一次函数单元复习
(完整版)一次函数知识点复习总结
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
一次函数复习1
解:由图像知直线过(-2,0),(0,-1)两点, 把两点的坐标分别代入y=kx+b,得 0=-2k+b
-1=b Y
解得 k=- 1
2
b=-1
-2
所以,其函数解析式为y= - 1x-1
-1
X
2
四.知识拓展
1.直线y=k1x+b1 、y=k2x+b2.若平行则
k1=k2 b1≠b2
若与y轴相交于同一点,则 k1 ≠ k2 b1= b2
y
o
x
A
y
o
x
B
y
o
x
C
y
o
x
D
例:线段AB, CD分别是一辆轿车的油箱剩余油量y1 (升) 与另一辆客车的油箱剩余油量y2 (升)关于行驶路程 x(千米)的函数图象。
(1)分别求y1, y2关于x的函数解析式,并写出定义域。
(2)如果两车同时出发,轿车的行驶速度为每小时100千米,
客车的行驶速度为每小时80千米,当邮箱的剩余油量相同
y
x
4.函数y=(-k+3)x+(2k-4)
(1)当k =2 时,函数图像过原点. (2)当k﹤3 时, y随x的增大而增大.
5.函数y=kx+b 当k>0,b<0时,此函数图像不经过
的象限是 第二象限
y x
6.一次函数y=(a-5)x+(a-3)的图像不经过第三
象限,则a的取值范围 _3_≤_a_﹤__5_
(1) y 2x (2) y 1 (3) y x 1(4) y kx b x
答: (1)是 (2)不是 (3)是 (4)不是
2:函数y=(k+2)x+( k2-4)为正比例
一次函数专题复习
一次函数专题复习专题一、函数定义1、判断下列变化过程存在函数关系的是( )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x x y ,当a x =时,y = 1,则a 的值为( ) A.1 B.-1 C.3 D.21 3、下列各曲线中不能表示y 是x 的函数是( )。
专题二、正比例函数1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( )A 、y=3x -2B 、y=(k+1)xC 、y=(|k|+1)xD 、y= x 22、如果y=kx+b ,当 时,y 叫做x 的正比例函数3、一次函数y=kx+k+1,当k= 时,y 叫做x 正比例函数专题三、一次函数的定义1、下列函数关系中,是一次函数的个数是( )①y=1x ②y=x 3 ③y=210-x ④y=x 2-2 ⑤ y=13x +1 A 、1 B 、2 C 、3 D 、42、若函数y=(3-m)x m -9是正比例函数,则m= 。
3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数 (2)是正比例函数专题四、函数的增加性1.已知点A(x 1,y 1)和点B(x 2,y 2)在同一条直线y=kx+b 上,且k <0.若x 1>x 2,则y 1与y 2的关系是( )A.y 1>y 2B.y 1=y 2C.y 1<y 2D.y 1与y 2的大小不确定2、下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= A.1个 B.2个 C.3个 D.4个O x y O x y O x y O x y专题五、一次函数与坐标系1.对于一次函数y=-2x+4,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 .2. 已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= .3、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. 1-B. 1C. 41- D. 41 4.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )个 A .4 B .5 C .7 D .85、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,求的值?6、已知一次函数y=(a -2)x +2a 2-8求:(1)a 为何值时,一次函数的图象经过原点.(2)a 为何值时,一次函数的图象与y 轴交于点(0,10).专题六、待定系数法求一次函数解析式1. 若一次函数的图象经过点A(-3,0),B(0,1),则这个函数的解析式为 .2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴相交于C 点.求: (1)直线AC 的函数解析式; (2)设点(a ,-2)在这个函数图象上,求a 的值;3、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4、(2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。
一次函数总复习
第二十一章 一次函数总复习【基础知识汇总】1、正比例函数:一般表达式y=kx (k 为常数且k ≠0);图像为过(0,0)与(1,k )的一条直线2、一次函数:一般表达式y=kx+b (k 、b 为常数,且k ≠0);图像是一条经过(0,k b -)与(0,b )的直线。
其中(0,kb -)为直线与x 轴交点,(0,b )为直线与y 轴交点。
对一次函数(包括正比例函数)的基本要求:必须为整式函数,自变量项的系数k 不为0,自变量的最高指数为1。
3、一次函数图像与坐标轴围成的三角形的面积:如右图所示: S △AOB=2OBOA ⋅=2b kb ⋅- 4、k 、b 与图像所在象限及增减性:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.若两直线k 值相同,则两直线平行。
6、图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。
一次函数知识点总复习含答案解析
一次函数知识点总复习含答案解析一、选择题1.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.2.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.3.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( ) A . B . C . D .【答案】B【解析】【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能.故选:B .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.4.已知点M (1,a )和点N (3,b )是一次函数y =﹣2x+1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k <0,y 随x 的增大而减小解答.【详解】解:∵k =﹣2<0,∴y 随x 的增大而减小,∵1<3,∴a >b .故选A .【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =--【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.6.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意;(3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.9.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 10.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.11.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A.①②③B.②④C.②③D.①②③④【答案】A【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC 的解析式为y=kx+b (k≠0),∵经过点A (0,6),B (30,12),∴30126k b b +=⎧⎨=⎩, 解得:156k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为165y x =+(0≤x≤50), 故②的结论正确;当x=40时,1406145y =⨯+=, 即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y =⨯+=, 即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:y甲=-15x+30y乙=()() 3001306012x xx x⎧≤≤⎪⎨-+≤≤⎪⎩由此可知,①②正确.当15x+30=30x时,解得x=2 , 3则M坐标为(23,20),故③正确.当两人相遇前相距10km时,30x+15x=30-10x=49,当两人相遇后,相距10km时,30x+15x=30+10,解得x=8 915x-(30x-30)=10得x=4 3∴④错误.选C.【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.14.若正比例函数y =kx 的图象经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( ) A .﹣12B .﹣2C .﹣1D .1【答案】A 【解析】 【分析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可. 【详解】解:∵正比例函数y =kx 的图象经过第二、四象限, ∴k <0.∵正比例函数y =kx 的图象过点A (2m ,1)和B (2,m ), ∴2km 12k m =⎧⎨=⎩,解得:m 11k 2=-⎧⎪⎨=-⎪⎩或m 11k 2=⎧⎪⎨=⎪⎩(舍去).故选:A . 【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.15.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C【分析】设购买A型瓶x个,B(253x-)个,由题意列出算式解出个选项即可判断.【详解】设购买A型瓶x个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B型瓶的个数是1522533xx -=-,∵瓶子的个数为自然数,∴x=0时,253x-=5; x=3时,253x-=3; x=6时,253x-=1;∴购买B型瓶的个数是(253x-)为正整数时的值,故A成立;由上可知,购买A型瓶的个数为0个或3个或6个,所以购买A型瓶的个数最多为6,故B成立;设购买A型瓶x个,所需总费用为y元,则购买B型瓶的个数是(253x-)个,④当0≤x<3时,y=5x+6×(253x-)=x+30,∴k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x-)-5=x+25,∵.k=1>0随x的增大而增大,∴当x=3时,y有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C不成立,D成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.16.一次函数 y = mx +1m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.∵一次函数y=mx+|m-1|中y 随x 的增大而增大, ∴m >0.∵一次函数y=mx+|m-1|的图象过点(0,2), ∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去). 故选B . 【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A 【解析】 【分析】由30kx b ++<即y<-3,根据图象即可得到答案. 【详解】∵y kx b =+,30kx b ++<, ∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3), ∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3, 故选:A. 【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.18.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤D .112b -≤≤【答案】B 【解析】 【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围. 【详解】 解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1.故选B . 【点睛】考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.19.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!20.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。
八年级数学《一次函数》全册知识点复习总结及经典练习汇总(含答案)
《一次函数》全册知识点复习总结及经典练习汇总知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b=0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-k b﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2);③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32-m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x的一次函数.例4 某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为℃.例5 已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.例6 若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是()A.m﹤O B.m>0C.m﹤21D.m>M例7 已知一次函数y=kx+b的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S=4,求P点的坐标.△ABP例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。
第十九章 一次函数 单元复习题 (含详解) 人教版八年级数学下册
人教版八年级数学下册第十九章一次函数单元复习题一、选择题1.在圆的面积公式中,变量是( )A .B .S ,rC .D .只有2.下列图象中,不能表示y 是x 的函数的是( )A .B .C .D .3.已知正比例函数,若随的增大而减小,则的取值范围是( )A .B .C .D .4.如图,函数和的图象交于点,则不等式的解集为( )A .B .C .D .5.如图,直线经过点A 和点B ,直线过点A ,则不等式的解集为( )2πS r =πS ,πr ,r()1y k x =-y x k 1k <1k >0k <0k >2y x =4y ax =+()3A m ,24x ax <+32x >32x <3x >3x <1y kx b =+22y x =2x kx b <+A .B .C .D .6.函数x 的取值范围是( )A .x≠0B .x≥且x≠0C .x >D.x≥7.正比例函数y =(k ﹣2)x 的图象经过一、三象限,那么k 的取值范围是( )A .k >0B .k >2C .k <0D .k <28.如图,直线 y =﹣x+2 与 x 轴交于点 A ,与 y 轴交于点 B ,以点 A 为圆心,AB 长为半径画弧,交 x 轴于点 C ,则点 C 的坐标为( )A .(﹣1,0)B .(,0)C .(-2,0)D .(,0)9.在平面直角坐标系中,将函数的图象向下平移2个单位长度,所得函数图象的表达式是( )A .B .C .D .10.如图是甲、乙两家商店销售同一种产品的销售价 (元)关于销售量 (件)的函数图象.给出下列说法,其中说法不正确的是( )A .售2件时,甲、乙两家的售价相同B .买1件时,买乙家的合算C .买3件时,买甲家的合算12-12-21y x =-+y x 2x <-1x <-20x -<<10x -<<y =12-21y x =-+21y x =--23y x =--23y x =-+D .乙家的1件售价约为3元二、填空题11.函数x 的取值范围是 12.已知函数是关于的一次函数,则的值为 .13.已知一次函数的图象经过点,且与直线的图象平行,则一次函数表达式为 .14.市场上一种豆子的单价是2元/千克,豆子总的售价 (元)与所售豆子的重量 (千克)之间的函数关系式为 .(不需要写出自变量取值范围)三、解答题15.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s (千米)与时间t (分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?16.一次函数的自变量x 的取值范围是,相应函数值的取值范围是,求这个函数的解析式.17.已知一次函数y =kx +b 的图象由直线y =﹣2x 平移得到,且过点(﹣2,5).求该一次函数的解析式.18.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x 名学生去旅游,他们应该选择哪家旅行社?四、综合题19.已知矩形 的周长为 , AB 的长为 , 的长为 .(1)写出 关于 的函数解析式( 为自变量);(2)当 时,求 的值.x y x y x y x x y y =||(1)3m y m x =--m y kx b =+()05-,1y x 2=y =y kx b =+42x -≤≤14y ≤≤ABCD 20BC 3x =20.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (﹣2,4),且与正比例函数y=﹣x 的图象交于点B (m ,2).(1)求一次函数y =kx+b 的解析式;(2)若直线AB 与x 轴交于点C ,若连接AO 后,则△OAB 的面积是 .21.综合与探究如图,在平面直角坐标系中,函数的图象分别交轴、轴于两点.点在上,且,作直线.(1)A 点坐标为 ,B 点坐标为 ;(2)求直线的解析式;(3)在直线上找一点,使得,请直接写出点的坐标;(4)在坐标平面内是否存在这样的点,使得以点为顶点的四边形为平行四边形?若存在,请你直接写出点的坐标;若不存在,请说明理由.22.李明驾车以千米小时的速度从甲地匀速开往乙地,行驶到服务区休息了一段时间后以另一速度继续匀速行驶,直至到达乙地.李明与乙地的距离千米与时间小时之间的函数关系图象如图所示.x y AM AM P N )23212y x =+A B 、M OB 12OM MB =::AM P ABP AOB S S =V V N A B M N 、、、100/y()x((1)求的值;(2)求李明从服务区到乙地与之间的函数关系式;(3)求时李明驾车行驶的路程.a y x x 5答案解析部分1.【答案】B【解析】【解答】解:中的变量是、,故答案为:B.【分析】在一个过程中,固定不变的量称为常量,可以取不同数值的量称为变量.2.【答案】B【解析】【解答】解:A 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;B 、不满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故符合题意;C 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;D 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;故答案为:B .【分析】根据函数的定义逐项判断即可。
一次函数复习
一次函数解析式的确定
1、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。
解析:直线平行时k的特点;用待定系数法求函数的解析式 题型类比 1、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关 系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确 定自变量x的取值范围。
x
y
o
x
性 质
k>0时,在Ⅰ, Ⅲ象限; k<0时,在Ⅱ, Ⅳ象限.
正比例函数是特殊的一次函数
k>0,b>0时在Ⅰ, Ⅱ,Ⅲ象限; k>0,b<0时在Ⅰ, Ⅲ, Ⅳ 象限 k<0, b>0时,在Ⅰ,Ⅱ, Ⅳ象限. k<0, b<0时,在Ⅱ, Ⅲ, Ⅳ象限
平行于 y = k x ,可由它平移而得
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.
4
A
3
2
1
0
1
2
3
4
B
2、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y
轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C; (1)分别写出两条直线解析式,并画草图; (2)计算四边形ABCD的面积; (3)若直线AB与DC交于点E,求△BCE的面积。
b ,0) k
当k<0时,y的值随x的增大而减小。
解析式
正 比 例 函 数 y = k x ( k≠0 ) k>0 k<0
一 次 函 数 y=k x + b(k,b为常数,且k ≠0) k>0 y
k>0,b>0
一次函数分类专题复习
1 / 3一次函数复习专题一 待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、直线y=kx+b 的图像经过A (3,4)和点B (2,7), 3、如图1表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.求油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x 的取值范围。
4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。
5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。
6、已知直线y=kx+b 与直线y= -3x +7关于y 轴对称,求k 、b 的值。
7、已知直线y=kx+b 与直线y= -3x +7关于x 轴对称,求k 、b 的值。
8、已知直线y=kx+b 与直线y= -3x +7关于原点对称,求k 、b 的值。
一次函数复习专题二 一次函数的平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
1. 直线y=5x-3向左平移2个单位得到直线 。
2. 直线y=-x-2向右平移2个单位得到直线3. 直线y=21x 向右平移2个单位得到直线 4. 直线y=223+-x 向左平移2个单位得到直线5. 直线y=2x+1向上平移4个单位得到直线6. 直线y=-3x+5向下平移6个单位得到直线7. 直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
一次函数的复习一
A.
★方法:代入,增减性,数形结合
5、某一次函数的图象与 x轴,y轴的交点分别是A(-3,0)和
B(0,4)。 (1)求这个函数的解析式; (2)并求出函数图象与两坐标轴构成的三角形的面积。
解:(2)如图所示:函数图象与坐标轴围成
的三角形为△AOB
例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是__1_次, ⑵、自变量的系数__k_≠_0_。
二、 一次函数的图象与性质
1、一次函数的图像:
正比例函数y=kx(k≠0)经过点 (0,0)和点(1,k)的一条直
线。
一次函数y=kx+b(k≠0)的图像是一条经过点(0,b)和点
比例系数_k_≠_0__。
3、一次函数y=kx+b(kb>0,k+b<0)的图象大致 是( D )
y k>0 b>0
O
x
A.
k<0 y k>0 b>0 y
b<0
k<0
y
b<0
O
x
O
x
O
x
B.
C.
D.
★理解一次函数图象注意: ⑴、解析式中k值决定了增减性; ⑵、解析式中b值决定了直线与y轴的交点。
4、A(-1,y1),B(2,y2)是一次函数y=﹣x+6图象上 的两点,下列判断中,正确的是( A )
复习目标:
1. 一次函数的概念; 2. 一次函数的图象和性质; 3. 待定系数法求一次函数解析式。
知识点回顾
一、 一次函数的概念
一次函数的概念:如果函数y=_k_x__+__b_(k、b为 常数,且k_≠__0___),那么y叫做x的一次函数。
第四章一次函数复习(1)
⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图
中k、b的符号:
k___0,b___0
k___0,b___0
k___0,b___0
Hale Waihona Puke k___0,b___0友情提示:请学友大声地讲给师傅听。
师友讲解
类型一:一次函数的相关概念 例1.已知 y (m 1) x 3 是关于x的一次 函数,求m
第四章
一次函数(1)
师友回顾
一、知识要点:
1、一次函数的概念:函数y=_______(k、b为 常数,k______)叫做一次函数。当b_____时,函数 y=____(k____)叫做正比例函数。 ★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是___次,⑵、比 例系数_____。 2、正比例函数y=kx(k≠0)的图象是过点 (______)的_________。 3、一次函数y=kx+b(k≠0)的图象是过点(0, ___),(____,0)的__________。
1 2
变式:已知一次函数 y 2 x 1 经过点 y y (2, y )和(3,y ) 则 y 与 y 的大小关系是 ________ < 1 2 1 2
1 2
友情提示:独立思考→相互讲解
类型四:求特殊点坐标
独立思考→相互讲解
例题:求函数y=2x-4与x轴,y轴交点的坐标
解:令y=0得 2x-3=0 x=2 所以y=2x-4与x轴的 交点是(2,0) 解:令y=0得 -2x-4=0 x=-2 所以y=-2x-4与x轴的 交点是(-2,0) 令x=0得 y=-4 所以y=2x-4与y轴的交 点是(0,-4)
变式:求函数y= -2x-4与x轴,y轴交点的坐标
一次函数专题复习考点归纳+经典例题+练习
一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.1、已知一次函数kx k y )1(-=+3,则k = . 2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
一次函数的全章复习
y
y
y
y
o
x
A
o
x
B
o
x
C
o
x
D
3.直线y1=kx与直线y2=kx-k在同一坐 标系内的大致图象是( C )
(A)
k>0 k>0 -k>0
(B)
k<0 k<0 -k<0
(C)
k<0 k<0 -k>0
(D)
不平行
4、直线y1=ax+b与直线y2=bx+a在同 一坐标系内的大致图象是 ( D )
a>0 ,b>0 a>0 ,b>0 a>0 ,b>0 a>0 ,b>0 b<0, a>0 b>0, a<0 b<0, a<0 b>0, a>0
例1 填空题:
(1) 有下列函数① y 6x 5 ②y=2x,
③ y x 4 , ④ y 4x 3 其中过原点的直
线是_②___;函数y随x的增大而增大的是_①_、__②_、__③; 函数y随x的增大而减小的是_④___;图象过第一、二、 三象限的是_____③。 (2)、如果一次函数y=kx-3k+6的图象经过原点,那 么k的值为__k_=_2____。 (么3)y、与已x之知间y-1的与函x成数正关比系例式,为且_y_x_=__-__2_时_3 2_,_x_y_=_4_,_1_那。
6、已知:函数y = (m+1) x+2 m﹣6
(1)若函数图象过(﹣1 ,2)求此函数的解析式。
(2)若函数图象与直线 y = 2 x + 5 平行,求其 函数的解析式。
一次函数复习题大全
一次函数复习题大全一次函数复习题大全一次函数是数学中最基础的函数之一,也是学习数学的重要基础。
通过复习一次函数的相关知识和解题技巧,可以提高数学能力,并为更高级的数学学习打下坚实的基础。
本文将为大家提供一些一次函数的复习题,帮助大家巩固和加深对一次函数的理解。
一、基础题1. 已知一次函数y = 2x + 3,求当x = 4时,y的值是多少?2. 若一次函数y = kx + 5在点(3, 8)上的函数值为8,求k的值。
3. 若一次函数y = 3x - 2在点(2, y)上的函数值为7,求y的值。
4. 若一次函数y = -4x + b在点(5, -7)上的函数值为-7,求b的值。
5. 若一次函数y = 2x + c在点(1, -3)上的函数值为-3,求c的值。
二、图像题1. 根据一次函数y = 3x - 2的函数表达式,画出其图像,并标出与x轴和y轴的交点。
2. 根据一次函数y = -2x + 4的函数表达式,画出其图像,并标出与x轴和y轴的交点。
3. 根据一次函数y = 0.5x + 1的函数表达式,画出其图像,并标出与x轴和y轴的交点。
4. 根据一次函数y = -x - 3的函数表达式,画出其图像,并标出与x轴和y轴的交点。
5. 根据一次函数y = 4x的函数表达式,画出其图像,并标出与x轴和y轴的交点。
三、应用题1. 一家公司的销售额与广告投入成正比,已知广告投入1000元时,销售额为5000元,求当广告投入为3000元时,销售额是多少?2. 一辆汽车以每小时60公里的速度行驶,已知行驶时间与行驶距离成正比,求行驶5小时的距离是多少公里?3. 一间房子的面积与房价成正比,已知房子面积为120平方米时,房价为300万元,求房子面积为200平方米时,房价是多少万元?4. 一个水果摊的销售量与价格成反比,已知价格为每斤10元时,销售量为20斤,求当价格为每斤5元时,销售量是多少斤?5. 一辆火车以每小时80公里的速度行驶,已知行驶时间与行驶距离成正比,求行驶4小时的距离是多少公里?通过以上的复习题,我们可以巩固和加深对一次函数的理解。
一次函数复习
(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?
(3)该品牌衬衣本月共销售了件.
14、武警战士乘一冲锋舟从 地逆流而上,前往 地营救受困群众,途经 地时,由所携带的救生艇将 地受困群众运回 地,冲锋舟继续前进,到 地接到群众后立刻返回 地,途中曾与救生艇相遇.冲锋舟和救生艇距 地的距离 (千米)和冲锋舟出发后所用时间 (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
(1)请直接写出冲锋舟从 地到 地所用的时间.
(2)求水流的速度.
(3)冲锋舟将 地群众安全送到 地后,又立即去接应救生艇.已知救生艇与 地的距离 (千米)和冲锋舟出发后所用时间 (分)之间的函数关系式为 ,假设群众上下船的时间不计,求冲锋舟在距离 地多远处与救生艇第二次相遇?
课堂总结
(1)求点A坐标和直线AC的解析式.
(2)折三角形纸板ABC,使边AB落在边AC上,设折痕交BC边于点E(图②),求点E坐标.
(3)将三角形纸板ABC沿AC边翻折,翻折后记为△AMC,设MC与AD交于点N,请在图③中画出图形,并求出点N坐标.
图①图②图③
13.五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.
例3-1、若m<0,n>0,则一次函数y=mx+n的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
翰林教育授课案卷
学生姓名年级八年级辅导科目数学辅导教师授课时间年月日时至时课题一次函数单元复习
教学构想教学目标
系统复习一次函数的概念、图形以及性质,并利用其性
质解决与一次函数相关的问题,
教学重点利用一次函数的图像与性质解决实际问题
教学难点利用一次函数的图像与性质解决实际问题
教
学环
节(120分钟)一、复习
1、正比例函数和一次函数的概念
2、正比例函数的图像
3、正比例函数与一次函数的联系
4、一次函数的图像与性质
二、典型例题分析
1、一次函数的意义及其关系式的确定
例1、如图表示一个正比例函数与一个一次函数的图像,它们交与点A(4,3),一次函数的图像与y轴交与点B,且OA=OB,求这两个函数的解析式
注:确定一次函数需要两个点,确定正比例函数只需要一个点,可以通过待定系数法来确定它们的解析式。
2、一次函数的图像与性质的应用
例2、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.求m的值
翰林教育授课案卷
教
学环
节(12 0分钟)注:一次函数的图像是一条直线,在学习一次函数的图像时,只需要找到两个特殊点,根据两点确定一条直线,即可直接作出图像;反之,当已知直线时,一般从直线与坐标轴的交点、直线上的特殊点、直线与直线的交点等方面获取信息,从而解决问题。
3、一次函数的实际应用
例3、某公司为了丰富员工的业余生活,在黄陵庙举行龙舟比赛,5月20号上午9时,参赛龙舟从黄陵庙同时出发,其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示。
甲队在上午11时30分到达终点黄陵庙。
(1)哪个队先到达终点?乙队何时追上甲队?
(2)在比赛过程中,甲、乙两队何时相距最远?
4、二元一次方程组的图像的解法的应用
例4、已知:一次函数的图像经过点(2,1)和点(-1,-3)。
(1)求此一次函数的解析式
(2)求此一次函数与x轴、y轴的交点坐标以及该函数的图像与两坐标轴所围成的三角形的面积
(3)若一条直线与此一次函数图像交与(-2,a)点,且与y轴交点的纵坐标是5,求这条直线的解析式。
翰林教育授课案卷学
生评价学生接受程度○完全接受○部分接受○没有听懂
学生签字:
教师评价1、学生课堂纪律○非常好○好○一般○需要强化
2、学生知识点掌握程度○非常好○好○一般○需要强化
教师签字:
教
学
反
思
学管师:教管主任:提交日期:。