脂类代谢

合集下载

名词解释(脂类代谢)

名词解释(脂类代谢)

名词解释(脂类代谢)1.必需脂肪酸(essential fatty acid)2.脂肪酸的α-氧化(α- oxidation)3.脂肪酸的β-氧化(β- oxidation)4.脂肪酸的ω-氧化(ω- oxidation)5.⼄醛酸循环(glyoxylate cycle)6.柠檬酸穿梭(citriate shuttle)7.⼄酰CoA 羧化酶系(acetyl-CoA carnoxylase)8.脂肪酸合成酶系统(fatty acid synthase system)1.必需脂肪酸:为⼈体⽣长所必需但有不能⾃⾝合成,必须从事物中摄取的脂肪酸。

在脂肪中有三种脂肪酸是⼈体所必需的,即亚油酸,亚⿇酸,花⽣四烯酸。

2.α-氧化:α-氧化作⽤是以具有3-18碳原⼦的游离脂肪酸作为底物,有分⼦氧间接参与,经脂肪酸过氧化物酶催化作⽤,由α碳原⼦开始氧化,氧化产物是D-α-羟脂肪酸或少⼀个碳原⼦的脂肪酸。

3. 脂肪酸的β-氧化:脂肪酸的β-氧化作⽤是脂肪酸在⼀系列酶的作⽤下,在α碳原⼦和β碳原⼦之间断裂,β碳原⼦氧化成羧基⽣成含2个碳原⼦的⼄酰CoA 和⽐原来少2 个碳原⼦的脂肪酸。

4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原⼦被氧化成羟基,再进⼀步氧化⽽成为羧基,⽣成α,ω-⼆羧酸的过程。

5. ⼄醛酸循环:⼀种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及⼄酸是⽤作能量和中间物的⼀个来源。

某些植物和微⽣物体内有此循环,他需要⼆分⼦⼄酰辅酶A的参与;并导致⼀分⼦琥珀酸的合成。

6. 柠檬酸穿梭:就是线粒体内的⼄酰CoA 与草酰⼄酸缩合成柠檬酸,然后经内膜上的三羧酸载体运⾄胞液中,在柠檬酸裂解酶催化下,需消耗ATP 将柠檬酸裂解回草酰⼄酸和,后者就可⽤于脂肪酸合成,⽽草酰⼄酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作⽤下重新⽣成草酰⼄酸,这样就可⼜⼀次参与转运⼄酰CoA 的循环。

动物生化第六章 脂类代谢

动物生化第六章 脂类代谢

AMP , PPi O RCH2CH2C ~ SCoA C 肉碱转运载体 O
脂酰 CoA
RCH2CH2C ~ SCoA
O 脂酰 CoA RCH2CH2C ~ SCoA 脂酰 CoA 脱氢酶 △
2
FAD FADH2 O
2~ P 呼吸链 H2O 脱 氢
反烯脂酰 CoA △
2
β α RCH CH C ~ SCoA H2O 加 水
必需脂肪酸的作用

必需脂肪酸是组成细胞膜磷脂、胆固醇酯和血 浆脂蛋白的重要成分
近年来发现,前列腺素、血栓素和白三烯等生 物活性物质是由廿碳多烯酸,如花生四烯酸衍 生而来的 这些物质几乎参与了所有的细胞代谢调节活动, 与炎症、过敏反应、免疫、心血管疾病等病理 过程有关


第二节 脂肪的分解代谢
一、脂肪的动员
组织脂的成分主要由类脂组成,分布于动物体内所有
的细胞中,是构成细胞的膜系统的成分 其含量一般不受营养等条件的影响,因此相当稳定。
三.脂类的生理功能

脂肪是动物机体用以贮存能量的主要形式 脂肪可以为机体提供物理保护。 磷脂、糖脂和胆固醇是构成组织细胞的膜
系统的主要成分。

类脂还能转变为多种生理活性分子
②脂酰CoA从胞液转移至线粒体 内
内膜空间 线粒体内膜 基 质
Acyl CoA ① CoASH
肉碱
肉碱
Acyl CoA ② CoASH
移位酶
脂酰肉碱 脂酰肉碱
① 肉碱脂酰转移酶 Ⅰ
② 肉碱脂酰转移酶 Ⅱ
脂肪酸 跨线粒体内膜 的转运
肉碱
即 L—β 羟基 γ— 三甲基铵基丁酸,是 一个由赖氨酸衍生而成的兼性化合物 ,它 的分子式是: (C9H3)3N+一CH2CH(OH)CH2COOH

动物生物化学 第七章 脂类代谢

动物生物化学 第七章  脂类代谢

CH2OH甘油激酶 CH2OPO23- 磷酸甘油脱氢酶 CH2OPO23-
CHOH
CHOH
CO
CH2OHATP ADP CH2OH NAD+ NADH+ H+ CH2OH
2.脂肪酸的分解代谢
(1)脂肪酸的-氧化
• 脂肪酸的-氧化作用是指脂肪酸在氧化 分解时,碳链的断裂发生在脂肪酸的位,即脂肪酸碳链的断裂方式是每次切 除2个碳原子。脂肪酸的-氧化是含偶数 碳原子或奇数碳原子饱和脂肪酸的主要 分解方式。
• 胰脂肪酶是一种非专一性水解酶,对脂肪酸碳 链的长短及饱和度专一性不严格。但该酶具有 较好的位置选择性,即易于水解甘油酯的1位 及3位的酯键,主要产物为甘油单酯和脂肪酸。 甘油单酯则被另一种甘油单酯脂肪酶水解,得 到甘油的脂肪酸。
1.脂肪的动员
1.甘油的代谢
• 甘油经血液输送到肝脏后,在ATP存在下,由甘油激 酶催化,转变成-磷酸甘油。这是一个不可逆反应过 程。-磷酸甘油在脱氢酶(含辅酶NAD+)作用下, 脱氢形成磷酸二羟丙酮。磷酸二羟丙酮是糖酵解途径 的一个中间产物,它可以沿着糖酵解途径的逆过程合 成葡萄糖及糖原;也可以沿着糖酵解正常途径形成丙 酮酸,再进入三羧酸循环被完全氧化。
• (2)许多类脂及其衍生物具有重要生理作用。脂类代 谢的中间产物是合成激素、胆酸和维生素等的基本原 料,对维持机体的正常活动有重要影响作用。
• (3)人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿 症等都与脂类代谢紊乱有关。
7.1 脂肪的分解代谢
• 脂肪在脂肪酶催化下水解成甘油和脂肪酸,它 们在生物体内将沿着不同途径进行代谢。
• 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 131 – 2 = 129 个ATP。

第九章脂类代谢脂类是脂肪和类脂(磷脂、糖脂、固醇和固醇酯)的总称

第九章脂类代谢脂类是脂肪和类脂(磷脂、糖脂、固醇和固醇酯)的总称

第九章脂类代谢脂类是脂肪和类脂(磷脂、糖脂、固醇和固醇酯)的总称。

因为脂肪是非极性分子,以高度还原和无水的形式存在,所以是高度浓缩的代谢燃料分子。

氧化1 g脂肪放出的能量相当于氧化1 g水合糖原所放热量的6倍,许多脂类含有维持机体健康所必需的不饱和脂肪酸,如亚油酸等,所以脂肪在体内主要起贮存和供给能量的作用;同时还可以作为生物体对外界环境的屏障,防止机体热量过多散失,也是许多组织器官的保护层;此外,脂肪还能帮助食物中脂溶性维生素的吸收。

第一节脂类的消化、吸收和转运一、脂类的消化动物食物中的脂类主要是甘油三酯,同时还有少量胆固醇和磷脂,其消化主要在十二指肠中进行。

胃的酸性食物糜运至十二指肠时,引起胰脏分泌酶原颗粒和胆囊收缩,从而引起胆汁分泌。

1.三酯酰甘油脂肪酶它可水解甘油三酯(Triacyl glycerol)的C1,C3酯键,而产生二个游离脂肪酸和2 —单酯酰甘油。

2. 胆固醇酯酶(Cholesterol Esterase)它水解胆固醇酯产生胆固醇和脂肪酸。

胆固醇+ H2O —→胆固醇+ 脂肪酸3. 磷脂酶和磷酸酶可水解磷脂为甘油、脂肪酸、无机磷酸和胆碱等。

二、脂类的吸收上述脂类水解产物,在胆汁酸帮助下,在十二脂肠的下部和空肠的上部被吸收。

在肠粘膜细胞中,游离脂肪酸被转化成脂酰CoA,首先合成二脂酰甘油,然后合成三脂酰甘油,再形成质点直径为0.5~1.0 μm的乳糜微粒,被释放在粘膜细胞外空间。

它再根据分子大小和形状,分别进入肝门静脉或淋巴。

三、脂类的转运无论是从肠道吸收的食物脂类,或是由肝脏合成的脂类及脂肪动员出来的贮存脂肪,都必须通过血液循环才能转运到其它组织。

食物中的甘油三酯经小肠消化吸收,以乳糜微粒的形式转运到脂肪组织中贮存起来,也可运到肝脏进行改造和利用;在肝内经改造过的或由糖等其它物质合成的脂肪则以极低密度脂蛋白形式运至脂肪组织贮存。

当体内能源缺乏时,脂肪组织中的脂肪再水解成自由脂肪酸,经血液运输至肝脏或其组织被氧化利用。

第七章 脂类代谢

第七章 脂类代谢

DG MG
+ HOOC-R1
+ HOOC-R2
甘油 + HOOC-R3
脂解激素:促进脂肪动员的激素
肾上腺素、去甲肾上腺素、胰高血糖素、生长素
抗脂解激素:抑制脂肪动员的激素
胰岛素、前列腺素、雌二醇
脂肪动员过程
ATP 脂解激素-受体
+
G蛋白
+
AC cAMP +
HSL (无活性) PKA
HSL (有活性)
β-氧化
β-氧化:指脂肪酸β-碳原子发生氧化, 产生乙酰辅酶A的反应。 原核生物:在细胞质中进行 发生部位 真核生物:线粒体基质中进行
1、偶数碳饱和脂肪酸的β-氧化 1)脂肪酸的活化 部位:细胞质中 反应式:
RCOOH + CoA—SH 脂肪酸
脂酰CoA合成酶
ATP
反应不可逆
RCO~SCoA 2+ 脂酰CoA Mg AMP+PPi H2O
O CH2O-C-R1 O CH2O-C-R2 O CH2O-P-O-X OH
脂肪(甘油三酯)
CH2O-C-R3
甘油磷脂
环戊烷

胆固醇

o
R2 C


O

X=-CH2-CH2-NH3+磷脂酰乙醇胺
CH2 O C R1 X=甘油 X=肌酸
(脑磷脂)(PE) 磷脂酰甘油(PG) 磷脂酰肌酸(PI)
o
CH CH2
2、不饱和脂肪酸的氧化 发生部位:线粒体中 活化步骤和转运机制与饱和脂肪酸相 同。双键部位需要异构酶和还原酶催 化,其他与β-氧化相同。
不饱和脂肪酸的分解
烯脂酰CoA异构酶是必需的:

第六章脂类代谢

第六章脂类代谢

甘油+脂肪酸
磷 脂 磷脂酶A2 溶血磷脂 +脂肪酸
胆固醇酯酶
胆固醇酯
胆固醇 + 脂肪酸
(二)吸收 1、部位:十二指肠下段及空肠上段
吸收脂类消化产物:甘油一酯 、脂 肪酸、胆固醇 、溶血磷脂、甘油
2、吸收方式 中链及短链脂酸、甘油
直接吸收
肠粘膜细胞
门静脉
血液循环
与胆盐 形成混
长链脂酸及 2-甘油一酯
第一节 概述
不溶于水,但能溶于非极性有机溶剂。
脂肪(油脂)(贮脂、可变脂)(甘油三酯)
脂 类 类脂(膜脂、基本脂)
磷脂 糖脂
胆固醇及其酯
一、油脂
油脂是油和脂肪的总称。
常温下呈液态的油脂称为油,将呈固态或半固 态的油脂称为脂肪。
液态油多来源于植物,如芝麻油、花生油及豆 油等。
脂肪多数来源于动物,如牛脂、猪脂、 羊脂等
转变成多种重要的活性物质(胆固醇-胆 汁酸、维生素D3、类固醇激素;花生四 烯酸-前列腺素、白三烯、血栓素)
作为第二信使参与代谢调节(IP3、DAG)
内嵌蛋白 糖脂
锚定膜蛋白
胆固醇 卵磷脂
3. 神经氨基醇

糖糖 脂 脂肪酸


氨 基 醇
脂 肪 酸
半乳糖脑苷脂 神经节苷脂
唾液酸(NANA)
4.胆固醇结构平面式
一、概念
指脂肪酸在氧化分解时,经过脱氢、加 水、再脱氢和硫解,碳链在脂肪酸的β-位断 裂,生成一分子乙酰CoA和一个少两个碳的 新的脂酰CoA。
是含偶数碳原子或奇数碳原子饱和脂肪 酸的主要分解方式。
1. 脂肪酸的活化
内质网和线粒体外膜上
RCOOH + HS-CoA 脂酰CoA合成酶 RCO~SCoA

脂类代谢的名词解释

脂类代谢的名词解释

脂类代谢的名词解释脂类代谢是指生物体对脂类分子的合成、分解和转运过程。

作为生物体内重要的能量储备和生命物质的组成部分,脂类在机体中扮演着关键的角色。

脂类代谢的研究不仅对于揭示一系列疾病的病理机制具有重要意义,而且对于寻找新的治疗和预防策略也具有重要指导意义。

脂类是一类化学物质,通常是由长链的羧酸和甘油形成,进而与其他分子结合形成脂肪酸或甘油脂。

脂类的合成过程受到许多调节因子的控制,其中包括饮食、体内激素水平、基因表达等。

在脂类代谢中,脂类合成被认为是一种能量储备的形式,同时也作为生命活动所必需的重要物质。

脂类代谢中的一个重要过程是脂类分解,也被称为脂解。

脂解是指将脂类分子分解为脂肪酸和甘油的过程。

在细胞内,脂解通常通过酶的作用来实现。

通过脂解,存储在细胞内的脂类可以释放出来,以供能量消耗和生物合成需求。

除了脂解,脂类代谢中的另一个重要过程是脂类的转运。

脂类分子通常不能直接溶解在水中,因此需要特殊的载体来进行有效的转运。

在生物体内,脂类的转运主要由载脂蛋白类分子完成。

载脂蛋白类分子能够与脂类分子结合,形成脂蛋白颗粒,从而使脂类能够在体内通过血液或细胞膜进行运输。

脂类代谢的紊乱可能导致一系列疾病的发生。

例如,脂类合成过程的异常增加可能导致肥胖和代谢综合征等疾病的发生。

而脂解过程的异常减少则可能导致脂肪积累和脂肪肝等病症。

脂类转运的紊乱也与一些心血管疾病和代谢病有关。

因此,对于脂类代谢的深入理解对于预防和治疗这些疾病具有重要的意义。

近年来,随着对脂类代谢的深入研究,一些新的治疗策略也逐渐浮出水面。

例如,针对脂类合成过程的药物和营养干预措施能够帮助调节体内脂类的合成过程,从而减轻肥胖和相关代谢疾病的风险。

此外,针对脂类分解和转运过程的药物研发也有望找到新的治疗策略。

总之,脂类代谢是生物体内一系列关键生化过程的总称,包括脂类的合成、分解和转运。

脂类代谢的紊乱与多种疾病的发生和发展有关。

通过深入研究脂类代谢,我们可以更加全面地认识到这些代谢过程对于人体健康的重要性。

第十章 脂代谢

第十章 脂代谢

第三节 脂肪的合成代谢
一、脂肪酸的生物合成
饱和脂肪酸合成 脂肪酸碳链延长 脱饱和生成不饱和脂肪酸
(一)饱和脂肪酸的合成
脂肪酸合成的原料:乙酰CoA (反刍动物:乙酸→乙酰CoA,丁酸→丁酰CoA;非反刍
动物:主要来自线粒体内的丙酮酸氧化脱羧); 细胞定位:细胞液中; 线粒体中的乙酰CoA需通过柠檬酸-丙酮酸循环(或称拧
⑥β-烯脂酰-ACP还原酶
ACP其辅基是4´-磷酸泛酰巯基乙胺,-SH是 ACP的活性基团。
与脂酰基形成硫酯键
磷酯键
但在高等动物中,脂肪酸合成酶系则是由一条多肽链构成的多 功能酶(具有7种酶活性和ACP功能),通常以二聚体形式存在, 每个亚基都含有一ACP结构域。合成脂肪酸的反应由两条肽链 协同进行。
不饱和脂肪酸的命名
系统命名法:需标示脂肪酸的碳原子数和双键的位置。 ω编码体系:从脂肪酸的碳氢链的甲基碳起计算其碳原子 顺序。 △编码体系:从脂肪酸的羧基碳起计算碳原子的顺序。
CH3-(CH2)5-CH=CH-(CH2)7-COOH
系编码
系编码
十六碳-7-烯酸
十六碳-9-烯酸
常见的不饱和脂肪酸
一、脂肪酸
脂肪酸(fatty acid,FA)是由一条线性长的碳氢链(疏水 尾)和一个末端羧基(亲水头)组成的羧酸。
1. 分类
脂肪酸的共性
1. 一般为偶数碳原子; 2. 绝大多数不饱和脂肪酸中的双键为顺式; 3. 不饱和脂肪酸双键位置有一定的规律性:单烯酸的双键
位置一般在第9-10 C之间;而多烯酸通常间隔3个C出现1 个双键; 4. 动物的脂肪酸是直链的,所含双键可多达6个;细菌中 还含有支链的、羟基的和环丙基的脂肪酸;植物脂肪酸中 有含炔基、环氧基、酮基等; 5. 脂肪酸分子的碳链越长,熔点越高;不饱和脂肪酸的熔 点比同等链长的饱和脂肪酸的熔点低。

第六章 脂类代谢

第六章  脂类代谢

第六章脂类代谢一、一、知识要点(一)脂肪的生物功能:脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。

通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。

脂类物质具有重要的生物功能。

脂肪是生物体的能量提供者。

脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。

脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。

某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。

有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。

脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。

(二)脂肪的降解在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。

甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。

脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。

脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。

β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。

此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。

萌发的油料种子和某些微生物拥有乙醛酸循环途径。

可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。

乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。

(三)脂肪的生物合成脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。

脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。

生物化学7.脂类代谢

生物化学7.脂类代谢

脂肪动员的结果是生成三分子的自 由脂肪酸(free fatty acid,FFA) 和一分子的甘油。 甘油可在血液循环中自由转运,而 脂肪酸进入血液循环后须与清蛋白 结合成为复合体再转运。 脂肪动员生成的甘油主要转运至肝 脏再磷酸化为3-磷酸甘油后进行代 谢。
甘油的代谢:
脂肪动员生成的甘油,主要经血循环转运 至肝脏进行代谢。 1.甘油在甘油磷酸激酶的催化下,磷酸化 为3-磷酸甘油:
乙醛酸循环的生理意义
1、对油料种子而言,乙醛酸循环可以为糖 异生提供原料,从而在没有光合作用的 情况下合成碳源和能源。 2、对细菌和藻类而言,乙醛酸循环可使其 利用乙酸盐为碳源和能源。 3、是连接糖代谢和脂代谢的枢纽。
油 料 种 子 萌 发 时 脂 肪 转 化 为 糖 过 程
习题
1.下列关于乙醛酸循环的论述不正确的是( )
2.丙二酸单酰CoA的合成:
在乙酰CoA羧化酶的催化下,将乙酰CoA 羧化为丙二酸单酰CoA。乙酰CoA羧化酶 受柠檬酸和异柠檬酸的变构激活,受长链 脂酰CoA的变构抑制。
乙酰CoA羧化酶 (生物素)
HOOC-CH2-CH(OH)-CH2-N+-(CH3)3
肉碱的分子结构
细胞溶胶中形成的脂酰CoA不能透过 线粒体内膜。肉碱可以携带脂酰基进入 线粒体。
脂酰CoA的转运
肉脂酰转移酶Ⅰ和Ⅱ是一组同工酶
(3) β -氧化: β -氧化过程由四个连续的酶促反应 组成: ① 脱氢; ② 水化; ③ 再脱氢; ④ 硫解。
(1)偶数碳原子脂肪酸: 2n — 2(n—1)= 2 即苯乙酸
(1)奇数碳原子脂肪酸:
( 2n+1)—2n = 1 即苯甲酸
只有脂肪酸以β -氧化这种方式分解才会出 现只有两种代谢终产物(苯甲酸和苯乙酸)的 情况。其他类型都有2种以上终产物。

生物化学8-脂代谢

生物化学8-脂代谢

甘油
ATP
22个ATP分子
ATP NADH
丙酮酸 乙酰CoA
3 NADH + FADH2 + GTP 柠檬酸循环和线粒体呼吸链 CO2 + H2O
脂肪酸的分解代谢
含 碳 的 脂 肪 酸 ( 软 脂 酸 ) 16
主要方式: β- 氧化途径
脂肪酸在氧化分解时,碳链的断裂发 生在脂肪酸羧基端的β-位(每次切除2个 碳原子)。反应在线粒体基质中进行。
亚油酸和亚麻酸是人体必需脂肪酸
合成
(花生、芝麻、棉籽油中富含)
多不饱和脂肪酸 如:花生四烯酸 EPA(二十碳五烯酸,鱼油主要成分) DHA(二十二碳六烯酸,脑黄金)
不饱和脂肪酸的氧化
1. 氧化反应发生在线粒体基质中;
2. 活化和跨越线粒体内膜都与饱和脂肪酸相同;
3. 进行β-氧化,到达双键位置; 4. 分子内双键需要2个酶:异构酶和还原酶。 5. 进行β-氧化。
脂肪酸β-氧化过程与柠檬酸循环中的部分反应过程 类似, 试写出这两个途径中的类似的反应过程。
脂肪酸β-氧化 柠檬酸循环
脂酰CoA脱氢生成α-β 烯脂酰CoA
琥珀酸生成延胡索酸
α-β 烯脂酰CoA水化生成L-β 羟脂酰CoA
L-β 羟脂酰CoA再脱氢生成β-酮脂酰CoA
延胡索酸生成苹果酸
苹果酸生成草酰乙酸
酮体生成的意义
1. 酮体具水溶性,能透过血脑屏障及毛细血管壁, 是输出脂肪能源的一种形式。 2. 长期饥饿时,酮体供给脑组织50—70%的能量。 3. 禁食、应激及糖尿病时,心、肾、骨骼肌摄取酮 体代替葡萄糖供能,节省葡萄糖以供脑和红细胞 所需,并可防止肌肉蛋白的过多消耗。
脂肪酸氧化、糖异生、酮体代谢的关系

脂类的代谢

脂类的代谢

脂类的代谢
脂类是人体中的重要营养素之一,能够提供能量并维持细胞膜的
结构和功能。

脂类的代谢主要包括摄取、消化、吸收、运输、存储和
代谢等过程。

人体从饮食中摄入脂类后,先经过口腔、胃和小肠等器官的消化
作用,将脂肪分解为脂肪酸和甘油。

这些脂肪酸和甘油随后被吸收进
入肠道上皮细胞,并通过淋巴和血液循环进入全身各组织和器官,以
供能源需求和维持生理功能。

一旦脂肪酸进入细胞内部,它们将进入胞质中的线粒体,进行
β-氧化,以进一步分解为较短的脂肪酸,同时释放出能量和二氧化碳。

这些脂肪酸被脂肪酸结合蛋白(FABP)和胆固醇脂质转运蛋白(CETP)等载体蛋白运输到肝脏或其他组织中,用于能量供应或再合成甘油三酯。

肝脏是脂类代谢的关键器官,它可以将血液中的脂肪酸和甘油转
换为甘油三酯,并将它们存储在肝细胞和脂肪细胞中,以应对能量需
求和饥饿状态。

同时,肝脏还可以将脂肪酸和甘油合成胆固醇、磷脂
和脂蛋白等重要物质,以维持正常的细胞结构和功能。

脂类代谢失调可能导致各种代谢性疾病,如高脂血症、糖尿病、
肥胖症等。

因此,良好的饮食和生活习惯对于维持脂类代谢的正常功
能具有至关重要的作用。

脂类代谢

脂类代谢
2. 鞘磷脂的分布 人体含量最多的是神经鞘磷脂, 主要存在于脑髓鞘和红细胞膜,也存在于脾、肺和 血液中,是构成生物膜的重要磷脂。
胆固醇的结构和分布
胆固醇是一个含环戊烷多氢菲母核和一个羟基 的固体醇类化合物。
胆固醇分布于全身各组织,正常成人胆固醇总 量约140g,25%分布于脑和神经组织,脑组织胆固 醇的含量约占脑组织重量的2%,肾上腺皮质中胆固 醇含量高达5%。
肉毒碱
R—CH2—CH2—CO~SCoA
脱氢
FAD
1.5ATP
FADH2
呼吸链
R—CH=CH—CO~SCoA
H2O
水化
OH
R—CH—CH2—CO~SCoA
再脱氢
NAD+
2.5ATP
O
NADH+H+
R—C—CH2—CO~SCoA 呼吸链
HSCoA
硫解
H2O
乙酰CoA
R—CO~SCoA
继续进行β-氧化
脂肪酸氧化的能量计算
2. 酮体的生成:部位在肝,因肝中有酮体合成 的酶(HMG-CoA合成酶)。
3. 酮体的利用:部位在肝外组织,因肝外组织 存在利用酮体的酶(乙酰乙酸硫激酶or琥珀酰-CoA 转硫酶)。
“肝内生酮肝外用”
4. 酮体生成的意义:酮体是肝脏输出的脂 肪能源。因它分子小,溶于水,便于运输, 能通过血脑屏障和毛细血管壁,成为脑及 肌肉的重要能源。 5. 血酮:正常为0.08~0.49mmol/L。在饥饿 及糖尿病时,酮体生成远大于酮体的利用。
α- 磷酸甘油的合成
1. 来自糖代谢
NADH+H+
葡萄糖
磷酸二羟丙酮
2. 细胞内甘油再利用 ATP ADP

脂类代谢(基础生物化学)

脂类代谢(基础生物化学)

第十一章脂类代谢第一节概述一、生理功能(一)储存能量,是水化糖原的6倍。

(二)结构成分,磷脂、胆固醇等。

(三)生物活性物质,如激素、第二信使、维生素等。

二、消化吸收(一)消化(酶水解):食物中的脂类主要为脂肪,此外还有少量磷脂及胆固醇等。

食物中的脂肪主要是甘油三酯(三酰甘油,TG)。

脂类的消化开始与胃中的胃脂肪酶,但脂类在胃中的消化是有限的。

脂肪在成人胃中不能消化,只在婴儿胃中可有少量被消化。

胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO3- 至小肠(碱性)。

胃液被胰液中的碳酸氢盐中和,使小肠液接近中性,也有利于脂肪酶的作用,碳酸盐分解,产生二氧化碳气泡,促使食物糜与消化液很好的混合,胆汁酸盐使脂类乳化,分散成小微团,增加脂肪酶与脂肪的接触面,以利于脂肪在胰腺分泌的脂类水解酶作用下水解。

食物脂类的消化发生在脂质-水的界面处,主要依赖消化道的脂肪酶,胰腺分泌一系列脂肪酶入小肠。

胰腺分泌入小肠中消化脂类的脂肪酶有:1、胰脂酶(pancreatic lipase,胰脂肪酶、胰酶):胰分泌的胰脂酶具有立体异构专一性,是水解(消化)脂肪的主要脂肪酶。

在水解脂肪时,需要辅脂酶和胆汁酸盐的协同作用,因为胰脂酶必须吸附在乳化脂肪微团的水油界面上才能作用于微团内的脂肪。

食物中的脂肪主要是甘油三酯(三酰甘油,TG),与胆汁结合生成胆汁酸盐微团,同时胰脂酶易水解1位及3位上的酯键,所以胰脂酶水解甘油三酯的主要产物为2-甘油一酯(单酰甘油)。

95%的胆汁酸盐被回肠重吸收。

胆汁酸盐一方面是强有力的乳化剂,使肽类化合物乳化成微团,另一方面又激活胰脂酶,促进脂肪的水解。

但胆汁酸盐过多时,可包裹脂肪微粒而阻止胰脂酶作用,抑制其活性。

因为脂肪乳化后表面张力提高,反使胰脂酶不能与微团内的甘油三酯接触,同时处于水油界面胰脂酶易于变性丧失活性。

2、辅脂酶(colipase,辅脂肪酶,共脂肪酶):分子量约为1万的小分子蛋白质,是胰脂酶对脂肪消化不可缺少的蛋白质辅因子。

脂类的代谢和调节机制

脂类的代谢和调节机制

脂类的代谢和调节机制脂类是人体内至关重要的一类有机物质,不仅是能量的重要来源,还参与了细胞结构的构建和维护、激素合成、保护器官等多种生理功能。

然而,脂类代谢紊乱可能引发多种疾病,如肥胖、高血脂、心血管疾病等。

因此,了解脂类代谢和调节机制对人体健康具有重要意义。

本文将深入探讨脂类的代谢途径和调节机制。

一、脂类的代谢途径脂类代谢主要包括脂肪的吸收、运输、储存和分解等过程。

在脂类的代谢途径中,主要涉及到脂肪酸、甘油三酯和胆固醇三种重要的脂类成分。

1. 脂肪酸代谢脂肪酸是脂类代谢的基本单元,主要分为饱和脂肪酸、不饱和脂肪酸和多不饱和脂肪酸。

在脂肪酸的代谢过程中,首先通过脂肪酸的吸收,进入血液循环。

然后,脂肪酸被转运到肝脏或其他组织,进行进一步的代谢。

在细胞内,脂肪酸可以被氧化产生能量,也可以合成甘油三酯以储存。

2. 甘油三酯代谢甘油三酯是体内最常见的脂质,也是脂类代谢中主要的能量储存形式。

甘油三酯的合成主要发生在肝脏和脂肪组织中。

当机体摄入过多的能量时,多余的能量会被合成为甘油三酯并存储在脂肪细胞内。

而当机体能量需求增加时,储存在脂肪细胞内的甘油三酯会被分解为脂肪酸,提供能量。

3. 胆固醇代谢胆固醇是脂类代谢中的重要成分,它在体内主要用于细胞膜的构建、激素合成和胆汁酸的合成。

胆固醇的代谢主要包括胆固醇的合成和胆固醇的消耗。

胆固醇合成主要发生在肝脏和肠道,而胆固醇的消耗则通过胆酸的形式排出体外。

二、脂类的调节机制为了维持脂类代谢的平衡,人体内存在着一系列的调节机制。

1. 激素调节激素在脂类代谢中起着重要作用。

胰岛素是调节脂类代谢的主要激素之一,它能促进脂肪酸的合成和甘油三酯的合成,并抑制脂肪酸的分解。

而胰高血糖素则与胰岛素相反,能够促进脂肪酸的分解和胆固醇的合成。

此外,肾上腺皮质激素、甲状腺激素等也参与了脂类的调节。

2. 长链非编码RNA调控最近的研究表明,长链非编码RNA在脂类代谢中发挥了重要的调节作用。

生物化学第10章 脂类代谢

生物化学第10章 脂类代谢

课外练习题一、名词解释1、脂肪动员:贮存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂肪酸及甘油并释放入血液以供其它组织氧化利用的过程。

2、酮体:脂肪酸在肝内氧化的中间产物——乙酰乙酸、β-羟丁酸和丙酮统称为酮体。

3、脂肪酸的β-氧化:脂肪酸氧化分解时,在脂酰基的β-碳原子上进行脱氢、加水、再脱氢和硫解的连续反应过程。

4、血脂:血浆中各种脂类物质的总称。

5、高脂血症:血脂高于正常值上限。

6、溶血磷脂:甘油磷脂的一位或二位脂酰基水解后形成的磷脂。

二、符号辨识1、ACP:酰基载体蛋白;2、BCCP:生物素羧基载体蛋白三、填空1、甘油三酯的合成包括()途径和()途径共两条途径。

2、脂肪酸β-氧化的限速酶是()。

3、脂肪酸的活化在()中进行,由()酶催化。

4、脂肪酸的β-氧化包括()、()、()和()四步连续反应。

5、酮体在()中生成,在()组织中利用。

6、酮体包括()、()和()三种物质。

7、脂肪酸合成的主要原料是(),需通过()循环由线粒体转运至细胞质。

8、脂肪酸合成的关键酶是()羧化酶;脂肪酸合成酶系催化合成的终产物主要是()。

9、脂肪酸碳链的延长可在()和()中进行。

10、人体内不能合成的不饱和脂肪酸主要是()、()和()。

11、人体内胆固醇的来源有二,即()和()。

胆固醇合成的主要原料是()。

12、胆固醇在体内可转化生成()、()激素和维生素()。

13、参与胆固醇合成的NADPH主要来自()途径;乙酰CoA来自()代谢。

14、3-磷酸甘油的来源有两种方式,即()的消化产物和葡萄糖经过()途径产生。

15、每一分子脂肪酸被活化为脂酰CoA需消耗()个高能磷酸键。

16、脂酰CoA经一次β-氧化可生成()分子乙酰CoA和比原来少()个碳原子的脂酰CoA。

17、一分子14碳长链脂酰CoA可经()次β-氧化生成()个乙酰CoA。

18、若底物脱下的[H]全部转变成A TP,则1mol软脂酸(含16C)经β-氧化途径可共生成()个A TP,或净生成()个A TP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章脂类代谢内容提要(学习要求?):本章阐述生物体内的脂类物质、脂肪代谢及类脂代谢。

通过本章学习,熟悉生物体内脂质的组成、结构、分类和功能;重点掌握脂肪的合成代谢和分解代谢,了解生物体内脂肪与糖相互转化的途径和意义;掌握胆固醇合成代谢途径的调节和胆固醇的代谢转变;了解类脂代谢、脂类物质的运输与血浆脂蛋白。

脂类(lipids)是脂肪(甘油三酯)和类脂的统称。

它们在结构上有很大差别,共同特点是不溶于水,而溶于氯仿、乙醚、苯等非极性有机溶剂。

用这类溶剂可将脂类物质从细胞和组织中萃取出来。

脂类是生物体的重要组成成分,按生物学功能可将其分为贮存脂质(storage lipid)、结构脂质(structural lipid)和活性脂质(active lipid)。

贮脂主要是脂肪,结构脂质和活性脂质都属于类脂。

脂肪是生物体贮存的重要能源物质,1g脂肪彻底氧化可产生约39KJ的热量,是相同重量糖或蛋白质氧化所产热量的2.3倍。

结构脂质主要是磷脂,它是生物膜的骨架成分。

活性脂质在生物体内具有重要的生理活性,如类固醇激素有重要的代谢调节作用;糖脂是细胞识别的物质基础之一;一些磷脂在细胞信号转导过程中能够产生第二信使等。

由此可见,生物体内的脂类在新陈代谢、信息传递及代谢调控等生命活动中具有重要作用。

第一节生物体内的脂质一、脂类的组成和分类脂类主要由碳、氢、氧三种元素组成,某些脂类化合物还含有少量氮、磷和硫。

大多数脂类化合物是由脂肪酸和醇形成的酯及其衍生物,其中的脂肪酸多为长链一元羧酸,其中的醇则包括甘油、鞘氨醇、固醇和高级一元醇。

生物体内的脂类据其化学组成与结构通常分为单纯脂类、结合脂类、衍生脂类。

(一) 脂肪酸(fatty acid,FA)脂肪酸是脂类化合物的主要组成成分,一般由一条长的线性烃链(疏水尾)和一个末端羧基(亲水头)组成。

天然脂肪酸骨架的碳原子数多为偶数,通常为C4~C36。

动植物中分布最广泛的脂肪酸是硬脂酸、软脂酸和油酸。

奇数碳原子的脂肪酸主要存在于海洋生物中,陆地生物中含量极少。

脂肪酸根据其烃链内是否含有双键可分为饱和与不饱和两类。

链内不含双键的为饱和脂肪酸,含一个双键的为单不饱和脂肪酸,含两个或两个以上双键的为多不饱和脂肪酸(PUFA)。

不同脂肪酸之间的主要区别在于烃链的长度、双键的数目和位置。

不饱和脂肪酸(unsaturated FA)因其存在双键,不象饱和脂肪酸中每个单键可以自由旋转而整齐有序,往往存在扭曲的空间结构(图8—1),只要用较少的热量就可扰乱它不太有序的结构,熔点较低。

生活在低温环境中的动物不饱和脂肪酸的含量高于饱和脂肪酸,反映了生物对环境的适应。

图8-1 脂肪酸的结构模型A .硬脂酸B.油酸脂肪酸常用简写方法表示。

一般是先写碳原子数目,再写双键数目,中间以冒号分开,最后表明双键的位置。

如硬脂酸写成18:0;亚油酸写成18:2(9,12)或18:2Δ9,12,表示亚油酸为18个碳原子、且在第9~10、12~13碳原子之间各有一个双键(此处碳原子序号从羧基端向甲基端依次为1、2……)。

人和动物不能合成自身正常代谢所需要亚油酸和α-亚麻酸(18:3△9,12,15),必须从食物中摄取,这两种脂肪酸称为必需脂肪酸(essential fatty acid)。

植物能够合成这两种脂肪酸。

植物界特别是高等植物中不饱和脂肪酸比饱和脂肪酸丰富,植物中还存在含三键、羟基、酮基、环氧基等的脂肪酸。

从营养学角度看,不饱和脂肪酸可分为ω(omeage)-6系列和ω-3系列。

ω-6系列指不饱和脂肪酸中第一个双键的位置距甲基端6个碳原子,ω-3系列指不饱和脂肪酸中第一个双键的位置距甲基端3个碳原子。

亚油酸是ω-6系列的原始成员,由它可在人和哺乳动物体内合成γ-亚麻酸(18:3△6,9,12)和花生四烯酸(20:4△5,8,11,14)。

α-亚麻酸是ω-3系列的原始成员,由它可合成二十碳五烯酸(EPA )和二十二碳六烯酸(DHA )。

在人和哺乳动物体内ω-6系列和ω-3系列PUFA 不能相互转化。

研究表明,人体许多组织含有ω-3系列不饱和脂肪酸,DHA 在视网膜和大脑皮层中含量丰富。

大脑中约一半DHA 是在出生前积累的,因此必需脂肪酸营养在怀孕期间十分重要。

CH 2CH CH 2CH CHCH CH 322CH CHCH 2CH CH 2CH 2CH 2CH 2COOHCH 2CH 32CH 2CHCHCH 2CH CH CH CH22CH 2CH 2CH COOHCH 2上式为亚油酸的结构,下式为 亚麻酸的结构(二)单纯脂类(simple lipids )单纯脂是由脂肪酸与甘油或高级一元醇结合形成的酯。

据醇基不同,可将其分为脂酰甘油和蜡。

1 脂酰甘油(acyl glycerol )脂酰甘油是由脂肪酸和甘油(glycerol )形成的酯。

根据所结合的脂肪酸分子数目不同,脂酰甘油分为单(脂)酰甘油(MG )、二(脂)酰甘油(DG)、和三(脂)酰甘油(TG)。

三酰甘油(triacylglycerol )又称甘油三酯(triglycerides ),即通常所说的脂肪或中性脂,在生物体内含量最丰富,其结构通式如图8-2。

O CO R 1CH CH 2 OOR 2 OR 3CO CH 2图8-2 脂肪的分子结构 甘油三酯中R 1、R 2、R 3相同时称为简单甘油三酯,不同时称为混合甘油三酯。

一般说来R 2多为不饱和脂肪酸。

植物的甘油三酯中不饱和脂肪酸较多,在室温下为液态,称为油(oils );动物的甘油三酯中饱和脂肪酸较多,在室温下为固态,称为脂(fat )。

因此,甘油三酯又统称为油脂。

大多数天然油脂都是简单甘油三酯和混合甘油三酯的混和物。

单酰甘油和二酰甘油是脂质代谢的中间产物,在生物体内含量不高。

单硬酯酰甘油因其分子中有游离羟基,在水中有形成分散态的倾向,在食品工业中常被用作乳化剂。

2 蜡(wax )蜡是长链脂肪酸(14~36个C )与长链一元醇(16~30C )或固醇形成的酯。

蜡主要存在于毛发、皮肤、叶子、果实及昆虫外骨骼等的表面,起保护作用。

蜡还是海洋浮游生物中主要的贮能物质。

天然蜡一般是多种蜡酯的混合物,白蜡主要成分是二十六醇的二十六酸酯及二十八酸酯,是涂料、润滑剂等化工产品的原料;蜂蜡的主要成分为三十醇的软脂酸酯,是制造高级化妆品的原料。

(三)结合脂类(complex lipids )结合脂类是分子组成中除了脂肪酸与醇所组成的酯外,还含有非脂成分的脂质。

据非脂成分的不同分为磷脂(phospholipids )和糖脂(glycolipids )。

1.磷脂磷脂分子中除了脂肪酸和醇外,还含有磷酸和其它含氮化合物。

根据磷脂中醇的不同,可分为甘油磷脂(glycerophospholipids )和鞘氨醇磷脂(sphingophospholipids)。

(1)甘油磷脂 甘油磷脂分子中都含有甘油、脂肪酸和磷酸,三者结合成磷脂酸。

磷脂酸通过磷酸基与氨基醇(胆碱、乙醇胺等)或肌醇等相连形成的酯即为甘油磷脂,也称磷酸甘油酯。

它们种类很多,是生物膜骨架成分。

根据磷酸基所连接基团的不同,甘油磷脂可分为磷脂酰胆碱(卵磷脂,PC )、磷脂酰乙醇胺(脑磷脂,PE )、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷脂)及磷脂酰肌醇等,每一类磷脂又因其脂肪酸不同而有若干种。

卵磷脂和脑磷脂是细胞中含量最丰富的磷脂,卵黄中卵磷脂的含量可达8%-10%。

卵磷脂具有抗脂肪肝的作用,结构如图8-3。

O CO R 1CH CH 2 OCOR 2 OO CH 2图8-3 卵磷脂的分子结构P OCH 2N CH 2OCH 33(2)鞘磷脂含鞘氨醇(sphingosine )或二氢鞘氨醇的脂类称鞘脂(sphingolipids)。

鞘氨醇是带有脂肪族长链的氨基二元醇,具有疏水的脂肪烃尾和两个羟基、一个氨基组成的极性头。

鞘氨醇的氨基以酰胺键与长链脂肪酸(18C-26C )的羧基连接形成的化合物称为神经酰胺。

神经酰胺的羟基以酯键与磷酸胆碱或磷酸乙醇胺相连构成的化合物即为鞘磷脂。

人体内含量最多的鞘磷脂是神经酰胺与磷酸胆碱相连构成的神经鞘磷脂。

鞘氨醇神经鞘磷脂O CH 2CH CH HO NH 2CH CH CH 212CH 3H O CH 2CH N ORO HP O N 3CH HO CH CH 22CH CH 212CH 3CH 3神经鞘磷脂是构成生物膜的重要磷脂,常与卵磷脂并存于细胞膜外侧,神经髓鞘中含有较多的神经鞘磷脂。

鞘磷脂也存在于高等植物的种子和酵母细胞中。

2.糖脂糖脂是脂质以糖苷键与糖分子的半缩醛羟基相连而成的结合脂质。

据脂质的不同,糖脂可分为鞘糖脂、甘油糖脂和由固醇衍生的糖脂。

鞘糖脂、甘油糖脂广泛存在于生物膜中。

(1)鞘糖脂 鞘糖脂(glycosphingolipid )是神经酰胺的C 1位羟基糖基化形成的,首先发现的鞘糖脂是从人脑中获得的半乳糖基神经酰胺,即脑苷脂(cerebroside ),结构如图8-4。

OCH 2CHCHHO N HO R CH CHCH 212CH 3图 8- 4 脑苷脂的分子结构鞘糖脂和鞘磷脂都是神经酰胺的衍生物,同属鞘脂类。

鞘糖脂主要分布于动物细胞中,其疏水尾部伸入脂双层,极性糖基露在细胞表面,与组织器官专一性和细胞识别等有关,故在膜中的含量虽少,却有重要功能。

鞘糖脂中的单糖成分主要是D-葡萄糖、D-半乳糖、N-乙酰葡萄糖胺、N-乙酰半乳糖胺、岩藻糖和唾液酸。

根据糖基是否含有唾液酸或硫酸基,鞘糖脂可分为中性鞘糖脂和酸性鞘糖脂。

其糖基不含唾液酸或硫酸基的为中性鞘糖脂,如脑苷脂;反之为酸性鞘糖脂,如硫苷脂和神经节苷脂。

(2)甘油糖脂 甘油糖脂(glyceroglycolipids )也称糖基甘油酯(glycoglycerides ),它由糖基以糖苷键与二酰甘油C 3上的羟基相连而成。

甘油糖脂中的糖可以是单半乳糖、二半乳糖、三半乳糖,分别与甘油二酯形成单半乳糖甘油二酯、双半乳糖甘油二酯、三半乳糖甘油二酯,在植物中还分离出了结构更为复杂的甘油糖脂。

甘油糖脂在动植物和微生物中都有存在,植物的叶绿体膜和微生物的质膜中甘油糖脂的含量尤为丰富。

单半乳糖甘油二酯的结构见图8-5。

OCH 2CHOO R 单半乳糖甘油二酯OR 12图8-5O CH 2(四).衍生脂类(derived lipid )衍生脂类不含脂肪酸,不能进行皂化,亦称非皂化脂类。

主要包括萜类和固醇类化合物。

1. 萜类萜类(terpenoids )是种类繁多的一大类化合物,它们的分子一般都含有若干个异戊二烯单位(isoprene unit ,),故可看成是异戊二烯的衍生物。

萜类物质是植物产生的挥发油的主要成份,如薄荷醇、樟脑等。

相关文档
最新文档