数理统计总复习
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计总复习
概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
概率论与数理统计复习汇总
第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)
数理统计复习资料
复习资料(资料总结,仅供参考)判断题1.研究人员测量了100例患者外周血的红细胞数,所得资料为计数资料。
X 2.统计分析包括统计描述和统计推断。
3.计量资料、计数资料和等级资料可根据分析需要相互转化。
4.均数总是大于中位数。
X 5.均数总是比标准差大。
X 6.变异系数的量纲和原量纲相同。
X 7.样本均数大时,标准差也一定会大。
X 8.样本量增大时,极差会增大。
9.若两样本均数比较的假设检验结果P 值远远小于0.01,则说明差异非常大。
X 10.对同一参数的估计,99%可信区间比90%可信区间好。
X 11.均数的标准误越小,则对总体均数的估计越精密。
12. 四个样本率做比较,2)3(05.02χχ> ,可认为各总体率均不相等。
X13.统计资料符合参数检验应用条件,但数据量很大,可以采用非参数方法进行初步分析。
14.对同一资料和同一研究目的,应用参数检验方法,所得出的结论更为可靠。
X 15.等级资料差别的假设检验只能采用秩和检验,而不能采用列联表χ2检验等检验方法X 。
16.非参数统计方法是用于检验总体中位数、极差等总体参数的方法。
X 17.剩余平方和SS 剩1=SS 剩2,则r 1必然等于r 2。
X 18.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互直线关系。
19.两变量关系越密切r 值越大。
X 20.一个绘制合理的统计图可直观的反映事物间的正确数量关系。
21.在一个统计表中,如果某处数字为“0”,就填“0”,如果数字暂缺则填“…”,如果该处没 有数字,则不填。
X 22.备注不是统计表的必要组成部分,不必设专栏,必要时,可在表的下方加以说明。
23.散点图是描写原始观察值在各个对比组分布情况的图形,常用于例数不是很多的间断性分组资料的比较。
24.百分条图表示事物各组成部分在总体中所占比重,以长条的全长为100%,按资料的原始顺序依次进行绘制,其他置于最后。
X 25.用元参钩藤汤治疗80名高血压患者,服用半月后比服用前血压下降了2.8kPa ,故认为该药有效( X )。
统计学复习资料概率论与数理统计重点知识点整理
统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
数理统计复习
n 2 2
( xi ) 0
1n
2 4
( xi
i 1
)2
0
得
1
ni 21
n
n
xi
1
n
(
i 1
xi
x
x )2
s02
经检验,x和s02确为似然函数的最大值点,
从而, 2的极大似然估计量为 ˆ X , 2 S02
i 1
i 1
n
n
(
n
C xi m
xi ) p i1
(1
nm xi p) i1
i 1
n
对数似然方程为 ln L( p) ln(
C xi m
)
nx
ln
p
(nm
nx)
ln(1
p)
i 1
令 ln L( p) nx (nm nx) 0 p x
抽取6件,测得它们的长度为:32.56, 29.66, 31.64, 30.00, 31.87, 31.03。问 这批零件的长度是否符合产品要求?
3、某药厂生产一种抗菌素,每瓶抗菌素的某项指标服从正态分布。某日开 工后随机抽取5瓶,测得该项指标数据为:22.3, 21.5, 22.0, 21.8, 21.4。 1)求该指标均值的区间估计; 2)设在正常情况下,该指标的均值为23.0,问该日的生产是否正常?
2
n
|xi |
2)极大似然估计:似然函数L( )
n
n i 1
p(
xi
;
)
1
数理统计总复习(题型归纳)
56学 考题8(2005级 256学时) 三 、 ( 本 题 8 分 ) 设 X 1 , X 2 , L , X n为 服 从 泊 松 分 布 )的 π(λ )的总体X的一个样本,求λ的极大似然估计量。
32 考题9(2004级 32学时) 三、(本题8分)设总体X的概率密度为: ( θ + 1) x θ , 0 < x < 1, f ( x) = 0, 其它 其中θ > −1是未知参数,X 1 , X 2 , L , X n为总体X 的一个容量为n简单随机样本,求参数θ的极大 似然估计量。
考题5(2007级 64学时 作业P153 四) 七、(本题8分)设X 1 , L , X n为总体X的样本, X的密度函数为: 0< x<1 θ, f ( x , θ) = 1 − θ, 1 ≤ x < 2;其中未知参数θ > 0 0, 其他 设N为样本值x1 , L , xn中小于1的个数,求θ的极 大似然估计。
1 2 n
32学 考题4(2007级 32学时) 10分 六、(本题10分)设随机变量X的概率密度为 2x 2 , 0< x<θ f ( x) = θ ,其中未知参数θ > 0, 0, 其他 X 1 , L , X n是样本,求θ的矩估计和最大似然估计。
(此题和2008级的第三大题一样的.)
: 解(1)检验假设H 0:σ 2 = 1,H 1:σ 2 ≠ 1; ( n − 1) S 2 取统计量:χ 2 = 2 σ0
2 拒绝域为:χ 2 ≤ χ 2 α ( n − 1) = χ 0.975 ( 9) = 2.70 1−
或χ 2 ≥ χ 2 ( n − 1) = χ α
2
2 2 0.025
数理统计主要内容和复习重点
两类错误:H0 正确但拒绝 H0 为第一类错误,H0 错误但接受 H0 为第二类错误; 检验的 p 值:作出拒绝 H0 决策的最小显著水平。 二. 参数检验:单正态总体参数、双正态总体参数、其他分布参数、似然比检验 单正态总体参数检验:已知方差检验均值、未知方差检验均值、检验方差; 双正态总体参数检验:已知方差检验均值差、未知方差检验均值差、检验方差比; 其他分布参数检验:指数分布参数检验、比例 p 的检验、泊松分布参数检验,以
及对应的大样本情形。 似然比检验:分别求出一般情况与在 H0 成立条件下,似然函数的上确界之比。 三. 非参数检验:分类χ 2 拟合优度检验、列联表独立性检验、正态检验、其他非参数检验 分类χ 2 拟合优度检验:总体分布分成有限类的χ 2 检验法;
列联表独立性检验:χ 2 检验法; 正态性检验:正态概率纸,W 检验法,EP 检验; 其他非参数检验:游程检验、符号检验、秩和检验。 重点: 单与双正态总体参数检验的六种类型、其他分布参数检验、似然比检验、分类χ 2 拟合优度检 验与列联表独立性检验
估计方法:矩估计、最大似然估计; 评价标准:相合性、无偏性、有效性,以及均方误差; 最小方差无偏估计 UMVUE:充分性原则,UMVUE 判定定理,Fisher 信息量,
C-R 下界与有效估计; 贝叶斯估计:先验分布、后验分布,共轭先验分布。 二. 区间估计:枢轴量、单正态总体、双正态总体、比例 p、其他分布参数 枢轴量:概念以及与统计量的区别; 单正态总体置信区间:已知方差估计均值、未知方差估计均值、估计方差; 双正态总体置信区间:已知方差估计均值差、未知方差估计均值差、估计方差比; 比例 p 的置信区间:近似法、方程法、修正法; 其他分布参数的置信区间:指数分布、泊松分布等。 重点: 矩估计与最大似然估计、无偏性与有效性、Fisher 信息量与有效估计、单与双正态总体置信 区间的六种类型、比例 p 的置信区间(任一方法)。
概率论与数理统计_知识点总复习
随机事件和概率第一节基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m −=从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m−=从m 个人中挑出n 个人进行组合的可能数。
(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(4)一些常见排列1特殊排列相邻彼此隔开顺序一定和不可分辨2重复排列和非重复排列(有序)3对立事件4顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有B A ⊂,A B ⊃,则称事件A 与事件B 等价,或称A 等于B :A=B 。
A、B 中至少有一个发生的事件:A ∪B ,或者A +B 。
属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者B A ,它表示A 发生而B 不发生的事件。
A、B 同时发生:A ∩B ,或者AB 。
A ∩B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。
基本事件是互不相容的。
Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:∪∩∞=∞==11i ii i AA B A B A ∩∪=,BA B A ∪∩=3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,2°P(Ω)=13°对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P ∪常称为可列(完全)可加性。
概率论与数理统计复习提纲
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
概率论与数理统计
《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为 ;取到的两只球至少有一个黑球的概率为 。
2、的概率密度为(),则=DX 。
3、已知随机变量且与相互独立,设随机变量52+-=Y X Z ,则=EX ;=DX 。
4、已知随机变量X 的分布列为 -1 0 20.4 0.2 p则: EX = ;= 。
5、设与独立同分布,且)2,2(~2N X ,则(= 。
6、设对于事件、有,121)(=ABC P ,81)()()(===AC P BC P AB P ,则、都不发生的概率为 。
7、批产品中一、二、三等品各占60%、30%、10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为 。
8、相互独立,且概率分布分别为 2)1(1)(--=x ex f π() ; ⎩⎨⎧≤≤=其它,,0312/1)(y y ϕ则:)(Y X E += ; )32(2Y X E -= 。
9、已知工厂生产产品的次品率分别为2%和1%,现从由工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是B 工厂的概率为 。
10、设Y X 、的概率分布分别为⎩⎨⎧≤≤=其它,,0514/1)(x x ϕ;则:)2(Y X E += ;)4(2Y X E -= 。
二、选择题1、设X 和Y 相互独立,且分别服从)2,1(2N 和)1,1(N ,则 。
.2/1}1{=≤+Y X P .2/1}0{=≤+Y X P.2/1}0{=≤-Y X P.2/1}1{=≤-Y X P2、已知4.0)(=A P ,6.0)(=B P ,5.0)|(=A B P ,则=)(B A P 。
A . 1B . 0.7C . 0.8D . 0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为 。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
数理统计部分总复习练习题
3X 4 设两独立随机变量 X ~ N (0,1) ,Y ~ (9) ,则 服 Y 从( C ) 。
(A) N (0,1) (C) t (9) (B) t (3) (D) F (1,9)
二、单项选择题
5
X1, X 2 ,, X16 是来自总体 X ~ N (0, 的一部分样本, 1 )
Z 设 Z X X Y X X ,则 ~( D ) Y (A) N (0,1) (B) t (16) (C) 2 (16) (D) F (8,8)
一、填空题
5 设总体 X 服从[0, ]上的均匀分布,其中 >0 为未 知参数, X1 , X 2 ,, X n 为来自总体 X 的简单随机样 ˆ max X i 1i n 本,则 的矩估计量为 ;
6 设总体 X 服从参数为 的指数分布, X1 , X 2 ,, X n 是来自总体 X 的简单随机样本,则 的矩估计量 ˆ 1 为 。 X 设 X1 , X 2 ,, X16 是来自总体 X ~ N (4, 2 ) 的简单随
T 统计量的观察值 x 70 66.5 70 t 1.4 W 15 / 6 s / 36
没有落在拒绝域内,所以,在显著性水平 0.05 下,不 能拒绝接受 H0,即可以认为这次考试平均成绩为 70 分。
三、计算题 2 设总体 X 的密度函数为
x x / 2e f ( x; ) 0
2 1 2 8 2 9 2 16
6
已知 X1 , X 2 ,, X n 是来自总体的样本, 则下列是统计 量的是( B ) (A) X X A (C) X a 10
1 n (B) Xi 2 n 1 i 1 1 (D) X a X 1 5 3
概率论与数理统计复习
概率统计综合复习一一、填空:1.已知()0.3,()0.5,(/)0.2P A P B P A B ===,则()P A B ⋃= _ ___。
2.设某批产品有4%是废品,而合格品中的75%是一等品,则任取一件产品是一等品的概率是 。
3.设1231()()()3P A P A P A ===,且三事件123,,A A A 相互独立,则三事件中至少发生一个的概率为 ,三事件中恰好发生一个的概率为 。
4.袋中装有1个黑球和2个白球,从中任取2个,则取得的黑球数X 的分布函数()F x = ,()E X = 。
5.设X (4,0.5),b Y 在区间[0,2] 上服从均匀分布,已知X 与Y 相互独立,则(3)D X Y -= _ _。
6.设2(2,)X N σ ,且{0}0.2P X ≤=,那么{24}P X <<= _ ___。
7.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计:{24}P X -≥≤ 。
8.设一批产品的某一指标2(,)X N μσ ,从中随机抽取容量为25的样本,测得样本方差的观测值2100s =,则总体方差2σ的95%的置信区间为 。
二、单项选择:1.甲、乙二人射击,A 、B 分别表示甲、乙击中目标,则AB 表示( )。
A.两人都没击中B.至少一人没击中C.两人都击中D.至少一人击中2.设,A B 为两个随机事件,且,则下列式子正确的是( )A.()()P A B P A ⋃=B.()()P AB P A =C.(/)()P B A P B =D.()()()P B A P B P A -=- 3.设123,(,4)X X X N μμ,是来自总体的样本,未知参数的下列无偏估计量中最有效的是 ( ).A.123111424X X X ++ B. 131122X X + C. 123122555X X X ++ D. 123111333X X X ++ 4.设某种电子管的寿命X ,方差为()D X a =,则10个电子管的平均寿命X 的方差()D X 是( ) A .a B. 10a C. 0.1a D. 0.2a5.在假设检验问题中,犯第一类错误是指( )A .原假设0H 成立,经检验接受0HB .原假设0H 成立,经检验拒绝0HC .原假设0H 不成立,经检验接受0HD .原假设0H 不成立,经检验拒绝0H 三、设一批混合麦种中一、二、三、四等品分别占60%、20%、15%、5%,,四个等级的发芽率依次为,0.98,0.95,0.9,0.85 求:1.这批麦种的发芽率;2.若取一粒能发芽,它是二等品的概率是多少?四、已知随机变量X 的概率密度函数为,01()0,cx x f x ⎧≤<=⎨⎩其它,求:1.常数c ; 2.{0.40.7}P X <≤; 3.方差()D X五、设二维随机变量(,)X Y 的联合密度函数(2)2,0,0(,)0x y e x y f x y -+⎧>>=⎨⎩,其它 ,1.求,X Y 的边缘密度函数;2.判断,X Y 是否相互独立、是否不相关;3.求概率{1}P X Y +≤六、设总体X 的密度函数为(1),01()0,x x f x θθ⎧+<<=⎨⎩其它,其中0θ>是未知参数,12,,,n X X X 是从该总体中抽取的一个样本,12,,,n x x x 是其样本观测值,试求参数θ 的最大似然估计量。
自考概率论与数理统计复习要点
《概率论与数理统计》复习概要第一章随机事件与概率1.事件的关系ABAB AB A B A AB2.运算规则(1)A B B A AB BA(2)(A B)CA(BC)(AB)CA(BC)(3)(A B)C(AC)(BC)(AB)C(AC)(BC)(4)A B AB AB A B3.概率P(A)知足的三条公义及性质:(1)0P(A)1(2)P()1(3)对互不相容的事件n n(n能够取)A1,A2,,A n,有P(A k)P(A k)k1k1(4)P()0(5)P(A)1P(A)(6)P(A B)P(A)P(AB),若A B,则P(B A)P(B)P(A),P(A)P(B)(7)P(A B)P(A)P(B)P(AB)8)P(ABC)P(A)P(B)P(C)P(AB)P(AC)P(BC)P(ABC)4.古典概型:基本领件有限且等可能5.几何概率6.条件概率(1)定义:若P(B)0,则P(A|B)P(AB)P(B)(2)乘法公式:P(AB)P(B)P(A|B)若B1,B2,B n为齐备事件组,P(B i)0,则有(3)全概率公式:P(A)nP(B i)P(A|B i) i1(4)Bayes公式:P(B k)P(A|B k)P(B k|A) nP(B i)P(A|B i)i17.事件的独立性: A,B独立P(AB)第二章随机变量与概率散布1.失散随机变量:取有限或可列个值,(3)对随意D R,P(XD)p ii:x i D P(A)P(B) (注意独立性的应用)P(Xx i)p i知足(1)p i0,(2)p i=1i2.连续随机变量:拥有概率密度函数f(x),知足(1)f(x)0,f(x)dx1;-(2)b;()对随意a R,P(XP(aX b)f(x)dx a)03a3.几个常用随机变量数学期名称与记号散布列或密度方差望两点散布B(1,p)P(X1)p,P(X0)q1p二项式散布C n k p k q nk,kP(X k)0,1,2,n,B(n,p)Poisson散布P()几何散布G(p)平均散布U(a,b)f(x)1,a x b,b a指数散布E()正态散布N(,2)4.散布函数F(x) P(X x),拥有以下性质(1)F()0,F()1;(2)单一非降;(3)右连续;(4)P(a X b)F(b)F(a),特别P(Xa)1F(a);(5)对失散随机变量,F(x)p i;i:x i x(6)对连续随机变量,F(x)xf(x)连续点上,f(t)dt为连续函数,且在F'(x)f(x)5.正态散布的概率计算以(x)记标准正态散布N(0,1)的散布函数,则有(1)(0);(2)(x)1(x);(3)若X~N(,2),则F(x)(x);(4)以u记标准正态散布N(0,1)的上侧分位数,则P(Xu)1(u) 6.随机变量的函数Y g(X)(1)失散时,求Y的值,将同样的概率相加;(2)X连续,g(x)在X的取值范围内严格单一,且有一阶连续导数,则f Y(y) f X(g1(y))|(g1(y))'|,若不但一,先求散布函数,再求导。
《概率论与数理统计》总复习资料
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
重庆大学研究生数理统计总复习
pi• P( X xi ) P( X xi ,Y ) pij i 1,2,
为X
j 1
的边缘分布列;
p• j P(Y y j ) P( X ,Y y j ) pij j 1,2,
i 1
为Y 的边缘分布列;
3)二维连续型随机变量的联合密度函数:
xy
F (x, y) P( X x,Y y)
且 P( X xk ) pk , (k 1,2,, n,)
则称此数列为离散型随机变量的分布列。
性质1: p k 0, k 1,2,3,...
性质2:
pk
1
k 1
性质3: Fx P(X x) P(X xk )
xk x
分布列与分布函数之间的关系
3、密度函数:
定义:如果存在一个非负可积函数 f (x) , 对任意实数x,有
F
(x,
y)
FX
( x) FY
(
y)
pij f (x,
pi. p. y)
j
fX
(x)
fY
(
y)
五、随机变量的数字特征:
1、一维随机变量的数学期望:
设离散型随机变量X 的分布列为:
P X xk pk , k 1,2,, n
如果级数 xk pk 收敛,则称级数:
k 1
xk pk EX
x
x
(3) f ( x)关于x 对称,即f ( x) f ( x);
(4)F( x)
x
;
(5)( x) 1 ( x);
(6)X ~ N (0,1), P{ X a} 2(a) 1.
四、二维随机变量
1、二维随机变量及其推广: 1)二维随机变量的分布函数:
数理统计总复习
2013-8-3
数理统计总复习
7
统计三大分布 1、 分布
2
分布是由正态分布派生出来的一种分布.
2
定义: 设 X 1, X 2 ,, X n 相互独立, 都服从正态 分布N(0,1), 则称随机变量:
所服从的分布为自由度为 n 的 分布.
2
X X2 Xn
2 2 1 2
j=1,2,…,k
那么用诸 i的估计量 Ai分别代替上式 中的诸 i, 即可得诸 j 的矩估计量 : j=1,2,…,k
36 2013-8-3 数理统计总复习
求极大似然估计(MLE)的一般步骤是: (1) 由总体分布导出样本的联合概率函数 (或联合密度); (2) 把样本联合概率函数(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( ); (3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE; (4) 在最大值点的表达式中, 用样本值代入 就得参数的极大似然估计值 .
2
记为
2013-8-3
~ (n)
2 2
数理统计总复习 8
分布的密度函数为
2
n x 1 1 n2 x2 e 2 f ( x; n ) 2 ( n 2 ) 0 其中伽玛函数 (x )通过积分
x0 x0
( x ) e t dt, x 0 0 来定义.
则称
n
^
为
的相合估计量或一致估计。
2013-8-3
数理统计总复习
40
一、 置信区间定义: 设 是 一个待估参数,给定 0, 若由样本X1,X2,…Xn确定的两个统计量 ˆ ˆ ˆ ˆ 1 1 ( X1, X 2 ,, X n ), 2 2 ( X1, X 2 ,, X n ) (ˆ1 ˆ2 ) 满足
概率论与数理统计第四章期末复习
概率论与数理统计第四章期末复习(一)随机变量的数学期望1.数学期望的定义定义1设离散随机变量X 的分布律为)()(i i i x X P x p p ===, ,2,1=i .若+∞<∑+∞=1i i i p x ,则称∑+∞==1)(i i i p x X E 为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.定义2设连续随机变量X 的密度函数为)(x f .若+∞<⎰∞+∞-x x f x d )(,则称xx xf X E d )()(⎰∞+∞-=为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.2.随机变量函数的数学期望定理1设随机变量Y 是随机变量X 的连续函数:)(X g Y =.设X 是离散型随机变量,其分布律为)(i i x X P p ==, ,2,1=i ,若∑+∞=1)(i i i p x g 绝对收敛,则有∑+∞===1)()]([)(i i i p x g X g E Y E .设X 是连续型随机变量,其概率密度为)(x f ,若⎰∞+∞-x x f x g d )()(绝对收敛,则有x x f x g X g E Y E d )()()]([)(⎰∞+∞-==.【例1】设随机变量X 的分布律为X 2-1-0123P1.02.025.02.015.01.0求随机变量X 的函数2X Y =的数学期望.【解】1.0315.022.0125.002.0)1(1.0)2()(222222⨯+⨯+⨯+⨯+⨯-+⨯-=Y E 3.2=.【例2】设随机变量X 具有概率密度⎪⎩⎪⎨⎧≤≤=,其他.;,001)(ππx x f X ,求X Y sin =的数学期望.【解】x x f x g X g E Y E d )()()]([)(⎰∞+∞-==πππ2d 1sin 0=⋅=⎰x x .【例3】某公司经销某种原料,根据历史资料表明:这种原料的市场需求量X (单位:吨)服从)500,300(上的均匀分布.每售出1吨该原料,公司可获利1.5(千元);若积压1吨,则公司损失0.5(千元).问公司应该组织多少货源,可使平均收益最大?【解】设该公司应该组织a 吨货源,则显然应该有500300≤≤a .又记Y 为在a 吨货源条件下的收益额(单位:千元),则收益额Y 为需求量X 的函数,即)(X g Y =.由题设条件知:当a X ≥时,此a 吨货源全部售出,共获利a 5.1.当a X <时,则售出X 吨(获利X 5.1),且还有X a -吨积压(获利)(5.0X a --),所以共获利a X X a X 5.02)(5.05.1-=--.由此知⎩⎨⎧<-≥=.,;,a X a X a X a X g 5.025.1)(则x x g x x f x g Y E X 2001)(d )()()(500300⎰⎰==∞+∞-]d 5.1d )5.02([2001500300x a x a x a a ⎰⎰+-=)300900(200122-+-=a a .易知,当450=a 时,能使)(Y E 达到最大,即公司应该组织450吨货源.定理2设随机变量Z 是随机变量X ,Y 的连续函数:),(Y X g Z =.设),(Y X 是二维离散型随机变量,其联合分布律为),(j i ij y Y x X P p ===,,2,1,=j i ,若∑∑+∞=+∞=11),(i j ij j i p y x g 收敛,则有∑∑+∞=+∞===11),()],([)(i j ij j i p y x g Y X g E Z E .设),(Y X 是二维连续型随机变量,其联合概率密度函数为),(y x f ,若y x y x f y x g d d ),(),(⎰⎰∞+∞-∞+∞-收敛,则有y x y x f y x g Y X g E Z E d d ),(),()],([)(⎰⎰∞+∞-∞+∞-==.【例4】设随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<--=其他.,,,,010102),(y x y x y x f 求)(X E ,)(XY E .【解】⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(125d d )2(1010=--=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x f xy XY E d d ),()(61d d )2(1010=--=⎰⎰y x y x xy .3.数学期望的性质性质1若a 是常数,则a a E =)(.性质2对任意常数a ,有)()(X aE aX E =.性质3对任意的两个函数)(1x g 和)(2x g ,有)]([)]([)]()([2121X g E X g E X g X g E +=+.性质4设),(Y X 是二维随机变量,则有)()()(Y E X E Y X E +=+.推广到n 维随机变量场合,即)()()()(2121n n X E X E X E X X X E +++=+++ .性质5若随机变量X 与Y 相互独立,则有)()()(Y E X E XY E =.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X E X E X E X X X E =.【例5】设随机变量X 与Y 相互独立,X ~)4,1(-N ,Y ~)2,1(N ,则=-)2(Y X E .【解析】因为X ~)4,1(-N ,Y ~)2,1(N ,所以1)(-=X E ,1)(=Y E ,故3)(2)()2(-=-=-Y E X E Y X E .(二)随机变量的方差1.方差的定义定义1设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为)(X D ,即})]({[)(2X E X E X D -=.称方差的平方根)(X D 为随机变量X 的标准差,记为)(X σ或X σ.定理1(方差的计算公式)【例1】设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<<-+=其他.,;,;,0101011)(x x x x x f ,求)(X D .【解】0d )1(d )1()(101=-++=⎰⎰-x x x x x x X E ,61d )1(d )1()(120122=-++=⎰⎰-x x x x x x X E ,所以61)]([)()(22=-=X E X E X D .2.方差的性质性质1常数的方差为0,即0)(=c D ,其中c 是常数.性质2若a ,b 是常数,则)()(2X D a b aX D =+.性质3若随机变量X 与Y 相互独立,则有)()()(Y D X D Y X D +=±.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X D X D X D X X X D +++=±±± .【例2】已知2)(-=X E ,5)(2=X E ,求)31(X D -.【解】9})]([)({9)()3()31(222=-=-=-X E X E X D X D .(三)常见随机变量的数学期望、方差1.两点分布X ~),1(p b p X E =)(,)1()(p p X D -=.2.二项分布X ~),(p n b np X E =)(,)1()(p np X D -=.3.泊松分布X ~)(λP λ=)(X E ,λ=)(X D .4.均匀分布X ~),(b a U )(21)(b a X E +=,12)()(2a b X D -=.5.指数分布X ~)(λE λ1)(=X E ,21)(λ=X D .6.正态分布X ~),(2σμN μ=)(X E ,2)(σ=X D .【例1】设X ~),(p n b 且6)(=X E ,6.3)(=X D ,则下列结论正确的是()A .15=n ,4.0=pB .20=n ,3.0=pC .10=n ,6.0=p D .12=n ,5.0=p 【解析】6)(==np X E ,6.3)1()(=-=p np X D ,解之得15=n ,4.0=p .正确选项为A .【例2】若X ~)5,2(N ,Y ~)1,3(N ,且X 与Y 相互独立,则=)(XY E ()A .6B .2C .5D .15【解析】因为X ~)5,2(N ,所以2)(=X E ,因为Y ~)1,3(N ,3)(=Y E ,故6)()()(==Y E X E XY E ,正确选项为A .【例3】X 与Y 相互独立,X ~)2(P ,Y ~)1(E ,则=-)2(Y X D .【解析】因为X ~)2(P ,所以2)(=X D ,因为Y ~)1(E ,所以1)(=Y D ,又因为随机变量X 与Y 相互独立,所以9)()1()(2)2(22=-+=-Y D X D Y X D .(四)协方差、相关系数与矩1.协方差定义1设),(Y X 是一个二维随机变量,若)]}()][({[Y E Y X E X E --存在,则称其为X 与Y 的协方差,记为),(Cov Y X .即)]}()][({[),(Cov Y E Y X E X E Y X --=.定理1)()()(),(Cov Y E X E XY E Y X -=.【例1】设二维随机变量),(Y X 的联合分布律为:求协方差),(Cov Y X .【解】由题易得32)(=X E ,0)(=Y E ,0311131003111)(=⨯⨯+⨯⨯+⨯⨯-=XY E .于是0)()()(),(Cov =-=Y E X E XY E Y X .定理2若X 与Y 相互独立,则0),(Cov =Y X ,反之不然.定理3对任意二维随机变量),(Y X ,有),(Cov 2)()()(Y X Y D X D Y X D ±+=±.关于协方差的计算,还有下面四条有用的性质.性质1协方差),(Cov Y X 的计算与X ,Y 的次序无关,即),(Cov ),(Cov X Y Y X =.性质2任意随机变量X 与常数a 的协方差为零,即0),(Cov =a X .性质3对任意常数a ,b ,有),(Cov ),(Cov Y X ab bY X a =.性质4设X ,Y ,Z 是任意三个随机变量,则),(Cov ),(Cov ),(Cov Z Y Z X Z Y X +=+.2.相关系数定义2设),(Y X 是一个二维随机变量,且()0D X >,()0D Y >,则称Y X XY Y X Y D X D Y X σσρ),(Cov )()(),(Cov ==为X 与Y 的相关系数.性质11≤XY ρ.性质21=XY ρ的充要条件是X 与Y 间几乎处处有线性关系,即存在)0(≠a 与b ,使得1)(=+=b aX Y P .其中当1=XY ρ时,有0>a ;当1-=XY ρ时,有0<a .性质3设随机变量X 与Y 独立,则它们的相关系数等于零,即0=XY ρ.【例2】设1)()(==Y D X D ,21=XY ρ,则=+)(Y X D 3.【解析】因为21)()(),(Cov ==Y D X D Y X XY ρ,所以)()(21Y D X D XY =ρ21=,故),(Cov 2)()()(Y X Y D X D Y X D ++=+3=.【例3】已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E 6.【解析】)]2([3)]2(3[22-=-X E X E }2)]([)({32-+=X E X D 6=.【例5】设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,,,,02020)(81),(y x y x y x f 求),(Cov Y X ,)(Y X D +和XY ρ.【解】⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(67d d )(822=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(2235d d )(820202=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f xy XY E d d ),()(34d d )(82020=+=⎰⎰y x y x xy ,由轮换对称性,有67)(=Y E ,35)(=Y E ,361)()()(),(Cov -=-=Y E X E XY E Y X ,3611)]([)()()(22=-==X E X E X D Y D ,95),(Cov 2)()()(=++=+Y X Y D X D Y X D ,111)()(),Cov(-==Y D X D Y X XY ρ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、随机样本与抽样分布(四种分布) 二、点估计(矩估计,最大似然估计) 和区间估计(置信区间的求法) 三、估计量的评选标准 四、正态总体的假设检验(均值,方差检验)
第六章
1.设总体X在区间 a, b上服从均匀分布,来自总体X的 样本 X1 , X 2 ,, X n 的概率密度函数 f ( x1 , x2 ,, xn ) 为(A )
3,1,3,0,3,1,2,3
求 的矩估计值及最大似然估计值.
ˆ1 x2 E( X ) 3 4 4 8 L( ) p( xi , ) (1 2 )4 [2 (1 )]2 2 2
i 1
4 6 (1 2 )4 (1 )2
ˆ 7 13 12
X Y n
,则
T 2 ~ F (1, n) 分布.
1 5.设随机变量Xt(n),(n>1), Y 2 X
,则( D )
(A) Y2(n) (C) YF(1,n)
(B) Y2(n-1) (D) YF(n,1)
Hale Waihona Puke 6.设X 1 , X 2 , X 3 是来自于总体N(0,4)的一个样本,
2 2 试检验 H 0 : 0.81 : H1 : 0.81
答:接受 H 0 注:若本题目中没有给出检验假设,通常我们 给的假设是:
H 0 : 2 0.81; H1 : 2 0.81. 然后再进行检验
2 X 1 的矩估计量为 1 X n n
i 1
ln x
1
i
14. 已知总体X的期望EX=0,方差DX= 2。 1 , X 2 ,, X n X 是来自总体X的简单随机样本,其均值为 X,方差为
S 2,则 2 的无偏估计量是( B ).
2 1 1 2 nX S 2 2 2 1 1 nX S2 4 4
13. 设总体X的概率密度为
( 1) x , 0 x 1 f ( x; ) 其它 0
X 其中 1是未知参数, 1 , X 2 ,, X n
为取自总体X的简单随机样本,试求 (1)参数 的矩估计量;(2)参数 的极大似然估计量。 答:
的极大似然估计量
2
n
16.对于正态总体XN(,2),其中2未知,样本容量
n和置信水平1- 均不变. 则对于不同的样本观
察值, 总体均值 的置信区间长度L ( (A)变短 (B)变长 (C)不变 )
(D)不能确定
17.对于正态总体XN(,2),其中2未知,样本容量
n和置信水平1- 均不变. 则对于不同的样本观
的矩估计值(2)参数 p 的最大似然估计量. n x xi 答: p 的矩估计值为 p . 极大似然估计值 p i 1 mn m
x . m
12. 设总体X的概率分布为
X
p
0
1
2 (1- )
2
3
1-2
2
2
其中 (0< < 1/2)是未知参数,利用总体X的样本值
2 当a,b为何值时, Y a(4 X 1 3 X 2 ) 2 bX3 服从
2
分布,并求其自由度.
1 1 2 答:当 a , b 时,统计量 Y 服从 (2)。 100 4
7. 设总体 X ~ N (1,32 ), X1 , X 2 ,, X 9 是来自X的样本,
则下面正确的是( B )
(A) 总体均值 的真值以95%的概率落入区间( 1 , 2 );
(B)样本均值 X 以95%的概率落入区间( 1 , 2 );
(C)区间( 1 , 2)含总体均值 的真值的概率为95%;
(D)区间( 1 , 2 )含样本均值 X 的概率为95%。
19.已知某种木材横纹抗压力的实验值服从正态分布, 对10个试件作横纹抗压力的实验数据如下: 482,493,457,471,510,496,435,418, 394,496(单位:kg/cm ): 试以95%的可靠性估计该木材的平均横纹抗压力的 置信区间。 附表 z0.05 1.65, z0.025 1.96, t 0.05 (8) 1.85, t 0.025 (8) 2.30, t 0.05 (9) 1.83,
24. 设某次考试的学生成绩服从正态分布,从中随机 地抽取36名考生的成绩,算得平均成绩为66.5 ,标准 差为15分.(1)问在显著水平=0.05下,是否可以认 为这次考试全体考生的平均成绩为70分?(2)在显著 水平=0.05下是否可以认为这次考试考生的成绩的 方差为162? 解答: (1)H0:= 0=70, H1: 70 接受原假设,认为这次考试的平均成绩为70分
(A) X S 2 n
2 1 nX S2 (C) 3
2
(B) (D)
,方差为 2 的正态分布, 15. 设总体X服从均值为 未知,设X1 , X 2 ,, X n是总体的样本,则
的置信度为 1 的置信区间为
X z 2 n , X z
23 对正态总体均值 进行假设检验,如果在显著水 平0.05下接受H0 := 0 ,那么在显著水平0.01下, 下列结论正确的是 ( A ) (A) 必接受H0 (C) 必拒绝H0 (B) 可能接受也可能拒绝 H0 (D)不接受也不拒绝假设H0
详解:检验水平 越小,接受域的范围越大. 前提需要同一个样本观测值。
2 0975 (10) 3.247
02.025 (9) 19.023, t 0.025 (10) 2.228,
2 t 0.025 (9) 2.262, 0.025 (10) 20.483
答:
的置信度为95%的置信区间为(1484.92,1515.08)
的置信度为95%的置信区间为(13.76,98.4)
5
(B)max X i 1 i 5 (D) X 2 2 p
2 (n) 分布总体的一个样本, 是来自
求样本均值 X 的数学期望及方差。 2n E ( X ) n, D( X ) 2. 解: n
4. 设随机变量X ~ N (0,1), 随机变量Y ~ 2 (n) 且X与Y是相互独立,令 T
第八章
21.在假设检验中,记H1为备择检验,称( B ) 为犯第一类错误. (A) H1为真,接受H1 (B) H1不真,接受H1 (C) H1为真,拒绝H1 (D) H1不真,拒绝H1. 22 在假设检验中,显著水平 表示 ( (A) H0为真,但接受H0的假设的概率 (B) H0为真,但拒绝H0的假设的概率 (C) H0为假,但接受H0的假设的概率 (D) 假设H0的可信度 B )
t 0.025 (9) 2.26
答: 置信区间为(431.0,484.0)。 即该木材的平均横纹抗压力在431.0至484.0区间内, 并且这种估计的可靠性是95%。
20. 为了解灯泡使用时数的均值 及标准差 , 测量10个灯泡,得x=1500h , s=20h.如果已知灯泡的 使用时数服从正态分布,求 和的95%的置信区间。 附表: 2 2 t 0.05 (9) 1.8331 0.025 (9) 19.023, 0.975 (9) 2.7, ,
察值, 总体均值 的置信区间长度l与样本标准差S 的关系为( A) (A)当S较大时,区间长度也较大; (B)当S较大时,区间长度应较小; (C)区间长度与S无关; (D)不能确定.
S 解:因为区间长度 l 2t ( n 1) n 2
置信度为95%的置信区间为( ), 18.总体均值 1 , 2 其含义是( C)
1 , a x1 , x 2 , , x n b , n f ( x1 , x 2 , , x n ) b a) ( (A) 0, 其它 .
1 , a x 1 , x 2 , , x n b (B) f ( x1 , x 2 ,, x n ) ba 1 , a x 1 , x 2 , , x n b , (C) f ( x1 , x 2 ,, x n ) b a 0, 其它 .
(2) H0:2= 02 =162, H1: 2 162
接受原假设,认为这次考试的成绩方差为162
25. 某厂在所生产的汽车蓄电池的说明书上写明: 使用寿命的标准差不超过0.9年,现随机地抽取了 10只蓄电池, 测得样本的标准差为1.2年,假定使用 N ( , 2 ),取显著性水平 0.05 寿命服从正态分布
第七章
10. 设0,1,0,1,1 为来自二项分布b(1, p)的样本观察值, 则 p 的矩估计值为( c ) 1 2 3 (B) (A) (C) 5 5 5
4 (D)5
11. 设 X ~ b(m, p),其中m已知, 而 p (0 p 1) 未知,
x1 , x2 ,, xn 为样本观测值,求 (1)参数 p
S1 与 S 2 ,则统计量 S S 的条件是 1 2 。
2 2
2 1 2 2
服从 F n1 1, n2 1
9. 设 X ~ N ( ,2 2 ) ,从 X 中抽取容量为n的样本, 其均值为 X ,样本容量为n至少取多少时, 才能使样本均值 X 与总体均值 之差的绝对值 小于0.1的概率不小于95%?( Z 0.975 1.96) (1537)
(D)以上结论都不对
2. 设总体X服从两点分布b(1, p ),即
PX 1 p, PX 0 1 p 。其中 p 是未知参 数,
X 1 , X 2 ,, X 5 是来自X的简单随机样本。
则非统计量为( D ) (A) X 1 X 2 (C) X 5 X1 3. 设 X1 , X 2 ,, X n