基于单片机的火灾探测和监控系统-外文文献翻译
基于单片机的防火防盗报警系统
基于单片机的防火防盗报警系统Fire alarm system based on single-chipmicrocomputer摘要近年来,随着各高校规模的扩大,在校生的数目飞速增长,学生宿舍的不安定因素也越来越多。
由于同学们安全意识不强,盗窃、火灾等危害学生财产和生命安全事件的发生概率也在增长,给各高校的平安校园建设带来一定困难。
为此,在计算机技术、电子信息技术和无线通信技术的基础上,文中提出了宿舍智能防火防盗报警系统的设计。
该系统可以对学生宿舍内部中的盗窃、火灾和违章用电等不安全因素进行监控,如有警情可迅速告知宿舍管理人员前去处理,实现了对学生宿舍的安全监控,缩短了对宿舍中突发事件的反应时间,给高校学生的平安求学带来了保障。
文中提出了一种宿舍智能防火防盗报警系统的设计。
系统中,监测电子系统以ATmega16为控制核心,辅以各种传感器,对学生宿舍的安全信息进行采集,如有警情通过无线通信模块传送至监控中心,自动提示值班人员前去处理,实现了对学生宿舍的安全管理。
关键词:mega16;烟雾传感器;热释电人体红外传感器;报警系统;无线通信模块ABSTRACTIn recent years, with the expansion of the university scale, the number of students increased rapidly, unstable factors are more and more students dormitory. As a result of the students' safety awareness is not strong, the probability of occurrence of theft, fire and other hazards students property and life safety event is on the increase, bring certain difficulty to building a peaceful campus in Colleges and universities. Therefore, based on computer technology, electronic information technology and wireless communication technology, this paper puts forward the design of intelligent fire alarm system in the dormitory. The system can monitor electric insecurity factors of student dormitory in the theft, fire and illegal, such as alarm can quickly inform dormitory management personnel to deal with, the safety monitoring of the student dormitory, to shorten the reaction time of unexpected events in the dormitory, to the university student's study brings peace security.This paper presents a design of intelligent fire alarm system in the dormitory. In the system, monitoring electronic system with mega16 as the control core, supplemented by a variety of sensors, acquisition of safety information on the student dormitories, such as alarm through the wireless communication module are transmitted to the monitoring center, automatically prompts the staff on duty to deal with, the realization of student dormitory safety management.Keywords: mega16; SIM300 communication; smoke sensor; human pyroelectric infrared sensor绪论课题研究的相关背景随着人类的进步和社会科学与技术的迅猛发展,人类开始迈入数字化和网络化为平台的智能化社会,人们对工作、生活等环境的要求也越来越高,开始出现了比如智能化仪表、智能化家电、智能化汽车、智能化小区等具有不同职能成都的产品、设备工具甚至工作环境和生活环境,并且呈现出高速发展的趋势。
基于单片机的火灾监测系统
基于单片机的火灾监测系统1. 引言1.1 背景介绍火灾是一种常见而又危险的灾害,给人们的生命和财产安全带来了严重威胁。
如何对火灾进行及时有效的监测和预警是当今社会亟待解决的重要问题。
随着科技的不断发展和进步,基于单片机的火灾监测系统逐渐成为了一种重要的解决方案。
单片机是一种集成了微处理器、存储器和各种输入输出设备的芯片,在嵌入式系统中得到了广泛的应用。
基于单片机的火灾监测系统利用单片机的强大计算能力和灵活性,可以实时监测环境中的温度、烟雾等参数,并在发现异常情况时及时警报,以便采取及时有效措施防止火灾的发生。
本文旨在设计和实现一种基于单片机的火灾监测系统,通过对系统的工作原理、硬件设计、软件设计和性能测试等方面进行深入研究和分析,来探讨如何利用现代科技手段提高火灾监测效率和准确性,从而为减少火灾造成的损失提供一种新的解决方案。
1.2 研究目的本文旨在设计并实现一种基于单片机的火灾监测系统,通过该系统能够实时监测环境中的火灾情况,并及时采取相应的应对措施,减少火灾对人身和财产造成的损害。
具体而言,研究目的包括以下几点:1. 研究如何利用单片机技术设计一个高效率、低成本的火灾监测系统,使得普通家庭、办公场所等地方也能够方便地获得火灾监测服务。
2. 探讨如何通过硬件设计和软件设计相结合的方式,提高火灾监测系统的准确性和稳定性,确保其在各种复杂环境下都能够正常工作。
3. 分析火灾监测系统在实际应用中的性能表现,评估其对火灾预防、报警和应急处理的效果,并提出相应的改进建议,为系统的进一步优化和完善提供参考依据。
通过以上研究,旨在为提高火灾监测系统的技术水平和应用效果,保障社会公共安全,减少火灾事故发生率做出贡献。
1.3 研究意义火灾是一种常见而严重的灾害,给人们的生命财产造成了极大的伤害。
随着科技的不断发展,人们对于火灾监测系统的需求也越来越迫切。
基于单片机的火灾监测系统具有实时性强、响应速度快、成本低廉等优点,对于提高火灾的检测和预警能力具有重要的意义。
基于单片机的火灾探测和监控系统相关中英对照外文.
中文译文(附原文,有出处)基于单片机的火灾探测和监控系统A.J. Al-Kh alili, MSc, Ph DD. AI-Kh alili, MSc. Ph DM.S. Kh asscm, MSc关键词:危险,设计,设备状态监测摘要:火灾探测及报矜监控已成为一个复杂而完整的体系。
该系统采用多个肀芯片架构到一条线上。
该控制算法是基于两级决策W次,闪此分配了复杂性。
一个完整的电路原理图,给出了主、分控制器所蒞的软件的结构要求。
设计延续-•般形式,这样nj_以适应于多种系统的配置。
尤11:显示出新的技术发展,特别足CMOS中.芯片器件,在系统设计中的使用,以减少整体硬件的父杂性,例如,通过分解系统,这样的M次较低水平的控制器能够有一呰决策CJ卞权,用简难的分介式的方法解决了复杂的决策。
1、引言大多数高风险地K和建筑物的赞理要求安装火灾探测报矜系统。
多数M家消防规范的要求监测和控制A体的是危险场合或建筑物,如化IJ .,石汕类,核电厂,住宅高楼等这些场合的一般性质nj以指定为F列要求:(—)所冇探测器信兮源信y能被丨:处理器准确识別。
(:).丨.从控制器有另外的沟通路径。
(三)检测报膂鞭丨控制设备由控制中心控制。
(四)火灾现场和控制中心的通讯。
(五)提供的应急电源=它也被用来应对特殊情况和进行深被检测,火灾探测及报赘系统足一个S在信兮,在一乃.发生火赘报妗装質的组合。
该系统也叫实现风扇控制,防火门关闭或释放,电梯锁记,应急照明控制和K他紧急任务。
这鸣额外的功能补允由检测和报替装置和中央控制中元组成3技术对系统结构冇很深的影响3技术的变革,该架构必须修订,以利用这些新的功能变化。
近年来,超大规模集成电路技术己经大人进步。
第一,NMOS在过去的一年成两年,CMOS芯片以相同的堆积密度拥冇更多的门和更低的功耗。
3然这种技术的变化必然影响在芯片和系统级我们的硬件设计。
在芯片级,中芯片现在正在制作的逛只相约于上一年或两年的水平。
一种基于单片机控制的智能火灾报警系统设计
一种基于单片机控制的智能火灾报警系统设计摘要:社会在不断的发展,对火使用不当,造成的火灾带给人类经济上的损失的危害也越来越大,用AT89C52中的单片机做成的处理器,是利用了对烟雾的探测技术设计而成的火灾报警系统,该设计是从总体系统上的性能包括硬件跟软件综合考虑设计而成,本文对该系统的设计进行详细阐述,并通过您对系统的性能进行测试,来证明系统具有可靠性好、低成本、适应力强、并具有兼容特点。
关键词:单片机,智能火灾报警,设计Abstract: in the continuous development of society, the improper use of fire, the fire hazards to human economic loss is more and more big, made with AT89C52 single-chip processor, is the use of detection technology design of smoke and fire alarm system, the design is from the performance of the overall system. Including the hardware and software design and comprehensive consideration, this paper elaborates on the design of the system, and through you to test the performance of the system, to prove that the system has good reliability, low cost, strong adaptability, and compatible with the characteristics of.Keywords: microcontroller, intelligent fire alarm, design一、引言该系统是对火灾预警的系统,是由火灾检测、火灾报警、对报警的控制以及一些辅助的功能子系统组成。
基于单片机的火灾报警系统的设计
编号:审定成绩:毕业设计(论文)设计(论文)题目:基于单片机的火灾报警系统的设计摘要近年来全国火灾事故频繁发生,造成人、财、物的巨大损失。
以前,火灾的报警和控制都很落后,造成了巨大的损失。
现在,用户对火灾报警以至自动消防系统的要求越来越高。
针对多起火灾事故的分析,排除水压不足等因素外,现有的消防隔断未能起到应有的作用,是造成重大损失的关键。
现在的数字式控制系统对火灾的报警和预处理都起到了重要的作用。
因此,对火灾的报警系统是很重要的。
本论文以电阻式烟雾传感器和单片机技术为核心并与其他电子技术相结合,设计出一种技术水平较好的烟雾报警器。
其中选用MQ-2型半导体可燃气体敏感元件烟雾传感器实现烟雾的检测,具有灵敏度高、响应快、抗干扰能力强等优点,而且价格低廉,使用寿命长。
选用的AT89C52单片机,它具有高速、低功耗、超强抗干扰等优点,是目前同类技术中应用最广的,且其扩展电路很广泛。
不仅用了烟雾传感器还用到了数字式温度传感器,这对报警系统的精度更加的完善。
以AT89C52单片机和MQ-2型半导体电阻式烟雾传感器及数字式温度传感器为核心设计的火灾报警器可实现声光报警、故障自诊断、报警限设置、延时报警及等功能。
是一种结构简单、性能稳定、使用方便、价格低廉、智能化的烟雾报警器,具有一定的实用价值。
【关键词】AT89C52单片机模数转换器DS18B20 报警ABSTRACTFrequent occurrence of fire accidents in recent years,making a great loss of people, financial, and material.Previously, the fire alarm and control are very backward, causing huge losses.Nowadays,fire as well as automatic fire alarm systems have become increasingly demanded by user.For the analysis of fire accidents,except for eliminate water pressure less,the existing fire partition should not play a role, is the key to cause significant damage.Now the digital control system of fire alarm and pre-have played an important role.Therefore, the fire alarm system is very important.This paper design a better smoke alarm with smoke sensors and SCD technology as the core,and combines with other electronic technology.the alarm use MQ-2 combustible gas sensor-type semiconductor to achieve smoke smoke detection sensors with high sensitivity, fast response, the advantages of anti-interference ability, and low cost and long service life.AT89S52 is high speed, low power, super anti-jamming, etc, is the same technology the most widely used, and the expansion of the circuit is very wide.Not only with the smoke sensor also uses a digital temperature sensor, the accuracy of this alarm system more perfect.The fire alarm with AT89C52 microcontroller and MQ-2-type semiconductor resistance type smoke sensor and digital temperature sensor as the core can realizes sound and light alarm, fault diagnosis, concentration display, alarm limit settings, delay alarm and so on.It is a simple structure, stable performance, easy to use, inexpensive, intelligent smoke detectors,which has some practical value.【Key words】AT89S52 SCD ADC DS18B20 Alarm目录前言火的应用对人类的文明和社会的进步起了巨大的推动作用。
火灾监测系统中英文对照外文翻译文献
中英文资料外文翻译文献Multiple single-chip microcomputer approach tofire detection and monitoring systemIndexing term : Hazards, Design, Plant condition monitoringAbstract: A complete system for fire detection and alarm monitoring has been proposed for complex plants. The system uses multiple single chip architecture attached to a party line. The control algorithm is based on a two-level hierarchy of decision making, thus the complexity is distributed. A complete circuit diagram is given for the local and the central station with requirements for the software structure. The design is kept in general form such that it can be adapted to a multitude of plant configurations. It is particularly shown how new developments in technology, especially CMOS single chip devices, are incorporated in the system design to reduce the complexity of the overall hardware, e.g. by decomposing the system such that lower levels of hierarchy are able to have some autonomy in decision making, and thus a more complex decision is solved in a simple distributed method.1 IntroductionRegulatory requirements for most high risk plants and buildings mandate the installation of fire detection and warning systems for all sensitive areas of the plant or the building. Most fire codes state the requirement for monitoring and control specifically related to a type of a plant or building such as chemical plants, petroleum, nuclear plants, residential high-rises etc. A general conclusion of these codes can bespecified as the following requirements :(a) The source of all detector signals should be exactly identifiable by the central station(b) An extra path of communication between the central station and all local controllers(c) Direct means of control of alarm and central equipment by the central station(d) Means of communication between the central station and the fire department(e) Availability of emergency power supply. The codes usually also specify the types and frequency of tests for all equipment.A fire detection and alarm system is a combination of devices designed to signal an alarm in case of a fire. The system may also accomplish fan control, fire door hold or release, elevator recall, emergency lighting control and other emergency functions. These additional functions supplement the basic system which consists of detection and alarm devices and central control unit.Technology has an influence on system architecture. When technology changes, the architecture has to be revised to take advantage of these changes. In recent years, VLSI technology has been advancing at an exponential rate. First NMOS and, in the last year or two, CMOS chips have been produced with the same packing density with more gates per chip yet at a lower power consumption than NMOS. Surely this change in technology must affect our design of hardware at both the chip and the system level. At the chip level, single chips are now being produced which are equivalent to board levels of only the previous year or two. These chips have microprocessor, memory in RAM and ROM, IO Ports both serial and parallel, A/D timer, flags and other functions on chip. At the system level, the new chips make new architectures possible. The objective of this paper is to show how technology can influence system architecture in the field of fire control. The new high density single chip microcontrollers are incorporated in the design of a large scale system and yet we obtain a smaller system with a better performance. In terms of fire detection and alarm monitoring, this is reflected directly in the local station hardware, because of their remoteness and power supply requirements. A complete local station can bedesigned around a single CMOS chip with power consumption of a few m W depending on system operation. This approach reduces the cost and complexity of design, implementation and maintenance and provides easily expandable and portable design. This implementation was not possible with old technology. Most of fire detection/monitoring systems available are tailored towards a specific application and lack the use of recent advances in CMOS VLSI technology. In this study, we develop a fire detection/monitoring system which is general in concept, readily implementable in a multitude of applications for early detection of a fire before it becomes critical, for equipment and evacuation of personnel. Here, we propose a central control and distributed control/detection/monitoring with adequate communication, where use is made of single-chip microcontrollers in the local stations, thus improving controllability and observability of the monitoring process.2 Detection and alarm devicesA basic fire detection system consists of two parts, detection and annunciation. An automatic detection device, such as a heat, smoke or flame detector, ultraviolet or infrared detectors or flame flicker, is based on detectingthe byproduct of a combustion. Smoke detectors, of both ionization and optical types, are the most commonly useddetector devices. When a typical detector of this type enters the alarm state its current consumption increasesfrom the pA to the mA range (say, from a mere 15pA in the dormant mode to 60 mA) in the active mode. Inmany detectors the detector output voltage is well defined under various operating conditions, such as thosegiven in Table 1. Themore sensitive the detector, themore susceptible it is to falsealarms. In order to control the detector precisely, either of the following methods is used: a coincidence technique can be built into the detector, or a filtering technique such that a logic circuit becomes active only if x alarms are detected within a time period T. The detection techniquedepends greatly on the location and plant being protected; smoke detectors are used for sleeping areas, infrared or ultraviolet radiation are used when flammable liquids are being handled, heat detectors are used for fire suppression or extinguishing systems. In general, life and property protection have different approaches.Alarm devices, apart from the usual audible or visible alarms, may incorporate solid state sound reproduction and emergency voice communication or printers that record time, date, location and other information required by the standard code of practice for fire protection for complex plants. Heaviside [4] has an excellent review of all types of detectors and extinguisher systems.2.1 Control philosophy and division of labourOur control philosophy is implemented hierarchically. Three levels of system hierarchy are implemented, with two levels of decision making. There is no communication between equipment on the same level. Interaction between levels occurs by upwards transfer of information regarding the status of the subsystems and downwards transfer of commands. This is shown in Fig. 1 where at level 1 is the central station microcomputer and is the ultimate decision maker (when not in manual mode). At level 2 are the local controllers, which reside in the local stations. At level 3 are the actual detectors and actuators. A manual mode of operation is provided at all levels.Information regarding the status of all detectors is transmitted on a per area basis to the local controllers. Their information is condensed and transmitted upward to the central microcomputer. Transfer of status is always unidirectional and upwards. Transfer of commands is always unidirectional and downwards, with expansion at the local control level. This approach preserves the strict rules of the hierarchy for exact monitoring detection and alarm systems associated with high risk plants.The classification of the two layers of controls is based upon layers of decision making, with respect to the facts that(a) When the decision time comes, the making and implementation of a decision cannot be postponed(b) The decisions have uncertainty(c) It will isolate local decisions (e.g. locally we might have an alarm although there may be a fault with the system)3 General hardwareI :Fig. 2 depicts our design in the simplest of forms. The system uses an open party line approach with four conductor cables going in a loop shared by all the remote devices and the control panel. This approach is simple in concept and is economically feasible. However, one major disadvantage is the dependency on a single cable for power and signaling. In cases where reliability is of extreme importance, two or even three cables taking differentroutes throughout the system may be connected in parallel. Fig. 3 gives the driver circuitry required to derive an expandable bus. This design takes advantage of recent advances in the single chip microcomputer technology to reduce the interfacebetween the central station and the local stations.3. 1 Central control taskA central unit provides a centralized point to monitor and control the systemactivities. In the system to be described the central control unit serves a fivefold purpose.(i) It receives information from the local stations and operates the alarms and other output devices.(ii) It notifies the operator in case of system malfunction.(iii) It provides an overall system control manual and automatic.(iu) It provides a system test point of local stations and itself.(u) It provides a central point for observation, learning and adaptation.3.2 Local stationsThe local stations can take local decisions regarding recognition of a risk situation, and act independently on local affairs. In this technique we depend on ‘load-type coordination’, e.g. the lower level units recognize the existence of other decision units on the same level; the central or the top level provides the lower units with a model of the relationship between its action and the response of the system.It is evident that a powerful machine is required at this stage so that all the required functions can be implemented. The availability of the new generation of microchips makes this architecture a feasible solution.A single chip microcomputer was chosen over discrete digital and analogue devices to interface to the field devices and to the central microcomputer. This is the main reason that previously this approach was not feasible.In selecting the microcomputer for the local stations, the criterion was the requirement for a chip which contains the most integration of the analogue and digital ports required for the interface and the utilization of CMOS technology owing to remoteness of the local stations. The choice was the Motorola 68HC11A4, for the following reasons:(a) It is CMOS technology; this reduces power consumption.(b) It has a UART on board; this facilitates serial communication.(e) It has an a/d converter on board; this eliminates an external A/D.(d) It has 4K of ROM, 256 bytes of RAM, 512 bytes of EERROM with 40 1/0 lines and a 16 bit timer; this satisfied all our memory and 1/0 requirements at the local station side.4 System implementationThe local station: Fig. 3 is the block diagram of the circuit used to utilize the MC68HCllA4 as a remote fire detecting circuit while Fig. 4 illustrates the samecircuit in an expanded form. It can be seen that the single microcontroller can be used to monitor more than one detector, thus reducing system cost.The loop power supply, which is usually between 28 and 26 V, is further regulated by a 5 V 100 mA monolithic low power voltage regulator to supply power to the microcontroller. The onboard oscillator, coupled with an external crystal of 2.4576 MHz, supplies the microcontroller with its timing signal which is divided internally by four to yield a processor frequency of 614.4 kHz, which is an even multiple of the RS 232 [7] baud rate generator. In this Section the term ‘su pervised input or output’ will be used to mean that the function in question is monitored for open- and short-circuit conditions in addition to its other normal functions. More information can be found in Reference 9.5 Main loop6 ConclusionThis paper describes the development of a large scale fire detection and alarm system using multi-single chip microcomputers. The architecture used is a two-level hierarchy of decision making. This architecture is made possible by the new CMOS microcontrollers which represent a high packing density at a low power consumption yet are powerful in data processing and thus in decision making. Each local station could make an autonomous decision if the higher level of hierarchy allows it to do so. It has been tried to keep the system design in general format so it can be adapted to varying situations. A prototype of the described system has been built and tested [10]. The control part of the central station is implemented with a development card based on MC 68000 microprocessor (MEX 68KECB, by Motorola), which has a built-inmonitor called Tutor. The application programs were developed using the features provided by this monitor. The local stations’ controllers were designed using the MC 68705R3, single-chip microcontroller.7 References1 ‘Fire protection guidelines for nuclear power plants’, US NRC Regulatory Guide 1.1202 BAGCHI, C.N.: ‘A multi-level distributed microprocessor system for a nuclear power plant fire protection system controls, monitori ng, and communication’, IEEE Trans., 19823 PUCILL, P.M.: ‘Fire hazard protection, detection and monitoring systems’, Sea. Con, 2, Proceedings of Symposium on ADV in offshore and terminal measurement and control systems, Brighton, England, March 1979, pp. 353-3634 HEAVISID, L.: ‘Offshore fire and explosion detection and fixed fire’. Offshore Technological Conference, 12th Annual Proceedings, Houston, Texas, May 1980, pp. 509-5225 CELLENTANI, E.N., and HUMPHREY, W.Y.: ‘Coordinated detection/communication a pproach to fire protection’, Specify: Eng.,6 ‘Motorola Microprocessors Data Manual’ (Motorola Semiconductor Products, Austin, Texas, USA)7 Electronic Industries Association : ‘Interface between data terminal equipment and data communication equipment emp loying serial binary data interchange’ (EIA Standard RS-232, Washington, DC, 1969)译文基于单片机的火灾探测和监控系统关键词:危险,设计,设备状态监测摘要:火灾探测及报警监控已成为一个复杂而完整的体系。
(2021年整理)基于单片机的烟雾探测报警器外文翻译
基于单片机的烟雾探测报警器外文翻译编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(基于单片机的烟雾探测报警器外文翻译)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为基于单片机的烟雾探测报警器外文翻译的全部内容。
淮阴工学院毕业设计(论文)外文资料翻译学院:江淮学院专业:电子信息工程姓名:学号:外文出处:International Conference onElectricaland Control Engineering附件:1。
外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文温度控制系统的设计摘要:研究了基于AT89S 51单片机温度控制系统的原理和功能,温度测量单元由单总线数字温度传感器DS18B 20构成.该系统可进行温度设定,时间显示和保存监测数据。
如果温度超过任意设置的上限和下限值,系统将报警并可以和自动控制的实现,从而达到温度监测智能一定范围内。
基于系统的原理,很容易使其他各种非线性控制系统,只要软件设计合理的改变。
该系统已被证明是准确的,可靠和满意通过现场实践。
关键词:单片机;温度;温度I. 导言温度是在人类生活中非常重要的参数.在现代社会中,温度控制(TC)不仅用于工业生产,还广泛应用于其它领域。
随着生活质量的提高,我们可以发现在酒店,工厂和家庭,以及比赛设备。
而比赛的趋势将更好地服务于整个社会,因此它具有十分重要的意义测量和控制温度。
在AT89S51单片机和温度传感器DS18B20的基础上,系统环境温度智能控制。
温度可设定在一定范围内动任意。
该系统可以显示在液晶显示屏的时间,并保存监测数据,并自动地控制温度,当环境温度超过上限和下限的值。
(完整word版)外文翻译——基于单片机的红外防盗报警系统设计
外文原文Based on infrared alarm technology security systems1 the introduction1.1 the research significance of this topic research situation at home and abroad .With the development of society and science and technology unceasing development, people's living standards been improved greatly, and to the private property protection means in the unceasing enhancement, the intelligent facilities for anti-theft puts forward new requirements. This design is to meet the need of modern residential anti-theft designed family electronic alarm system. It in previous devices based on improved greatly, because use the single-chip processor signal, not only can used for single residential area, also can be used in a large-scale residential security systems. It's the job of the performance is good, do not appear to report and misstatement phenomenon, safe and reliable.In our country, the present market condition alarm basically has triggered alarm system pressure switch electron and alarm system and pressure shading triggered alarm system, etc. Various kinds of alarm, but this several common alarm there are some shortcomings. This system USES a human pyroelectric infrared sensor in the human body detector in the flied, passive pyroelectric infrared detectors because of its low cost, easy fabrication, low cost, installation is more convenient, anti-theft performance is stable and high sensitivity, safe and reliable, has attracted broad family characteristics such as popular with the customers. And alarms installation concealment, not easily by rogue found.1.2 infrared alarm technology introduction1.2.1 nature objects of the infrared radiationThe nature of any object, as long as the temperature above absolute zero (273 ℃), constantly outward issued infrared radiation, and travel at the speed of light energy. Object radiate outward infrared radiation of energy and the object of temperature and infrared radiant wavelength. Assuming objects launching infrared radiation of peak wavelength for a few, its temperature for T, the radiation energy equals infrared radiation of peak wavelength gerben and object product temperature T. This product is a constant, namely:The higher the temperature of the objects, emit infrared radiation of the smaller peak wavelength, send out infrared radiation energy is bigger also.1.2.2.pyroelectric effectPassive infrared detector also called pyroelectric infrared detector, its main working principle is pyroelectric effect. Pyroelectric effect means if make some strong dielectric material (such as qin batio3, qin wrong acid lead P (zT), etc.) of thesurface temperature changes, then with the temperature rise or fall, material surface occurs polarization, namely on the surface of the charge will be produced change, and material surface charge lost balance and eventually charge will change withvoltage or current form output.1.2.3 pyroelectric infrared sensor basic structurePyroelectric infrared sensors from sensor detection yuan, interference filters and mosfet verifier three parts. According to the number of detecting yuan to points, pyroelectric infrared sensors have unit, double yuanhe four yuan to wait for a few kinds, for human detection of infrared sensor adopts double yuan or four yuan type structure. According to pyroelectric infrared sensor utility cent, have the following kinds: used for measuring temperature sensor, it's the job of the wavelength of (1-20) nano, Used for flame detection sensor, it's the job of the wavelength for0.435 + / - 0.15 nano, For human detection sensor, it's the job of the wavelength of 7 to 15 feet. Figure 1.2 is a double detection yuan pyroelectric infrared sensor structure schematic drawing. The sensor will two opposite polarity, special1.2.4 pyroelectric infrared detector basic principlePyroelectric infrared sensor by receiving mobile human radiation that certain wavelengths of infrared radiation, can be transformed into and human body movement speed and distance, the direction of low-frequency signals about. When pyroelectric infrared sensor by ir radiation sources of radiation, its internal sensitive materials temperatures will rise, polarization intensity is abate, surface charge reduce, usually will release this part of the charge called pyroelectric charge. Because of pyroelectric charge how many can reflect material changes of temperature, so by pyroelectric charge by circuit transformed into the output voltage can also reflect material changes in temperature, thus detect ir radiation energy changes.2 hardware system design2.1 infrared anti-theft alarm system hardware designBecause this design focuses on family guard against theft, real-time monitoring of a narrower range, so this design by simply using a passive infrared detector is enough.Therefore, infrared intelligent anti-theft alarm system, and the specific design requirements for:(1)completes to high sensitive infrared sensor design, make its can warning of what happened real-time and accurate detection.(2) automatic alarm (automatic dial-up alarm audible and visual alarm). We design the system must have the following function module:1.passive infrared detector,2.sound-light alarm,3.telephone automatic dial-up function;4.continued uninterrupted power supply,According to the system to complete functions, we adopt single chip microcomputer as the core of the system unit, electronic detection, intelligent control and telephone tong2.2 telephone automatic dial-up alarm circuit designIn order to simplify the whole system design process, we do not adopt MT880 chip dialing. Realization process is as follows:First in telephone storage inside put on domestic host cell phone numberor alarm call 110. From MCU pins p2.0 and p2.1 drawn two wiring connect relays, a pick telephone keyboard MianDiJian, another connect telephone keyboard keys, automatic weighing dial because the phone keypad scanning is similar microcontroller keypad scanning, so can make SCM give fitst p2.0 a signal, lets telephone h-f, then give the p2.1 a signal, let relay connected, automatic weighing dial the key a potential, let telephone automatic dial-up, so they could finish the system alarm function.2.3 system working principleThe whole system hardware part mainly includes six parts: MCU module; Infrared detector, Acousto-optic alarm circuit; Telephone automatic dial-up alarm circuit; Power supply circuit, Working state instructions circuit. Its system working principle for: the sensors will be detected signals to lead signal processor processing, microcontroller judgment to P1.0 mouth have pulse falling edge jumping signal immediately transferred to the acousto-optic alarm program, at this moment, the red light buzzer alarm rapid flashes, lasted 30s. In the 30s inside if someone press the switch, then eliminate alarm remove alarm. if this time no one remove alarm, the proof nobody at home in 30s system will automatically triggers telephone finish the whole system of police work project. Later, microcontroller will continue to cycle back ? sentenced2.4 system total diagramIn proteus simulation system, the system circuit by crystals circuit, sound-light alarm circuit composed. Among them, we use connect the dedication of the P1.0 simulated infrared sensors, requirement when switch when pressed by the high jump, level is low, the equivalent of, sensor detects the state of man, the telephone line with P2.0 and P2.1 derivation, here without simulation telephone circuit diagram.Figure 3.53 software system design3.1 control module design programMicrocomputer in the initial plus electric, voltage is not steady state, causing instability, at this time the SCM in commonly after power up to system with a piece of delay. Time-lapse after detecting P1 mouth microcontroller state, detection level signal whether mutations, if is then calls the police processing procedure, including automatic dialup audible and visual alarm procedures, if no changes, ChuXiang level detection continues to P1 mouth state.Figure 4.1 main program flowchart3.2 system development adopted by the programming and commissioning of the platformThis system language using assembly language preparation, so choose wave6000, he has the microcontroller program edit, compile and debugging, etc., and generate hexadecimal. Files, through: machine TOPWIN burning software writeable microcontroller program memory. The simulation software use Proteus, he is from Britain Labcenter electronics company EDA software. The circuit of the simulation is interactive, aiming at the microprocessor application, still can directly based on schematic diagram of the virtual prototype programming, and implementing software source code level of real-time debugging, if have display and output, still can see after the operation of input and output effect.4 system debugging and test4.1 software debuggingAdopt modularization program design thought, fitst debugging subroutines, then gradually superposition debugging, through Proteus simulation software debugging, proof program can realize its function.4.2 system debuggingThrough the circuit of welding, each module function commissioning. I put the hardware that occur errors adjusted, in addition, infrared that piece, because is employing redirected of pyroelectric switch modified, so in must be taping photoconductive resistance to rise, has arrived in the days and nights can alarm function. The total system commissioning, through, error meets the requirement.5 closingThis system uses a pyroelectric infrared sensor, its make simple low cost and installation are more convenient and anti-theft performance is stable and strong anti-jamming capability, high sensitivity, safe and reliable.外文翻译基于红外报警技术的防盗系统1 绪论1.1 本课题的研究现状及研究意义随着社会的不断进步和科学技术不断发展,人们生活水平得到很大的提高,对私有财产的保护手段在不断的增强,对防盗设施的智能化提出了新的要求。
单片机-外文翻译-外文文献-英文文献-基于单片机的超声波测距系统的研究与设计
附录附录A外文翻译the equivalent dc value. In the analysis of electronic circuits to be considered in a later course, both dc and ac sources of voltage will be applied to the same network. It will then be necessary to know or determine the dc (or average value) and ac components of the voltage or current in various parts of the system.EXAMPLE 13.13 Determine the average value of the waveforms of Fig. 13.37.FIG. 13.37Example 13.13.Solutions:a. By inspection, the area above the axis equals the area below over one cycle, resulting in an average value of zero volts.b. Using Eq.(13.26):as shown in Fig. 13.38.In reality, the waveform of Fig. 13.37(b) is simply the square wave of Fig. 13.37(a) with a dc shift of 4 V; that is v2 =v1 + 4 VEXAMPLE 13.14 Find the average values of the following waveforms over one full cycle:a.Fig. 13.39.b. Fig. 13.40.Solutions:We found the areas under the curves in the preceding example by using a simple geometric formula. If we should encounter a sine wave or any other unusual shape, however, we must find the area by some other means. We can obtain a good approximation of the area by attempting to reproduce the original wave shape using a number of small rectangles or other familiar shapes, the area of which we already know through simple geometric formulas. For example,the area of the positive (or negative) pulse of a sine wave is 2Am.Approximating this waveform by two triangles (Fig. 13.43), we obtain(using area1/2 base height for the area of a triangle) a rough idea of the actual area:A closer approximation might be a rectangle with two similar triangles(Fig. 13.44):which is certainly close to the actual area. If an infinite number of forms were used, an exact answer of 2Am could be obtained. For irregular waveforms, this method can be especially useful if data such as the average value are desired. The procedure of calculus that gives the exact solution 2Am is known as integration. Integration is presented here only to make the method recognizable to the reader; it is not necessary to be proficient in its use to continue with this text. It is a useful mathematical tool, however,and should be learned. Finding the area under the positive pulse of a sine wave using integration, we havewhere ∫ is the sign of integration, 0 and p are the limits of integration, Am sin a is the function to be integrated, and d a indicates that we are integrating with respect to a. Integrating, we obtainSince we know the area under the positive (or negative) pulse, we can easily determine the average value of the positive (or negative) region of a sine wave pulse by applying Eq. (13.26):For the waveform of Fig. 13.45,EXAMPLE 13.15 Determine the average value of the sinusoidal waveform of Fig.13.46.Solution: By inspection it is fairly obvious thatthe average value of a pure sinusoidal waveform over one full cycle iszero.EXAMPLE 13.16 Determine the average value of the waveform of Fig. 13.47.Solution: The peak-to-peak value of the sinusoidal function is16 mV +2 mV =18 mV. The peak amplitude of the sinusoidal waveform is, therefore, 18 mV/2 =9 mV. Counting down 9 mV from 2 mV(or 9 mV up from -16 mV) results in an average or dc level of -7 mV,as noted by the dashed line of Fig. 13.47.EXAMPLE 13.17 Determine the average value of the waveform of Fig. 13.48.Solution:EXAMPLE 13.18 For the waveform of Fig. 13.49, determine whether the average value is positive or negative, and determine its approximate value.Solution: From the appearance of the waveform, the average value is positive and in the vicinity of 2 mV. Occasionally, judgments of this type will have to be made. InstrumentationThe dc level or average value of any waveform can be found using a digital multimeter (DMM) or an oscilloscope. For purely dc circuits,simply set the DMM on dc, and read the voltage or current levels.Oscilloscopes are limited to voltage levels using the sequence of steps listed below:1. First choose GND from the DC-GND-AC option list associated with each vertical channel. The GND option blocks any signal to which the oscilloscope probe may be connected from entering the oscilloscope and responds with just a horizontal line. Set the resulting line in the middle of the vertical axis on the horizontal axis, as shown in Fig. 13.50(a).2. Apply the oscilloscope probe to the voltage to be measured (if not already connected), and switch to the DC option. If a dc voltage is present, the horizontal line will shift up or down, as demonstrated in Fig. 13.50(b). Multiplying the shift by the vertical sensitivity will result in the dc voltage. An upward shift is a positive voltage (higherpotential at the red or positive lead of the oscilloscope), while a downward shift is a negative voltage (lower potential at the red or positive lead of the oscilloscope). In general,1. Using the GND option, reset the horizontal line to the middle of the screen.2. Switch to AC (all dc components of the signal to which the probe is connected will be blocked from entering the oscilloscope—only the alternating, or changing, components will be displayed).Note the location of some definitive point on the waveform, such as the bottom of the half-wave rectified waveform of Fig. 13.51(a); that is, note its position on the vertical scale. For the future, whenever you use the AC option, keep in mind that the computer will distribute the waveform above and below the horizontal axis such that the average value is zero; that is, the area above the axis will equal the area below.3. Then switch to DC (to permit both the dc and the ac components of the waveform to enter the oscilloscope), and note the shift in the chosen level of part 2, as shown in Fig.13.51(b). Equation(13.29) can then be used to determine the dc or average value of the waveform. For the waveform of Fig. 13.51(b), the average value is aboutThe procedure outlined above can be applied to any alternating waveform such as the one in Fig. 13.49. In some cases the average value may require moving the starting position of the waveform under the AC option to a different region of the screen or choosing a higher voltage scale. DMMs can read the average or dc level of any waveform by simply choosing the appropriate scale.13.7 EFFECTIVE (rms) V ALUESThis section will begin to relate dc and ac quantities with respect to the power delivered to a load. It will help us determine the amplitude of a sinusoidal ac current required to deliver the same power as a particular dc current. The question frequently arises, How is it possible for a sinusoidal ac quantity to deliver a net power if, over a full cycle, the net current in any one direction is zero (average value 0)? It would almost appear that the power delivered during the positive portion of the sinusoidal waveform is withdrawn during the negative portion, and since the two are equal in magnitude, the net power delivered is zero. However, understand that irrespective of direction, current of any magnitude through a resistor will deliver power to that resistor. In other words, during the positive or negative portions of a sinusoidal ac current, power is being delivered at eachinstant of time to the resistor. The power delivered at each instant will, of course, vary with the magnitude of the sinusoidal ac current, but there will be a net flow during either the positive or the negative pulses with a net flow over the full cycle. The net power flow will equal twice that delivered by either the positive or the negative regions of sinusoidal quantity. A fixed relationship between ac and dc voltages and currents can be derived from the experimental setup shown in Fig. 13.52. A resistor in a water bath is connected by switches to a dc and an ac supply. If switch 1 is closed, a dc current I, determined by the resistance R and battery voltage E, will be established through the resistor R. The temperature reached by the water is determined by the dc power dissipated in the form of heat by the resistor.If switch 2 is closed and switch 1 left open, the ac current through the resistor will have a peak value of Im. The temperature reached by the water is now determined by the ac power dissipated in the form of heat by the resistor. The ac input is varied until the temperature is the same as that reached with the dc input. When this is accomplished, the average electrical power delivered to the resistor R by the ac source is the same as that delivered by the dc source. The power delivered by the ac supply at any instant of time isThe average power delivered by the ac source is just the first term, since the average value of a cosine wave is zero even though the wave may have twice the frequency of the original input current waveform. Equating the average power delivered by the ac generator to that delivered by the dc source,which, in words, states thatthe equivalent dc value of a sinusoidal current or voltage is 1/2or 0.707 of its maximum value.The equivalent dc value is called the effective value of the sinusoidal quantity.In summary,As a simple numerical example, it would require an ac current with a peak value of 2 (10) 14.14 A to deliver the same power to the resistor in Fig. 13.52 as a dc current of 10 A. The effective value of any quantity plotted as a function of time can be found by using the following equation derived from the experiment just described:which, in words, states that to find the effective value, the function i(t) must first be squared. After i(t) is squared, the area under the curve isfound by integration. It is then divided by T, the length of the cycle or the period of the waveform, to obtain the average or mean value of thesquared waveform. The final step is to take the square root of the meanvalue. This procedure gives us another designation for the effectivevalue, the root-mean-square (rms) value. In fact, since the rms term isthe most commonly used in the educational and industrial communities,it will used throughout this text. EXAMPLE 13.19 Find the rms values of the sinusoidal waveform in each part of Fig.13.53.Solution: For part (a), I rms 0.707(12 10 3 A) 8.484 mA.For part (b), again I rms 8.484 mA. Note that frequency did notchange the effective value in (b) above compared to (a). For part (c),V rms 0.707(169.73 V) 120 V, the same as available from a home outlet. EXAMPLE 13.20 The 120-V dc source of Fig. 13.54(a) delivers 3.6 W to the load. Determine the peak value of the applied voltage (Em) and the current (Im) if the ac source [Fig. 13.54(b)] is to deliver the same power to the load.Solution:EXAMPLE 13.21 Find the effective or rms value of the waveform of Fig. 13.55.Solution:EXAMPLE 13.22 Calculate the rms value of the voltage of Fig. 13.57.Solution:EXAMPLE 13.23 Determine the average and rms values of the square wave of Fig.13.59.Solution: By inspection, the average value is zero.The waveforms appearing in these examples are the same as thoseused in the examples on the average value. It might prove interesting tocompare the rms and average values of these waveforms.The rms values of sinusoidal quantities such as voltage or currentwill be represented by E and I. These symbols are the same as thoseused for dc voltages and currents. To avoid confusion, the peak valueof a waveform will always have a subscript m associated with it: Im sin q t. Caution: When finding the rms value of the positive pulse of asine wave, note that the squared area is not simply (2Am)2 4A2m; itmust be found by a completely new integration. This will always bethe case for any waveform that is not rectangular.A unique situation arises if a waveform has both a dc and an ac componentthat may be due to a source such as the one in Fig. 13.61. Thecombination appears frequently in the analysis of electronic networkswhere both dc and ac levels are present in the same system.The question arises, What is the rms value of the voltage vT? Onemight be tempted to simply assume that it is the sum of the rms valuesof each component of the waveform; that is, VT rms 0.7071(1.5 V) 6 V 1.06 V 6 V 7.06 V. However, the rms value is actuallydetermined bywhich for the above example is直流值相等。
基于51单片机的火灾自动报警系统设计
基于51单片机的火灾自动报警系统设计This article discusses the design of a fire automatic alarm system based on the 51 single-chip puter and DS18B20 ___ increasing popularity of electronic products。
fire hazards have___。
they also generate heat。
which can lead to increased fire hazards if ___。
it is ___ and property。
The system sets an alarm temperature value。
and the DS18B20 temperature sensor monitors the temperature in real time and displays the temperature value on the LCD1602 liquid crystal display。
If the temperature value exceeds the alarm temperature value。
the buzzer will sound an alarm。
The hardware circuit of this system is simple。
the program complexity is not high。
and it has high reliability。
low cost。
and high stability。
making it practical and valuable。
The key components of the system include the 51 single-chip puter。
基于单片机的火灾检测系统设计
基于单片机的火灾检测系统设计作者:王瑞荣来源:《价值工程》2019年第09期摘要:火灾检测系统不仅可以帮助早期发现火灾隐患,减少财产损失,同时也能保障财产安全,具有较大的现实意义。
通过运用单片机和温度烟雾传感器核心模块并与其他一些声光报警模块相结合,设计出一种符合要求的火灾检测系统。
该系统主要由单片机STC89C52、温度传感器、烟雾传感器、A/D转换、数码管显示等部件构成。
可以实现温度值显示与温度报警值的设定、烟雾浓度显示与烟雾报警值的设定以及声光报警等功能,具有智能化、简单方便和性能稳定的特点。
Abstract: Fire detection system can not only help early detection of fire hazards, reduce property losses, but also protect property safety, and has great practical significance. A fire detection system which meets the requirements is designed by using MCU and core module of temperature smoke sensor and combining with other acoustooptic alarm modules. The specific functions include temperature value display and temperature alarm value setting, smoke concentration display and smoke alarm value setting, as well as acoustooptic alarm and other functions, with the characteristics of intelligent, simple and convenient and stable performance. The system consists of STC89C52 microcontroller, temperature sensor, smoke sensor, A/D conversion, digital display and other major components.關键词:火灾检测;单片机;传感器Key words: fire detection;microcontrollers (MCU);sensors中图分类号:TP732 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;文献标识码:A ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;文章编号:1006-4311(2019)09-0145-030 ;引言火是一种人类必须生存利用的能源,对人类的生产意义很大,对其自身的了解以及防护是生活的重要必备知识。
基于单片机的外文翻译、中英文翻译
英文原文DescriptionThe at89s52 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM) and 128 bytes RAM. The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51™ instruction set and pinout. The chip combines a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel at89s52 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.Features:• Compatible with MCS-51™ Products• 4K Bytes of In-System Reprogrammable Flash Memory• Endurance: 1,000 Write/Erase Cycles• Fully Static Operation: 0 Hz to 24 MHz• Three-Level Program Memory Lock• 128 x 8-Bit Internal RAM• 32 Programmable I/O Lines• Two 16-Bit Timer/Counters• Six Interrupt Sources• Programmable Serial Channel• Low Power Idle and Power Down ModesThe at89s52 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the at89s52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power Down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset. Pin Description:VCC Supply voltage.GND Ground.Port 0Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink eight TTL inputs. When is are written to port 0 pins, the pins can be used as high impedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.Port 0 also receives the code bytes during Flash programming, and outputs theduring accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When the at89s52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through adivide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.Idle ModeIn idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access toport pin or to external memory.RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.Chip Erase: T he entire Flash Programmable and Erasable Read Only Memory array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except thatP3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programmingProgramming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion.中文翻译描述at89s52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4Kbytes的快速可擦写的只读程序存储器(PEROM)和128 bytes 的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51产品指令系统,片内置通用8位中央处理器(CPU)和flish存储单元,功能强大at89s52单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。
基于单片机和GSM模块的防火防盗毕业设计外文文献翻译
Automatic fire alarm systemThe traditional electron safe alarm system mainly is through the sensor automatic detection,produces the alarm, sends out the alarm the scene or reports to the police through the special electric near distance, thus causes people’s vigilance. Through many years research and the development, the present alarm apparatus may say is the class is multitudinous. As a result of the alarm apparatchik development and the social each domain anxious need,can application domain be more and more many, specially is overdevelops in the civil domain。
In recent years,the infrared alarm apparatus already became reports to the police a domain hot spot,because it used was not the obviously infrared acquisition,Hereford the hiding to be good,characteristic and so on security。
Infrared sensor is different according to the mechanism may divide into the light survey and the hot survey。
外文翻译——基于单片机的红外防盗报警系统设计
外文原文Based on infrared alarm technology security systems1 the introduction1.1 the research significance of this topic research situation at home and abroad .With the development of society and science and technology unceasing development, people's living standards been improved greatly, and to the private property protection means in the unceasing enhancement, the intelligent facilities for anti-theft puts forward new requirements. This design is to meet the need of modern residentialanti-theft designed family electronic alarm system. It in previous devices based on improved greatly, because use the single-chip processor signal, not only can used for single residential area, also can be used in a large-scale residential security systems. It's the job of the performance is good, do not appear to reportand misstatement phenomenon, safe and reliable.In our country, the present market condition alarm basically has triggered alarm system pressure switch electron and alarm system and pressure shading triggered alarm system, etc. Various kinds of alarm, but this several common alarm there are some shortcomings. This system USES a human pyroelectric infrared sensor in the human body detector in the flied, passive pyroelectric infrared detectors because of its low cost, easy fabrication, low cost, installation is more convenient, anti-theft performance is stable and high sensitivity, safe and reliable, has attracted broad family characteristics such as popular with thecustomers. And alarms installation concealment, not easily by rogue found.1.2 infrared alarm technology introduction1.2.1 nature objects of the infrared radiationThe nature of any object, as long as the temperature above absolute zero (273 ℃), constantly outward issued infrared radiation, and travel at the speed of light energy. Object radiate outward infrared radiation of energy and the object of temperature and infrared radiant wavelength. Assuming objects launching infrared radiation of peak wavelength for a few, its temperature for T, the radiation energy equals infrared radiation of peak wavelength gerben and object product temperature T. This product is a constant, namely:The higher the temperature of the objects, emit infrared radiation of the smaller peak wavelength, send out infrared radiation energy is bigger also.1.2.2.pyroelectric effectPassive infrared detector also called pyroelectric infrared detector, its main working principle is pyroelectric effect.Pyroelectric effect means if make some strong dielectric material (such as qin batio3, qin wrong acid lead P (zT), etc.) of the surface temperature changes, then with the temperature rise or fall, material surface occurs polarization, namely on the surface of the charge will beproduced change, and material surface charge lost balance and eventually charge will change withvoltage or current form output.1.2.3 pyroelectric infrared sensor basic structurePyroelectric infrared sensors from sensor detection yuan, interference filters and mosfet verifier three parts. According to the number of detecting yuan to points, pyroelectric infrared sensors have unit, double yuanhe four yuan to wait for a few kinds, for human detection of infrared sensor adopts double yuan or four yuantype structure. According to pyroelectric infrared sensor utility cent, have the following kinds: used for measuring temperature sensor, it'sthe job of the wavelength of (1-20) nano, Used for flame detection sensor, it's the job of the wavelength for0.435 + / - 0.15 nano, For human detection sensor, it's the jobof the wavelength of 7 to 15 feet. Figure 1.2 is a double detection yuan pyroelectric infrared sensor structure schematic drawing. The sensorwill two opposite polarity, special1.2.4 pyroelectric infrared detector basic principlePyroelectric infrared sensor by receiving mobile human radiation that certain wavelengths of infrared radiation, can be transformed into and human body movement speed and distance, the direction of low-frequency signals about. When pyroelectric infrared sensor by ir radiation sources of radiation, its internal sensitive materials temperatures will rise, polarization intensity is abate, surface charge reduce, usually will release this part of the charge called pyroelectric charge. Because of pyroelectric charge how many can reflect material changes of temperature, so by pyroelectric charge by circuit transformed into the output voltage can also reflect material changes in temperature, thus detect ir radiation energy changes.2 hardware system design2.1 infrared anti-theft alarm system hardware designBecause this design focuses on family guard against theft, real-time monitoring of a narrower range, so this design by simply using a passive infrared detector is enough. Therefore, infrared intelligentanti-theft alarm system, and the specific design requirements for:(1)completes to high sensitive infrared sensor design, make its can warning of what happened real-time and accurate detection.(2) automatic alarm (automatic dial-up alarm audible and visual alarm). We design the system must have the following function module:1.passive infrared detector,2.sound-light alarm,3.telephone automatic dial-up function;4.continued uninterrupted power supply,According to the system to complete functions, we adopt single chip microcomputer as the core of the system unit, electronic detection, intelligent control and telephone tong。
基于单片机的居室安全报警系统设计外文参考及翻译
本科生毕业设计(论文)专业外文翻译原文:Microcontroller Based Home Automation System With Security译文:基与单片机的智能家居系统与安全性指导教师:职称:副教授学生姓名:学号: 1002120106专业:电气工程及其自动化院(系):机电工程学院2014年3月20日Microcontroller Based Home Automation System With SecurityAbstract:With advancement of technology things are becoming simpler and easier for us. Automatic systems are being preferred over manual system. This unit talks about the basic definitions needed to understand the Project better and further defines the technical criteria to be implemented as a part of this project.Keywords-component; Automation, 8051 microcontroller, LDR,LED, ADC, Relays, LCD display, Sensors, Stepper motorI.NTRODUCTIONA home automation system integrates electrical devices in ahouse with each other. The techniques employed in home automation include those in building automation as well as the control of domestic activities, such as home entertainment systems, houseplant and yard watering, pet feeding, changing the ambiance "scenes" for different events (such as dinners or parties), and the use of domestic robots. Devices may be connected through a computer network to allow control by apersonal computer, and may allow remote access from the internet.Typically, a new home is outfitted for home automation during construction, due to the accessibility of the walls, outlets, and storage rooms, and the ability to make design changes specifically to accommodate certain technologies. Wireless systems are commonly installed when outfitting a pre-existing house, as they reduce wiring changes. These communicate through the existing power wiring, radio, or infrared signals with a central controller. Network sockets maybe installed in every room like AC power receptacles. Although automated homes of the future have been staple exhibits for World's Fairs and popular backgrounds in science fiction, complexity, competition between vendors, multiple ncompatible standards and the resulting expense have limited the penetration of home automation to homes of the wealthy or ambitious hobbyists.II.HOME AUTOMATIONHome/office automation is the control of any or all electrical devices in our home or office, whether we are there or away. Home/office automation is one of the most exciting developments in technology for the home that has come along in decades. There are hundreds of products available today that allow us control over the devices automatically, either by remote control; or even by voice command. Home automation (also called domotics) is the residential extension of "building automation". It is automation of the home,housework or household activity. Home automation may include centralized control of lighting, HV AC (heating,ventilation and air conditioning), appliances, and other systems,to provide improved convenience, comfort, energy efficiency and security. Disabled can provide increased quality of life for persons who might otherwise require caregivers or institutional care. Earlier, we looked into the face of future when we talked about automated devices, which could do anything on instigation of a controller, but today it has become a reality.III.NEED OF AUTOMATIONWith advancement of technology things are becoming simpler and easier for us. Automation is the use of control systems and information technologies to reduce the need for human work in the production of goods and services. In the scope of industrialization, automation is a step beyond mechanization. Whereas mechanization provided human operators with machinery to assist them with the muscularrequirements of work, automation greatly decreases the need for human sensory and mental requirements as well. Automation plays an increasingly important role in the world economy and in daily experience. Automatic systems are being preferred over manual ystem. Through this project we have tried to show automatic control of a house as a result of which power is saved to some extent.a) An automated device can replace good amount of human working force, moreover humans are more prone to errors and in intensive conditions the probability of error increases whereas, an automated device can work with diligence,versatility and with almost zero error.Replacing human operators in tasks that involve hard physical or monotonous work.Replacing humans in tasks done in dangerous environments (i.e. fire, space, volcanoes, nuclear facilities,underwater, etc)Performing tasks that are beyond human capabilities of size, weight, speed, endurance, etc.Economy improvement. Automation may improve in economy of enterprises, society or most of humankind. For example, when an enterprise that has invested in automation technology recovers its investment, or when a state or country increases its income due to automation like Germany or Japan in the 20th Century.b) This is why this project looks into construction and implementation of a system involving hardware to control a variety of electrical and electronics system.IV.SUPPY UNITA.Transformer:The main source of power(Fig 1) supply is a transformer. The maximum output power of power supply is dependent on maximum output power of transformer .We determine power from its current and voltage rating. e.g.: if there is a transformer of 12V, 500mA then maximum power delivered by transformer is 6Watt.It means we can drive a load from this transformer up to 6w. In our project our maximum power requirement is 1watt. So to provide this power we use 12V/250mA transformer. The maximum output power of this transformer is 4watt.it means it can easily drive load up to 4 watt.B.RectifierRectifier is a circuit which is used to convert ac to dc.Every electronic circuit requires a dc power supply for rectification. We have used four diodes.C.Input filter:After rectification we obtain dc supply from ac but it is not pure dc it may have some ac ripples .To reduce these ripples we use filters. It comprises of two filters –low frequency ripple filter and high frequency ripple filter. To reduce low frequency ripples we use electrolytic capacitor. The voltage rating of capacitor must be double from incoming dc supply. It blocks dc and passes ripples to ground.D.RegulatorInitial stage of every electronic circuit is power supply system which provides required power to drive the whole system. The specification of power supply depends on the power requirement and this requirement is determined by its rating. The main components used in supply system are.Regulator is a device which provides constant output voltage with varying input voltage. There are two types of regulators(a) Fixed voltage regulator(b) Adjustable regulatorWe have used fixed voltage regulator LM78XX last two digits signify output voltage. The voltage for our system is 5V that is why we have used 7805 regulator which provides 5V from 12V dc.E.Output filter:It is used to filter out output ripple if any.F.Output indicationWe use LED to observe the functioning of our system. If he LED glows it confirms proper functioning of our supply.We have used four power supply units.This supply is for the microcontroller,display and relay unit.The microcontroller requires 5 volt supply to perform any desired task.G.Control UnitTwo control units were used one for internal system and one for external system and these control unit based on ATMEL’sAT89S52 microcontroller(Fig 2). The given capture shows the pins and basic requirement of microcontroller to make it functional. Detailed description of the controller is 100uf / 50v.In addition, the AT89S52 is designed with static logic for operation down to zero frequency and supports two software electable power saving modes. The Idle Mode stops the CPUwhile allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning.Mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.The Downloadable Flash can be changed a single byte at a time and is accessible through the SPI serial interface. Holding RESET active forces the SPI bus into a serial programming interface and allows the program memory to be written to or read from unless Lock Bit 2 has been activated.H.FeaturesCompatible with MCS-51™ProductsI.8KbytesofIn-SystemDownloadable Flash MemoryReprogrammableSPI Serial Interface for Program DownloadingEndurance: 1,000 Write/Erase Cycles4.0V to5.5V Operating RangeFully Static Operation: 0 Hz to 33 MHz56 x 8 bit Internal RAM32 Programmable I/O LinesThree 16 bit Timer/CountersEight Interrupt SourcesUll Duplex UART Serial ChannelLow Power Idle and Power Down ModesI .AdvantagesLess power consumptionLow costLess space requiredHigh speedFig 2-Chip BoardAT89S52 is an ATMEL controller with the core of Intel MCS-51. It has same pin configuration as give above. The AT89S52 is a low-power, high-performance CMOS 8-bit microcomputer with 8K bytes of Downloadable Flash programmable and erasable read only memory and 2K bytes of EEPROM. The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard 80C51 instruction set and pin out. The on-chip Downloadable Flash allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Downloadable Flash on a monolithic chip, the Atmel AT89S52 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.The AT89S52 provides the following standard features: 8K bytes of Downloadable Flash, 2K bytes of EEPROM, 256 bytes of RAM, 32 I/O lines, programmable watchdog timer, two Data Pointers, three 16-bit timer/counters, a six-vectorJ .Pin DescriptionVCC: Supply voltage. GND: Ground., Port 0: Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs. Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups.In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table .Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that uses 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that uses 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification. Port 3 Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pull-ups. Port 3 receives some control signals for Flash programming and verification. Port 3 also serves the functions of various special features of the AT89S52.RST: Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives high for 98 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO,the RESET HIGH out feature is enabled. ALE/PROG: Address Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note,however,that one ALE pulse is skipped during each access to external data memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSEN: Program Store Enable (PSEN) is the read strobe to external program memory. When the AT89S52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPP: External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming.XTAL1: Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2: Output from the inverting oscillator amplifier.H. Display UnitFig 3-Display UnitLiquid crystal displays (LCD) is an alphanumeric display and widely used in recent years as compared to LEDs. This is due to the declining prices of LCD, the ability to display numbers, characters and graphics, incorporation of a refreshing controller into the LCD, their by relieving the CPU of the task of refreshing the LCD and also the ease of programming for characters and graphics. We have used JHD162A advanced version of HD44780 based LCDs.V.WHAT CAN BE AUTOMATEDA.Virtually anything in the home/office that is powered by electricity can be automated and/or controlled. We can control our electrical devices. The password is given with the help of controller and can be changed by simply making a small change in the program and then burning the program in the controller.B.Counter dependent automatic switching system of roomAfter opening the lock when the person enters the room the counter gets incremented.Now if it is a day then the lights would not be switched on but if it is dark then the lights will automatically switch on. Now whatever may be the number of people entering the room the counter will automatically get incremented by itself and on leaving the room the counter will get decremented but the system will keep on working .Once the counter is zero in other words once everyone leaves the room the switching system will automatically stop working.C.Temperature controlled cooling systemOnce the person has entered the room he would not require to switch on anything everything will just happen automatically. Like if the temperature is high then the fan will switch on, on its own. Else it will remain in off state. This temperature is predefined by us in the controller. But this system will only work if there is a person in the room in other words if the counter is not zero.D.Light saving systemThis light saving system is used in two places for internal section and external section. If a person is not at home or sitting inside the room and it is dark outside then the lights will automatically get switched on and when its day the light will get switched off. This ensures power saving.Fire and Smoke sensorThis part detects any fire or smoke from a fire and set an alarm or an indication.VI. FEATURESPassword Based Locking SystemIn this system we have ensured a safe locking system. On seeing from outside the lock would not be visible but this inbuilt locking system ensures security. This lock can be opened and closed with the help of a password which we will give using a keypad. The door will only open or close only if the password is correct else it will remain in its original state. The lock cannot be broken because to the person standing Future of Automation: Future will be of Automation of all products. Each and every product will be smart devices that we use daily and that will be controlled through a smart chip called microcontrollers. Each and Every home appliances will be controlled either by PC or hand held devices like PDA or mobile handsets. Some examples of it are when you want you can switch on/off Fan of your home by mobile handset or PC.Smart Grid: Home automation technologies are viewed as integral additions to the Smart grid. The ability to control lighting, appliances, HV AC as well as Smart applications(load shedding, demand response, real-time power usage and price reporting) will become vital as Smart Grid initiatives are rolled out.VII. CONCLUSIONAn automated home can be a very simple grouping of controls, or it can be heavilyautomated where any appliance that is plugged into electrical power is remotelycontrolled. Costs mainly include equipment, components, furniture, and custom installation.Ongoing costs include electricity to run the control systems, maintenance costs for the control and networking systems, including troubleshooting, and eventual cost of upgrading as standards change. Increased complexity may also increase maintenance costs for networked devices.Learning to use a complex system effectively may take significant time and training.Control system security may be difficult and costly to maintain, especially if the control system extends beyond the home, for instance by wireless or by connection to the internet or other networks.基与单片机的智能家居系统与安全性摘要:随着技术的进步的东西变得更简单,更容易为我们服务。
单片机STM32外文文献翻译、中英文翻译
外文翻译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced" series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market's lowest power, the equivalent of 0.5mA/MHz.STM32F103 Performance Characteristics1) Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2) Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAMmemory.3) Clock, reset, and power management. 2.0-3.6V power supply and I / O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4) Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5) Debug mode. Serial debugging and JTAG interface.6) Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7) Up to a maximum of 112 fast I / O ports. Depending on the model, there are 26,37,51,80, and 112 I / O ports, all ports can be mapped to 16 external interruptvectors. In addition to the analog input, all of them can accept the input of 5V or less.8) Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM or pulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick timer: 24 down counter. Two 16-bit basic timer for driving DAC.9) Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1) Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2) Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3) Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4) Nested Vectored Interrupt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored interrupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5) External interrupt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / eventcontroller is able to detect. Up to 112 GPIO connected to the 16 external interrupt lines.6) Clocks and startup. At boot time or to the system clock selection, but the reset when the internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock interrupt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文翻译:单片机STM321 STM32的介绍STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。
基于单片机的火灾远程监控系统的设计
基于单片机的火灾远程监控系统的设计与实现Based on the MCU remote automatic fire alarm system design 【Abstract】The system take STC89C51 as a controller, choice of temperature sensor DS18B20, MQ-2 smoke sensor for the fire detection sensor, use of TC335 send text messages to designated phone a alarm mode, design suitable for housing, offices, restaurants and other places of simple and practical automatic fire alarm system. 【Key word】microcontroller STC89C51, DS18B20, MQ-2, TC35, TLC549, fire alarm基于单片机的远程火灾监控系统的设计摘要:系统以STC89C51为控制器,选用温度传感器DS18B20、烟雾传感器MQ-2为火灾探测的敏感元件,采用TC35发送短信到指定手机的报警方式,设计出适用于住房、办公室、餐厅等场所简单实用的火灾监控报警器。
关键字:单片机STC89C51、DS18B20、MQ-2、TC35、TLC549、火灾报警1.引言1.1 社会背景火灾作为现代城市的主要灾害,越来越受到人们的广泛关注。
随着消防报警技术和计算机网络技术的飞速发展,融合这两门学科的城市和各类区域的消防智能化自动报警网络的建设因而倍受瞩目。
消防自动报警远程监控系统主要面向于城市、各类区域和行业内部的消防管理部门。
火灾指燃烧引起的在任何环境中发生的难以控制的灾害,可由自然原因和人类活动引起,有的大火甚至能横扫整个城市。
(完整word版)单片机外文文献翻译
中文资料原文单片机单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。
当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。
而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。
单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。
事实上单片机是世界上数量最多的计算机。
现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。
手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。
而个人电脑中也会有为数不少的单片机在工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文文献原稿和译文原稿Multiple single-chip microcomputer approach to fire detection and monitoring systemA.J. AI-Khalili, MSc, PhDD. AI-Khalili, MSc, PhDM.S. Khassem, MScIndexing term : Hazards, Design, Plant condition monitoringAbstract: A complete system for fire detection and alarm monitoring has been proposed for complex plants. The system uses multiple single chip architecture attached to a party line. The control algorithm is based on a two-level hierarchy of decision making, thus the complexity is distributed. A complete circuit diagram is given for the local and the central station with requirements for the software structure. The design is kept in general form such that it can be adapted to a multitude of plant configurations. It is particularly shown how new developments in technology, especially CMOS single chip devices, are incorporated in the system design to reduce the complexity of the overall hardware, e.g. by decomposing the system such that lower levels of hierarchy are able to have some autonomy in decision making, and thus a more complex decision is solved in a simple distributed method.1 Detection and alarm devicesA basic fire detection system consists of two parts, detection and annunciation. An automatic detection device, such as a heat, smoke or flame detector, ultraviolet orinfrared detectors or flame flicker, is based on detectingthe byproduct of a combustion. Smoke detectors, of both ionization and optical types, are the most commonly useddetector devices. When a typical detector of this type enters the alarm state its current consumption increasesfrom the pA to the mA range (say, from a mere 15pA in the dormant mode to 60 mA) in the active mode. Inmany detectors the detector output voltage is well defined under various operating conditions, such as thosegiven in Table 1. Themore sensitive the detector, themore susceptible it is to falsealarms. In order to control the detector precisely, either of the following methods is used: a coincidence technique can be built into the detector, or a filtering technique such that a logic circuit becomes active only if x alarms are detected within a time period T. The detection technique depends greatly on the location and plant being protected; smoke detectors are used for sleeping areas, infrared or ultraviolet radiation are used when flammable liquids are being handled, heat detectors are used for fire suppression or extinguishing systems. In general, life and property protection have different approaches.Alarm devices, apart from the usual audible or visible alarms, may incorporate solid state sound reproduction and emergency voice communication or printers that record time, date, location and other information required by the standard code of practice for fire protection for complex plants. Heaviside [4] has an excellent review of all types of detectors and extinguisher systems.1.1 Control philosophy and division of labourOur control philosophy is implemented hierarchically. Three levels of system hierarchy are implemented, with two levels of decision making. There is no communication between equipment on the same level. Interaction between levels occurs by upwards transfer of information regarding the status of the subsystems and downwards transfer of commands. This is shown in Fig. 1 where at level 1 is thecentral station microcomputer and is the ultimate decision maker (when not in manual mode). At level 2 are the local controllers, which reside in the local stations. At level 3 are the actual detectors and actuators. A manual mode of operation is provided at all levels.Information regarding the status of all detectors is transmitted on a per area basis to the local controllers. Their information is condensed and transmitted upward to the central microcomputer. Transfer of status is always unidirectional and upwards. Transfer of commands is always unidirectional and downwards, with expansion at the local control level. This approach preserves the strict rules of the hierarchy for exact monitoring detection and alarm systems associated with high risk plants.The classification of the two layers of controls is based upon layers of decision making, with respect to the facts that(a) When the decision time comes, the making and implementation of a decision cannot be postponed(b) The decisions have uncertainty(c) It will isolate local decisions (e.g. locally we might have an alarm although there may be a fault with the system)2 General hardwareI :Fig. 2 depicts our design in the simplest of forms. The system uses an open party line approach with four conductor cables going in a loop shared by all the remote devices and the control panel. This approach is simple in concept and is economically feasible. However, one major disadvantage is the dependency on a single cable for power and signaling. In cases where reliability is of extreme importance, two or even three cables taking differentroutes throughout the system may be connected in parallel. Fig. 3 gives the driver circuitry required to derive an expandable bus. This design takes advantage of recent advances in the single chip microcomputer technology to reduce the interface betweenthe central station and the local stations.2. 1 Central control taskA central unit provides a centralized point to monitor and control the systemactivities. In the system to be described the central control unit serves a fivefold purpose.(i) It receives information from the local stations and operates the alarms and other output devices.(ii) It notifies the operator in case of system malfunction.(iii) It provides an overall system control manual and automatic.(iu) It provides a system test point of local stations and itself.(u) It provides a central point for observation, learning and adaptation.2.2 Local stationsThe local stations can take local decisions regarding recognition of a risk situation, and act independently on local affairs. In this technique we depend on ‘load-type coordination’, e.g. the lower level units recognize the existence of other decision units on the same level; the central or the top level provides the lower units with a model of the relationship between its action and the response of the system.It is evident that a powerful machine is required at this stage so that all the required functions can be implemented. The availability of the new generation of microchips makes this architecture a feasible solution.A single chip microcomputer was chosen over discrete digital and analogue devices to interface to the field devices and to the central microcomputer. This is the main reason that previously this approach was not feasible.In selecting the microcomputer for the local stations, the criterion was the requirement for a chip which contains the most integration of the analogue and digital ports required for the interface and the utilization of CMOS technology owing to remoteness of the local stations. The choice was the Motorola 68HC11A4, for the following reasons:(a) It is CMOS technology; this reduces power consumption.(b) It has a UART on board; this facilitates serial communication.(e) It has an a/d converter on board; this eliminates an external A/D.(d) It has 4K of ROM, 256 bytes of RAM, 512 bytes of EERROM with 40 1/0 lines and a 16 bit timer; this satisfied all our memory and 1/0 requirements at the local station side.3 System implementationThe local station: Fig. 3 is the block diagram of the circuit used to utilize the MC68HCllA4 as a remote fire detecting circuit while Fig. 4 illustrates the samecircuit in an expanded form. It can be seen that the single microcontroller can be used to monitor more than one detector, thus reducing system cost.The loop power supply, which is usually between 28 and 26 V, is further regulated by a 5 V 100 mA monolithic low power voltage regulator to supply power to the microcontroller. The onboard oscillator, coupled with an external crystal of 2.4576 MHz, supplies the microcontroller with its timing signal which is divided internally by four to yield a processor frequency of 614.4 kHz, which is an even multiple of the RS 232 [7] baud rate generator. In this Section the term ‘supervised input or output’ will be used to mean that the function in question is monitored for open- and short-circuit conditions in addition to its other normal functions. More information can be found in Reference 9.4 Main loop5 ConclusionThis paper describes the development of a large scale fire detection and alarm system using multi-single chip microcomputers. The architecture used is a two-level hierarchy of decision making. This architecture is made possible by the new CMOS microcontrollers which represent a high packing density at a low power consumption yet are powerful in data processing and thus in decision making. Each local station could make an autonomous decision if the higher level of hierarchy allows it to do so. It has been tried to keep the system design in general format so it can be adapted to varying situations. A prototype of the described system has been built and tested [10]. The control part of the central station is implemented with a development card based on MC 68000 microprocessor (MEX 68KECB, by Motorola), which has a built-inmonitor called Tutor. The application programs were developed using the features provided by this monitor. The local stations’ controllers were designed using the MC 68705R3, single-chip microcontroller.7 References1 ‘Fire protection guidelines for nuclear power plants’, US N RC Regulatory Guide 1.1202 BAGCHI, C.N.: ‘A multi-level distributed microprocessor system for a nuclear power plant fire protection system controls, monitoring, and communication’, IEEE Trans., 19823 PUCILL, P.M.: ‘Fire hazard protection, detection and monitoring systems’, Sea. Con, 2, Proceedings of Symposium on ADV in offshore and terminal measurement and control systems, Brighton, England, March 1979, pp. 353-3634 HEAVISID, L.: ‘Offshore fire and explosion detection and fixed fire’. Offshore Technological Conference, 12th Annual Proceedings, Houston, Texas, May 1980, pp. 509-5225 CELLENTANI, E.N., and HUMPHREY, W.Y.: ‘Coordinated detection/communication approach to fire protection’, Specify: Eng.,6 ‘Motorola Microprocessors Data Manual’ (Motorola Sem iconductor Products, Austin, Texas, USA)7 Electronic Industries Association : ‘Interface between data terminal equipment and data communication equipment employing serial binary data interchange’ (EIA Standard RS-232, Washington, DC, 1969)8 MESAROVIC, M.D., MACKO, D., TAKAHARA, Y.: ‘Theory of hierarchical multilevel systems’ (Academic Press, 1970)9 KASSEM, M.: ‘Fire alarm systems’, MSc. thesis, Dept. of Elec. & Comp. Eng., Concordia University, Montreal, Canada, 198510 LIE, P., and KOTAMARTI, U.: ‘The d esign of a fire alarm system using microprocessors’, C481 Project, Dept. of Elec. and Comp. Eng., Concordia University, Montreal, Canada, 1986译文基于单片机的火灾探测和监控系统A.J. AI-Khalili, MSc, PhDD. AI-Khalili, MSc, PhDM.S. Khassem, MSc关键词:危险,设计,设备状态监测摘要:火灾探测及报警监控已成为一个复杂而完整的体系。