华南理工平时作业《线性代数与概率统计》作业题解答
2019年华南理工平时作业:【线性代数和概率统计】作业题(解答).doc
《线性代数与概率统计》作业题一、计算题1 2 31.计算行列式 D 3 12.2 3 1解 :x 13 32.计算行列式3x5 3 .66x 41 2 1 40 1 2 13.计算行列式 D .1 0 1 30 1 3 14.设A1 2 , B 1 ,求 AB 与 BA.1 3 1 25.设f (x)2x2x 1 ,A11 ,求矩阵A的多项式 f ( A).0 12 63 1 1 36.设矩阵A 1 1 1 , B 1 1 2 ,求 AB.0 1 1 0 1 11 0 17.设A1 1 1 ,求逆矩阵 A1.2 1 122 4 1 1 4 8.求 11 3 02 1 12 1 1 1 的秩 . A 331 2 2 1 1 4 2 2 6 0 82x1x2x3 1 9.解线性方程组4x12x 25x3 4 .2x1x22x3 52x1x23x3 1 10.解线性方程组4x1 2x 25x3 4 .2x1 32 x 611.甲、乙二人依次从装有7 个白球, 3 个红球的袋中随机地摸 1 个球,求甲、乙摸到不同颜色球的概率.12.一箱中有 50 件产品,其中有 5 件次品,从箱中任取 10 件产品,求恰有两件次品的概率 .13.设有甲、乙两批种子,发芽率分别为0.9 和 0.8 ,在两批种子中各随机取一粒,求:( 1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率 .14.某工厂生产一批商品,其中一等品点13 元;二等品占1 ,每件一等品获利,2 3每件二等品获利 1 元;次品占1 ,每件次品亏损2 元。
求任取 1 件商品获利X 的6数学期望 E(X) 与方差 D(X) 。
二、应用题15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量X 1, X 2,且分布列分别为:X10123X2012 3P k0.4 0.3 0.2 0.1P k0.3 0.5 0.2 0若两人日产量相等,试问哪个工人的技术好?。
下半年华工继续教育线性代数与概率统计随堂练习参考答案
1.(单项选择题 ) 计算?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: A问题分析:2.(单项选择题 )队列式?A. 3;B. 4;C. 5;D. 6.答题: A. B. C. D.(已提交)参照答案: B问题分析:3. ( 单项选择题 )计算队列式. A. 12;B. 18;C. 24;D. 26.答题: A. B. C. D.(已提交)参照答案: B问题分析:4. ( 单项选择题 )利用队列式定义计算n 阶队列式:=? A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: C问题分析:5. ( 单项选择题 )计算队列式睁开式中,的系数。
A. 1, 4;B. 1,-4;C. -1 ,4;D. -1 ,-4.答题: A. B. C. D.(已提交)参照答案: B问题分析:6. ( 单项选择题 )计算队列式=?A. -8;B. -7;C. -6;D. -5.答题: A. B. C. D.(已提交)参照答案: B问题分析:7. ( 单项选择题 )计算队列式=?A. 130 ;B. 140;C. 150;D. 160.答题: A. B. C. D.(已提交)参照答案: D问题分析:8. ( 单项选择题 )四阶队列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: D问题分析:9. ( 单项选择题 )队列式=?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: B问题分析:10. (单项选择题 )已知,则?A. 6m;B. -6m;C. 12m;D. -12m.答题: A. B. C. D.(已提交)参照答案: A11.(单项选择题)设=,则?A. 15|A|;B. 16|A|;C. 17|A|;D. 18|A|.答题: A. B. C. D.(已提交)参照答案: D问题分析:12. ( 单项选择题 )设矩阵,求=?A. -1;B. 0;C. 1;D. 2.答题: A. B. C. D.(已提交)参照答案: B问题分析:13. ( 单项选择题 )计算队列式=?A. -1500;B. 0;C. -1800;D. -1200.答题: A. B. C. D.(已提交)参照答案: C问题分析:14. ( 单项选择题 )齐次线性方程组有非零解,则=?A. -1;B. 0;C. 1;D. 2.答题: A. B. C. D.(已提交)参照答案: C问题分析:15. ( 单项选择题 )齐次线性方程组有非零解的条件是=?A.1或-3 ;B.1或3 ;C.-1或3 ;D.-1或-3 .答题: A. B. C. D.(已提交)参照答案: A问题分析:16. ( 单项选择题 )假如非线性方程组系数队列式,那么,以下正确的结论是哪个?A.无解 ;B.独一解 ;C.一个零解和一个非零解;D.无量多个解 .答题: A. B. C. D.(已提交)参照答案: B问题分析:17. ( 单项选择题 )假如齐次线性方程组的系数队列式,那么,下列正确的结论是哪个?A.只有零解 ;B.只有非零解 ;C.既有零解,也有非零解;D.有无量多个解.答题: A. B. C. D.(已提交)参照答案: A问题分析:18. ( 单项选择题 )齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它必定有___ 解。
华工网络线性代数与概率统计随堂练习问题详解-全
1.计算?()A.B.C.D.答题: A. B. C. D. (已提交)2.行列式?A.3B.4C.5D.6答题: A. B. C. D. (已提交)3.利用行列式定义计算n阶行列式:=?( ) A.B.C.D.答题: A. B. C. D. (已提交)4.用行列式的定义计算行列式中展开式,的系数。
A.1, 4B.1,-4C.-1,4D.-1,-4答题: A. B. C. D. (已提交)5.计算行列式=?()A.-8B.-7C.-6D.-5答题: A. B. C. D. (已提交)6.计算行列式=?()A.130B.140C.150D.160答题: A. B. C. D. (已提交)7.四阶行列式的值等于()A.B.C.D.答题: A. B. C. D. (已提交)8.行列式=?()A.B.C.D.答题: A. B. C. D. (已提交)9.已知,则?A.6mB.-6mC.12mD.-12m答题: A. B. C. D. (已提交)10.设=,则?A.15|A|B.16|A|C.17|A|D.18|A|答题: A. B. C. D. (已提交)11. 设矩阵,求=?A.-1B.0C.1D.2答题: A. B. C. D. (已提交)12. 计算行列式=?A.1500B.0C.—1800D.1200答题: A. B. C. D. (已提交)13. 齐次线性方程组有非零解,则=?()A.-1B.0C.1D.2答题: A. B. C. D. (已提交)14. 齐次线性方程组有非零解的条件是=?()A.1或-3B.1或3C.-1或3D.-1或-3答题: A. B. C. D. (已提交)15. 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。
A.零零B.零非零C.非零零D.非零非零答题: A. B. C. D. (已提交)16. 设,,求=?()A.B.C.D.答题: A. B. C. D. (已提交)17. 设矩阵,,为实数,且已知,则的取值分别为?()A.1,-1,3B.-1,1,3C.1,-1,-3D.-1,1,-3答题: A. B. C. D. (已提交)18. 设, 满足, 求=?()A.B.C.D.答题: A. B. C. D. (已提交)19. 设,,求=?()A.B.C.D.答题: A. B. C. D. (已提交)20. 如果,则分别为?()A.0,3B.0,-3C.1, 3D.1,-3答题: A. B. C. D. (已提交)21. 设,矩阵,定义,则=?()A.0B.C.D.答题: A. B. C. D. (已提交)22. 设,n为正整数,则=?()A.0B.-1C.1D.答题: A. B. C. D. (已提交)23. 设为n阶对称矩阵,则下面结论中不正确的是()A.为对称矩阵B.对任意的为对称矩阵C.为对称矩阵D.若可换,则为对称矩阵答题: A. B. C. D. (已提交)24. 设为m阶方阵,为n阶方阵,且,,,则=?()A.B.C.D.答题: A. B. C. D. (已提交)25. 下列矩阵中,不是初等矩阵的是:()A.B.C.D.答题: A. B. C. D. (已提交)26. 设,求=?()A.B.C.D.答题: A. B. C. D. (已提交)27. 设,求矩阵=?()A.B.C.D.答题: A. B. C. D. (已提交)28. 设均为n阶矩阵,则必有()A.B.C.D.答题: A. B. C. D. (已提交)29. 设均为n阶矩阵,则下列结论中不正确的是()A.若,则都可逆B.若,且可逆,则C.若,且可逆,则D.若,且,则答题: A. B. C. D. (已提交)30. 设均为n阶可逆矩阵,则下列结论中不正确的是()A.B.C.(k为正整数)D.(k为正整数)答题: A. B. C. D. (已提交)31. 利用初等变化,求的逆=?()A.B.C.D.答题: A. B. C. D. (已提交)32. 设,则=?( )A.B.C.D.答题: A. B. C. D. (已提交)33. 设,是其伴随矩阵,则=?()A.B.C.D.答题: A. B. C. D. (已提交)34. 设n阶矩阵可逆,且,则=?()A.B.C.D.答题: A. B. C. D. (已提交)35. 阶行列式中元素的代数余子式与余子式之间的关系是()。
华南理工网络教育 线性代数与概率统计》作业题(题目)
华南理工网络教育线性代数与概率统计》作业题(题目)《线性代数与概率统计》作业题第一部分单项选择题xx,,12111(计算,( A) ,xx,,1222A( xx,12B( xx,12C( xx,21D( 2xx,21111(2行列式, B D,,,111,,111A(3B(4C(5D(6231123,,,,,,,,,AB3(设矩阵,求=,B AB,,111,112,,,,,,,,011011,,,,,A(-1B(0C(1D(2,xxx,,,0,123,,4(齐次线性方程组有非零解,则=,( C) xxx,,,0,,123,xxx,,,0123,A(-11B(0C(1D(200,,,,197636,,,,,,B,5(设,,求=,(D ) ABA,,,,,530905,,,,,,76,, 104110,,A( ,,6084,,104111,, B( ,,6280,,104111,, C( ,,6084,,104111,, D(,,6284,,0A,,Aa,Bb,C6(设为m阶方阵,为n阶方阵,且,,,则=,( D) ABC,,,B0,, mA( (1),abn B( (1),abnm, C( (1),abnmD( (1),ab123,,,,,1A,221,,A7(设,求=,( D),,343,,2132,,,,35,,A( ,,3,,22,,111,,,132,,,,,35,, B( ,3,,22,,111,,,132,,,,,35,, C( ,3,,22,,111,,,132,,,,,35,,D( ,,3,,22,,111,,,AB,8(设均为n阶可逆矩阵,则下列结论中不正确的是(B )TTT,,,111A( [()]()()ABAB,,,,111 B( ()ABAB,,,kk,,11 C((k为正整数) ()()AA,,1n,,1D( (k为正整数) ()(0)kAkAk,,9(设矩阵的秩为r,则下述结论正确的是( D) Amn,A(A中有一个r+1阶子式不等于零B(A中任意一个r阶子式不等于零C(A中任意一个r-1阶子式不等于零 D(A中有一个r阶子式不等于零3213,,,,,,10(初等变换下求下列矩阵的秩,的秩为,(C ) A,,2131,,,,7051,,,3A(0B(1C(2D(311(写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
华工《线性代数与概率统计》随堂练习
线性代数与概率统计随堂练习1.计算?()A.B.C.D.答题: A. B. C. D. (已提交)参考答案:A问题解析:2.行列式?A.3B.4C.5D.6答题: A. B. C. D. (已提交)参考答案:B问题解析:3.利用行列式定义计算n阶行列式:=?( ) A.B.C.D.答题: A. B. C. D. (已提交)参考答案:C问题解析:4.用行列式的定义计算行列式中展开式,的系数。
A.1, 4B.1,-4C.-1,4D.-1,-4答题: A. B. C. D. (已提交)参考答案:B问题解析:5.计算行列式=?()A.-8B.-7C.-6D.-5答题: A. B. C. D. (已提交)参考答案:B问题解析:6.计算行列式=?()A.130B.140A. B. C. D.参考答案:D7.四阶行列式的值等于()A.B.C.D.答题: A. B. C. D. (已提交)参考答案:D问题解析:8.行列式=?()A.B.C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:9.已知,则?A.6mB.-6mC.12mD.-12m答题: A. B. C. D. (已提交)参考答案:A问题解析:10.设=,则?A.15|A|B.16|A|C.17|A|D.18|A|答题: A. B. C. D. (已提交)参考答案:D问题解析:11. 设矩阵,求=?A.-1B.0C.1D.2答题: A. B. C. D. (已提交)参考答案:B问题解析:12. 计算行列式=?A. B. C. D.参考答案:C13. 齐次线性方程组有非零解,则=?()A.-1B.0C.1D.2答题: A. B. C. D. (已提交)参考答案:C问题解析:14. 齐次线性方程组有非零解的条件是=?()A.1或-3B.1或3C.-1或3D.-1或-3答题: A. B. C. D. (已提交)参考答案:A问题解析:15. 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。
2019年华南理工平时作业:【线性代数和概率统计】作业题(解答)
《线性代数与概率统计》作业题一、计算题1 231.计算行列式 D 3 12.2 31解:x 1332.计算行列式3x53.66x41 2 1 4 01 2 1 3.计算行列式 D 01 .1 3 01 3 14.设 A1 2 , B 1 0,求AB 与BA . 1 3 1 25.设f (x)2x2x 1,A1 1,求矩阵A的多项式 f ( A). 012631136.设矩阵A 111, B112,求 AB.0110111 017.设A 1 1 1 ,求逆矩阵 A1.2 1 12 2 4 1 141 1 3 0 21 8.求的秩.A 1 21 1 133 122114 22 6 082x1x2x31 9.解线性方程组4x12x25x3 4 .2x1x22x352x1x23x31 10.解线性方程组4x12x25x3 4 .2x1 2 x3611.甲、乙二人依次从装有7 个白球, 3 个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.12.一箱中有 50 件产品,其中有 5 件次品,从箱中任取 10件产品,求恰有两件次品的概率 .13.设有甲、乙两批种子,发芽率分别为0.9 和 0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率 .14.某工厂生产一批商品,其中一等品点1,每件一等品获利 3 元;二等品占1,23每件二等品获利 1 元;次品占1 ,每件次品亏损2 元。
求任取 1 件商品获利X 的6数学期望 E(X) 与方差 D(X)。
二、应用题15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量X1, X2,且分布列分别为:X10123X 20123P k0.40.30.20.1P k0.30.50.20若两人日产量相等,试问哪个工人的技术好?。
《线性代数与概率统计》-平时作业
《线性代数与概率统计》作业题及其解答一、计算题1.答案:原式=18.2.计算行列式133353664x x x ---+---. 答案:原式=31216x x --.3.计算行列式1214012110130131D -=. 答案:原式= -7.4.设1213A ⎛⎫= ⎪⎝⎭,1012B ⎛⎫= ⎪⎝⎭,求AB 与BA .答案:1213AB ⎛⎫= ⎪⎝⎭1012⎛⎫⎪⎝⎭3446⎛⎫= ⎪⎝⎭, 1012BA ⎛⎫= ⎪⎝⎭1213⎛⎫ ⎪⎝⎭1238⎛⎫= ⎪⎝⎭.5.设2()21f x x x =-+,1101A ⎛⎫= ⎪⎝⎭,求矩阵A 的多项式()f A .(密封线内不答题)解:因为 2111112010101A AA ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,2121110()22010101f A A A E ⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=2302⎛⎫⎪⎝⎭.6.设矩阵263113111,112011011A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB .解:AB =A B ⋅=(5)15-⋅=-.7.设101111211A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求逆矩阵1-A .解:因为 ()101100111010211001A E ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭23132100211010312001111r r r r --⎛--⎫⎪−−−→-- ⎪ ⎪-⎝⎭.所以 1211312111A ---⎛⎫⎪=-- ⎪⎪-⎝⎭.8.求224114113021121113312211422608A ⎛⎫ ⎪---- ⎪⎪= ⎪--- ⎪ ⎪---⎝⎭的秩.答案:原式=5.9.解线性方程组 123123123214254225x x x x x x x x x -+=⎧⎪++=⎨⎪++=⎩.解 :12323321246x x x x x x -+=⎧⎪+=⎨⎪=-⎩.这样,就容易求出方程组的解为123656x x x =⎧⎪=⎨⎪=-⎩.10.解线性方程组 ⎪⎩⎪⎨⎧=+=++=+-622452413231321321x x x x x x x x .解用初等行变换将增广矩阵(,)A b 化为行阶梯形矩阵,2131(,)42542026A b -⎛⎫⎪= ⎪ ⎪⎝⎭1323r r r r -+−−−→100901010016⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 这个行最简形矩阵对应的线性方程组为⎪⎩⎪⎨⎧-=++-=++=++610010109001321321321x x x x x x x x x , 所以此线性方程组的唯一解为 ⎪⎩⎪⎨⎧-=-==619321x x x .11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.解:11732107()15C C P A C ==.12. 一箱中有50件产品,其中有5件次品,从箱中任取10件产品,求恰有两件次品的概率.解 由概率的古典定义,事件A 的概率为2854510505!45!50!()/0.20982!3!8!37!10!40!C C P A C ==⋅=.13.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率; (2)至少有一粒发芽的概率; (3)恰有一粒发芽的概率.解: (1)()P AB =()()P A P B =0.9⨯0.8=0.72(2)()()()()()P A B P A P B P A P B +=+-=0.9+0.8-0.72=0.98 (3)()()()()()P AB AB P A P B P A P B +=+0.90.20.10.80.26=⨯+⨯=14.某工厂生产一批商品,其中一等品点12,每件一等品获利3元;二等品占13,每件二等品获利1元;次品占16,每件次品亏损2元。
2020华南理工线性代数作业
《线性代数与概率统计》作业题一、计算题1. 计算行列式123312231D=.2.计算行列式133353664xxx---+---.3.计算行列式1214012110130131D-=.(密封线内不答题)4.设1213A⎛⎫= ⎪⎝⎭,1012B⎛⎫= ⎪⎝⎭,求AB与BA.5.设2()21f x x x=-+,1101A⎛⎫= ⎪⎝⎭,求矩阵A的多项式()f A.6.设矩阵263113111,112011011A B⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB.7.设101111211A⎛⎫⎪=- ⎪⎪-⎝⎭,求逆矩阵1-A.8.求224114113021121113312211422608A⎛⎫⎪----⎪⎪=⎪---⎪⎪---⎝⎭的秩.9.解线性方程组12312312321 4254 225 x x xx x xx x x-+=⎧⎪++=⎨⎪++=⎩.10.解线性方程组 ⎪⎩⎪⎨⎧=+=++=+-622452413231321321x x x x x x x x .11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.12.一箱中有50件产品,其中有5件次品,从箱中任取10件产品,求恰有两件次品的概率.13.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.14.某工厂生产一批商品,其中一等品点12,每件一等品获利3元;二等品占13,每件二等品获利1元;次品占16,每件次品亏损2元。
求任取1件商品获利X的数学期望()E X与方差()D X。
二、应用题15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量12,X X ,且分布列分别为:1X0 1 2 3 2X 0 1 2 3k P 0.4 0.3 0.2 0.1 k P 0.3 0.5 0.2 0若两人日产量相等,试问哪个工人的技术好?。
线性代数与概率统计作业题答案
《线性代数与概率统计》作业题第一部分 单项选择题 1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=--(B)A .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =?(B) A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B⎛⎫=⎪⎝⎭,则C =?( D ) A .(1)mab - B .(1)n ab - C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T T T AB A B ---=B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(D )B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
《线性代数与概率统计》作业题(答案)~2015.03[推荐]
《线性代数与概率统计》作业题(答案)~2015.03[推荐]第一篇:《线性代数与概率统计》作业题(答案)~2015.03[推荐] 《线性代数与概率统计》作业题第一部分单项选择题1.计算x1+1x1+2=?(A)x2+1x2+2A.x1-x2B.x1+x2C.x2-x1D.2x2-x112.行列式D=-11111=?(B)-1-11A.3B.4C.5 D.6⎡23-1⎤⎡123⎤⎥,B=⎢112⎥,求1113.设矩阵A=⎢AB=?(B)⎢⎥⎢⎥⎢⎢⎣0-11⎥⎦⎣011⎥⎦A.-1B.0C.1D.2⎧λx1+x2+x3=0⎪4.齐次线性方程组⎨x1+λx2+x3=0有非零解,则λ=?(C)⎪x+x+x=0⎩123A.-1B.0C.1 D.2⎛0⎫5.设A=⎛19766⎪⎫0⎪⎝0905⎪⎪3⎭,B=53⎪,求AB=?(D) ⎝76⎪⎪⎭A.⎛104110⎫⎝6084⎪⎭B. ⎛104111⎫⎝6280⎪⎭C.⎛104111⎫⎝6084⎪⎭D. ⎛104111⎫⎝6284⎪⎭6.设A为m阶方阵,B为n阶方阵,且A=a,B=b,C=⎛0⎝BA.(-1)mabB.(-1)nabC.(-1)n+mabD.(-1)nmab⎛123⎫7.设A=221⎪⎪,求A-1=?(D) ⎝343⎪⎭2A⎫0⎪⎭,则C=?(D)⎛132⎫A. -3-35⎪22⎪⎪⎝11-1⎪⎭⎛13-2⎫ B. 35⎪-3⎪22⎪⎝11-1⎪⎭⎛13-2⎫ C. 3-35⎪2⎪⎪2⎝11-1⎪⎭⎛13-2⎫⎪D. 3 --35 22⎪⎪⎝11-1⎪⎭8.设A,B均为n阶可逆矩阵,则下列结论中不正确的是(B)A.[(AB)T]-1=(A-1)T(B-1)TB.(A+B)-1=A-1+B-1C.(Ak)-1=(A-1)k(k为正整数)D.(kA)-1=k-nA-1(k≠0)(k为正整数)9.设矩阵Am⨯n的秩为r,则下述结论正确的是(D)A.A中有一个r+1阶子式不等于零B.A中任意一个r阶子式不等于零C.A中任意一个r-1阶子式不等于零D.A中有一个r阶子式不等于零⎛-1-3⎫10.初等变换下求下列矩阵的秩,A=32 2-131⎪⎝705-1⎪的秩为?(⎪⎭3D)A.0 B.1C.2 D.311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
华南理工大学网络教育线性代数与概率统计随堂练习答案
1.(单项选择题) 计算?A.;2.(单项选择题) 行列式?B.4;3.(单项选择题) 计算行列式.B.18;4.(单项选择题) 计算行列式?C.0;1.(单项选择题) 计算行列式?C.;2.(单项选择题) 计算行列式?D..1.(单项选择题) 利用行列式定义,计算n阶行列式:=? C.;2.(单项选择题) 计算行列式展开式中,的系数。
B.1,-4;1.(单项选择题) 计算行列式=?B.-7;2.(单项选择题) 计算行列式=?D.160.3.(单项选择题) 四阶行列式的值等于多少?D..4.(单项选择题) 行列式=?B.;5.(单项选择题) ,则?A.6m;1.(单项选择题) 设=,则?D.18|A|.2.(单项选择题) 设矩阵,求=?B.0;3.(单项选择题) 计算行列式=?C.-1800;1.(单项选择题) 齐次线性方程组有非零解,则=?C.1;2.(单项选择题) 齐次线性方程组有非零解的条件是=?A.1或-3;3.(单项选择题) 如果非线性方程组系数行列式,那么,以下正确的结论是哪个?B.唯一解;4.(单项选择题) 如果齐次线性方程组的系数行列式,那么,以下正确的结论是哪个?A.只有零解;5.(单项选择题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它肯定有___解。
B.零,非零;1.(单项选择题) 设,,求=?D..2.(单项选择题) 设矩阵,,为实数,且,则的取值分别为什么?A.1,-1,3;3.(单项选择题) 设矩阵,求=?C.1;1.(单项选择题) 设, 满足, 求=?〔〕C.;2.(单项选择题) 设,,求=?〔〕D..3.(单项选择题) 如果,则分别为?B.0,-3;4.(单项选择题) 设,矩阵,定义,则=?B.;5.(单项选择题) 设,n>1,且n为正整数,则=?D. .6.(单项选择题) 设为n阶对称矩阵,则下面结论中不正确的选项是哪个?C.为对称矩阵 ;7.(单项选择题) 设为m阶方阵,为n阶方阵,且,,,则=?D..1.(单项选择题) 以下矩阵中,不是初等矩阵的是哪一个?C.;2.(单项选择题) 设,则?C.;3.(单项选择题) 设,求=?〔〕D. .4.(单项选择题) 设,求矩阵=?B.5.(单项选择题) 设均为n阶矩阵,则必有〔〕.C. ;6.(单项选择题) 设均为n阶矩阵,则以下结论中不正确的选项是什么?D.假设,且,则 .7.(单项选择题) 设均为n阶可逆矩阵,则以下结论中不正确的选项是〔〕B. ;8.(单项选择题) 利用初等变化,求的逆=?〔〕 D. .9.(单项选择题) 设,则=?B. ;10.(单项选择题) 设,是其伴随矩阵,则=?〔〕A. ;11.(单项选择题) 设n阶矩阵可逆,且,则=?〔〕A.;12.(单项选择题) 设矩阵的秩为r,则下述结论正确的选项是〔〕D.中有一个r阶子式不等于零.13.(单项选择题) 阶行列式中元素的代数余子式与余子式之间的关系是〔〕。
线性代数与概率统计答案
作业题第一部分 单项选择题1.计算11221212x x x x ++=++( A ) A .12x x - B .12x x + C .21x x - D .212x x -2.行列式111111111D =-=-- BA .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB = ( B ) A .-1 B .0 C .1 D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?( C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?( D )A .1041106084⎛⎫⎪⎝⎭ B .1041116280⎛⎫ ⎪⎝⎭ C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,0A C B ⎛⎫=⎪⎝⎭,则C =?( D )A .(1)m ab -B .(1)n ab -C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1-A =?( D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭D .13235322111-⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是( B )A .111[()]()()T T T AB A B ---= B .111()A B A B ---+=+C .11()()k kA A --=(k 为正整数) D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m nA ⨯的秩为r ,则下述结论正确的是( D )A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?( C )A .0B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
2019华南理工平时作业:《线性代数与概率统计》作业题(解答)
《线性代数与概率统计》作业题一、计算题1. 计算行列式123312231 D=.解:2.计算行列式133353664xxx---+---.(密封线内不答题)3.计算行列式1214012110130131D -=.4.设1213A ⎛⎫= ⎪⎝⎭,1012B ⎛⎫= ⎪⎝⎭,求AB 与BA .5.设2()21f x x x=-+,1101A⎛⎫= ⎪⎝⎭,求矩阵A的多项式()f A.6.设矩阵263113111,112011011A B⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB.7.设101111211A⎛⎫⎪=- ⎪⎪-⎝⎭,求逆矩阵1-A.8.求224114113021121113312211422608A⎛⎫⎪----⎪⎪=⎪---⎪⎪---⎝⎭的秩.9.解线性方程组123123123 4254 225 x x xx x x⎪++=⎨⎪++=⎩.10.解线性方程组 ⎪⎩⎪⎨=+=++622452431321321x x x x x.11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.12.一箱中有50件产品,其中有5件次品,从箱中任取10件产品,求恰有两件次品的概率.13.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.14.某工厂生产一批商品,其中一等品点12,每件一等品获利3元;二等品占13,每件二等品获利1元;次品占16,每件次品亏损2元。
求任取1件商品获利X的数学期望()E X与方差()D X。
二、应用题15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量12,X X ,且分布列分别为: 1X 0 1 2 3 2X 0 1 2 3k P 0.4 0.3 0.2 0.1 k P 0.3 0.5 0.2 0若两人日产量相等,试问哪个工人的技术好?。
3平时作业:《线性代数与概率统计》作业题(答案)
13.设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2).某工厂生产一批商品,其中一等品点 ,每件一等品获利3元;二等品占 ,每件二等品获利1元;次品占 ,每件次品亏损2元。求任取1件商品获利X的数学期望 与方差 。
二、应用题
15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量 ,且分布列分别为:
0
1
2
3
0
1
2
3
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
若两人日产量相等,试问哪个工人的技术好?
《线性代数与概率统计》
作业题
一、计算题
1.计算行列式 .
2.计算行列式 .
3.计算行列式 .
4.设 , ,求 与 .
5.设 , ,求矩阵 的多项式 .
6.设矩阵 ,求 .
7.设 ,求逆矩阵 .
8.求 的秩.
9.解线性方程组 .
10.解线性方程组 .
11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.
华南理工线性代数与概率统计
1. 行列式?A.3B.4C.5D.6参考答案:B2. 用行列式的定义计算行列式中展开式,的系数。
A.1, 4B.1,-4C.-1,4D.-1,-4参考答案:B3. 计算行列式=()A.-8B.-7C.-6D.-5参考答案:B4. 行列式=()A.B.C.D.参考答案:B5. 设=,则?A.15|A|B.16|A|C.17|A|D.18|A|参考答案:D6. 齐次线性方程组有非零解,则=()A.-1B.0C.1D.2参考答案:C7. 设,,求=()A.B.C.D.参考答案:D8. 利用初等变化,求的逆=()A.B.C.D.参考答案:D9. 设,是其伴随矩阵,则=()A.B.C.D.参考答案:A10. 求的秩为()A.2B.3C.4D.5参考答案:D线性代数与概率统计·第二次作业1.用消元法解线性方程组,方程的解为:A.B.C.D.错误!未找到引用源。
参考答案:A2.齐次线性方程组有非零解,则必须满足()A.B.C.D.错误!未找到引用源。
参考答案:D3.非齐次线性方程组中未知量个数为n,方程个数为m,系数矩阵的秩为r,则()A.r=m时,方程组有解B.r=n时,方程组有唯一解C.m=n时,方程组有唯一解D.r<n时,方程组有无穷多个解错误!未找到引用源。
参考答案:A4.线性方程组:有解的充分必要条件是=()A.B.-1C.D.1错误!未找到引用源。
参考答案:A5.求齐次线性方程组的基础解系为()A.B.C.D.错误!未找到引用源。
参考答案:A6.设n元非齐次方程组的导出组仅有零解,则()A.仅有唯一解B.必有无穷多解C.必无解D.未必有解错误!未找到引用源。
参考答案:D7.设为矩阵,线性方程组的对应导出组为,则下面结论正确的是()A.若仅有零解,则有唯一解B.若有非零解,则有无穷多解C.若有无穷多解,则有非零解D.若有无穷多解,则仅有零解错误!未找到引用源。
参考答案:C8.写出下列随机试验的样本空间及下列事件的集合表示:从0,1,2三个数字中有放回的抽取两次,每次取一个,A:第一次取出的数字是0。
华工《线性代数与概率统计》(工程数学)随堂练习参考答案
《线性代数与概率统计》随堂练习参考答案?(....行列式?....用行列式地定义计算行列式中展开式,地系数=计算行列式=....行列式=....,=,,计算行列式=?有非零解齐次线性方程组有非零解地条件是=总有设, ,求=....,,设, 满足, 求=....,,,,设,n则=...对任意地为对称矩阵..若则设为,为且,,,则=......设,求=....=设均为....均为,都可逆,,,....设,则=?(. B.. D.,=阶矩阵可逆且,则=. B.. D.阶行列式地代数余子式之间地关系是....设矩阵地秩为.中有一个.中任意一个.中任意一个.中有一个地秩为?(求地秩为?(,=地秩,..用消元法解线性方程组,....有非零解....已知线性方程组:无解则=中未知量个数为设是矩阵齐次线性方程组仅有零解地充分条件是(.地列向量组线性相关.地列向量组线性无关.地行向量组线性无关.地行向量组线性无关=..求齐次线性方程组地基础解系是(....求齐次线性方程组地基础解系为()....元非齐次方程组地导出组仅有零解则()设为矩阵线性方程组地对应导出组为,.若仅有零解则有唯一解有非零解则有无穷多解.若有无穷多解则有非零解有无穷多解则仅有零解.样本空间为,事件“出现奇数点”为.样本空间为,事件“出现奇数点”为.样本空间为,事件“出现奇数点”为.样本空间为,事件“出现奇数点”为.用表示“第一次取到数字,第二次取到数字”则样本空间..事件可以表示为.事件可以表示为.事件可以表示为用表示“第次射中目标”试用表示...用表示“第次射中目标”试用表示....用表示“第次射中目标”试用表示........................,,,,=....,,,,=?( ) ................甲厂地产品占,乙厂地产品占,品占,甲厂产品地合格率为,乙厂产品地合格率为,格率为,............地分布函数为,用分别表示下列各概率:....令地分布函数.. B.. D.可以得为多少?........地分布列为,?()....,........则分别为(地密度函数为则常数....地密度函数为,...试求地概率为(........由某机器生产地螺栓长度服从,规定长度在内...地密度函数,说法正确地是(.=0...位移函数地多项式形式表示为已知标准正态分布地分布函数为,则有.设~,求概率分别为.X~,则.( )设行列式,则中元素地代数余子式=m n设,,则=.。
《线性代数与概率统计》作业题(答案)
《线性代数与概率统计》作业题(答案)第一部分 单项选择题 1.计算11221212x x xx ++=++?(A )A .12x x - B .12x x + C .21x x - D .212xx -2.行列式111111111D =-=--(B )A .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =?(B ) A .-1 B .0 C .1 D .2 4.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(A )A .-1B .0C .1D .2 5.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?( D )A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,0A C B⎛⎫=⎪⎝⎭,则C =?( D )A .(1)mab-B .(1)nab - C .(1)n mab+- D .(1)nmab-7.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1-A =?(D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是( B ) A .111[()]()()T T TAB A B ---=B .111()A B A B ---+=+C .11()()k kA A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m nA ⨯的秩为r ,则下述结论正确的是(D )A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零 10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(C ) A .0B .1 C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
华南理工大学《线性代数与概率统计》随堂练习及答案
第一章行列式·1.1 行列式概念1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:B第一章行列式·1.2 行列式的性质与计算1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:C4.(单选题)答题: A. B. C. D. (已提交)参考答案:D5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:B7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:B10.(单选题)答题: A. B. C. D. (已提交)参考答案:C第一章行列式·1.3 克拉姆法则1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:C第二章矩阵·2.2 矩阵的基本运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:D第二章矩阵·2.3 逆矩阵1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:D4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:B8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:D10.(单选题)答题: A. B. C. D. (已提交)参考答案:B第二章矩阵·2.4 矩阵的初等变换与矩阵的秩1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:C10.(单选题)答题: A. B. C. D. (已提交)参考答案:D11.(单选题)答题: A. B. C. D. (已提交)参考答案:B12.(单选题)答题: A. B. C. D. (已提交)参考答案:A13.(单选题)答题: A. B. C. D. (已提交)参考答案:B第三章线性方程组·3.1 线性方程组的解1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A第三章线性方程组·3.2 线性方程组解的结构1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:C第四章随机事件及其概率·4.1 随机事件1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B第四章随机事件及其概率·4.2 随机事件的运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为()A.0.8 ;B.0.85;C.0.97;D.0.96.答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.4 条件概率与事件的独立性1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:AA4.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.0.8 ; B.0.72 ; C.0.9 ; D.0.27 .答题: A. B. C. D. (已提交)参考答案:B5.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()A.0.9 ; B.0.72 ; C.0.98 ; D.0.7答题: A. B. C. D. (已提交)参考答案:C6.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.0.1 ; B.0.3 ; C.0.27 ; D.0.26答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.5 全概率公式与贝叶斯公式1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:C1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.2 离散型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率?A 0.1743;B 0.2743;C 0.3743;D 0.4743答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.3 连续型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A第五章随机变量及其分布·5.4 正态分布1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数与概率统计》
作业题
一、计算题
1. 计算行列式
123
312
231 D=.
解:
2.计算行列式
133
353
664
x
x
x
--
-+-
--
.
(
密
封
线
内
不
答
3.计算行列式1
214012110130
1
31
D -=
.
4.设1213A ⎛⎫=
⎪
⎝⎭,1012B ⎛⎫
= ⎪⎝⎭
,求AB 与BA .
5.设2
()21
f x x x
=-+,
11
01
A
⎛⎫
= ⎪
⎝⎭
,求矩阵A的多项式()
f A.
6.设矩阵
263113
111,112
011011
A B
⎡⎤⎡⎤
⎢⎥⎢⎥
==
⎢⎥⎢⎥
⎢⎥⎢⎥
-
⎣⎦⎣⎦
,求
AB.
7.设
101
111
211
A
⎛⎫
⎪
=- ⎪
⎪
-
⎝⎭
,求逆矩阵1-A.
8.求
224114
113021
121113
312211
422608
A
⎛⎫
⎪
----
⎪
⎪
=
⎪
---
⎪
⎪
---
⎝⎭
的秩.
9.解线性方程组
123
123
123 4254 225 x x x
x x x
⎪
++=
⎨
⎪++=
⎩
.
10.解线性方程组 ⎪⎩⎪
⎨=+=++622452431
321321x x x x x .
11.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.
12.一箱中有50件产品,其中有5件次品,从箱中任取10件产品,求恰有两件次品的概率.
13.设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.
14.某工厂生产一批商品,其中一等品点1
2
,每件一等品获利3元;二等
品占1
3
,每件二等品获利1元;次品占
1
6
,每件次品亏损2元。
求任取1
件商品获利X的数学期望()
E X与方差()
D X。
二、应用题
15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量12,X X ,且分布列分别为: 1X 0 1 2 3 2X 0 1 2 3
k P k P 0
若两人日产量相等,试问哪个工人的技术好。