4+1=5.考点:整式的混合运算—化简求值.26.(2015北京市)已知22360a a+-=.求代数式3(21)(21)(21)a a a a+-+-的值.【答案】7.【解析】试题分析:利用单项式乘以多项式法则、平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:∵22360a a+-=,即2236a a+=,∴原式=226341a a a+-+=2231a a++=6+1=7.考点:整式的混合运算—化简求值.27.(2015茂名)设y ax=,若代数式()(2)3()x y x y y x y+-++化简的结果为2x,请你求出满足条件的a 值. 【答案】a=﹣2或0. 【解析】试题分析:因式分解得到原式=2()x y +,再把当y ax =代入得到原式=22(1)a x +,所以当2(1)1a +=满足条件,然后解关于a 的方程即可.试题解析:原式=2()x y +,当y ax =时,代入原式得222(1)a x x +=,即2(1)1a +=,解得:a=﹣2或0.考点:1.整式的混合运算;2.平方根. 28.(2015河北省)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式; (2)若16+=x ,求所捂二次三项式的值.【答案】(1)221x x -+;(2)6.考点:整式的混合运算—化简求值.【2014年题组】 1.(2014年百色中考) 下列式子正确的是( ) A .(a ﹣b )2=a2﹣2ab+b2 B . (a ﹣b )2=a2﹣b2 C .(a ﹣b )2=a2+2ab+b2 D .(a ﹣b )2=a2﹣ab+b2 【答案】A . 【解析】试题分析:A .(a ﹣b )2=a2﹣2ab+b2,故A 选项正确;B .(a ﹣b )2≠a2﹣b2,故B 选项错误;C .(a ﹣b )2≠a2+2ab+b2,故C 选项错误;D .(a ﹣b )2≠a2﹣ab+b2,故D 选项错误;故选A .考点:完全平方公式.A.()339x x = B.()332x 6x -=- C.22x x x -= D.632x x x ÷=【答案】A .考点:1.幂的乘方和积的乘方;2.合并同类项;3.同底幂乘除法. 3.(2014年常州中考)下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .【解析】试题分析:根据同底幂乘法,同底幂乘除法,幂的乘方和积的乘方运算法则逐一计算作出判断: A. 31343a a aa a+⋅==≠,选项错误; B.()3333ab a b a b=≠,选项错误;C.()23326a a a ⨯==,选项正确; D. 848442a a aa a -÷==≠,选项错误.故选C .考点:1.同底幂乘法;2.同底幂乘除法;3.幂的乘方和积的乘方. 4.(2014年抚顺中考)下列运算正确的是( ) A .-2(a-1)=-2a-1B .(-2a )2=-2a2C .(2a+b )2=4a2+b2 D . 3x2-2x2=x2 【答案】D . 【解析】 试题分析:A 、-2(a-1)=-2a+2,故A 选项错误;B 、(-2a )2=4a2,故B 选项错误;C 、(2a+b )2=4a2+4ab+b2,故C 选项错误;D 、3x2-2x2=x2,故D 选项正确. 故选D .考点:1.完全平方公式;2.合并同类项;3.去括号与添括号;4.幂的乘方与积的乘方. 5.(2014年眉山中考)下列计算正确的是( )A .235x x x +=B .236x x x ⋅=C .236()x x =D .632x x x ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.A.a3+a4=a7 B. 2a3•a4=2a7 C.(2a4)3=8a7 D. a8÷a2=a4【答案】B.【解析】试题分析:A、a3和a4不能合并,故A错误;B、2a3•a4=2a7,故B正确;C、(2a4)3=8a12,故C错误;D、a8÷a2=a6,故D错误;故选B.考点:整式的运算.7.(2014年镇江中考)化简:()()x1x11+-+=.【答案】2x.【解析】试题分析:第一项利用平方差公式展开,去括号合并即可得到结果:()()22x1x11x11x+-+=-+=.考点:整式的混合运算.8.(2014年吉林中考)先化简,再求值:x(x+3)﹣(x+1)2,其中x=+1.【答案】x﹣1;2.【解析】试题分析:先利用整式的乘法和完全平方公式计算,再进一步合并化简,最后代入数值即可.试题解析:原式=x2+3x﹣x2﹣2x﹣1=x﹣1,当x=2+1时,原式=2+1﹣1=2.考点:1.整式的运算;2.化简求值.9.(2014年绍兴中考)先化简,再求值:()()()2a a3b a b a a b-++--,其中1a1b2 ==-,.【答案】a2+b2,5 4.考点:整式的混合运算—化简求值.10.(2014年杭州中考)设y kx=,是否存在实数k,使得代数式2222222(x y )(4x y )3x (4x y )--+-能化简为4x ?若能,请求出所有满足条件的k 值,若不能,请说明理由. 【答案】能. 【解析】试题分析:化简代数式,根据代数式恒等的条件列关于k 的方程求解即可 试题解析:∵y kx =,∴222222222222222(x y )(4x y )3x (4x y )(4x y )(x y 3x )(4x y )--+-=--+=- ()2222242(4x k x )x 4k =-=-.∴要使代数式22222224(x y )(4x y )3x (4x y )x --+-=,只要()224k1-=.∴24k 1-=±,解得k=±3或k=±5.考点:1. 代数式的化简;2. 代数式恒等的条件;3.解高次方程.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:整式:单项式与多项式统称整式. (1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数. 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项.2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同. 【例1】下列式子中与3m2n 是同类项的是( ) A.3mn B.3nm2 C.4m D.5n 【答案】B .考点:同类项. 归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:am ·an =am +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(am )n =amn (m ,n 都是整数,a ≠0)(3)积的乘方:(ab )n =an ·bn (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:am ÷an =am -n (m ,n 都是整数,a ≠0) 注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】下列运算正确的是( ) A. 33a a a⋅= B.()33ab a b= C.()236a a = D. 842a a a ÷=【答案】C .考点:幂的运算.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:,实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma+mb ; ②多项式乘多项式:(a +b )(c +d )=ac+ad+bc+bd ③乘法公式:平方差公式:(a+b )(a-b )=a2-b2;完全平方公式:(a ±b )2=a2±2ab+b2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】下列计算正确的是( ) A .2x -x =x B .a3·a2=a6 C .(a -b )2=a2-b2 D .(a +b )(a -b )=a2+b2 【答案】A .【解析】A 、原式=x ,正确;B 、原式=x5,错误;C 、原式=a2-2ab+b2,错误;D 、原式=a2-b2,故选A .考点:整式的运算.【例4】先化简,再求值:()()()22a b a b b a b b +-++-,其中1a =、2b =-.【答案】-1.【解析】原式222222a b ab b b a ab =-++-=+;当1a =、2b =-时,原式()2112121=+⨯-=-=-.考点:整式的混合运算—化简求值.【例5】计算21()(21)(41)2x x x +-÷-【答案】12.【解析】原式=12(2x+1)(2x ﹣1)÷[(2x ﹣1)(2x+1)]=12.考点:整式的混合运算. ☞1年模拟 1、(2015届云南省剑川县九上第三次统一模拟考试数学试卷)下列运算正确的是( )A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=【答案】C .考点:整式的运算. 2.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)下列运算正确的是( ).A .623a a a =⋅ B .6223)(b a ab = C .222)(b a b a -=- D .235=-a a【答案】B . 【解析】试题分析:因为32235a a a a +⋅==,所以A 错误;因为6223)(b a ab =,所以B 正确;因为222()2a b a ab b -=-+,所以C 错误;因为532a a a -=,所以D 错误;故选B .考点:1.幂的运算;2.整式的加减. 3.(2015届重庆市合川区清平中学等九年级模拟联考数学试卷)下列运算正确的是( )A .23a a ⋅=6aB .33()y y x x = C .55a a a ÷= D .326()a a =【答案】D .考点:1.同底数幂的除法;2.幂的乘方与积的乘方;3.同底数幂的乘法. 4.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)下列运算正确的是( )A .642a a a =+ B .523)(a a =C .2328=+D .222))((b ab a b a b a ---=---【答案】C .【解析】试题分析:A .2a 和4a 不能合并,故错误;B .3265()a a a =≠,故错误;C 8222232==D .2222()()()a b a b a b a b ---=--=-+,故错误;故选C .考点:1.二次根式的混合运算;2.整式的混合运算. 5.(2015届山东省日照市中考一模)观察下列各式及其展开式: (a+b )2=a2+2ab+b2(a+b )3=a3+3a2b+3ab2+b3(a+b )4=a4+4a3b+6a2b2+4ab3+b4(a+b )5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 …请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 【答案】B .考点:完全平方公式.6.(2015届云南省腾冲县九年级上学期五校联考摸底考试数学试卷)若3223y x mm -与3852y x m +-能够进行加减运算,则21m +=_________________;【答案】-1或9.【解析】试题分析:∵3223y x mm -与3852y x m +-能够进行加减运算,∴2258m m m -=+,即:2340m m --=,解得:1m =-或4m =,①当1m =-时,21m +=-1,②当4m =时,21m +=9.故答案为:-1或9.考点:1、同类项;2、解一元二次方程-因式分解法;3、分类讨论.7.(2015届广东省佛山市初中毕业班综合测试)已知a2-2a-3=0,求代数式2a (a-1)-(a+2)(a-2)的值. 【答案】7.考点:整式的混合运算—化简求值.。
2014年中考数学模拟考试题 参考答案及解析
2014年中考数学模拟考试题 参考答案及解析一、选择题:1、C2、D3、B4、A5、C6、B7、C8、C9、C 10、C 二、填空题:11、x=3; 12、k>-2; 13、25; 14、25 三、解答题15、(1)233+ (2) 原式211x x +== 16、解:由题意得:232a a +≥- ∴2a ≤17、解:由题意得:∠PBH=60°,∠APB=45°. ∵山坡的坡度i (即tan ∠ABC )为1:3 ∴tan ∠ABC=13,∠ABC=30° , ∴∠APB=90°. 在Rt △PHB 中,PB=PBHPH∠sin =203,在Rt △PBA 中,AB=PB=203≈34.6. 答:A 、B 两点间的距离约34.6米.18、(1)把C (1,3)代入y = kx得k =3 设斜边AB 上的高为CD ,则sin ∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,①当点B 在点A 右侧时,如图1有: AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134O xyB A CD 图1此时B 点坐标为(134,0)②当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(- 54,0)所以点B 的坐标为(134,0)或(- 54,0).19、解:(1) 坐标1232131 1 (1, 2)( 1, 3) (1,21) ( 1 ,31) 2 (2, 1) ( 2, 3)( 2 ,21)( 2 ,31)3(3, 1) ( 3, 2 ) ( 3 ,21)( 3 ,31)21(21,1) (21,2) (21,3) (21 ,31) 31 (31,1) (31,2) (31,3) (31 ,21)(2)当1=x 时2=y ,∴点(1,21),(1,31)在△AOB 内部, 当2=x 时1=y ,∴点(2,21),(2,31)在△AOB 内部,当3=x 时0=y ,∴则上述点都不在△AOB 内部,当21=x 时25=y ,则点(21,1)(21,2),(21,31)在△AOB 内部, 当31=x 时,38=y 则点(31,1)(31,2), (31,21)在△AOB 内点, ∴点P 在△AOB 的内部概率()101=202P =内部xyB ACDO图220、解:(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2. 又tan ∠ADC =2,所以212DM ==.因为MC =AB =1,所以DC =DM+MC =2,即DC =BC . (2)等腰直角三角形.证明:∵DE =DF ,∠EDC =∠FBC ,DC =BC . ∴△DEC ≌△BFC (5分)∴CE =CF ,∠ECD =∠BCF . ∴∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(3)设BE =k ,则CE =CF =2k , ∴22EF k =. ∵∠BEC =135°,又∠CEF =45°,∴∠BEF =90°. ∴22(22)3BF k k k =+= ∴1sin 33BFE k k ∠==. B 卷21、8 ; 22、a+b ; 23、 124,1x x =-=-; 24、31nn + ; 25、1或4 26、解:(1)由P =-1100(x -60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P 1=41×5=205(万元) (2)若实施规划,在前2年中,当x=50时,每年最大利润为: P= 1100-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x 万元投资本地销售,而用剩下的(100-x )万元投资外地销售,则其总利润W=[-1100(x -60)2+41+(- x 2+x +160]×3=-3(x-30)2+3195当x=30时,W 的最大值为3195万元, ∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.27、解:(1)60,60;(2)∵CM ∥BP ,∴∠BPM+∠M=180°,∠PCM=∠BPC=60. ∴∠M=180°-∠BPM=180-(∠APC+∠BPC )=180°-120°=60°. ∴∠M=∠BPC=60°.(3)∵△ACM ≌△BCP ,∴CM=CP ,AM=BP . 又∠M=60°,∴△PCM 为等边三角形. ∴CM=CP=PM=1+2=3. 作PH ⊥CM 于H.在Rt △PMH 中,∠MPH=30°.∴PH=332. ∴S 梯形PBCM =11315()(23)332224PB CM PH +⨯=+⨯=. 28、解:(1)∵抛物线y=ax 2+bx+3(a≠0)经过A (3,0),B (4,1)两点,∴933016431a b a b ++=⎧⎨++=⎩解得:1252a b ==-∴y=21x 2﹣25x+3; ∴点C 的坐标为:(0,3);(2)①当△PAB 是以AB 为直角边的直角三角形,且∠PAB=90°,直线PA 与y 轴交于点D 过B 作BM ⊥x 轴交x 轴于点M ,如图(1-1)∵A (3,0),B (4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°,∴AO=DO , ∵A 点坐标为(3,0), ∴D 点的坐标为:(0,3), ∴直线AD 解析式为:y=kx+b ,将A ,D 分别代入得: ∴0=3k+b ,b=3, ∴k=﹣1, ∴y=﹣x+3, ∴y=21x 2﹣25x+3=﹣x+3, ∴x 2﹣3x=0, 解得:x=0或3, ∴y=3或0(0不合题意舍去), ∴P 点坐标为(0,3),②当△PAB 是以AB 为直角边的直角三角形,且∠PBA=90°,直线PB 与y 轴交于点D , 过B 分别作BE ⊥x 轴,BF ⊥y 轴,分别交x 轴、y 轴于点E 、F ,如图(1-2) 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D 点坐标为:(0,5),B 点坐标为:(4,1),∴直线BD 解析式为:y=kx+b ,将B ,D 分别代入得: ∴1=4k+b ,b=5, ∴k=﹣1, ∴y=﹣x+5, ∴y=21x 2﹣25x+3=﹣x+5, ∴x 2﹣3x ﹣4=0, 解得:x 1=﹣1,x 2=4, ∴y 1=6,y 2=1, ∴P 点坐标为(﹣1,6),其中(4,1)不合题意,舍去。
浙江省金华市2014年中考数学试卷及答案【Word解析版】
浙江省金华市2014年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•金华)在数1,0,﹣1,﹣2中,最小的数是()A.1B.0C.﹣1 D.﹣2考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<﹣1<0<1,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•金华)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线此操作的依据是两点确定一条直线.故选A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.(3分)(2014•金华)一个几何体的三视图如图,那么这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.故选:D.点评:考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.(3分)(2014•金华)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.考点:概率公式.分析:用红球的个数除以球的总个数即可.解答:解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.点评:本题考查了概率公式:概率=所求情况数与总情况数之比.5.(3分)(2014•金华)在式子,,,中,x可以取2和3的是()A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.解答:解:A、x﹣2≠0,解得:x≠2,故选项错误;B、x﹣3≠0,解得:x≠3,选项错误;C、x﹣2≥0,解得:x≥2,则x可以取2和3,选项正确;D、x﹣3≥0,解得:x≥3,x不能取2,选项错误.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2014•金华)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5 C.2D.3考点:锐角三角函数的定义;坐标与图形性质.分析:根据正切的定义即可求解.解答:解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.(3分)(2014•金华)把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)考点:提公因式法与公式法的综合运用.分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解答:解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选:C.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.8.(3分)(2014•金华)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得,∠B=∠A′B′C=65°.故选B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.(3分)(2014•金华)如图是二次函数y=﹣x2+2x+4的图象,使y≤1成立的x的取值范围是()A.﹣1≤x≤3 B.x≤﹣1 C.x≥1 D.x≤﹣1或x≥3考点:二次函数与不等式(组).分析:根据函数图象写出直线y=1下方部分的x的取值范围即可.解答:解:由图可知,x≤﹣1或x≥3时,y≤1.故选D.点评:本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.10.(3分)(2014•金华)一张圆心角为45°的扇形纸板盒圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:考点:正多边形和圆;勾股定理.分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.解答:解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴π÷(π)=,故选A.点评:本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2014•金华)写出一个解为x≥1的一元一次不等式x+1≥2.考点:不等式的解集.专开放型.题:分析:根据不等式的解集,可得不等式.解答:解:写出一个解为x≥1的一元一次不等式 x+1≥2,故答案为:x+1≥2.点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可.12.(4分)(2014•金华)分式方程=1的解是x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x﹣1=3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(2014•金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.考点:函数的图象.分析:先分析出小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),再根据路程、时间、速度的关系即可求得.解答:解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.点评:本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.14.(4分)(2014•金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是240°.考点:扇形统计图.分析:用周角乘以一水多用的所占的百分比即可求得其所占的圆心角的度数.解答:解:表示“一水多用”的扇形圆心角的度数是360°×=240°,故答案为:240°.点评:本题考查了扇形统计图的知识,能够从统计图中整理出进一步解题的信息是解答本题的关键.15.(4分)(2014•金华)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7.考点:全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.分析:根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.解答:解:∵G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG==,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴4+2x=2,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.点评:本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.16.(4分)(2014•金华)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是(11﹣3)cm≤r≤8cm.考点:圆的综合题.分析:(1)作P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH于点M,求出ML,OM,根据=求解,(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,由△LDH∽△LPB,得出=,再根据30°的直角三角形得出线段的关系,得到DH和r的关系式,根据0≤d≤3的限制条件,列不等式组求范围.解答:解:(1)如图2①,P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH 于点M,∴∠BPH=∠BPL=90°,∵AO∥GH,∴BL∥AO∥GH,∵∠AOB=120°,∴∠OBL=60°,在RT△BPH中,HP=BP=r,∴ML=HP=r,OM=r,∵BL∥GH,∴===,故答案为:.(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,∴∠LDH=∠LPB=90°,∴△LDH∽△LPB,∴=,∵AO∥PB,∠AOD=120°∴∠B=60°,∴∠BLP=30°,∴DL=DH,LH=2DH,∵HE=(8+2)cm∴HP=8+2﹣r,PL=HP+LH=8+2﹣r+2DH,∴=,解得DH=r﹣4﹣1,∵0cm≤DH≤3cm,∴0≤r﹣4﹣1≤3,解得:(11﹣3)cm≤r≤8cm.故答案为:(11﹣3)cm≤r≤8cm.点评:本题主要考查了圆的综合题,解决本题的关键是作出辅助线,运用30°的直角三角形得出线段的关系.三、解答题(共8小题,满分66分)17.(6分)(2014•金华)计算:﹣4cos45°+()﹣1+|﹣2|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣4×+2+2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•金华)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=﹣2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=x2﹣x+5x﹣5+x2﹣4x+4=2x2﹣1,当x=﹣2时,原式=8﹣1=7.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2014•金华)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)考利用轴对称设计图案;坐标与图形性质.点:分析:(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.解答:解:(1)如图2所示:直线l即为所求;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.点评:此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.20.(8分)(2014•金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?考点:规律型:图形的变化类.分析:(1)根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步求出问题即可;(2)由(1)中的规律列方程解答即可.解答:解:(1)1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;所以4张长方形餐桌的四周可坐4×4+2=18人,8张长方形餐桌的四周可坐4×8+2=34人.(2)设这样的餐桌需要x张,由题意得4x+2=90解得x=22答:这样的餐桌需要22张.点评:此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.21.(8分)(2014•金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?考点:折线统计图;条形统计图;加权平均数;方差.分析:(1)利用优秀率求得总人数,根据优秀率=优秀人数除以总人数计算;(2)先根据方差的定义求得乙班的方差,再根据方差越小成绩越稳定,进行判断.解答:解:(1)总人数:(5+6)÷55%=20,第三次的优秀率:(8+5)÷20×100%=65%,20×85%﹣8=17﹣8=9.补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S2乙组=×【(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2】=2.5,S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.点评:本本题考查了优秀率、平均数和方差等概念以及运用.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(10分)(2014•金华)【合作学习】如图,矩形ABCD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标时多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)①先根据矩形的性质得到D(2,3),然后利用反比例函数图象上点的坐标特征计算出k=6,则得到反比例函数解析式为y=;②设正方形AEGF的边长为a,则AE=AF=6,根据坐标与图形的关系得到B(2+a,0)),A(2+a,3),所以F点坐标为(2+a,3﹣a),于是利用反比例函数图象上点的坐标特征得(2+a)(3﹣a)=6,然后解一元二次方程可确定a的值,从而得到F点坐标;(2)当AE>EG时,假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,则得到F点坐标为(3,3),根据反比例函数图象上点的坐标特征可判断点F(3,3)不在反比例函数y=的图象上,由此得到矩形AEGF与矩形DOHE不能全等;当AE>EG时,若矩形AEGF与矩形DOHE相似,根据相似的性质得AE:OD=AF:DE,即==,设AE=3t,则AF=2t,得到F点坐标为(2+3t,3﹣2t),利用反比例函数图象上点的坐标特征得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,则AE=3t=,于是得到相似比==.解答:解:(1)①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=(x>0);②设正方形AEGF的边长为a,则AE=AF=6,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3﹣a),把F(2+a,3﹣a)代入y=得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2);(2)当AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(3,3),而3×3=9≠6,∴F点不在反比例函数y=的图象上,∴矩形AEGF与矩形DOHE不能全等;当AE>EG时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴==,设AE=3t,则AF=2t,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,3﹣2t),把F(2+3t,3﹣2t)代入y=得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,∴AE=3t=,∴相似比===.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、矩形的性质和图形全等的性质、相似的性质;理解图形与坐标的关系;会解一元二次方程.23.(10分)(2014•金华)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF 的长度,再用平行线分线段成比例定理或者三角形相似及求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=120°.②如图,过点E作EH∥BC,交AF于H,AM⊥BC,垂足为M,∵AE=CF=2,△ABC为等边三角形,AB=BC=AC=6,∴MF=1,AM=,根据勾股定理,AF=;∵EH∥BC,∴,∴,∴,∴AP•AF===12.(2)①当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC 的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠ABP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.(2)点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径的长度为:.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.24.(12分)(2014•金华)如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式S△OPH=S△OMH﹣S△OMP求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.解答:解:(1)由题意得:A(4,0),C(0,4).设抛物线的解析式为y=ax2+bx+c,则有,解得,∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•OP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(﹣3,0).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P(0,3).b)当点P在BC边上时,如答图2所示,此时PE=4.设CP=a(0≤a≤2),则P(a,4);设直线PE与直线l交点为Q,则Q(a,a﹣3),∴PQ=7﹣a.∴PF=(7﹣a).与a)同理,可求得:EF=.若PE=PF,则(7﹣a)=4,解得a=7﹣4>2,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即4=•(7﹣a),解得a=3>2,故此种情形不存在;若PE=EF,则PE=,整理得PF=PE,即(7﹣a)=4,解得a=﹣1,故此种情形不存在.∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BC与直线l交于点K,则K(,).c)当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(1+2,6﹣4).点评:本题是二次函数压轴题,涉及二次函数的图象与性质、待定系数法、图形面积、勾股定理、角平分线性质等知识点,重点考查了分类讨论的数学思想.第(2)②问中涉及复杂的分类讨论,使得试题的难度较大.。
2014年中考数学全真模拟试题含答案
2014年中考数学模拟试题(本试卷分A 卷(100分)、B 卷(60分),满分160分,考试时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1、﹣6的相反数为( ) A :6 B :61C :-61D :-62、下列计算正确的是( )A :a 2+a 4=a 6B : 2a+3b=5abC :(a 2)3=a6D :a 6÷a 3=a 23、已知反比例函数的图象经过点(1,﹣2),则k 的值为( )A :2B : -21 C :1D :-2 4、下列图形中,既是轴对称图形又是中心对称图形的有( )A :4个B :3个C :2个D :1个 5、如图,a ∥b ,∠1=65°,∠2=140°,则∠3=( )A :100°B :105°C :110°D :115°6、一组数据4,3,6,9,6,5的中位数和众数分别是( )A :5和5.5B :5.5和6C :5和6D :6和67、函数的图象在( )A :第一象限B :第一、三象限C :第二象限D :第二、四象限 8、如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=,则阴影部分图形的面积为( )A :4πB :2πC :πD :32π 9、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( ) A :x 30=1540-x B :x 40=1530-x C :x30=1540+x D :x 40=1530+x 10、如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )A :15B :20C :25D :3011、如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A :21B :55C :1010D :55212、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )A :B :C :D :二、填空题(本大题共4小题,每小题5分,共20分) 13.若m 2-n 2=6,且m -n=2,则m +n= ▲ . 14.函数2x 1y x 1+=-中自变量x 的取值范围是 ▲ . 15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组x 305x>0-≥⎧⎨-⎩的整数,则这组数据的平均数是 ▲ .16.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= ▲ .三、解答题(本大题共5小题,共44分) 17.计算:()()1201302sin 60534015131π-⎛⎫+---+-+ ⎪-⎝⎭.18.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段 频数 频率 30~40 10 0.05 40~50 36 50~60 0.39 60~70 70~80 20 0.10 总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同 (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为13:(即AB :BC=13:),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).21.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.x 50 60 90 120y 40 38 32 26(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.B卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分)22.在△ABC中,已知∠C=90°,7sinA sinB5+=,则sinA sinB-=▲.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为▲cm.24.如图,已知直线l:y3x=,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为▲.25.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y kx 3k 4=-+与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 ▲ . 五、解答题(本大题共3小题,每小题12分,共36分)26.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC .(1)求证:BC 平分∠PDB ; (2)求证:BC 2=AB•BD ;(3)若PA=6,PC=62,求BD 的长.27.如图,在等边△ABC 中,AB=3,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,将△ADE 沿DE 翻折,与梯形BCED 重叠的部分记作图形L . (1)求△ABC 的面积;(2)设AD=x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.28.已知二次函数2y ax bx c =++(a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程2x 4x 50+-=的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.2014年中考数学模拟试题答案一、A CDCBB ADCDBC13. 314.1x2≥-且x≠115. 516. 517. 解:原式=3317 5311222-+-⨯-+=。
2014中考数学模拟试卷(附详细答案)(3份)
2014年中考数学模拟试卷三(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如果不等式组⎩⎪⎨⎪⎧ x +9<5x -1,x >m +1①②的解集是x >2,则m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >15.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长L 的取值范围是( )A .1<L <5B .2<L <6C .5<L <9D .6<L <106.反比例函数y =2x的两个点为(x 1,y 1),(x 2,y 2),且x 1>x 2,则下式关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在△ABC 中,AB >AC ,点D ,E 分别是边AB ,AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( )A .EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .129.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A .12 120元B .12 140元C .12 160元D .12 200元11.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6 cm B.4 cmC.(6-23)cm D.(43-6)cm12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△BND,△CGM的面积分别为S1,S2,S3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S1二、填空题(每小题4分,共20分)13.因式分解:x3-9x=__________.14.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.(第14题图)15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__________米(如图).(第15题图)16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.(第16题图)其中正确的是__________(写出正确结论的序号). 17.如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5 cm ,将量角器沿DC 方向平移 2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②,则AB 的长为__________cm.(精确到0.1 cm)图① 图②三、解答题(共64分)18.(6分)计算:12-⎝ ⎛⎭⎪⎫-12-1-tan 60°+3-8+|3-2|.19.(7分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是__________,它是自然数__________的平方,第8行共有__________个数;(2)用含n 的代数式表示:第n 行的第一个数是__________,最后一个数是__________,第n 行共有__________个数;(3)求第n 行各数之和.20.(7分)为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户4月份用水15度,交水费22.5元,5月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户6月份的水费支出不少于60元,但不超过90元,求该用户6月份的用水量x的取值范围.21.(7分)据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:空气污染指数0~50 51~100101~150151~200201~250251~300大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)30(2)(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,点F 在AC 的延长线上,且∠CBF =12∠CA B .(1)求证:直线BF 是⊙O 的切线;(2)若AB =5,sin∠CBF =55,求BC 和BF 的长.23.(9分)如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB ,CD 相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,此时扣链EF 成一条线段,EF =32 cm.图1 图2(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°,可使用科学计算器); (3)小红的连衣裙穿在衣架后的总长度达到122 cm ,问挂在晒衣架后是否会拖落到地面?请通过计算说明理由.24.(10分)如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD,BC的交点E 的坐标;(3)若抛物线的顶点为P,连接PC,PD,判断四边形CEDP的形状,并说明理由.25.(10分)已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.图1(1)求证:BF∥AC;(2)若AC边的中点为M,求证:DF=2EM;(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图2参考答案一、1.A 俯视图是从上面看到的平面图形,也是在水平投影面上的正投影.易判断选A.2.D 3.B4.C 由①得x >2,由②得x >m +1. ∵其解集是x >2,∴m +1≤2,∴m ≤1. 5.D 6.D7.C DE 是△ABC 的中位线,DE ∥BC ,所以∠EDF =∠BFD .又DF =FD ,所以两三角形已具备了一边一角对应相等的条件.添加A 中条件EF ∥AB ,可利用ASA 证全等;添加B 中条件BF =CF ,可利用SAS 证全等;添加C 中条件,不能证明全等;添加D 中条件∠B =∠DEF ,可利用AAS 证明全等.8.C9.C 当a >0时,直线从左向右是上升的,抛物线开口向上,B ,D 是错的;函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),A 是错的,所以C 是正确的,故选C.10.C11.C 如图,三角板A ′B ′C ′平移的距离为B ′B ″.∵AB =12 cm ,∠A =30°,∴BC =B ″C ″=6 cm ,利用三角函数可求出BC ″=2 3 cm ,所以B ′B ″=(6-23)cm.12.A 如下图,由全等可证EQ =BC =BN =CM ,AC =DG =FA =CG ,∴S 1=12FA ·EQ ,S 2=12BN ·DG ,S 3=12MC ·CG ,∴S 1=S 2=S 3.二、13.x (x -3)(x +3) x 3-9x =x (x 2-9)=x (x -3)(x +3).14.105° ∵∠AOD =30°,∴DAB 的度数为210°,∠BCD =105°.15.9 设路灯高为x 米,由相似得1.5x =530,解得x =9,所以路灯甲的高为9米.16.①②⑤ 17.24.5三、18.解:原式=23+2-3-2+2-3=2.19.解:(1)64 8 15 (2)(n -1)2+1 n 22n -1(3)方法一:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.方法二:第n 行各数分别为(n -1)2+1,(n -1)2+2,(n -1)2+3,…,(n -1)2+2n -1,共有2n -1个数,它们的和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1. 20.解:(1)a =22.5÷15=1.5;b =(50-20×1.5)÷(30-20)=2;(2)根据题意,得60≤20×1.5+2(x -20)≤90,35≤x ≤50. 所以该用户6月份的用水量x 的取值范围是35≤x ≤50. 21.解:(1)30 (2)中位数是80(3)∵360×9+1230=252,∴空气质量优良(包括Ⅰ、Ⅱ级)的天数是252天. 22.(1)证明:如图,连接AE .∵AB 是⊙O 的直径,∴∠AEB =90°.∴∠1+∠2=90°.∵AB =AC ,∴∠1=12∠CAB .∵∠CBF =12∠CAB ,∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°.∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线. (2)解:如图,过点C 作CG ⊥AB 于点G ,∵sin ∠CBF =55,∠1=∠CBF ,∴sin ∠1=55.∵∠AEB =90°,AB =5,∴BE =AB ·sin∠1= 5.∵AB =AC ,∠AEB =90°,∴BC =2BE =2 5.在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=25,∴sin ∠2=255,cos ∠2=55.在Rt △CBG 中,可求得GC =4,GB =2,∴AG =3. ∵GC ∥BF ,∴△AGC ∽△ABF . ∴GC BF =AG AB .∴BF =GC ·AB AG =203. 故BC 和BF 的长分别为25,203.23.(1)证法一:∵AB ,CD 相交于点O ,∴∠AOC =∠BOD .∵OA =OC ,∴∠OAC =∠OCA =12(180°-∠AOC ).同理可证:∠OBD =∠ODB =12(180°-∠BOD ),∴∠OAC =∠OBD ,∴AC ∥BD .证法二:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm ,∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm , 作OM ⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634=817≈0.471,用科学计算器求得∠OEF ≈61.9°.(3)解法一:小红的连衣裙会拖落到地面.在Rt △OEM 中,OM =OE 2-EM 2=342-162=30(cm); 过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD , ∴∠ABH =∠OEM ,则Rt △OEM ∽Rt △ABH , ∴OE AB =OM AH ,AH =OM ·AB OE =30×13634=120(cm). ∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.解法二:小红的连衣裙会拖落到地面.同(1)可证:EF ∥BD ,∴∠ABD =∠OEF =61.9°.过点A 作AH ⊥BD 于点H ,在Rt △ABH 中,sin ∠ABD =AHAB,AH =AB ×sin∠ABD =136×sin 61.9°=136×0.882≈120.0 cm.∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.24.解:(1)由于抛物线经过点C (0,3),可设抛物线的解析式为y =ax 2+bx +3(a ≠0),则⎩⎪⎨⎪⎧4a -2b +3=0,36a +6b +3=0.解得⎩⎪⎨⎪⎧a =-14,b =1,故抛物线的解析式为y =-14x 2+x +3.(2)点D 的坐标为(4,3),直线AD 的解析式为y =12x +1,直线BC 的解析式为y =-12x+3,由⎩⎪⎨⎪⎧y =12x +1,y =-12x +3,得交点E 的坐标为(2,2).(3)四边形CEDP 为菱形.理由:连接PE 交CD 于F ,如图.∵P 点的坐标为(2,4),又∵E (2,2),C (0,3),D (4,3),∴PC =DE =5,PD =CE = 5.∴PC =DE =PD =CE .故四边形CEDP 是菱形.25.(1)证明:如图1.图1∵点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴BF =DF ,DH =BH .∴∠1=∠2.又∵∠EDA =∠A ,∠EDA =∠1,∴∠A =∠2.∴BF ∥AC .(2)证明:取FD 的中点N ,连接HM ,HN .图2∵H 是BD 的中点,N 是FD 的中点,∴HN ∥BF .由(1)得BF ∥AC ,∴HN ∥AC ,即HN ∥EM .∵在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,∴HM =12AC =AM .∴∠A =∠3.∴∠EDA =∠3.∴NE ∥HM . ∴四边形ENHM 是平行四边形.∴HN =EM .∵在Rt △DFH 中,∠DHF =90°,DF 的中点为N ,∴HN =12DF ,即DF =2HN .∴DF =2EM . (3)解:当AB =BC 时,在未添加辅助线和其他字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE .图3证明:连接CD.(如图3)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴∠ABC=180°-2∠A,AB=CD.①∵∠EDA=∠A,∴∠6=180°-2∠A,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴∠BDE=∠A+∠6.∵∠BDE=∠4+∠5,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.∴BE=CE.由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.∴BE=EF=CE.。
2014中考数学模拟试卷及答案
2014中考数学模拟试卷(3)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写答题栏内,每小接合面选对得3分,选错、不选或选出的答案超过一个均记0分,满分33分.(第7题没有答案,第10题缺少)1.(3分)(2011•滨州)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第2.(3分)(2012•兰州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移3.(3分)(2011•滨州)如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y 轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为()4.(3分)(2011•滨州)在△ABC中,∠C=90°,∠A=72°,AB=10,则边AC的长约为(精5.(3分)(2011•滨州)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为)6.(3分)(2011•滨州)如图.在△ABC中,∠B=90°,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A'B'C的位置,且A、C、B'三点在同一条直线上,则点A所经过的最短路线的长为()7.(3分)(2011•滨州)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有两个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为()8.(3分)(2011•滨州)在实数π、、、sin30°,无理数的个数为()﹣11.(3分)(2011•滨州)某商品原价289元,经连续两次降价后售价为256元,设平均每12.(3分)(2011•滨州)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2013•江西)分解因式:x2﹣4=_________.14.(4分)(2011•滨州)若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为_________.15.(4分)(2011•滨州)边长为6cm的等边三角形中,其一边上高的长度为_________.16.(4分)(2011•滨州)在等腰△ABC中,∠C=90°,则tanA=_________.17.(4分)(2011•滨州)将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是_________°.18.(4分)(2011•滨州)若点A(m,﹣2)在反比例函数的图象上,则当函数值y≥﹣2时,自变量x的取值范围是_________.三、解答题:本大题共7个小题,满分60分,解答时请写必要的演推过程.19.(6分)(2011•滨州)计算:.20.(7分)(2011•滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为(_________)去分母,得3(3x+5)=2(2x﹣1).(_________)去括号,得9x+15=4x﹣2.(_________)(_________),得9x﹣4x=﹣15﹣2.(_________)合并,得5x=﹣17.(_________)(_________),得x=.(_________)21.(8分)(2011•滨州)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩22.(8分)(2011•滨州)如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.23.(9分)(2011•滨州)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论.(1)如图①△ABC中,∠C=90°,∠A=24°①作图:②猜想:③验证:(2)如图②△ABC中,∠C=84°,∠A=24°.①作图:②猜想:③验证:24.(10分)(2011•滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.(12分)(2011•滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)中考数学模拟试卷(3)参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写答题栏内,每小接合面选对得3分,选错、不选或选出的答案超过一个均记0分,满分33分.(第7题没有答案,第10题缺少)1.(3分)(2011•滨州)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第2.(3分)(2012•兰州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移3.(3分)(2011•滨州)如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y 轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为()DA=AB=44.(3分)(2011•滨州)在△ABC中,∠C=90°,∠A=72°,AB=10,则边AC的长约为(精,sinA=;5.(3分)(2011•滨州)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为)6.(3分)(2011•滨州)如图.在△ABC中,∠B=90°,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A'B'C的位置,且A、C、B'三点在同一条直线上,则点A所经过的最短路线的长为().B.D.7.(3分)(2011•滨州)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有两个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为()8.(3分)(2011•滨州)在实数π、、、sin30°,无理数的个数为()=﹣﹣11.(3分)(2011•滨州)某商品原价289元,经连续两次降价后售价为256元,设平均每12.(3分)(2011•滨州)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽.B..D=.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2013•江西)分解因式:x2﹣4=(x+2)(x﹣2).14.(4分)(2011•滨州)若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为±.±±15.(4分)(2011•滨州)边长为6cm的等边三角形中,其一边上高的长度为3cm.cm316.(4分)(2011•滨州)在等腰△ABC中,∠C=90°,则tanA=1.17.(4分)(2011•滨州)将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是62°.AED=∠18.(4分)(2011•滨州)若点A(m,﹣2)在反比例函数的图象上,则当函数值y≥﹣2时,自变量x的取值范围是x≤﹣2或x>0.函数三、解答题:本大题共7个小题,满分60分,解答时请写必要的演推过程.19.(6分)(2011•滨州)计算:.﹣+1﹣=2+20.(7分)(2011•滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为(分数的基本性质)去分母,得3(3x+5)=2(2x﹣1).(等式性质2)去括号,得9x+15=4x﹣2.(去括号法则或乘法分配律)(移项),得9x﹣4x=﹣15﹣2.(等式性质1)合并,得5x=﹣17.(合并同类项)(系数化为1),得x=.(等式性质2)x=21.(8分)(2011•滨州)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩,[)))22.(8分)(2011•滨州)如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.得∴∴23.(9分)(2011•滨州)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论.(1)如图①△ABC中,∠C=90°,∠A=24°①作图:②猜想:③验证:(2)如图②△ABC中,∠C=84°,∠A=24°.①作图:②猜想:③验证:24.(10分)(2011•滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.(12分)(2011•滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P 之间的距离是多少?(请写出求解过程),x ∴。
2014年数学中考模拟试卷
2014年数学中考模拟试卷一、仔细选一选 (本题有10个小题, 每小题4分, 共40分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1. 1.下列运算正确的是( )A .523a a a =+ B.y y y =÷33C.mn n m 633=+ D .()623x x =2.若3-x 在实数范围内有意义,则x 的取值范围( )A .x ≥3B .x ≤3C .x >3D .x <3 3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,则∠2的余角的度数是( ) A .30°B .55°C .55°D .60°4.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是73.如果再往盒中放进3颗黑色棋子,取得白色棋子的概率是176,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗 6.如图,下列水平放置的几何体中,主视图不是..长方形的是………( )7.已知二次函数)0()1(2≠-+=a b x a y 有最小值21,则a b 、的大小比较为 ( )A.a b >B.a b <C.a b =D.不能确定8、若不等式组⎪⎩⎪⎨⎧>>-ax x 1312的解为2>x ,则函数81)26(2+--=x x a y 图象与x 轴的交点是( )A .相交于两点B .没有交点(第3题图)A .B .C .D .C .相交于一点D .没有交点或相交于一点9.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A .B .C .D .10. 如图,在Rt△ABC 中,AB=CB ,BO⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF . 下列结论:①四边形BDEF 是菱形;②四边形DFOE 的面积=三角形AOF 的面积 其中正确的结论( )A .①是真命题②是假命题.B .①是假命题②是真命题C .①是真命题②是真命题.D .①是真假命题②是假命题. 二、认真填一填(本题有6个小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11. 已知反比例函数ky x=的图象经过(1,-2).则k = . 12. 在实数范围内分解因式9y 4-4= .13.已知相切两圆的半径分别为cm 5和cm 4,这两个圆的圆心距是 . 14.已知()b a P ,'和()5,3P 关于x 轴对称,现将()b a P ,'向左平移5个单位,再向上平移k个单位后,落在函数y =3x -2的图象上,则k = .15. 已知菱形ABCD 的边长是8,点E 在直线..AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MCAM的值是 . 16.将数轴按如图所示从某一点开始折出一个等边三角形ABC ,设点A 表示的数为x -3,点B 表示的数为2x +1,点C 表示的数为-4,若将△ABC 向右滚动,则x 的值等于 ______ ,数字2012对应的点将与△ABC 的顶点 _ __ 重合.三、全面答一答(本题有8个小题,共80分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17. (本小题满分8分)计算:0)2(45sin 28π-+-18. (本小题满分8分)解方程:1222x x x+=--19. (本小题满分8分)如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A . 将点B 绕原点逆时针旋转90°后记作点1B ,作出旋转后的11A B O △(1)点1B 的坐标为 ; (2)求点B 所经过的路径长.20. (本小题满分8分)某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“和谐”观点的有___ _______人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是__ ______度.(2)如果该校有2000名初三学生,利用样本估计选择“感恩”观点的初三学生约有____ _____人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生 中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答).21. (本小题满分10分)如图,小明在大楼30米高(即PH =30米)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1:3,点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条直线上,且PH ⊥HC .(1)山坡坡角(即∠ABC )的度数等于 度; (2)求A 、B 两点间的距离.平等20%互助12%感恩28%和谐10%进取30%(结果精确到0.13≈1.732).22. (本小题满分12分)“旱灾无情人有情”.我国西南地区的旱情牵动全国人民的心,台州市民政局将全市为云南旱灾地区捐赠的物资打包成件,其中纯净水和输水管共320件,纯净水比输水管多80件.(1)求打包成件的纯净水和输水管各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批纯净水和输水管全部..运往受灾地区.已知甲种货车最多可装纯净水40件和输水管10件,乙种货车最多可装纯净水和输水管各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?23. (本小题满分12分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:P从点O出发平移次数可能到达的点的坐标1次(0,2),(1,0)2次3次(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数的图象上;平移2次后在函数的图象上…由此我们知道,平移n 次后在函数的图象上.(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于30,不超过36,求点Q的坐标.24. (本小题满分14分)如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系。
2014年中考模拟试卷数学试卷和答案
2014年中考数学模拟试卷 试题卷一. 选择题 (本题有10个小题, 每小题3分, 共30分)1.我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为( )A .9105.8⨯元 B .10105.8⨯元 C .11105.8⨯元 D .12105.8⨯元 2.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333 C .01=+-aa D .323211=⎪⎭⎫⎝⎛÷- 3.有2名男生和2名女生,王老师要随机地、两两一对地排座位,一男一女排在一起的概率是( )A. 14B. 23C. 12D. 134.如图,一束光线与水平面成60°的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角∠DCB 的度数等于 ( )A .30° B .45° C .50° D .60°5.抛物线y=-x 2+2x -2经过平移得到y=-x 2,平移方法是( )﹒ A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位6.如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是( )A . ①② B. ②③ C .②④ D .③④7.如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A⊥O 2A ,则图中阴影部分的面积是() A.4π-8 B. 8π-16 C.16π-16 D. 16π-32 8.已知函数y=―t 3 ―2010|t| ,则在平面直角坐标系中关于该函数图像的位置判断正确的是( )A .必在t 轴的上方B .必定与坐标轴相交C .必在y 轴的左侧D .整个图像都在第四象限 9.如图,△ABC 的三边分别为a 、b 、c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD ∶OE ∶OF = ( ) A . a ∶b ∶c B .a 1∶b 1∶c1C . cosA ∶cosB ∶cosCD . sinA ∶sinB ∶sinC 10.现在把一张正方形纸片按如图方式剪去一个半径为40 2 厘米的14 圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米﹒(不计损耗、重叠,结果精确到1厘米, 2 ≈1.41, 3 ≈1.73) A . 64 B . 67 C . 70 D . 73二. 认真填一填 (本题有6个小题, 每小题3分, 共18分) 11. 函数的自变量x 取值范围是①正方体②圆柱③圆锥④球A BCO E F D 第9题第4题 第7题12.右图为护城河改造前后河床的横断面示意图,将河床原竖直 迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米, 则河床面的宽减少了 米.(即求AC 的长)13.已知矩形OABC 的面积为3100,它的对角线OB 与双曲线x k y =相交于点D ,且OB ∶OD =5∶3,则k =__________.14.已知关于x 的函数y =(m -1)x 2+2x +m 图像与坐标轴 有且只有一个交点,则m =15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= . 三.解答题:(计72分)17.(本题满分7分)先化简,再求值:aa a a --÷--224)111(,其中a 是整数,且33<<-a 18.(本题满分7分)如图,在平面直角坐标系中,点A ,B ,C ,P 的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A′B′C′的三个 顶点,求此二次函数的关系式;19. (本题满分7分) 如图,AB 为⊙O 的弦,C 为劣弧AB 的中点,(1)若⊙O 的半径为5,8AB =,求tan BAC ∠; (2)若DAC BAC ∠=∠,且点D 在⊙O 的外部,判断AD 与⊙O 的位置关系,并说明理由.18题…① ② ③第1620.(本题满分8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(2)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(2)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.21.(本题满分8分)直线AB//CD,∠ACD=72°﹒⑴用直尺和圆规作∠C的平分线CE,交AB于E,并在CD上取一点F,使AC=AF,再连接AF,交CE于K;(要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三角形﹒(图中不再增加字母和线段,不要求证明)﹒22.(本题满分8分)一列火车由A市途经B、C两市到达D市.如图,其中A、B、C三市在同一直线上,D市在A市的北偏东45°方向,在B市的正北方向,在C市的北偏西60°方向,C市在A市的北偏东75°方向.已知B、D两市相距100km.问该火车从A市到D市共行驶了多少路程?(保留根号)23、为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专第22 51(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?(8分) 24.(本题满分9分)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC 方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒.(1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度;②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.23、(本题满分10分) 阅读材料:如图26-①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图26-②,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)求CAB ∆的铅垂高CD 及CAB S ∆;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使98PAB CAB S S ∆∆=,若存在,求出P 点的坐标;若不存在,请说明理由第24(图26-②)xCO yABD1 1(图26-①)2014年中考数学模拟试卷 参考答案一.仔细选一选(本题有10个小题,每小题3分,共30分.)二.认真填一填 (本题有6个小题, 每小题4分, 共24分.)11 x >2 12. 4 13. 12 ,14.15.16.三.全面答一答 (本题有8个小题, 共66分.) 17. (本题6分) 解:原式=2)2)(2()1(12+=+--⋅--a aa a a a a a ……… 3分 当a=-1时, …………….2分 原式= -1 …………….1分18. (本题6分) 解:(1)图略 ………… ………………………………3分(2)()()1212y x x =-+ ………… ……………………………3分19. (本题6分) (1)解: ∵AB 为⊙O 的弦,C 为劣弧AB 的中点,8AB = ∴OC AB ⊥于E ∴ 142AE AB == ……1分 又 ∵5AO = ∴3OE ==∴ 2CE OC OE =-= ……1分 在Rt △AEC 中,21tan 42EC BAC AE ∠=== ……1分 (2)AD 与⊙O 相切. ……1分 理由如下:∵OA OC = ∴C OAC ∠=∠∵由(1)知OC AB ⊥ ∴ ∠C+∠BAC =90°. ……1分 又∵BAC DAC ∠=∠ ∴90OAC DAC ∠+∠=︒ ……1分 ∴AD 与⊙O 相切.E20. (本题8分) (1) 被抽查的居民中,人数最多的年龄段是21~30岁…………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) …………………………………2分图略…………………………………1分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈………………………1分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈………………………1分∴41~50岁年龄段比31~40岁年龄段对博览会总体印象的满意率高…………1分21. (本题8分)解:⑴CE作法正确得2分,F点作法正确得1分,K点标注正确得1分;⑵△CKF∽△ACF∽△EAK;△CAK∽△CEA(注:共4对相似三角形,每正确1对可各得1分)22. (本题10分)解:过点B分别作B E⊥CD于E,B F⊥AD于F.由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.………………2分∴DE=50,…………………………………1分BE=…………………………………1分CE=…………………………………1分∴BC=1分∵BF=1分∴AB=…………………………………1分∴50394AB BC CD km++==.……………1分∴该火车从A市到D市共行驶了(50394AB BC CD km++==)km.………1分23.(本题10分)解:(1)∵ 30 000÷5 000=6,∴能租出24间.……………2分EF(30-5.0x)×(10+x)-(30-5.0x)×1-5.0x×0.5=275,………2分2 x 2-11x+5=0,∴x=5或0.5,∴每间商铺的年租金定为10.5万元或15万元.……………2分(3)275万元不是最大年收益……………1分当每间商铺的年租金定为12.5万元或13万元.……………2分达到最大年收益,最大是285万元……………1分24.(本题12分).解:(1)①由题意得∠BAO=30°,AC⊥BD∵AB=2 ∴OB=OD=1,∴……………2分②过点E作EH⊥BD,则EH为△COD的中位线∴12EH OC==∵DQ=x ∴BQ=2-x∴)323)(2(21xxSBPQ--⨯=∆…………………………1分23)2(21⨯-⨯=∆xSBEQ…………………………1分∴233431132+-=+=∆∆xxSSyBEQBPQ…………………………2分(2)能成为梯形,分三种情况:当PQ∥BE时,∠PQO=∠DBE=30°∴tan303oOPOQ==即=∴x=25此时PB不平行QE,∴x=25时,四边形PBEQ为梯形. ………………………2分当PE∥BQ时,P为OC中点∴AP=2,即2=C∴34x =此时,BQ=2-x=54≠PE ,∴x=34时,四边形PEQB 为梯形. …………………2分当EQ ∥BP 时,△QEH ∽△BPO∴HE QHOP BO =121x -=∴x=1(x=0舍去)此时,BQ 不平行于PE ,∴x=1时,四边形PEQB 为梯形. ………………………………2分综上所述,当x=25或34或1时,以P ,B ,E ,Q 为顶点的四边形是梯形.23.解:(1)设抛物线的解析式为:4)1(21+-=x a y 把A (3,0)代入解析式求得1-=a 所以324)1(221++-=+--=x x x y 设直线AB 的解析式为:b kx y +=2 由3221++-=x x y 求得B 点的坐标为(03),把(30)A ,,(03)B ,代入b kx y +=2中 解得:13k b =-=,所以32+-=x y(2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2 所以CD =4-2=2 13232CAB S =⨯⨯=△(平方单位) (3)假设存在符合条件的点P ,设P 点的横坐标为x ()30<<x ,△PAB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-=由S △PAB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中,解得P 点坐标为315()24,一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 三、全面答一答(共66分) 2011年中考数学模拟试卷 答题卷岁;2014年中考模拟试卷数学试卷和答案MM们。
数学中考模拟试卷7
数学中考模拟试卷一、选择题(本大题共6个小题,每小题3分,共18分,每题只有一个正确的选项)1.(3分)7的平方根等于()A.B.49 C.±49 D.±2.(3分)已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<03.(3分)小明在观察由一些相同小立方块搭成的几何体时,发现它的主视图、左视图、俯视图均为如图,则构成该几何体的小立方块的个数可能是()A.4 B.5 C.6 D.94.(3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°5.(3分)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3 B.4 C.5 D.66.(3分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=OC,M是抛物线的顶点,三角形AMB的面积等于1,则下列结论:①<0 ②ac﹣b+1=0 ③(2﹣b)3=8a2④OA•OB=﹣其中正确的结论的个数是()A.4 B.3 C.2 D.1第2题第3题第4题第5题第6题二、填空题7.(3分)计算2.016×109﹣2.015×109结果用科学记数法表示为.8.(3分)因式分解:x3﹣4xy2=.9.(3分)关于x的一元二次方程mx2+(2m﹣1)x+m=0有两个不相等的实数根,则m的取值范围是.10.(3分)已知对任意锐角α、β均有:cos(α+β)=cosα•cosβ﹣sinα•sinβ,则cos75°=.11.(3分)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.12.(3分)如图,点A,B,C,D在⊙O上,∠ABO=40°,∠BCD=112°,E是AD中点,则∠DOE的度数为.13.(3分)已知平面直角坐标系xOy中,过P(1,1)的直线l与x轴、y轴正半轴交于点A,点B,若三角形AOB 的面积等于3,直线l的解析式为.14.(3分)如图,矩形ABCD中,AB=1,AD=2,E是AD中点,P在射线BD上运动,若△BEP为等腰三角形,则线段BP的长度等于.第11题第12题第14题三、解答题(本大题共4小题,每小题各6分,共24分)15.(6分)先化简,再求值:÷﹣,其中x是不等式组的整数解.16.(6分)(2016•景德镇校级二模)如图,在边长为1个单位长度的小正方形组成的网格中,请分别在边AB,AC上找到点E,F,使四边形PEFQ的周长最小.17.(6分)(2016•景德镇校级二模)某市努力改善空气质量,近年来空气质量明显好转,根据该市环境保护局公布的2010﹣2014这五年各年全年空气质量优良的天数如表所示,根据表中信息回答:2010 2011 2012 2013 2014234 233 245 247 256(1)这五年的全年空气质量优良天数的中位数是,平均数是;(2)这五年的全年空气质量优良天数与它前一年相比增加最多的是年(填写年份);(3)求这五年的全年空气质量优良天数的方差.18.(6分)(2012•苏州)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).四、解答题(本大题共4小题,每小题8分,共32分)19.(8分)(2016•景德镇校级二模)某地区2014年投入教育经费1000万元,至2016年三年总计投入教育经费3640万元,假设2014年至2016年该地区投入教育经费的平均增长率相同,根据这个年平均增长率,预计2017年该地区将投入教育经费多少万元?20.(8分)(2016•景德镇校级二模)如图,在平面直角坐标系中,A,B两点的纵坐标分别为7和1,直线AB与y轴所夹锐角为60°.(1)求线段AB的长;(2)求经过A,B两点的反比例函数的解析式.21.(8分)(2016•景德镇校级二模)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:点A与C关于直线BD对称.(2)若∠ADC=90°,求证四边形MPND为正方形.22.(8分)(2012•连云港)已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A 观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)五、解答题(本大题共1小题,每小题10分,共10分)23.(10分)(2016•景德镇校级二模)关于x的二次函数y=x2+(2n+1)x+n,它的图象为抛物线C n,顶点为M n.(1)求顶点M n的坐标(用含n的代数式表示).(2)设纵坐标值最大的抛物线顶点为M,该抛物线记为C,(如图)C与x轴的两个交点为A,B,A在B的左侧,C的对称轴l与x轴交于点D,l上是否存在点P使△ADP与△MDO相似?若存在,求出P点坐标;若不存在,请说明理由.(3)我们知道n取不同的值,二次函数的解析式就不同,图象自然也不同了,是否存在定点T,无论n取什么实数,T都在它的图象上?若存在,求点T坐标;若不存在请说明理由.六、解答题(本大题共1小题,每小题12分,共12分)24.(12分)(2016•景德镇校级二模)如图a,在平面直角坐标系xOy中,半径为1的⊙O1的圆心为坐标原点,一块直角三角板ABC的斜边AB在x轴上,A(﹣6,0),B(﹣5,0),∠BAC=30°,该三角板沿x轴正方向以每秒1个长度单位的速度运动,设运动时间为t(1)当AC边所在直线与⊙O1相切时,求t的值;(2)当顶点C恰好在⊙O1上时,求t的值;(3)如图b,⊙O2的圆心为坐标原点,半径为,点T是第一象限内的动点,以T为顶点作矩形TP1QP2,使得点P1、P2在⊙O1上,点Q在⊙O2的内部,直接写出线段OT的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考模拟试题数学卷
一、填空题(共10道题,每小题3分,共30分) 1. 27的立方根是 。
2. 在函数1
21--=
x y 中,自变量x 的取值范围是 .
3. 已知,如图,AB 是⊙O 的直径,点D,C 在⊙O 上,连结AD 、BD 、DC 、AC ,如果∠BAD=25°,那么∠C 的度数是 。
4. 如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则
DO
AO
等于 5. 如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的1
3,另一
根露出水面的长度是它的1
5
.两根铁棒长度之和为55 cm , 此时木桶中水的深度是 cm .
6、 在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则
这堆货箱共有 个
7. 如图,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒.将ABC △绕直角顶点C 按顺时针方向旋转,
得''A B C △,斜边''A B 分别与BC 、AB 相交于点D 、E ,直角边'A C 与AB 交于点F .若2CD AC ==,则ABC △至少旋转 度才能得到''A B C △,此时ABC △与''A B C △的重叠部分(即四边形CDEF )的面积为 .
8.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损
伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50米,半圆的直径为4米,则圆心O 所经过的路线长是___ ______.
二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共18分)
9. 下列运算正确的是( )
A .()b a b a +=+--
B .a a a =-2
3
33
C .01
=+-a
a D . 3
23211
=
⎪
⎭
⎫
⎝⎛÷- 10.分式方程
1
31
x x x x +=
--的解为( ) A .1x = B .1x =- C .3x = D .3x =-
11.下列图形是正方体的表面展开图的是( ) 12. 如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )
13. 如图,梯形ABCD 中,AD BC ∥,点E 在BC 上,AE BE =,点F 是CD 的中点,且AF AB ⊥,若
2.746AD AF AB ===,,,则CE 的长为( ) A .22 B. 2.3 C. 2.5 D. 231-
14. 如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的
面积为y ,则y 与x 之间的函数关系式是( )
A .225
y x =
B .2
425
y x =
C .2
225
y x =
D .245y x =
三、解答题(共9道大题,共72分)
16. (6分)解不等式组:262(1),23.4
x x x x +>-⎧⎪
⎨-≤⎪⎩
O O
O
O
l D A
O
B
C A
B C D O x y 4 4 A . O x y 4 4 B . O x y 4 4 C . O x
y 4 4
D .
C
D
E
F A B
主视图
左视图 俯视图
A B F C D E O
A
B
C D
17、已知:如图,在△ABC 、△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C 、D 、E 三点在同一直线上,连结BD.
求证:(1)△BAD ≌△CAE ; (2)试猜想BD 、CE 有何特殊位置关系,并证明.
18、如图,四边形ABCD 内接于⊙O ,CD ∥AB ,且AB 是⊙O 的直径,AE ⊥CD 交CD 延长线于点E .
(1)求证:AE 是⊙O 的切线; (2)若AE =2,CD =3,求⊙O 的直径.
19、2013 年2月中旬,沿海各地再次出现用工荒,甲乙两人是技术熟练的工人,他们参加一次招聘会,听说有三家企业需要他们这类人才,虽然对三家企业的待遇状况不了解,但是他们一定会在这三家企业中的一家工作。
三家企业在招聘中有相同的规定:技术熟练的工人只要愿意来,一定招,但是不招在招聘会中放弃过本企业的工人。
甲乙两人采用了不同的求职方案:
甲无论如何选位置靠前的第一家企业;而乙则喜欢先观察比较后选择,位置靠前的第一家企业,他总是仔细了解企业的待遇和状况后,选择放弃;如果第二家企业的待遇状况比第一家好,他就选择第二家企业;如果第二家企业不比第一家好,他就只能选择第三家企业.
如果把这三家企业的待遇状况分为好、中、差三个等级,请尝试解决下列问题: (1) 好、中、差三家企业按出现的先后顺序共有几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己找到待遇状况好的企业的可能性大?请说明理由?
20、云南2009年秋季以来遭遇百年一遇的全省性特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形ABCD (如图7所示),AD BC ∥,EF 为水面,点E 在DC 上,测得背水坡AB 的长为18米,倾角30B ∠=°,迎水坡CD 上线段DE 的长为8米,120ADC ∠=°.
(1)请你帮技术员算出水的深度(精确到0.01米,参考数据3 1.732≈);
(2)就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用20天?(精确到0.01米)
21、如图,二次函数2
122
y x =-
+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 从A 点出发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动。
设PQ 交直线AC 于点G 。
1、 求直线AC 的解析式;
2、 设△PQC 的面积为S ,求S 关于t 的函数解析式;
3、 在y 轴上找一点M ,使△MAC 和△MBC 都是等腰三角形。
直接
写出所有满足条件的M 点的坐标;
4、 过点P 作PE ⊥AC ,垂足为E ,当P 点运动时,线段EG 的长度
是否发生改变,请说明理由。
A
B C D E E G
Q P O y
x C
B A。