高等微积分试题AB卷

合集下载

微积分试卷——精选推荐

微积分试卷——精选推荐

微积分试卷⾼数B(2)复习资料2. 由[,]a b 上连续曲线()y f x =,直线x a =,x b =()a b <和x 轴围成图形的⾯积S =( ).(A) dx x f ba ?)( (B)dx x f b a)((C) dx x f b a ?)( (D) 2))](()([a b a f b f -+答:C5. 求2x x d dx;解:24112x x x +-+=原式4. 求1.解:令t x =+2,原式)3328(152)3452(2)2(3235322-=-=??-=?t t tdt t t . 1. 求1x xe dx ?.解:原式1110()1x x x xde xe e dx ==-=?3. 求x dx ?.解:原式211(ln )2ln ee x x xdx =-?2e =-答案C14、 3、答案:Cs s f x dx A s s B s s C s s D s s ab1212122112和表⽰的⾯积如图则 ,,()()()()()=+---? 答()解 :,,,.y x x x x =-≤->222262 2分x x x x 22202606-==±-==±,,,, y x y x x =-=-=±22262,, 4分 S x dx x dx x dx =--+-+-2226202222226()()() 7分=-+-+-=-++-223232263243243432462833023223 26()()()()x x x x x x =+-=+-283246323163286643().10分求曲线与轴所围成的平⾯图形的⾯积y x x =--242.ππ≤≤≤≤≤b ababadxx xf D dx x xf C dx x f B dx x f A y b x a x f y )()()(2)()()()()(0),(02 2体积为轴旋转得到的旋转体的绕曲边梯形答( )6.设z y xy x =ln(),求z x zy ,。

《微积分》课程期末考试试卷(B)及参考答案

《微积分》课程期末考试试卷(B)及参考答案

二.
单项选择题 (每题 2 分,共 12 分) 2. A 3. B 4. A 5. C 6C .
1. B 三. 1. 2.
求偏导数 (每题 6 分,共 24 分)
z 1 z 1 ; (6 分) ; x x y y z x 2z x 2y ln x y (6分) (3 分) ; 2 x x y x ( x y) 2 y x2 y2
六、求方程 y
y 1 的通解.(6 分) x
七、判别级数 2 n sin
n 1


33
的收敛性.(6 分)
《微积分》课程期末考试试卷(B)参考答案 一. 填空题. (每题 3 分,共 36 分) 1. x y 2 x y 2 2. 0 3. 2 4. 1 5. 1,1,2 6. x, y x y 2 0 7. 1 8. 2 9. e xy y 2 xy dx e xy x x 2 dy 10. 1 11. 发散 12. 10
1 1 ,则 f ( ,0) ______. cos xy 2
3. y '' ( y ' ) 3 2 xy 是______阶微分方程. 4. 方程 F ( x, y, y ' ) 0 的通解中含______个任意常数. 5. 点 (1,1,2) 关于 xoy 平面的对称点是______. 6. 函数 Z lnx y 2 的定义域是______. 7. 设 f ( x, y ) x 2 y 2 ,则 f x1 2,0 ______. 8. 设 f x, y x 2 y 2 ,则 f y1 1,1 ______. 9. 设 Z e xy yx 2 ,则 dz ______. 10. 11. 12. 设积分区域 D : 1 x 2,2 y 3 ,则 d ______.

微积分期末试卷及答案

微积分期末试卷及答案
中南民族大学试卷
院系:班级: 学生: 学号: 成绩:
试卷名称:2005-2006学年度上学期期末考试
《高等数学B(一)》试卷
(A卷共8页)
适用范围:经院、管院2005级 各专业本科学生
一、填空题(每小题3分,共15分)
1、已知 , ,且 ,则 .
答案: 王丽君
解: , , .
2、已知 为常数, ,则 .
(4)列表如下:
+
0
-
0
+

拐点

拐点

(5)曲线的拐点为 、 .
(6)曲线在区间 和 是凹的,在区间 是凸的.(6分)
8、计算 .
答案: 俞诗秋
解: (3分)

.(6分)
9、计算 .
答案: 俞诗秋
解: (3分)
,
.(6分)
10、设某商品的需求函数为 ,其中 分别表示需求量和价格,试求当总收益达到最大时,此时的需求弹性,并解释其经济意义.
答案: ,当总收益达到最大时,价格上涨 ,需求则相应减少 .俞诗秋
解:总收益函数为 ,
令 ,得 ,而 ,
可见,当 时,总收益达到最大.(3分)
此时需求弹性 ,(5分)
说明,当总收益达到最大时,价格上涨 ,需求则相应减少 .(6分)
四、证明题(每小题5分,共10分)
1、证明方程 在区间 内有且只有一个实根.孙仁斌,俞诗秋
(D) 在 处的左导数与右导数必有一个不存在.
答案:B江美英
4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:
(A) ;(B) ;
(C) ;(D) .
答案:D俞诗秋
5、若函数 存在原函数,下列错误的等式是:

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分试卷及规范标准答案6套

微积分试卷及规范标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A │< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

高等数学8套期末考试题AB卷带答案 模拟测试题

高等数学8套期末考试题AB卷带答案 模拟测试题

期 末 试 卷1.填空(每空2分,共10分) (1) f(x)=sinx x1sin⋅的间断点是 ,是第 类间断点. (2)函数xe x y 2=在=x 处取得极小值,在=x 处取得极大值.(3)曲线 2x y =上点 处的切线平行于直线x y =.(4)若(0,1)是曲线c bx x y ++=23的拐点,则=b ,=c .(5)比较大小dx x ⎰12 dx x ⎰14.2.选择题(每题2分,共10分)(1)如果函数)(x f y =在0x 处不可导,则曲线在点))(,(00x f x 处( ).A .切线不存在 B. 切线垂直于x 轴 C. 切线不存在或切线垂直于x 轴 (2)如果函数)(x f y =在0x 处不可导,则曲线在点))(,(00x f x 处( ).A .切线不存在 B. 切线垂直于x 轴 C. 切线不存在或切线垂直于x 轴 D.切线平行于x轴(3)若函数d cx bx ax y +++=23)0(>a 满足条件 032<-ac b ,那么这函数( ).A .有极值B .有极大值C .有极小值D .没有极值(4)若点(1,3)为曲线23bx ax y +=的拐点,则a 、b 的值分别为( ).A .23-=a ,29=b B .3-=a ,6=b C .23=a ,29-=b D .3=a ,6-=b(5)下列等式中错误的是( ).A .⎰⎰=+ba a bdx x f dx x f 0)()( B .⎰⎰=b abadt t f dx x f )()(C .⎰-=aadx x f 0)( D .⎰=aadx x f 0)(3.计算题(每题6分,共54分) (1)132lim1--+→x x x (2))1(2)1sin(lim 1++-→x x x (3) x y x 1tan 221tan += ,求y '.(4)x x y 1010+=,求y '.(5)xy y 62= ,求x y '. (6)⎰-332xdx(7)⎰xdx x 210sec tan(8)⎰xdx xarctan 2(9)dx xx ⎰-21214.由力学知,矩形横梁的强度与它的 断面高的平方与宽的积成正比.要将直径为d 的圆木锯成强度最大的横梁,断面的宽和高应为多少?(见图1)(9分)5.求微分方程的通解:0ln =-'y y y x .(8分)6.计算由曲线0,42=-=y x y 围成的图形的面积.(9分)图1高等数学(少学时)试题1参考答案1. 填空(每题2分,共10分)(1) x=0,一 (2)0,-2 (3)(41,21) (4)0,1 (5)>2.选择题(每题2分,共10分)(1)C (2)C (3)D (4)A (5)C 3.计算题(每题6分,共54分) (1)132lim1--+→x x x型00 原式=633211221lim1==+→x x(2))1(2)1sin(lim1++-→x x x 型0原式=212)1cos(lim 1=+-→x x )1tan 222(ln 1sec )1tan 222(ln 1cos 11)1(1tan 21cos 1)1(1cos 12ln 2)3(1tan221tan2222221tan'x x x xx xx x xxxy x xx+⋅-=+⋅⋅-=-⋅⋅+-⋅⋅=x x y 1010ln 10)4(9'⋅+=)62(66)62(662)5(''''x y y y yy x y xy y yy x -==-+=cx cu c u du u du u xu x d xdx x +--=+-=+⋅-=-=-=-=---=-⎰⎰⎰⎰3232323133332212123313113132)32(32131321)6()(原式原式设 c x c t dt t t x x xd xdx x +⋅=+====⎰⎰⎰11111010210tan 111111tan )(tan tan sec tan )7(原式设cx x x x c x x c t t dt t t u u d u du u u x u dx x x dx x x xd x x d x x x xdx xdx x +++-=++-+=+-=-==+++-=++-+==+=+=-⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰)1ln(6161arctan 31))1ln(1(21)ln (21)11(211)1(1112111112112111arctan )arctan (arctan 31arctan 31arctan )8(2232222222333332原式设设分部积分法33)6cot 2(cot )62[(cot sin cos cos sin 1111111)9(2622622121222112212212-=-+--==--===---=-==-=-⎰⎰⎰⎰⎰⎰πππππθθθθθθθθππππd d d dt t dt t t tdt t xdxxdx x x 原式令原式令4.设强度为s ,则s=x h 2时强度最大,高为所以当宽为d d d h d x x d x x d s xx d s d h x 363336,3303)()(22'32'22222===-=-=-==+cxx x c e x ce ce e e e y e x y c x y dx x dy y y xdxy y dy y y dx dyx c====+=+====-⋅+⎰⎰ln ln ln ln 1ln 1ln 0ln .5两端积分得:6.曲线交点为(-2,0),(2,0)S=A+B因为是对称图形,所以A=B332316)431()40(203202==+-=+-=⎰S x x dxx A期 末 试 卷一二三四五六总分1.填空(每空2分,共10分)(2) 设f(x)=⎪⎪⎩⎪⎪⎨⎧x e x 1arcsin01 000>=<x x x , 则x=0是f(x)的第 类间断点.(2))(x f 在点0x 处可导是)(x f 在点0x 处连续的 条件,)(x f 在点0x 处连续是)(x f 在点0x 处可导的 条件. (3)的极大值点在 ,极大值为 ;极小值点在 ,极小值为 .(4)曲线xxe y =的凹区间是 ,凸区间是 ,拐点是 . (5)比较大小dx x ⎰1ln dx x ⎰12ln .2.选择题(每题2分,共10分)(1)设,2,cos 12x x =-=βα则当0→x 时,( ).A. 是同阶无穷小与βαB. 是等价无穷小与βαC. 是高阶的无穷小是较βαD. 是低阶的无穷小是较βα(2)一质点作直线运动的方程是 232010t t s -+=, 则2=t 时质点运动的加速度为( ).A . 0 B. -6 C. 6 D. 8 (3)设)(x f 在0x 点可导,且0)(0='x f ,则0x 一定是)(x f 的( ).A .极值点B .驻点C .极大值点D .极小值点 (4)若⎰+=C x F dx x f )()(,则⎰+dx b ax f )(是( ). A.C b ax F ++)( B.C b ax F a++)(1C.)(1b ax F a + D.C abx F ++)((5)设⎰=-10,1)(dx x a x 则常数=a ( ). A.38 B.31 C.34 D.32 3.计算题(每题6分,共54分)(1)x xx 5sin 2sin lim 0→ (2)()x x x 101lim -→ (3) x y arccos = ,求y '.(4)112+=x y ,求y '. (5) 022=-+yx xy ,求x y '. (6)⎰x x x dxln ln ln(7)⎰-+xx e e dx (8)⎰-12x x dx (9)⎰exdx x 1ln 4.轮船甲位于轮船乙以东75n mile (海里)处,以12 n mile / h 的速度向西航行,而轮船乙则以6 n mile/ h 的速度向北航行,问经过多少时间,两船相距最近?(9分) 5.求微分方程的通解:x e y dxdy-=+.(8分) 6.计算由曲线0,7ln ,2ln ,ln ====x y y x y 围成的图形的面积.(9分)高等数学(少学时)试题2参考答案1、填空(每题2分,共10分)(1)二 (2)充分 不充分必要 (3)0,0,1,-1 (4)(-2,+∞),(-∞,-2)(-2,-22-e )(5)> 2.选择题(每题2分,共10分) (1)A (2)D (3)B (4)B (5)A 3.计算题(每题6分,共54分) (1)xxx 5sin 2sin lim0→00型原式=15cos 2cos lim 0=→xxx (2)xx x 10)1(lim -→ ∞1型 原式=10)1ln(1lim0==-→e e x xx(3)xx xxy --=•--=1212111'(4)3232232')1(2)1(212)1(21+-=•+-=•+-=-x x x x x x y(5)x 'y +y+ln2x 2•-lny y 2'y =0(x-lny y 2)'y =-ln2x 2•'xy =xy yx-⋅⋅2ln 22ln cx ct dt t ut u u d u u du xu xx xd +=+======⋅=⎰⎰⎰⎰ln ln ln ln 1ln ln ln ln ln ln ln ln ln )6(所以原式设设原式ce cu du u e u de e dx e e e e dx x xx x x xx x +=+=+==+=+=+⎰⎰⎰⎰-arctan arctan 111)(11)()7(222原式设cxt ct dt tt tdtt tdtt dx t x x x dx+=+=====-⎰⎰⎰1arccos tan sec tan sec tan sec sec 1)8(2代入原式把原式则设 2sin 2cos 2cos )9(20200===⎰⎰πππxxdx dx x4.设底边长为x,高为h时表面积最小高为所以当边长为最小时当表表363,621621610844222s h x xx x x x s xhx s ==++=+=+=5.先求对应齐次方程y dxdy2= 分离变量得:dx ydy2= 积分得:lny=2x+c y=c x e +2=c x e 2用常数变易法求原方程的通解,设解为y=c(x) x e 2(c(x)是待定函数)代入原方程:xx x x xx x x x x e ce c e e y cex c e x c e e x c e x c e x c -=+-=+-===-+---22'222')()()()(2)(2)(所以6.曲线y=x y x 2,3=的交点为(0,0),(22,2--),(22,2)S=21A A +2141)2(1441241)2(210220243222042023201=+==-=-==⨯-=-=-=--⎰⎰A A s x x dx x x A x x dx x x A 所以围成的面积为2.期 末 试 卷一二三四五六总分1.填空(每空2分,共10分)(3) 若011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x ,则a= ,b= . (2)设,0)(=x f )0(f '存在, 则=→xx f x )(lim 0. (3)的极大值点在 ,极大值为 ;极小值点在 ,极小值为 .(4)曲线xxe y -=的凹区间是 ,凸区间是 ,拐点是 .(5)比较大小dx x ⎰212 dx x ⎰214.2.选择题(每题2分,共10分)(1)⎪⎩⎪⎨⎧-=x xx f 22)( 21110≤<=<<x x x 的连续区间为( ).A.[0,2]B.(0,2)C.[0,2]D.(0,1)⋃(1,2)(2)曲线 2sin x x y +=在点(0,0)处的切线与x 轴正向夹角为( ).A .30ο B. 45ο C. 135ο D . 150ο(3)设函数22)4(-=x y ,则在区间2(-,)0和2(,)∞+内,y 分别为( )A .单调增,单调增B .单调值,单调减C .单调减,单调增D .单调减,单调减(4)已知函数)(x f y =的导数等于2+x ,且2=x 时5=y ,则这个函数为( ).A.x x y 22+= B. x x y 222+= C. 1222-+=x x y D. 1222++=x x y (5)下列等式中错误的是( ).A.⎰⎰=+ba abdx x f dx x f 0)()( B.⎰⎰=babadt t f dx x f )()(C.⎰-=aadx x f 0)( D.⎰=aadx x f 0)(3.计算题(每题6分,共54分)(1)x x x x sin cos 1lim 0-→ (2)xx x x 21lim ⎪⎭⎫ ⎝⎛+∞→ (3) 22sin sin x x y =,求y '. (4)x x y += ,求dy .(5)yx exy += ,求x y '. (6)⎰++dx x x 122(7)⎰dx x x )cos(2(8)⎰+dx e x11 (9)dx x ⎰πcos4.要制作一个底为正方形,容积为108m 3的长方体开口容器,怎样做所用料最省?(9分) 5.求微分方程的通解:x e y dxdy=-2.(8分) 6.计算由曲线x y x y 2,3==围成的图形的面积.(9分)高等数学(少学时)试题2参考答案1、填空(每题2分,共10分)(1)1,-1 (2))0('f (3)0,0,x=e1 , x=-e1 (4))2,2(,2),2,(),,2(2-=-∞+∞e x (5)<2、选择题(每题2分,共10分)(1)D (2)B (3)A (4)C (5)C 3、计算题(每题6分,共54分) (1)cinxx xx ⋅-→cos 1lim0 00型=x x x xx cos sin sin lim 0⋅+→ 0=x x x xx sin cos 2cos lim 0-→=21 (2) xx x x 21lim ⎪⎭⎫⎝⎛+→ ∞1型=101ln2lim ==+⋅∞→e exx x x(3)22sin sin xxy = 求'y 22222'sin 2cos sin sin 2cos sin xxx x x x y ⋅⋅-⋅⋅==22222sin 2cos sin sin 2cos sin x xx x x x x ⋅⋅-⋅⋅(4) x x y +=xx x dx dy ++=2211 =xx x x ++2221 =x x x x ++2421dx xx x x dy ++=2421(5) 'x y x y e xy 求+=)1(''y e xy y y x +=++ y x y x e y y e x +++=-')(yx y x xex e y y ++-+=∴' (6) dx xx ⎰++122=dx xx x ⎰++-++1)1(2)1(32 =⎰⎰⎰-++++dx dx x dx x 2)1(13=⎰⎰⎰-++++dx dx x x d x12)1()1(113=c x x x +-++2121ln 3(7)dx x x ⎰)cos(2 =dx x )(cos 212⎰ 2x u ==⎰udu cos 21=c x +2sin 21(8)dx ex⎰+11令t e x = t x ln = 原式=dt tt ⎰+11令t u +=1 12-=u t =1)1(122--⎰du u u =du uu u⎰-)1(22=du u ⎰-1122=du u u ⎰-+)1)(1(12=du u u 1111212+--⨯⎰ =c u u +-+-11ln ln =c u u ++-11ln(9)分部积分法⎰exdx x 1ln=dx x x x e e x 2112211ln 21⋅-⋅⎰ =xdx e e ⎰--1221)0(21 =)(4121122e x e - =41412122+-e e =41412+e4.两船相距距离为S小时时距离最近。

《微积分》期末考试试卷(含ABC三套)

《微积分》期末考试试卷(含ABC三套)

四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x

D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x

2
tan x 1 x
D、 lim x sin
x
1 1 x

3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =

大学微积分考试题及答案

大学微积分考试题及答案

大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 1D. 2答案:A2. 曲线y=x^3在x=1处的切线斜率是:A. 0B. 1C. 3D. 2答案:C3. 定积分∫(0到1) x dx的值是:A. 0B. 0.5C. 1D. 2答案:B4. 函数f(x)=sin(x)的不定积分是:A. cos(x)B. -cos(x)C. xD. -x答案:B5. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. ∞答案:B6. 曲线y=e^x与直线x=1所围成的面积是:A. e-1B. 1-eC. 1D. e答案:A7. 函数f(x)=ln(x)的反函数是:A. e^xB. x^eC. 10^xD. x^2答案:A8. 函数f(x)=x^3-3x+2的极值点是:A. 1B. -1C. 2D. 0答案:A9. 函数f(x)=x^2-4x+3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:A10. 曲线y=x^2与x轴的交点坐标是:A. (0, 0)B. (2, 0)C. (-2, 0)D. (0, 2)答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的拐点是______。

答案:(2, -2)2. 曲线y=x^2-4x+3与y轴的交点坐标是______。

答案:(0, 3)3. 函数f(x)=x/(x^2+1)的不定积分是______。

答案:(1/2)*ln(x^2+1)+C4. 函数f(x)=cos(x)的泰勒展开式(仅考虑x=0处的前三项)是______。

答案:1 - (x^2)/2! + (x^4)/4!5. 曲线y=ln(x)在x=e处的切线方程是______。

答案:y=1/e*x-1/e三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2x-1在区间[0, 2]上的最大值和最小值。

微积分试卷及答案4套

微积分试卷及答案4套

微积分试卷及答案4套微积分试题(A卷)一.填空题(每空2分,共20分)1.已知$\lim\limits_{x\to1^+}f(x)=A$,则对于$\forall\epsilon>0$,总存在$\delta>0$,使得当$x\to1^+$时,恒有$|f(x)-A|<\epsilon$。

2.已知$\lim\limits_{n\to\infty}\dfrac{a_n^2+bn+5}{n^2+3n-2}=2$,则$a=1$,$b=3$。

3.若当$x\to x_0$时,$\alpha$与$\beta$是等价无穷小量,则$\lim\limits_{x\to x_0}\dfrac{\alpha-\beta}{\beta}=0$。

4.若$f(x)$在点$x=a$处连续,则$\lim\limits_{x\toa}f(x)=f(a)$。

5.函数$f(x)=\ln(\arcsin x)$的连续区间是$(0,1]$。

6.设函数$y=f(x)$在$x$点可导,则$\lim\limits_{h\to0}\dfrac{f(x+3h)-f(x)}{h}=3f'(x)$。

7.曲线$y=x^2+2x-5$上点$M$处的切线斜率为6,则点$M$的坐标为$(-1,2)$。

8.$\dfrac{d(xf'(x))}{dx}=xf''(x)+2f'(x)$。

9.设总收益函数和总成本函数分别为$R=24Q-2Q^2$,$C=Q+5$,则当利润最大时产量$Q=6$。

二.单项选择题(每小题2分,共18分)1.若数列$\{x_n\}$在$a$的$\epsilon$邻域$(a-\epsilon,a+\epsilon)$内有无穷多个点,则(B)数列$\{x_n\}$极限存在,且一定等于$a$。

2.设$f(x)=\arctan\dfrac{2}{x-1}$,则$x=1$为函数$f(x)$的(A)可去间断点。

高等微积分考试试题

高等微积分考试试题

高等微积分考试试题(请注意,以下内容仅为示例)题一:计算以下函数的导数:(1)f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1(2)g(x) = e^x + ln(x^2 + 1)(3)h(x) = sin(2x) + cos^2(x)题二:计算以下不定积分:(1)∫(3x^2 + 2x - 5)dx(2)∫(e^x + 1/x)dx(3)∫(2sin(x) + cos^2(x))dx题三:计算以下定积分:(1)∫[0, π/2] (sin(2x) + cos^2(x))dx(2)∫[1, 2] (x^2 + x + 1)dx(3)∫[0, e] (e^x/x)dx题四:求以下函数的极值点:(1)f(x) = 3x^2 - 4x + 2(2)g(x) = x^3 + 4x^2 - 5x(3)h(x) = sin(x) + cos(x)题五:计算以下级数的收敛性:(1)∑(n = 1 to ∞) 1/n(2)∑(n = 0 to ∞) (-1)^n/n^2(3)∑(n = 1 to ∞) (3^n)/(2^n)题六:给定曲线 C,计算以下曲线 C 的弧长:(1)y = x^2, 1 ≤ x ≤ 2(2)y = ln(x), 1 ≤ x ≤ e(3)y = sin(x), 0 ≤ x ≤ π/2题七:应用微积分解决以下问题:(1)确定曲线 y = x^2 和直线 y = 2x + 1 的交点坐标。

(2)求函数 f(x) = x^3 + x 在区间 [-2, 2] 的最大值和最小值。

(3)求函数 g(x) = e^x + x 在 x = 0 处的切线方程。

题八:通过微积分求解以下微分方程:(1)dy/dx = x^2 + 1(2)d^2y/dx^2 + 2dy/dx + y = 0(3)(1 + x^2)dy/dx + xy = 2题九:计算以下函数的 Taylor 展开式:(1)f(x) = sin(x)(2)g(x) = ln(1 + x)(3)h(x) = e^x题十:通过微积分证明以下定理:(1)牛顿-莱布尼茨公式(2)拉格朗日中值定理(3)柯西中值定理注:以上试题仅为示例,实际的高等微积分考试试题可能存在难度与复杂度的增加。

大学微积分-近5真题-10试题(A卷)

大学微积分-近5真题-10试题(A卷)

20XX年复习资料大学复习资料专业:班级:科目老师:日期:广 东 商 学 院 试 题20XXXX-20XXXX 学年第二学期 考试时间20XXXX0分钟课程名称 微积分II (A 卷)课程代码:20XXXX0020XXXX 课程班号 20XXXX 本科 共 2 页…………………………………………………………………………………………………………一、填空题(每题3分,共30分)1、函数 的定义域是____________.2、设 ,则=')(x f ________________.3、广义积分⎰1031dx x 的敛散性为_____________.4、⎰-=1122dx xe x ____________ . 5、若=-+=dz y x xy z 则,ln .6、微分方程 的通解是 ____.7、级数 的敛散性为 .8、 已知边际收益R /(x)=3x 2+20XXXX00,R(0)=0,则总收益函数R(x)=____________.9、交换 的积分次序= .10、微分方程 的阶数为 _____阶. 二、单选题(每题3分,共20XXXX 分)1、下列级数收敛的是( )A ,B ,C ,D , 2、,微分方程x y x y =+1/的通解为( )A ,c x y +=331B ,xc x y 1)31(3+= y x z -=dt 2t )(lnx0⎰=x f ∑∞=+1351n nn 0sin )(2104=+'-''x y y x y∑∞=1)45(n n ∑∞=13n n x y dx dy =∑∞=+121n n ⎰⎰----111122),(x x dydx y x f ∑∞=1!1n nC , 231x y =D ,xc x y 1)(3+= 3、设D 为:122≤+y x ,二重积分σd y x D⎰⎰+22=( ) A,314 B, π4 C,π32 D ,0 4、 若 A, //v u f f + B, //32v u f xy f +⋅ C,/2/v u f x f +⋅ D, /2/)3(v u f y x y x f ++⋅ 5、2 0 0)1ln(lim x dt t x x ⎰+→=( )A, 0 B, 1 C, 2 D,21 三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知⎰+=10/.)(求,1)(dx x xf x xx f 2. 求⎰⎰Dyd x σ2,其中D 是由 ,x=1和x 轴围成的区域。

ap微积分ab试卷

ap微积分ab试卷

ap微积分ab试卷English Answer:1. The derivative of f(x) = x^3 + 2x^2 5x + 1 is f'(x)= 3x^2 + 4x 5.2. The integral of f(x) = x^3 + 2x^2 5x + 1 is F(x) = (x^4)/4 + (2x^3)/3 (5x^2)/2 + x + C.3. The limit of (x^2 1)/(x 1) as x approaches 1 is 2.4. The equation of the tangent line to the graph of f(x) = x^3 + 2x^2 5x + 1 at the point (1, -3) is y = 6x 9.5. The area under the curve of f(x) = x^3 + 2x^2 5x + 1 from x = 0 to x = 2 is 9.6. The volume of the solid generated by rotating the region bounded by the curves y = x^2 and y = 4 about the x-axis is (64pi)/5.7. The work done by the force F(x) = x^2 + 2x from x = 0 to x = 2 is 14/3.8. The center of mass of a thin wire of length L with density p(x) = x is at x = L/2.9. The moment of inertia of a thin rod of length L about an axis perpendicular to the rod and passing through one end is (ML^2)/12.10. The Laplace transform of f(t) = e^(-t) is F(s) = 1/(s + 1).中文回答:1. f(x) = x^3 + 2x^2 5x + 1 的导数为 f'(x) = 3x^2 + 4x 5。

2020微积分试卷及答案6套

2020微积分试卷及答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国海洋大学命题专用纸(首页)
05-06学年第1学期试题名称:高等微积分A卷共1页第1页
专业年级_____________学号_____姓名授课教师名____分数
一、(共56分)完成下列各题:
1. . 2. .
3.已知 ,求 .
4.计算不定积分 .
5.已知方程 确定隐函数 ,求 .
6.已知参数方程 ,求 .
一、(共56分)完成下列各题:
1.计算 . 2.已知 ,求 .
3.已知当 时, 是比 高阶的无穷小,求 的值.
4.某商品的需求函数为 ,要使需求弹性的绝对值大于 ,试确定价格 的取值范围.
5.已知方程 确定隐函数 ,求 .
6.已知参数方程 ,求 .
7.已知 ,求 .
8.计算广义积分 .
二、(9)已知曲线 与 在原点有公共切线,求 .
7.已知 可导且 ,求函数 在 的微分.
8.已知 ,计算广义积分 .
二、(9)证明:当 时, .
三、(9)已知 ,求 的表达式,并讨论 在 的
可导性.
四、(9)求过点 且与平面 及 都平行的直线方程.
五、(9)已知 满足关系式 ,且 ,证明:
(1) 是曲线 的拐点;(2) 不是 的极值.
六、(8)一容器的内表面是由曲线 ( )绕 轴旋转而成的旋转面,如果以 的速率注入液体,求液面高度为 时液面上升的速率.
二、(9)证明:当 时, .
三(9)某平面到原点的距离为 ,且在三个坐标轴上的截距之比为 ,求该平面方程.
四、(9)已知曲线 与 在原点有公共切线,求 .
五、(9)求星形线 所围平面图形绕 轴旋转得旋转体的体积.
六、(8)已知 有二阶导数,且 , ,证明:在 内存在一点 满足 .
专业年级:学号_______姓名___授课教师名____分数
专业年级:学号_____姓名授课教师名____分数
一、(共56分)完成下列各题:
1. . 2. .
2.已知 ,求 .
3.已知当 时, 是比 高阶的无穷小,求 的值.
4.求心形线 所围平面图形的面积.
5.已知方程 确定隐函数 ,求麦克劳林公式.
8.计算积分 .
三、(9)已知 ,求 的表达式.
四、(9)证明:当 时, .
五、(9)在曲线 ( )上求一点,使过该点的切线与已知曲线以及直线 , 所围平面图形的面积最小.
六、(8)已知 有二阶导数,且 , ,证明在 内存在一点 满足
.
相关文档
最新文档