竞赛立体几何

合集下载

竞赛试题选编之立体几何

竞赛试题选编之立体几何

竞赛试题选编之立体几何一.选择题(2005年全国高中数学联赛)空间四点A 、B 、C 、D 满足,9||,11||,7||,3||====DA CD BC AB 则⋅的取值( )A .只有一个B .有二个C .有四个D .有无穷多个 D C B A ABCD ''''-为正方体。

任作平面α与对角线C A '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l .则( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值(2004年高中数学联赛)顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆的圆心,AB OB ⊥,垂足为B ,OH PB ⊥,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长是( )A. 3B. 3C. 3D. 3(2003年高中数学联赛)在四面体ABCD 中,设AB =1,CD =3,直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 (A)23 (B)21 (C)31 (D)33 (2002年全国高中数学联赛)由曲线y x 42=,y x 42-=,4=x ,4-=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足1622≤+y x ,4)2(22≥-+y x ,4)2(22≥++y x旋转体的体积为2V ,则(A )2121V V =(B )2132V V = (C )21V V = (D )212V V = (2001年全国高中数学联赛)命题1:长方体中,必存在到各顶点距离相等的点;命题2:长方体中,必存在到各棱距离相等的点;1 AA 1 1 1 命题3:长方体中,必存在到各面距离相等的点;以上三个命题中正确的有(A )0个 (B )1个 (C )2个 (D )3个 若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是B(A )64 (B )66 (C )68 (D )70如图1,已知正方体ABCD -A 1B 1C 1D 1,点M 、N 分别在AB 1、BC 1上,且AM =BN .那么,B ①AA 1⊥MN ;②A 1C 1∥MN ; ③MN ∥平面A 1B 1C 1D 1; ④MN 与A 1C 1异面. 以上4个结论中,不正确的结论的个数为(A )1 (B )2 (C )3 (D )4 正方形纸片ABCD ,沿对角线AC 对折,使D 在面ABC 外,这时DB 与面ABC 所成的角一定不等于D(A )30° (B )45° (C )60° (D )90°空间中n (n ≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论①没有任何两个平面互相平行;②没有任何三个平面相交于一条直线;③平面间的任意两条交线都不平行;④平面间的每一条交线均与n -2个平面相交.其中,正确的个数为D(A )1 (B )2 (C )3 (D )4已知圆锥的全面积是它的内切球表面积的2倍,则圆锥侧面积和底面面积之比为( )(A )3:1 (B )2:1 (C )1:1 (D )1:2 长方体ABCD -A 1B 1C 1D 1,AC 1为体对角线.现以A 为球心,AB 、AD 、AA 1、AC 1为半径作四个同心球,其体积依次为V 1、V 2、V 3、V 4,则有C(A )V 4<V 1+V 2+V 3 (B )V 4=V 1+V 2+V 3(C )V 4>V 1+V 2+V 3 (D )不能确定,与长方体的棱长有关若空间四点,,,A B C D 满足8,10,13AB CD AC BD AD BC ======,则这样的三棱锥ABCD 共有(A )个.(A )0 (B )1 (C )2 (D )多于2如图,已知正方体ABCD -A 1B 1C 1D 1,过顶点A 1在空间作直线l ,使与直线AC 和BC 1所成的角都等于60°.这样的直线l 可以做B (A )4条 (B )3条 (C )2条 (D )1条圆锥的轴截面为等腰直角△SAB ,O 为底面圆心,C 为底面圆周上AB 的三等分点,AC=2CB ,则SA 与OC 的夹角为( )A.45°B.60°C.arcos 42D.arccos 43 四面体ABCD 的所有二面角均为锐角,相对的棱都两两相等,该四面体的六个二面角的平面角为αi (i =1,2,…,6)则∑=61cos i i α=( )A.1B.2C.4D.不是定值设一个四面体的体积为V 1,且它的各条棱的中点构成一个凸多面体,其体积为V 2.则12V V 为A (A )21 (B )32 (C )常数,但不等于21和32 (D )不确定,其值与四面体的具体形状有关 给定四棱锥S -ABCD ,其中底面四边形不是平行四边形,用一个与四条侧棱都相交的平面截这个四棱锥,截得四边形A'B'C'D',记集合M ={四边形A'B'C'D'为平行四边形},则有 A.M 为空集 B.M 为无穷集合 C.M 为单元素集合 D.M 的元素个数不确定 正方形纸片ABCD ,沿对角线AC 对折,使D 点在面ABC 外,这时DB 与面ABC 所成的角一定不等于( ) A.30° B.45° C.60° D.90° 长方体ABCD -A ’B ’C ’D ’中,AB ’=22,AD ’=17,则AC 的取值范围是 A.(17-22,5) B.(3,17+22) C.(3,5) D.(17-22,17+22) 如图,五面体ABC -A'B'C'中,AB =A'B',则AA',BB',CC'共点的充要条件是 A.BC ∥B'C'且AC ∥A'C' B.BC ≠B'C'且AC ≠A'C' C.AA'≠BB',且∠BAA'≠∠B'A'A D.面ABC 与面A'B'C'不平行已知边长为a 的菱形ABCD ,3A π∠=,将菱形ABCD 沿对角线折成二面角θ,已知2[,]33ππθ∈.则两对角线距离的最大值是( )(A )32a (B(C(D )34a A B C DD'C' B' A'A A' B' C' BCa 、b 是异面直线,直线c 与a 所成的角等于c 与b 所成的角,则这样的直线c 有D(A )1条 (B )2条 (C )3条 (D )无数条一圆台的上底半径为cm 1,下底半径为cm 2,母线AB 为cm 4,现有一蚂蚁从下底面圆周的A 点,绕圆台侧面(即要求与圆台的每条母线均相交)向上底面圆周的B 点爬行的最短路线是 (A). (A)3234π+ (B)3434π+ (C)3232π+ (D)3432π+ 二.填空题 (2005年高中数学联赛)如图,四面体DABC 的体积为61,且满足,32,45=++︒=∠ACBC AD ACB 则=CD .(2005年高中数学联赛)如图,四面体DABC 的体积为61,且满足,32,45=++︒=∠ACBC AD ACB 则=CD .(2004年高中数学联赛)如图、正方体1111ABCD A B C D -中,二面角11A BD A --的度数是____________。

高中数学竞赛专题讲义之立体几何(传统方法和向量方法)

高中数学竞赛专题讲义之立体几何(传统方法和向量方法)

解立体几何(传统方法)知识精要1.直线与平面问题,主要是对空间中的直线与平面的位置关系、距离、角以及它们的综合问题进行研究.这些问题往往与代数、三角、组合等知识综合,因而在解题过程中,要力求做到概念清晰,方法得当,转化适时,突破得法.2.四面体是一种最简单的多面体,它的许多性质可以用类比的思想从三角形的性质而得来.较复杂的多面体常转化为四面体问题加以解决.解决这一类问题的所常用的数学思想方法有:变换法、类比和转化、体积法、展开与对折等方法.3.解决旋转体的有关问题要注意截面的知识的应用.在解决球相切问题时,注意球心连线通过切点,球心距等于两球半径之和.因此,研究多球相切问题时,连结球心,从而转化为多面体问题.例题1 从正方体的棱和各个面上的对角线中选出k条,使得其中任意两条线段所在直线都是异面直线,求k的最大值.解答考察如图所示的正方体上的四条线段AC,BC1,D1B1,A1D,它们所在直线两两都是异面直线.又若有5条或5条以上两两异面的直线,则它们的端点相异且个数不少于10,与正方体只有8个顶点矛盾.故K的最大值是4.练习1 在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共计27个点中,问共线的三点组的个数是多少解答两端点都为顶点的共线三点组共有87282⨯=个;两端点都为面的中心共线三点组共有6132⨯=个;两端点都为各棱中点的共线三点组共有123182⨯=个,且没有别的类型的共线三点组,所以总共有2831849++=个.例题2 已知一个平面与一个正方体的12条棱的夹角都等于α,求sinα.解答如右图所示,平面BCD与正方体的12条棱的夹角都等于α,过A作AH垂直平面BCD.连DH,则ADHα=∠.设正方体的边长为b,则2sin603DH==3AH==所以sin sin3AHADHADα=∠==.练习2 如图所示,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得(0)AE CFEB FDλλ==<<+∞,记()f λλλαβ=+,其中λα表示E F 与AC 所成的角,λβ表示E F 与BD 所成的角,证明()0f λ'=,即()f λ为常数. 解答 因ABCD 是正四面体,故AC 垂直BD ,作EG 平行AC 交BC 于G ,连G F ,则GEF λα=∠,且CG AE CFGB FD FD==,所以G F 平行BD .所以G F 垂直EG ,且EFG λβ=∠.所以()f λ为常数.例题3 三棱锥P -ABC 中,若棱P A =x ,其余棱长均为1,探讨x 是否有最值.解答当P -ABC 为三棱锥时,x 的最小极限是P 、A 重合,取值为0,若PBC ∆绕BC 顺时针旋转,P A 变大,最大极限是P 、A 、B 、C 共面时,P A 为菱形ABPC 的对角线,.所以无最值.练习3若正三棱锥底面棱长棱长均为1,探讨其侧棱否有最值.解答 若P 在底面的射影为O ,易知PO 越小,侧棱越小.故P 、O 重合时,侧棱取最小极限值3,PO 无穷大时,侧棱也无穷大.所以无最值. 例题4在单位正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P 使得AP +D 1P 最短,求AP +D 1P 的最小值.解答 将等腰直角三角形AA 1B 沿A 1B 折起至1A A B ',使三角形1A A B '与四边形A 1BCD 1共面,联结1A D ',则1A D '的长即为AP +D 1P 的最小值,所以,1A D '==练习4已知单位正方体ABCD -A 1B 1C 1D 1的对棱BB 1、D 1上有两个动点E 、F ,BE =D 1F=λ(102λ<≤).设E F 与AB 所成的角为α,与BC 所成的角为β,求αβ+的最小值. 解答 当12λ=时,2παβ+=.不难证明()f αβλ+=是单调减函数.因此αβ+的最小值为2π.例题5 在正n 棱锥中,求相邻两侧面所成的二面角的取值范围.解答 当顶点落在底面的时候,相邻两侧面所成的二面角为π.当顶点在无穷远处的时候,正n 棱锥变为正n 棱柱,这时相邻两侧面所成的二面角为(2)n nπ-.练习5 已知直平行六面体ABCD -A 1B 1C 1D 1的各条棱长均为3,角BAD =600,长为2的线段MN 的一个端点M 在DD 1上运动,另一端点N 在底面ABCD 上运动,求MN 的中点P 的轨迹(曲面)与共一顶点D 的三个面所围成的几何体的体积.解答 联结DP 、DN ,在三角形MDN 为直角三角形,且DP =MN /2=1,又由已知角BAD =600,角ADC =1200,所以点P 的轨迹以点D 为球心,半径为1的1/6球面,所以其与顶点D 以及三个面围成的几何体的体积为31421639ππ⨯⨯=.立体几何(向量方法)知识精要4. 证明两条直线平行,只需证明这两条直线上的向量共线(即成倍数关系).证明两条直线平行,只需证明这两条直线上的向量的数量积等于零.5. 通过法向量,把线面、面面的角转化为线线的角.从而可以利用公式cos ||||θαβαβ=求解.6. 建立空间直角坐标系.例题1如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .(Ⅰ)求证OD ∥平面PAB ;(Ⅱ) 求直线OD 与平面PBC 所成角的大小. 解答OP ABC OA OC AB BC ⊥== 平面,,,.OA OB OA OP OB OP ∴⊥⊥⊥ ,,()O OP z O xyz -以为原点,射线为非负轴,建立空间直角坐标系如图,,0,0,,0,,0,0AB a A B C ⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设,则 ()0,0,.OP h P h =设,则 ()D PC 为的中点,Ⅰ212,0,,,0,422OD a h PA a h ⎛⎫⎛⎫∴=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又,1...2OD PA OD PA OD PAB ∴=-∴∴ 平面∥∥()2,PA a =Ⅱ,h ∴=,OD ⎛⎫∴=- ⎪ ⎪⎝⎭,PBC n ⎛=- ⎝可求得平面的法向量210cos ,OD n OD n OD n ⋅∴〈〉==⋅ OD PBC θ设与平面所成的角为,210sin cos ,OD n θ=〈〉=则 OD PBC ∴ 与平面所成的角为. 练习1如图,已知长方体1111ABCD A B C D -,12,1AB AA ==,直线BD 与平面11AA B B 所成的角为030,AE 垂直BD 于,E F 为11A B 的中点. (Ⅰ)求异面直线AE 与BF 所成的角;(Ⅱ)求平面BDF 与平面1AA B 所成二面角(锐角)的大小; (Ⅲ)求点A 到平面BDF 的距离解答 在长方体1111ABCD A B C D -中,以AB 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴建立空间直 角坐标系如图.由已知12,1AB AA ==,可得(0,0,0),(2,0,0),(1,0,1)A B F .又AD ⊥平面11AAB B ,从面BD 与平面11AA B B 所成的角即为030DBA ∠=又2,,1,3ABAE BD AE AD =⊥==从而易得1(2E D (Ⅰ)13(,,0),(1,0,1)2AE BF ==-cos ,AE BF AEBF AE BF∴<>=14-==即异面直线AE 、BF 所成的角为4(Ⅱ)易知平面1AA B 的一个法向量(0,1,0)m =(,,)n x y z =是平面BDF 的一个法向1量.(BD =-由n BF n BD ⎧⊥⎪⎨⊥⎪⎩n BF n BD ⎧=⎪⇒⎨=⎪⎩203x x x y -+=⎧⎪⇒⎨-=⎪⎩x zy=⎧⎪⇒=取(1,3,1)n =∴3cos ,15m n m n m n <>===⨯即平面BDF 与平面1AA B 所成二面角(锐角)大小为(Ⅲ)点A 到平面BDF 的距离,即AB 在平面BDF 的法向量n 上的投影的绝对值所以距离||cos ,d AB AB n =<>||||||AB n AB ABn =||||55AB n n ===所以点A 到平面BDF 5例题2 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2(Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.解答(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB . 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图3,则相关各点的坐标是A (3,0,0),B (0,3,0),C (0,1,3)O 1(0,0,3).从而.0333),3,3,0(),3,1,3(11=⋅+-=⋅-=-=BO BO 所以AC ⊥BO 1.(II )解:因为,03331=⋅+-=⋅OC BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量.设),,(z y x =是0平面O 1AC 的一个法向图1量,由,3.0,033001=⎩⎨⎧==++-⇒⎪⎩⎪⎨⎧=⋅=⋅z y z y x C O n 取得)3,0,1(=n . 设二面角O —AC —O 1的大小为θ,由、1BO 的方向可知=<θ,1BO >,所以COS <=cos θ,1BO .43||||1=⋅BO n 即二面角O —AC —O 1的大小是.43arccos练习2 如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点(Ⅰ)求证1AC BC ⊥; (Ⅱ) 求证11AC CDB 平面;(Ⅲ)求异面直线1AC 与1B C 所成角的余弦值解答∵直三棱锥111ABC A B C -底面三边长3,4,5A C B C A B ===,1,,AC BC CC 两两垂直如图建立坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0) (Ⅰ)11(3,0,0),(0,4,4)AC BC =-=,11110,AC BC AC BC ∴⋅=∴⊥(Ⅱ)设1CB 与1C B 的交点为E ,则E (0,2,2)13(,0,2),(3,0,4)2DE AC =-=-111,//2DE AC DE AC ∴=∴111,,DE CDB AC CDB ⊂⊄平面平面1//AC CDB ∴平面(Ⅲ)11(3,0,4),(0,4,4),AC CB =-=1111112cos ,5||||AC CBAC CB AC CB ∴<>==∴异面直线1AC 与1B C 5例题3 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求SINA .1A解答 以B 为坐标原点,为x 轴正向建立直角坐标指法,且不妨设点A 位于第一象限由630sin =B,则44(cos ,sin )()3BA B B ==,设=(x ,0),则43(,6x BD +=,由条件得5)352()634(||22=++=x BD ,从而x=2,314-=x (舍去),故2(,33CA =-.于是 141439809498091698098||||cos =+⋅++-=⋅=CA BA A ∴1470cos 1sin 2=-=A A 练习3 在平面上给定ABC ∆,对于平面上的一点P ,建立如下的变换 :f AP 的中点为Q ,BQ 的中点为R ,CR 的中点为'P ,'()f P P =,求证 f 只有一个不动点(指P 与'P 重合的点).解答:依提意,有12AQ AP =,且111()224AR AB AQ AB AP =+=+,'1111()2248AP AC AR AC AB AP =+=+++,要使'P 与P 重合,应111248AP AC AB AP =++,得1(42)7AP AC AB =+,对于给定的ABC ∆,满足条件的不动点P 只有一个.例题4 如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC . 已知,21,2,2===AE CD PD 求 (Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E —PC —D 的大小.解答 (Ⅰ)以D 为原点,DA 、、DP 分别为x 、y 、z 轴建立空间直角坐标系.由已知可得D (0,0,0),P (0,0,)2, C (0,2,0)设),0,2,(),0)(0,0,(x B x x A 则>).0,23,(),2,21,(),0,21,(-=-=x x x E由0=⋅⊥CE PE 得,即.23,0432==-x x 故 由CE DE CE DE ⊥=-⋅=⋅得0)0,23,23()0,21,23(, 又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线,易得1||=,故异面直线PD 、CE 的距离为1.(Ⅱ)作DG ⊥PC ,可设G (0,Y ,Z ).由0=⋅得0)2,2,0(),,0(=-⋅z y ,即),2,1,0(,2==y z 故可取作EF ⊥PC 于F ,设F (0,M ,N ),则 ).,21,23(n m EF --= 由0212,0)2,2,0(),21,23(0=--=-⋅--=⋅n m n m PC EF 即得, 又由F 在PC 上得).22,21,23(,22,1,222-===+-=n m m n 故 因,,PC DG PC EF ⊥⊥故平面E —PC —D 的平面角θ的大小为向量与的夹角. 故,4,22||||cos πθθ===EF DG 即二面角E —PC —D 的大小为.4π练习4如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB =2,BB 1=2,BC =1,∠BCC 1=3π,求: (Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.解答(I )以B 为原点,1BB 、BA 分别为Y 、Z 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π,在三棱柱ABC —A 1B 1C 1中有B (0,0,0),A (0,0,2),B 1(0,2,0),11)0,23,23(),0,21,23(1C C - 设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E )0,2,23()2,,23(0a a --⋅--=,432)2(432+-=-+=a a a a .,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB BE E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥面BCC 1B 1,故AB ⊥BE . 因此BE 是异面直线AB 、EB 1的公垂线, 则14143||=+=BE ,故异面直线AB 、EB 1的距离为1. (II )由已知有,,1111EB A B EB ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量A B 与11的夹角..22tan ,32||||cos ),2,21,23(),2,0,0(111111===--===θθ即故因A B EA A B。

数学竞赛教案讲义立体几何

数学竞赛教案讲义立体几何

数学竞赛教案讲义-立体几何第一章:立体几何基础1.1 空间点、线、面的位置关系点、直线、平面的基本性质点与直线、直线与直线、直线与平面、平面与平面的位置关系1.2 立体几何的基本概念棱柱、棱锥、棱台、球的定义与性质底面、侧面、顶点的概念空间角、二面角的概念与计算第二章:空间几何图形2.1 棱柱直棱柱、斜棱柱的性质棱柱的面积、体积计算2.2 棱锥直棱锥、斜棱锥的性质棱锥的面积、体积计算2.3 棱台棱台的性质棱台的面积、体积计算2.4 球球的性质球的面积、体积计算第三章:立体几何中的线面关系3.1 直线与平面的关系直线与平面平行、直线在平面内的判定与性质直线与平面相交的性质3.2 直线与直线的关系平行线、相交线的性质异面直线、共面直线的性质3.3 平面与平面的关系平面与平面平行的判定与性质平面与平面相交的性质第四章:立体几何中的角与距离4.1 空间角线线角、线面角、面面角的定义与计算空间角的性质与计算方法4.2 距离点与点、点与直线、点与平面的距离计算直线与直线、直线与平面的距离计算第五章:立体几何的综合应用5.1 立体几何图形的放缩与旋转放缩与旋转的性质与方法放缩与旋转在立体几何中的应用5.2 立体几何中的定理与性质欧拉公式、施瓦茨公式等定理的应用立体几何中的重要性质与定理5.3 立体几何与解析几何的综合应用利用解析几何的知识解决立体几何问题立体几何与解析几何的相互转化第六章:立体几何中的立体角与对角线6.1 立体角立体角的定义与性质立体角的计算方法6.2 对角线多面体的对角线长度计算对角线与几何体的性质关系第七章:立体几何中的不等式与最值7.1 立体几何中的不等式利用立体几何图形性质证明不等式利用不等式解决立体几何问题7.2 立体几何中的最值问题利用几何方法求解最值问题利用代数方法求解最值问题第八章:立体几何中的视图与投影8.1 视图正视图、侧视图、俯视图的定义与性质利用视图研究几何体的性质8.2 投影平行投影、中心投影的性质利用投影解决立体几何问题第九章:立体几何中的定理与性质(续)9.1 立体几何中的定理与性质布雷特施奈德定理、莫恩定理等定理的应用立体几何中的其他重要性质与定理9.2 立体几何中的特殊几何体圆柱、圆锥、球台的性质与应用利用特殊几何体解决立体几何问题第十章:立体几何与实际应用10.1 立体几何在实际应用中的案例分析利用立体几何解决工程、物理、艺术等领域的问题立体几何在现实生活中的应用举例10.2 立体几何竞赛题解析分析历年数学竞赛中的立体几何题目讲解解题思路与方法,提高解题能力10.3 立体几何练习题与答案解析提供立体几何练习题,巩固所学知识分析练习题答案,讲解解题过程与思路第十一章:立体几何中的坐标计算11.1 空间点的坐标空间直角坐标系的建立点的坐标表示与运算11.2 空间向量向量的定义与运算向量与立体几何的关系11.3 空间几何体的坐标表示棱柱、棱锥、棱台、球的坐标表示利用坐标解决立体几何问题第十二章:立体几何中的向量计算12.1 向量的线性运算向量的加法、减法、数乘运算向量共线与垂直的判定与性质12.2 向量的数量积与向量积向量的数量积定义与性质向量的向量积定义与性质12.3 空间向量在立体几何中的应用利用向量计算空间角与距离利用向量解决立体几何中的线面关系问题第十三章:立体几何中的解析几何方法13.1 解析几何与立体几何的关系利用解析几何方法解决立体几何问题解析几何在立体几何中的应用举例13.2 参数方程与极坐标方程立体几何图形的参数方程表示利用参数方程与极坐标方程解决立体几何问题第十四章:立体几何中的不等式与最值(续)14.1 立体几何中的不等式问题利用不等式性质解决立体几何问题不等式在立体几何中的应用举例14.2 立体几何中的最值问题(续)利用几何方法求解最值问题利用代数方法求解最值问题第十五章:立体几何的综合与应用15.1 立体几何与其他数学学科的综合立体几何与代数、分析、概率等学科的关系立体几何在交叉学科中的应用15.2 立体几何在实际应用中的案例分析(续)立体几何在工程、物理、艺术等领域中的应用案例立体几何在其他领域中的应用举例15.3 立体几何竞赛题解析与练习题答案解析(续)分析历年数学竞赛中的立体几何题目讲解解题思路与方法,提高解题能力提供立体几何练习题,巩固所学知识分析练习题答案,讲解解题过程与思路重点和难点解析重点:理解并掌握立体几何的基本概念、立体几何图形、空间几何图形、立体几何中的线面关系、立体几何中的角与距离、立体几何中的立体角与对角线、立体几何中的不等式与最值、立体几何中的视图与投影、立体几何中的定理与性质、立体几何中的坐标计算、立体几何中的向量计算、立体几何中的解析几何方法、立体几何中的不等式与最值(续)、立体几何的综合与应用。

数学竞赛的秘诀如何应对高中数学中的立体几何题

数学竞赛的秘诀如何应对高中数学中的立体几何题

数学竞赛的秘诀如何应对高中数学中的立体几何题数学竞赛中,立体几何题是考察学生几何思维和解题能力的重要一环。

对于高中学生来说,合理的应对立体几何题是提高竞赛成绩的关键。

本文将探讨数学竞赛中应对高中数学立体几何题的秘诀和解题方法。

一、了解基本概念和性质在应对立体几何题之前,首先要对基本概念和性质有所了解。

高中立体几何题主要涉及到立体图形的表面积、体积、几何关系等方面的知识点。

学生应熟悉各种常见几何体的特点和性质,例如长方体、正方体、圆柱体、圆锥体等的公式和计算方法,并掌握它们之间的转化关系。

二、掌握解题方法和技巧1. 画出清晰的图形:解决立体几何题的关键是明确图形的形状和结构,因此应该通过手绘或者几何软件画出准确、清晰的图形。

图形的细节对于解题过程及结果都有重要影响,因此务必细心且准确。

2. 利用平行关系:在解题过程中,多利用平行关系推导出所需的条件。

例如,当题目给出某平面与几个直线平行时,可以运用平行关系推导出更多的几何关系,从而简化解题过程。

3. 运用类比和类比思维:类比思维可以帮助发现问题间的相似性,找到解决问题的通用方法。

利用已经学过的解题思路和方法,将新题目与旧题目作类比,找出解题的线索和方向。

4. 运用三维图形展开:对于一些立体几何题,将其展开成二维图形有助于解题。

通过展开图形,可以更好地观察和分析几何关系,从而解决问题。

5. 利用空间想象力:立体几何题需要学生具备较强的空间想象力。

在解题过程中,可以通过空间构想或者辅助手段,如拼图、模型等来帮助理解和解决问题。

三、创造思维和分析能力高中立体几何题往往需要学生具备较高的创造思维和分析能力。

学生应注重培养思维的灵活性,善于抽象和推理。

在解题过程中,可以通过数学归纳法、反证法等方法,积极探索解题的多种可能性和方法。

四、重视实践和练习掌握立体几何题的秘诀,离不开实践和练习。

只有在大量的练习中,才能更好地掌握解题技巧和方法,并在竞赛中更加得心应手。

竞赛辅导-立体几何

竞赛辅导-立体几何
B1 C 1 CB ⊥ 底面 ABC , 且 AC 1 ⊥ BC . 距离; ( 1) 求异面直线 AA1 与 B1C 1 间的 距离; )
( 2) 求侧面 A1 B1 BA 与底面 ABC 所成二 ) 面角的度数. 面角的 度数.
19
变式五
20
21
练习 1: (1998 年全国高中数学联赛题 年全国高中数学联赛题) 设 E、F、G 分 别 是 正 四 面 体 ABCD 的 棱 AB、BC、CD 的中点 , 则二 面角 C ─FG ─E 的大 的中点, 小是( 小是( ) 6 π 3 (A) arc sin (B) + arc cos 3 2 3
所在的半平面为α 所在的半平面为 , 所在的半平面为 ,∆C D1 B所在的半平面为 β,BD1 所在的直线是 α与 β 的交线。求二面角 α—BD1 —β 与 的交线。 C1 的度数 分析 因为二面角的平面角的度数是 D1
由相应平面角的来表示的, 由相应平面角的来表示的,所以解 题的一个方向是找平面角。 题的一个方向是找平面角。 A1 B1
二、 平 面 化 的 思 考
在空间,选取一个恰当的平面, 在空间,选取一个恰当的平面,使问题在这个平面上获得 突破性的进展,甚至全部解决,是一种自然而重要的思考, 突破性的进展,甚至全部解决,是一种自然而重要的思考,怎样 选取平面呢?有以下几个主要方法 选取平面呢?有以下几个主要方法 1、 截面法 、 2、隔离法 、 3、展平法 、 4、投影法 、
D
(C)
π
2
− arctan 2
(D) π − arctan 2
22
三、 图 形 变 换
例3、若空间四边形的两组对边相等,则两条对角线的中点 、若空间四边形的两组对边相等,

高中数学竞赛专题练习:立体几何

高中数学竞赛专题练习:立体几何

竞赛试题选讲之 立体几何一、选择题部分1. (吉林预赛)正方体ABCD -A 1B 1C 1D 1中,过顶点A 1作直线l ,使l 与直线AC 和直线BC 1所成的角均为60°,则这样的直线l 的条数为 ( C ) A. 1 B. 2 C. 3 D. 大于32、(陕西赛区预赛)如图2,在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面AB 11C D 均成030角,则这样的直线l 的条数为 ( B )A. 1 B .2 C. 3 D .43.(集训试题)设O 是正三棱锥P-ABC 底面是三角形ABC 的中心,过O 的动平面与PC 交于S ,与PA 、PB 的延长线分别交于Q 、R ,则和式PSPR PQ 111++( ) A .有最大值而无最小值B .有最小值而无最大值C .既有最大值又有最小值,两者不等D .是一个与面QPS 无关的常数解:设正三棱锥P-ABC 中,各侧棱两两夹角为α,PC 与面PAB 所成角为β,则v S-PQR =31S △PQR ·h=21(31PQ ·PRsin α)·PS ·sin β。

另一方面,记O 到各面的距离为d ,则v S-PQR =v O-PQR +v O-PRS +v O-PQS ,31S △PQR ·d=31△PRS ·d+31S △PRS ·d+31△PQS ·d=213⋅d PQ ·PRsin α+213⋅d PS ·PRsin α+213⋅d PQ ·PS ·sin α,故有:PQ ·PR ·PS ·sin β=d(PQ ·PR+PR ·PS+PQ ·PS),即dPS PR PQ βsin 111=++=常数。

数学竞赛教案讲义立体几何

数学竞赛教案讲义立体几何

数学竞赛教案讲义-立体几何教案章节:一、立体几何基本概念1.1 空间点、线、面的基本定义及性质1.2 平面、直线、圆锥、球等基本几何体的性质和方程1.3 空间向量与立体几何的关系二、立体几何中的角度和距离2.1 点与点、点与线、点与面之间的距离公式2.2 线与线、线与面之间的角度和距离公式2.3 空间中的平行公理和推论三、立体几何中的体积和表面积3.1 棱柱、棱锥、圆柱、圆锥等几何体的体积计算公式3.2 棱柱、棱锥、圆柱、圆锥等几何体的表面积计算公式3.3 空间几何体的对称性和轴截面四、立体几何中的定理和性质4.1 线面垂直、线面平行、面面垂直、面面平行等定理及其应用4.2 三垂线定理、射影定理等的重要性质和应用4.3 空间几何中的等体积转换和等角转换五、立体几何在数学竞赛中的应用题型及解题策略5.1 立体几何与解析几何的综合题型5.2 立体几何中的构造题型5.3 立体几何中的极限与最值问题5.4 立体几何中的几何计数问题六、立体几何中的坐标系和变换6.1 空间直角坐标系的定义和性质6.2 坐标变换公式及应用6.3 利用坐标系解决立体几何问题七、立体几何中的视图和投影7.1 平行投影和中心投影的定义和性质7.2 三视图的画法和性质7.3 利用视图和投影解决立体几何问题八、立体几何中的定积分和面积计算8.1 立体几何中的定积分定义和性质8.2 利用定积分计算立体几何体的表面积和体积8.3 立体几何中的面积计算方法和技巧九、立体几何中的概率和组合问题9.1 立体几何中的几何概率定义和性质9.2 利用几何概率解决立体几何问题9.3 立体几何中的组合问题和解题策略十、立体几何在数学竞赛中的应用实例解析10.1 立体几何与解析几何的综合实例解析10.2 立体几何中的构造实例解析10.3 立体几何中的极限与最值问题实例解析10.4 立体几何中的几何计数问题实例解析重点和难点解析一、立体几何基本概念重点和难点解析:空间点、线、面的关系及性质是立体几何的基础,理解并熟练运用这些基本概念对于解决复杂立体几何问题至关重要。

奥数挑战平面与立体几何

奥数挑战平面与立体几何

奥数挑战平面与立体几何奥数挑战:平面与立体几何奥数(奥林匹克数学竞赛)作为一项旨在培养学生数学能力和解决问题能力的竞赛,常常涵盖了各个数学领域的题目。

其中,平面与立体几何一直是奥数考察的重要领域之一。

本文将介绍平面与立体几何的基本知识和解题思路,希望对参与奥数竞赛的同学有所帮助。

1. 平面几何平面几何是研究平面内点、线、面及其间的相互关系的数学分支。

在奥数竞赛中,常见的平面几何题目类型包括线段相交、平行线、垂直线、三角形性质等。

下面就以一些常见的平面几何题型为例进行介绍。

1.1 线段相交当题目给出若干条线段,要求求出它们相交的情况或者计算相交部分的长度时,可以利用线段相交的充分必要条件:两条线段分别有一个端点在对方的延长线上,并且另外两个端点夹在另外两条线段的延长线的两侧。

根据这个条件,可以推导出判断线段相交的方法,进而解决相交问题。

1.2 平行线和垂直线平行线和垂直线是平面几何中的基本概念。

当题目中出现平行线和垂直线时,可以利用平行线之间的性质和垂直线之间的性质来解题。

例如,利用平行线之间的性质可以判断两条线段是否平行,而利用垂直线之间的性质可以判断两条线段是否垂直。

1.3 三角形性质三角形是平面几何中最基本的图形之一。

在奥数竞赛中,常常需要根据三角形的性质来解题。

例如,利用三角形的内角和为180度的性质可以判断三角形是否成立;利用三角形的相似性质可以计算未知边长或者角度的值等。

2. 立体几何立体几何研究的是三维空间中的点、线、面及其间的相互关系。

在奥数竞赛中,立体几何的题目往往涉及到关于体积、表面积、相似、全等等的计算和推理。

下面就以一些常见的立体几何题型为例进行介绍。

2.1 体积计算计算立体图形的体积是立体几何中的基本题型之一。

常见的题目类型包括计算正方体、长方体、圆柱体、圆锥体、球体等图形的体积。

解决这类问题时,可以利用各种立体图形的体积公式来计算。

2.2 表面积计算计算立体图形的表面积也是立体几何中的一个重要题型。

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法.一、求角度这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90︒︒;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=⋅得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=⋅.分析:如图,设射线OA 任意一点A ,过A 作AB α⊥于点B ,又作BC OC ⊥于点C ,连接AC .有:cos ,cos ,cos ;OC OB OCOA OA OBαβγ=== 所以,cos cos cos αβγ=⋅.评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得:()0AE CFEB FDλλ==<<∞,记()f λλλαβ=+, αOC BAF EDCBAG其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()f λ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少; (C )()fλ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.` 分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=︒例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则sin α= .分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于α即可.如图所示的平面A BD '就是合乎要求的平面,于是:sin 3α=二、求体积这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高例十五、(2003年全国联赛一试)在四面体ABCD 中,设1,AB CD ==直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 ()()()(11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1V=3S h ⋅⋅.从题目所给条件看,已知长度的两条线段分别位于两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:111sin 362A BCD A BDE D ABE BDE V V V S h AB BE ABE h ---∆====⋅⋅∠⋅=例十六、(2002年全国联赛一试)由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所ODCBAD 'C 'B ' A 'EDCBA得旋转体的体积为V 1,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则: (A )V 1=12V 2; (B )V 1=23V 2; (C )V 1=V 2; (D )V 1=2V 2; 分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:取()44y a a =-≤≤,则:()21162164S aa ππππ=-⋅⋅=-当0a <时:()()()22221642164S aa a ππππ=⋅--⋅-+=+ 当0a >时:()()()22221642164S a a a ππππ=⋅--⋅--=-显然,12S S =,于是有:12V V =.例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:222r a =∴3343424V a a π⎛⎫=⋅⋅= ⎪ ⎪⎝⎭练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:3h a ===,所以,,412R a r ==.例十八、(1999年全国联赛一试)已知三棱锥S--ABC 的底面为正三角形,A 点在侧面SBC 上的射影H 是∆SBC 的垂心,二面角H-AB-C 的平面角等于30︒,SA=.那么,三棱锥S-ABC 的体积为 .分析:在求解立体几何问题时,往往需要首先明白所要 考查对象的图形特点.连接BH 并延长交SC 于D ,连AD . ∵H 为∆SBC 的垂心∴BD ⊥SC , 且 HD ⊥SC ,故 AD ⊥SC ,SC ⊥平面ABC ∴SC ⊥AB作SO ⊥平面ABC 于O ,连接CO 并延长交AB 于E ,易知:CE ⊥AB ,连DE . ∵AB=AC∴HB=HC ,即A 在平面SBC 内的射影H 在线段BC 的垂直平分线上,而点H 是∆SBC 的垂心,可知∆SBC 为SB=SC 的等腰三角形.∴S 在平面ABC 内的射影O 在线段BC 的垂直平分线上.故射影O 为∆ABC 的中心,三棱锥S —ABC 为正三棱锥.设底面边长为2a ,则,ROEDC APrOED HCAS B∵SA=SB=SC=23 ∴SO=3,OC=233=CE=233a ∴11139333333224S ABCABC V S h -∆==⨯⨯⨯⨯⨯=例十九、(1998年全国联赛一试)ABC ∆中,90,30,2C B AC ∠=︒∠=︒=,M 是AB 的中点.将ACM ∆沿CM 折起,使A 、B 两点间的距离为22A —BCM 的体积等于 .分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,问题中经常会涉及折叠图形形成二面角,在折叠前作一条直线与折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.如图,作BD⊥CM的延长线相交于D,AF⊥CM于F,并延长到E,使EF=BD,连BE.显然,AF=EF=BD= EB=DF=2,所以:A E2=AB2-EB2=8-4=4三棱锥A—BCM的高即点A到平面BCM的距离也就是等腰∆AEF中点A到边EF的距离.根据面积相等可求得:3h==∴111323V=⋅⋅=例二十、(1995年全国联赛一试)设O是正三棱锥P—ABC底面△ABC的中心,过O的动平面与P—ABC的三条侧棱或其延长线的交点分别记为Q、R、S,则和式111PQ PR PS++(A)有最大值而无最小值;(B)有最小值而无最大值;(C)既有最大值又有最小值,且最大值与最小值不等;(D)是一个与平面QRS位置无关的常量.分析:借助于分割思想,将三棱锥P—QRS划分成三个以O为顶点,以三个侧面为FF MMEEDDBB CCAAOSRQCBAP底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设QPR ∠=RPS SPQ α∠=∠=,于是有:()13P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----∆∆∆=++=++⋅ ()1sin 6PQ PR PR PS PS PQ h α=⋅+⋅+⋅⋅⋅ 又:1sin sin 6P QRS Q PRS V V PQ PR PS αθ--==⋅⋅⋅⋅,其中θ为PQ 与平面PRS 所成的角.()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴⋅+⋅+⋅⋅⋅=⋅⋅⋅⋅于是得:111PQ PR PS ++sin hθ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:12DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱 锥的外接球的球心.例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 . 分析:本题可以采用构造法求解.考查图中的 四条线段:A 1D 、AC 、BC 1、B 1D 1,显然其中任意GFMED 'DCBA SH A 1DCD 1C 1B 1两条都是异面直线.另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, 因为5条线段中任意两条均为异面直线,所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k =.例二十三、(1991年全国联赛一试)设正三棱锥P —ABC 的高为PO ,M 为PO 的中点,过AM 作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比. 分析:取BC 的中点D ,连接PD 交AM 于G ,设 所作的平行于BC 的平面交平面PBC 于EF ,由 直线与平面平行的性质定理得:EF ∥BC ,连接AE ,AF ,则平面AEF 为合乎要求的截面. 作OH ∥PG ,交AG 于点H ,则:OH=PG .51112BC PD PG GD GD GD AD EF PG PG PG OH AO +===+=+=+=; 故:2425A PEF PEF A PBC PBC V S EF V S BC -∆-∆⎛⎫=== ⎪⎝⎭;于是:421A PEF A EFBC V V --=. 三、求面积这类题常设计为求几何体中某一特殊位置的截面面积 解决这类题的关键是 ,封断出截面的形状及截面和已知中相关图形的关系F E OM D CBAPHG四、求距离这类题常是以几何体为依托 ,求其中的某些点 、线 、面之间的距离 解决这类题的关键在于 ,根据已知条件判断出或作出符合题意的线段 ,其长度就是符合题意的距离4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,2ababbGEFBCDA作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC —D 的平面角.AG=EG=b 2-a 2,BF=DF=2a b 2-a 2b,AE=2b 2-(233a )2=2b 2-43a 2.由cos ∠AGE=cos ∠BFD ,得2AG 2-AE 22AG 2=2BF 2-BD 22BF 2.∴ 4(b2-432a 2)b 2-a 2=4a 2b 24a 2(b 2-a 2)⇒9b 2=16a 2,⇒b=43a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3.分析:设正三棱锥的底面边长为a ,侧棱长为b ,则:2222223244a a b a a a b b b-=⋅--即:2223b a b =- 化简得: 32ba =所以,3,2a b ==.于是可求得线段PP '的长:2432pp '=-=.于是有最远距离为底边长3.ACBD EFOP 'P五、求元素个数这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数,作到不重复、不遗漏8、如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .9、给定平面上的5个点A 、B 、C 、D 、E ,任意三点不共线. 由这些点连成4条线,每点至少是一条线段的端点,不同的连结方式有 种.解:图中,4种连结方式都满足题目要求.(图中仅表示点、线间连结形式,不考虑点的位置) .情况(1),根据中心点的选择,有5种其连结方式;情况(2),可视为5个点A 、B 、C 、D 、E 的排列,但一种排列与其逆序排列是同一的,且两者是一一对应的,则有连结方式5!602=种;情况(3),首先是分歧点的选择有5种,其次是分叉的两点的选择有246C =种,最后是余下并连两点的顺序有别,有2!种,共计56260⨯⨯=种;情况(4),选择3点构造三角形,有3510C =种. 共有5606010135+++=种连结方式.B‘C’D’A‘BCDASQ PR acb(1) (2) (3) (4)3. 设四棱锥P ABCD -的底面不是平行四边形, 用平面α去截此四棱锥, 使得截面四边形是平行四边形, 则这样的平面 α( )(A) 不存在 (B)只有1个 (C) 恰有4个 (D)有无数多个例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A )4; (B )8; (C )12; (D )24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现112224C =次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为2483=个. 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .分析:就四棱锥P —ABCD 而言,显然顶点P 的颜色必定不同于A 、B 、C 、D 四点,于是分三种情况考虑:① 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3560A =(种) ② 若使用四种颜色,底面有一对对角线同色,其染色种数为:1425240C A ⋅=(种)③ 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:55120A =(种)故不同染色方法种数是:420种.六、特殊四面体1.四面体 由于四面体是三角形在空间中的推广,因此三角形的许多性质也可以推广到四面体: (1)连接四面体的棱中点的线段交于一点,且在这里平分这些线段;(2)连接四面体任一顶点与它对面重心的线段交于一点,且这点将线段分成的比为3:1,G 称为四面体的重心.(3)每个四面体都有外接球,球心是各条棱的中垂面的交点.(4)每个四面体都有内切球,球心是四面体的各个二面角的平分面的交点. 例10(1983年全国)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.2.特殊四面体(i )等腰四面体:三组对棱分别相等的四面体.性质(1)等腰四面体各面积相等,且为全等的锐角三角形;(2)体积是伴随长方体的13.(ii )直角四面体 从一个顶点出发的三条棱相互垂直的四面体.性质(1)直角四面体中,不含直角的面是锐角三角形(称该面为底面);(2)任一侧面面积是它在底面投影的面积和地面面积的比例中项,且侧面面积的平方和是底面面积的平方;(3)三个侧面与底面所成三个二面角的余弦的平方和是1.3.正四面体 每个面都是全等的等边三角形的四面体.性质(1)若正四面体的棱长为a ,则四面体的全面积S =3a 2,体积V =212a 3;(2)正四面体对棱中点的连线长d =22a ;(3)正四面体外接球的半径64a ,内切球的半径为612a .七、“ 多球” 问 题在解决立体几何问题时, 常会遇到若干个球按照一定的法则“ 叠加” 的问题, 我们将 这类问题简称为“ 多球” 问题. 对于“ 多球” 问 题, 我们往往可以从多球中提炼出球心所组成的立体图形, 将问题简化, 然后通过解决这简化的问题, 获得原问题的待求结论,这是 解决“ 多球” 问题的一个常用方法.5、将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45 而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.6、底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形.所以注水高为1+22.故应注水π(1+22)-4×43π(12)3=(13+22)π. 例 1在桌面上放着四个两两相切、 半 径均为r 的球, 试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个 球均相切的小球的半径.例 2 制作一个底圆直径为4 c m的圆柱形容器,要内装直径为2 c m的钢珠2 6 只,那么这容器至少要多高?( 上海市1 9 8 6 年竞赛试题)例 3 在正四面体内装入半径相同的球,使相邻的球彼此相切,且外层的球又和正四面体的面都相切,如此装法,当球的个数无穷大时,求所装球的体积与正四面体体积之比的极限.( 第八届希望杯高二数学培训题)八、体积法及其应用体积法是处理立体几何问题的重要方法.在高中数学竞赛中,利用体积法解题形式简洁、构思容易,内涵深刻,应用广泛,备受青睐.几何体的体积包括基本几何体的体积计算、等积变换等方法,同时有以下常用方法和技巧:( 1 ) 转移法:利用祖咂原理或等积变换,把所求几何体转化为与它等底、等高的几何体的体积.( 2 ) 分割求和法:把所求几何体分割成基本几何体的体积.( 3 ) 补形求差法:通过补形化归为基本几何体的体积.( 4 ) 四面体体积变换法.( 5 ) 算两次法:对同一几何体的体积,从两种方法计算,建立出未知元素的等量关系,从而使问题求解.利用这种方法求点到平面的距离,可以回避作出表示距离的垂线段.另外,体积法中对四面体的体积变换涉及较多应用广泛.关于四面体的体积有如下常用性质:( 1 ) 底面积相同的两个三棱锥体积之比等于对应高之比;( 2 ) 高相同的两个三棱锥的体积比等于其底面积之比;( 3 ) 用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方;九、立体几何中的截面问题截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状2 截面面积和周长的计算3 计算截面图形的个数4 确定截面图形的性质5 求截面图形的最值九、综合问题7、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且P A=4,C 为P A 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面P AB ⊥面POB .OH ⊥PB ,⇒OH ⊥面P AB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2.而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.解2:连线如图,由C 为P A 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PHPB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,A BP OH CV B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC=sin2α3+cos2α⨯112R 3.∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33,∴ OB=263,选D .例19把一个长方体切割成k 个四面体,则k 的最小值是 .例20已知l αβ--是大小为45的二面角,C 为二面角内一定点,且到半平面α和β和6,A ,B 分别是半平面α,β内的动点,则ABC ∆周长的最小值为_____.例21如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.例六、设锐角,,αβγ满足:222cos cos cos 1αβγ++=.求证:tan tan tan αβγ⋅⋅≥分析:构造长方体模型.构造如图所示的长方体 ABCD —A 1B 1C 1D 1,连接AC 1、A 1C 1、BC 1、DC 1. 过同一个顶点的三条棱AD 、AB 、AA 1与对角线AC 1所成的角为锐角,,αβγ,满足:222cos cos cos 1αβγ++=不妨设长方体过同一个顶点的三条棱AD 、AB 、AA 1的长分别为,,a bc .则:tan tan tan aa b b c cαβγ=≥=≥=≥ 以上三式相乘即可.证明二:因为,,αβγ为锐角,故:2222sin 1cos cos cos 2cos cos ααβγβγ=-=+≥⋅,sin α∴≥同理:sin βγP ED F BCAD 1C 1B 1 A 1DC BA例22已知三棱锥ABC P -的三条侧棱PA 、PB 、PC 两两垂直,侧面PAB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面ABC 的面积为34. (1)证明:22tan tan tan 321≥⋅⋅θθθ;(2)若23tan tan tan 321=++θθθ,求该三棱锥的体积ABC P V -. 练 习 题例七、(1994年全国联赛一试)在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A ) 2,n n ππ-⎛⎫⎪⎝⎭; (B ) 1,n n ππ-⎛⎫ ⎪⎝⎭; (C ) 0,2π⎛⎫ ⎪⎝⎭; (D ) 21,n n n n ππ--⎛⎫⎪⎝⎭.分析:根据正n 棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n 边形的内角,同时小于π,于是得到(A ).例八、(1992年全国联赛一试)设四面体四个面的面积分别为S 1、S 2、S 3、S 4,它们的最大值为S ,记1234S S S S Sλ+++=,则λ一定满足(A ) 24λ<≤; (B ) 34λ<<; (C ) 2.5 4.5λ<≤; (D ) 3.5 5.5λ<<. 分析:因为 i S S ≤ ()1,2,3,4i =所以12344S S S SS+++≤.特别的,当四面体为正四面体时取等号.另一方面,构造一个侧面与底面所成角均为45︒的三棱锥,设底面面积为S 4,则:()()1231231234123cos 451 2.5cos 45S S S S S S S S S S S S S S λ+++++⋅︒+++===+++⋅︒,若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥,另外此时有1234S S S S ++=,也就是2λ=,于是必须2λ>.故选(A ).。

数学竞赛教案讲义立体几何

数学竞赛教案讲义立体几何

数学竞赛教案讲义-立体几何教案内容:一、立体几何的基本概念1. 立体图形的定义和分类2. 立体图形的性质和判定3. 立体图形的对称性4. 立体几何中的点、线、面关系二、立体图形的面积和体积1. 立体图形的面积计算2. 立体图形的体积计算3. 立体图形面积和体积的应用4. 立体图形的不规则体积计算三、立体几何中的角和线段1. 立体图形的角和线段长度计算2. 立体图形中的角和线段关系3. 立体图形中的角和平面关系4. 立体图形中的线段和平面关系四、立体几何中的方程和不等式1. 立体图形中的方程求解2. 立体图形中的不等式求解3. 立体图形中的线性方程组求解4. 立体图形中的参数方程求解五、立体几何中的图形的变换1. 立体图形的平移和旋转2. 立体图形的缩放和反射3. 立体图形变换的应用4. 立体图形变换与几何问题的解决六、立体几何中的视图和投影1. 立体图形的正交视图2. 立体图形的斜视图3. 立体图形的投影变换4. 视图和投影在立体几何中的应用七、立体几何中的坐标系和向量1. 立体坐标系的基本概念2. 向量在立体几何中的应用3. 向量的运算规则4. 向量与立体几何图形的交点求解八、立体几何中的空间解析几何1. 空间解析几何的基本概念2. 点、直线、平面的方程表示3. 空间解析几何中的距离和角度计算4. 空间解析几何在立体几何中的应用九、立体几何中的立体几何问题解析1. 立体几何问题的分类和特点2. 立体几何问题的解题方法和技巧3. 典型立体几何问题的解析和解答4. 立体几何问题在数学竞赛中的应用十、立体几何的综合训练和提高1. 立体几何的综合训练题目3. 立体几何解题中的常见错误和注意事项4. 提高立体几何解题能力的方法和技巧重点和难点解析一、立体几何的基本概念补充和说明:在讲解立体几何的基本概念时,需要重点强调立体图形的性质和判定方法,以及它们之间的对称性。

要详细解释点、线、面之间的关系,以及它们在立体几何中的作用。

高中数学竞赛教材讲义第十二章立体几何讲义

高中数学竞赛教材讲义第十二章立体几何讲义

高中数学竞赛教材讲义第十二章立体几何讲义(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第十二章立体几何一、基础知识公理1 一条直线。

上如果有两个不同的点在平面。

内.则这条直线在这个平面内,记作:a⊂a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上的三个点有且只有一个平面。

即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。

立体几何 竞赛训练题

立体几何 竞赛训练题

HB立体几何 竞赛训练题1:在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共计27个点中,问共线的三点组的个数是多少解答:两端点都为顶点的共线三点组共有87282⨯=个;两端点都为面的中心共线三点组共 有6132⨯=共线三点组,所以总共有2831849++=个2:已知一个平面与一个正方体的12解答:如右图所示,平面BCD 与正方体的12BCD .连DH ,则ADH α=∠.设正方体的边长为b ,则02sin 603DH == AH ==所以sin sin 3AH ADH AD α=∠==. 3:在单位正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P 使得AP +D 1P 最短,求AP +D 1P 的最小值.解答:将等腰直角三角形AA 1B 沿A 1B 折起至1A A B ',使三角形1A AB '与四边形A 1BCD 1共面,联结1A D ',则1A D '的长即为AP +D 1P 的最小值,所以,1A D '=4:已知单位正方体ABCD -A 1B 1C 1D 1的对棱BB 1、D 1上有两个动点E 、F ,BE =D 1F=λ(102λ<≤).设E F 与AB 所成的角为α,与BC 所成的角为β,求αβ+的最小值. 当12λ=时,2παβ+=.不难证明()f αβλ+=是单调减函数.因此αβ+的最小值为2π. 5.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA , 点O 、D 分别是AC 、PC 的中点,OP⊥底面ABC . (Ⅰ)求证OD ∥平面PAB ;(Ⅱ) 求直线OD 与平面PBC 所成角的正弦.解答OP ABC OA OC AB BC ⊥== 平面,,,.OA OB OA OP OB OP ∴⊥⊥⊥ ,, ()O OP z O xyz -以为原点,射线为非负轴,建立空间直角坐标系如图,,0,0,,0,,0,0AB a A B C ⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设,则 ()0,0,.OP h P h =设,则()D PC 为的中点,Ⅰ1,0,,,0,2OD h PA h ⎛⎫⎫∴==- ⎪⎪ ⎪⎪⎝⎭⎝⎭ 又, 1 (2)OD PA OD PA OD PAB ∴=-∴∴平面∥∥1()2,PA a = Ⅱ,h ∴ ,OD ⎛⎫∴= ⎪ ⎪⎝⎭,PBC n ⎛=- ⎝可求得平面的法向量cos ,OD n OD n OD n ⋅∴〈〉==⋅OD PBC θ设与平面所成的角为,sin cos ,OD n θ=〈〉=则OD PBC ∴ 与平面所成的角为. 6如图,已知长方体1111ABCD A BC D -,12,1AB AA ==,直线BD 与平面11AA B B 所成的角为030,AE 垂直BD 于,E F 为11AB 的中点.(Ⅰ)求异面直线AE 与BF 所成的角的余弦;(Ⅱ)求平面BDF 与平面1AA B 所成二面角(锐角)的余弦; (Ⅲ)求点A 到平面BDF 的距离解答 在长方体1111ABCD A BC D -中,以AB 所在直线为x 轴,AD 所在直线为y 轴,1AA 所在直线为z 轴建立空间直角坐标系如图.由已知12,1AB AA ==,可得(0,0,0),(2,0,0),(1,0,1)A BF .又AD ⊥平面11AA B B ,从面BD 与平面11AA B B 所成的角即为DBA ∠=又2,,1,3AB AE BDAE AD =⊥== 从而易得1(2E D (Ⅰ)1((2AE BF ==- cos ,AE BF AE BF AE BF∴<>= =即异面直线AE 、BF 所成的角为4 (Ⅱ)易知平面1AA B 的一个法向量(0,1,0)m = 设(,,)n x y z =是平面BDF 的一个法向量.(BD =- 由n BF n BD ⎧⊥⎪⎨⊥⎪⎩ 00n BF n BD ⎧=⎪⇒⎨=⎪⎩ 0203x x x y -+=⎧⎪⇒⎨-=⎪⎩x zy=⎧⎪⇒=取(1n = ∴cos ,m n m n m n <>===即平面BDF 与平面1AA B 所成二面角(锐角)大小为 (Ⅲ)点A 到平面BDF 的距离,即AB 在平面BDF 的法向量n上的投影的绝对值所以距离||cos ,d AB AB n =<> ||||||AB n AB AB n =||||AB n n === 所以点A 到平面BDF 57. 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2 (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的余弦.解答(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB . 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图3,则相关各点的坐标是A (3,0,0),B (0,3,0),C (0,1,3)O 1(0,0,3).从而.0333),3,3,0(),3,1,3(11=⋅+-=⋅-=-=BO BO 所以AC ⊥BO 1.(II )解:因为,03331=⋅+-=⋅BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量.设),,(z y x =是0平面O 1AC 的一个法向量,由,3.0,033001=⎩⎨⎧==++-⇒⎪⎩⎪⎨⎧=⋅=⋅z y z y x O 取得)3,0,1(=n . 设二面角O —AC —O 1的大小为θ,由、1BO 的方向可知=<θ,1BO >,所以COS <=cos θ,1BO .43||||11=⋅BO n 即二面角O —AC —O 1的大小是.43arccos8. 如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点 (Ⅰ)求证1AC BC ⊥; (Ⅱ) 求证;11CDB AC 平面⊥ (Ⅲ)求异面直线1AC 与1B C 所成角的余弦值解答∵直三棱锥111ABC A B C -底面三边长3,4,5AC BC AB ===,1,,AC BC CC 两两垂直如图建立坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0)(Ⅰ)11(3,0,0),(0,4,4)AC BC =-= ,1110,AC BC AC BC ∴⋅=∴⊥(Ⅱ)设1CB 与1C B 的交点为E ,则E (0,2,2)13(,0,2),(3,0,4)2DE AC =-=- 111,//2DE AC DE AC ∴=∴ 111,,DE CDB AC CDB ⊂⊄ 平面平面1//AC CDB ∴平面 (Ⅲ)11(3,0,4),(0,4,4),AC CB =-= 111111cos ,||||AC CB AC CB AC CB ∴<>==∴异面直线1AC 与1B C 51. (07全国)正四棱锥P−ABCD 中,∠APC =60°,则二面角A−PB−C 平面角余弦值为( B )图1A.71 B. 71-C.21 D. 21-解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。

2023年高中数学竞赛教案讲义立体几何

2023年高中数学竞赛教案讲义立体几何

第十二章立体几何一、基础知识公理1 一条直线。

上假如有两个不一样旳点在平面。

内.则这条直线在这个平面内,记作:a a.公理2 两个平面假如有一种公共点,则有且只有一条通过这个点旳公共直线,即若P∈α∩β,则存在唯一旳直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上旳三个点有且只有一种平面。

即不共线旳三点确定一种平面.推论l 直线与直线外一点确定一种平面.推论2 两条相交直线确定一种平面.推论3 两条平行直线确定一种平面.公理4 在空间内,平行于同一直线旳两条直线平行.定义1 异面直线及成角:不一样在任何一种平面内旳两条直线叫做异面直线.过空间任意一点分别作两条异面直线旳平行线,这两条直线所成旳角中,不超过900旳角叫做两条异面直线成角.与两条异面直线都垂直相交旳直线叫做异面直线旳公垂线,公垂线夹在两条异面直线之间旳线段长度叫做两条异面直线之间旳距离.定义2 直线与平面旳位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:假如直线与平面内旳每一条直线都垂直,则直线与这个平面垂直.定理1 假如一条直线与平面内旳两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一种平面,则这两条直线平行.定理3 若两条平行线中旳一条与一种平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面旳垂线段旳长度叫做点到平面旳距离,若一条直线与平面平行,则直线上每一点到平面旳距离都相等,这个距离叫做直线与平面旳距离.定义 5 一条直线与平面相交但不垂直旳直线叫做平面旳斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上旳射影.所有这样旳射影在一条直线上,这条直线叫做斜线在平面内旳射影.斜线与它旳射影所成旳锐角叫做斜线与平面所成旳角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小旳角.定理4 (三垂线定理)若d为平面。

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法.一、求角度这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90︒︒;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=⋅得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=⋅.分析:如图,设射线OA 任意一点A ,过A 作AB α⊥于点B ,又作BC OC ⊥于点C ,连接AC .有:cos ,cos ,cos ;OC OB OCOA OA OBαβγ=== 所以,cos cos cos αβγ=⋅.评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得:()0AE CFEB FDλλ==<<∞,记()f λλλαβ=+, 其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()fλ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少; αOCBAF EDCBAG(C )()fλ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.` 分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=︒例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则sin α= .分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于α即可.如图所示的平面A BD '就是合乎要求的平面,于是:sin α=二、求体积这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高例十五、(2003年全国联赛一试)在四面体ABCD中,设1,AB CD ==AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 ()()()(11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1V=3S h ⋅⋅.从题目所给条件看,已知长度的两条线段分别位于两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:111sin 362A BCD A BDE D ABE BDE V V V S h AB BE ABE h ---∆====⋅⋅∠⋅=例十六、(2002年全国联赛一试)由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所得旋转体的体积为V 1,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则: (A )V 1=12V 2; (B )V 1=23V 2; (C )V 1=V 2; (D )V 1=2V 2; ODCBAD 'C 'B ' A 'EDCBA分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:取()44y a a =-≤≤,则:()21162164S aa ππππ=-⋅⋅=-当0a <时:()()()22221642164S aa a ππππ=⋅--⋅-+=+当0a >时:()()()22221642164S a a a ππππ=⋅--⋅--=-显然,12S S =,于是有:12V V =.例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:222r a = ∴ 334223V a a ππ⎛⎫=⋅⋅= ⎪ ⎪⎝⎭练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:222326333h a a a a ⎛⎫=-== ⎪ ⎪⎝⎭,所以,66,412R a r a ==.ROEDC APrB例十八、(1999年全国联赛一试)已知三棱锥S--ABC的底面为正三角形,A点在侧面SBC上的射影H是∆SBC的垂心,二面角H-AB-C的平面角等于30︒,SA=23.那么,三棱锥S-ABC的体积为.分析:在求解立体几何问题时,往往需要首先明白所要考查对象的图形特点.连接BH并延长交SC于D,连AD.∵H为∆SBC的垂心∴BD⊥SC,且HD⊥SC ,故AD⊥SC ,SC⊥平面ABC∴SC⊥AB作SO⊥平面ABC于O,连接CO并延长交AB于E,易知:CE⊥AB,连DE.∵AB=AC∴HB=HC,即A在平面SBC内的射影H在线段BC的垂直平分线上,而点H是∆SBC的垂心,可知∆SBC 为SB=SC的等腰三角形.∴S在平面ABC内的射影O在线段BC的垂直平分线上.故射影O为∆ABC的中心,三棱锥S—ABC为正三棱锥.设底面边长为2a,则CE=3a,∵SA=SB=SC=23∴SO=3,OC=233=CE=233a∴11139333333224S ABC ABCV S h-∆==⨯⨯⨯⨯⨯=OEDHCASB例十九、(1998年全国联赛一试)ABC ∆中,90,30,2C B AC ∠=︒∠=︒=,M 是AB 的中点.将ACM ∆沿CM 折起,使A 、B 两点间的距离为22A —BCM 的体积等于 . 分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,问题中经常会涉及折叠图形形成二面角,在折叠 前作一条直线与折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.如图,作BD ⊥CM 的延长线相交于D ,AF ⊥CM 于F ,并延长到E ,使EF=BD ,连BE . 显然,AF=EF=BD=3EB=DF=2,所以: AE 2=AB 2-EB 2=8-4=4三棱锥A —BCM 的高即点A 到平面BCM 的距离也就是等腰∆AEF 中点A 到边EF 的距离.根据面积相等可求得:231263h ⋅-== FF M M EED DBB C C A A∴1113233V =⋅⋅⋅= 例二十、(1995年全国联赛一试)设O 是正三棱锥P —ABC 底面△ABC 的中心,过O 的动平面与P —ABC 的三条侧棱或其延长线的交点分别记为Q 、R 、S ,则和式111PQ PR PS++ (A )有最大值而无最小值; (B )有最小值而无最大值; (C )既有最大值又有最小值,且最大值与最小值不等; (D )是一个与平面QRS 位置无关的常量. 分析:借助于分割思想,将三棱锥P —QRS 划分成三个以O 为顶点,以三个侧面为 底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设QPR ∠=RPS SPQ α∠=∠=,于是有: ()13P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----∆∆∆=++=++⋅ ()1sin 6PQ PR PR PS PS PQ h α=⋅+⋅+⋅⋅⋅ 又:1sin sin 6P QRS Q PRS V V PQ PR PS αθ--==⋅⋅⋅⋅,其中θ为PQ 与平面PRS 所成的角.()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴⋅+⋅+⋅⋅⋅=⋅⋅⋅⋅于是得:111PQ PR PS ++sin hθ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:12DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱OSRQCBAPGFMD 'DCBSH锥的外接球的球心.例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k条,使得其中任意两条线段所在的直线都是异面直线,则k的最大值是.分析:本题可以采用构造法求解.考查图中的四条线段:A1D、AC、BC1、B1D1,显然其中任意两条都是异面直线.另一方面,如果满足题目要求的线段多于4条,若有5条线段满足要求,因为5条线段中任意两条均为异面直线,所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k=.例二十三、(1991年全国联赛一试)设正三棱锥P—ABC的高为PO,M为PO的中点,过AM作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比.分析:取BC的中点D,连接PD交AM于G,设所作的平行于BC的平面交平面PBC于EF,由直线与平面平行的性质定理得:EF∥BC,连接AE,AF,则平面AEF为合乎要求的截面.作OH∥PG,交AG于点H,则:OH=PG.51112BC PD PG GD GD GD ADEF PG PG PG OH AO+===+=+=+=;故:2425A PEF PEFA PBC PBCV S EFV S BC-∆-∆⎛⎫===⎪⎝⎭;于是:421A PEFA EFBCVV--=.三、求面积这类题常设计为求几何体中某一特殊位置的截面面积解决这类题的关键是,封断出截面的形状及截面和已知中相关图形的关系A1DCBAD1 C1B1FEOMDCBAPHG四、求距离这类题常是以几何体为依托 ,求其中的某些点 、线 、面之间的距离 解决这类题的关键在于 ,根据已知条件判断出或作出符合题意的线段 ,其长度就是符合题意的距离4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,2ababbGFBCDA作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC—D 的平面角.AG=EG=b 2-a 2,BF=DF=2a b 2-a 2b,AE=2b 2-(233a )2=2b 2-43a 2.由cos ∠AGE=cos ∠BFD ,得2AG 2-AE 22AG 2=2BF 2-BD 22BF 2.∴ 4(b2-432a 2)b 2-a 2=4a 2b 24a 2(b 2-a 2)⇒9b 2=16a 2,⇒b=43a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3.分析:设正三棱锥的底面边长为a ,侧棱长为b ,则:2222223244a a b a aa b b -=⋅--即:2223b a b =- 化简得: 32ba =所以,3,2a b ==.于是可求得线段PP '的长:2432pp '=-=.于是有最远距离为底边长3.ACBD EFOP 'P五、求元素个数这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数,作到不重复、不遗漏8、如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .9、给定平面上的5个点A 、B 、C 、D 、E ,任意三点不共线. 由这些点连成4条线,每点至少是一条线段的端点,不同的连结方式有 种.解:图中,4种连结方式都满足题目要求.(图中仅表示点、线间连结形式,不考虑点的位置) .情况(1),根据中心点的选择,有5种其连结方式;情况(2),可视为5个点A 、B 、C 、D 、E 的排列,但一种排列与其逆序排列是同一的,且两者是一一对应的,则有连结方式5!602=种;情况(3),首先是分歧点的选择有5种,其次是分叉的两点的选择有246C =种,最后是余下并连两点的顺序有别,有2!种,共计56260⨯⨯=种;情况(4),选择3点构造三角形,有3510C =种. 共有5606010135+++=种连结方式.B‘C’D’A‘CDASQ PR acb(1) (2) (3) (4)3. 设四棱锥P ABCD -的底面不是平行四边形, 用平面α去截此四棱锥, 使得截面四边形是平行四边形, 则这样的平面 α( )(A) 不存在 (B)只有1个 (C) 恰有4个 (D)有无数多个例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A )4; (B )8; (C )12; (D )24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现112224C =次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为2483=个. 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .分析:就四棱锥P —ABCD 而言,显然顶点P 的颜色必定不同于A 、B 、C 、D 四点,于是分三种情况考虑:① 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3560A =(种) ② 若使用四种颜色,底面有一对对角线同色,其染色种数为:1425240C A ⋅=(种) ③ 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:55120A =(种)故不同染色方法种数是:420种.六、特殊四面体1.四面体 由于四面体是三角形在空间中的推广,因此三角形的许多性质也可以推广到四面体: (1)连接四面体的棱中点的线段交于一点,且在这里平分这些线段;(2)连接四面体任一顶点与它对面重心的线段交于一点,且这点将线段分成的比为3:1,G 称为四面体的重心.(3)每个四面体都有外接球,球心是各条棱的中垂面的交点.(4)每个四面体都有内切球,球心是四面体的各个二面角的平分面的交点. 例10(1983年全国)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.2.特殊四面体(i )等腰四面体:三组对棱分别相等的四面体.性质(1)等腰四面体各面积相等,且为全等的锐角三角形;(2)体积是伴随长方体的13.(ii )直角四面体 从一个顶点出发的三条棱相互垂直的四面体.性质(1)直角四面体中,不含直角的面是锐角三角形(称该面为底面);(2)任一侧面面积是它在底面投影的面积和地面面积的比例中项,且侧面面积的平方和是底面面积的平方;(3)三个侧面与底面所成三个二面角的余弦的平方和是1.3.正四面体 每个面都是全等的等边三角形的四面体.性质(1)若正四面体的棱长为a ,则四面体的全面积S =3a 2,体积V =212a 3;(2)正四面体对棱中点的连线长d =22a ;(3)正四面体外接球的半径64a ,内切球的半径为612a .七、“ 多球” 问 题在解决立体几何问题时, 常会遇到若干个球按照一定的法则“ 叠加” 的问题, 我们将 这类问题简称为“ 多球” 问题. 对于“ 多球” 问 题, 我们往往可以从多球中提炼出球心所组成的立体图形, 将问题简化, 然后通过解决这简化的问题, 获得原问题的待求结论,这是 解决“ 多球” 问题的一个常用方法. 5、将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45 而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.6、底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形.所以注水高为1+22.故应注水π(1+22)-4×43π(12)3=(13+22)π. 例 1在桌面上放着四个两两相切、 半 径均为r 的球, 试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个 球均相切的小球的半径.例2 制作一个底圆直径为4 c m的圆柱形容器,要内装直径为2 c m的钢珠2 6 只,那么这容器至少要多高?( 上海市1 9 8 6 年竞赛试题)例3 在正四面体内装入半径相同的球,使相邻的球彼此相切,且外层的球又和正四面体的面都相切,如此装法,当球的个数无穷大时,求所装球的体积与正四面体体积之比的极限.( 第八届希望杯高二数学培训题)八、体积法及其应用体积法是处理立体几何问题的重要方法.在高中数学竞赛中,利用体积法解题形式简洁、构思容易,内涵深刻,应用广泛,备受青睐.几何体的体积包括基本几何体的体积计算、等积变换等方法,同时有以下常用方法和技巧:( 1 ) 转移法:利用祖咂原理或等积变换,把所求几何体转化为与它等底、等高的几何体的体积.( 2 ) 分割求和法:把所求几何体分割成基本几何体的体积.( 3 ) 补形求差法:通过补形化归为基本几何体的体积.( 4 ) 四面体体积变换法.( 5 ) 算两次法:对同一几何体的体积,从两种方法计算,建立出未知元素的等量关系,从而使问题求解.利用这种方法求点到平面的距离,可以回避作出表示距离的垂线段.另外,体积法中对四面体的体积变换涉及较多应用广泛.关于四面体的体积有如下常用性质:( 1 ) 底面积相同的两个三棱锥体积之比等于对应高之比;( 2 ) 高相同的两个三棱锥的体积比等于其底面积之比;( 3 ) 用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方;九、立体几何中的截面问题截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状2 截面面积和周长的计算3 计算截面图形的个数4 确定截面图形的性质5 求截面图形的最值九、综合问题7、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且P A=4,C 为P A 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面P AB ⊥面POB .OH ⊥PB ,⇒OH ⊥面P AB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2.而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.解2:连线如图,由C 为P A 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PHPB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,A BP OH CV B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC=sin2α3+cos2α⨯112R 3.∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33,∴ OB=263,选D .例19把一个长方体切割成k 个四面体,则k 的最小值是 .例20已知l αβ--是大小为45o的二面角,C 为二面角内一定点,且到半平面α和β和6,A ,B 分别是半平面α,β内的动点,则ABC ∆周长的最小值为_____.例21如图所示,等腰ABC△的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.例六、设锐角,,αβγ满足:222cos cos cos 1αβγ++=. 求证:tan tan tan αβγ⋅⋅≥分析:构造长方体模型.构造如图所示的长方体 ABCD —A 1B 1C 1D 1,连接AC 1、A 1C 1、BC 1、DC 1. 过同一个顶点的三条棱AD 、AB 、AA 1与对角线AC 1所成的角为锐角,,αβγ,满足:222cos cos cos 1αβγ++=不妨设长方体过同一个顶点的三条棱AD 、AB 、AA 1的长分别为,,a bc .则:tan tan tan a a b b c cαβγ=≥=≥=≥以上三式相乘即可.证明二:因为,,αβγ为锐角,故:2222sin 1cos cos cos 2cos cos ααβγβγ=-=+≥⋅,sin α∴≥同理:sin βγP ED F BCAD 1C 1B 1 A 1DC BA例22已知三棱锥ABC P -的三条侧棱PA 、PB 、PC 两两垂直,侧面PAB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面ABC 的面积为34. (1)证明:22tan tan tan 321≥⋅⋅θθθ;(2)若23tan tan tan 321=++θθθ,求该三棱锥的体积ABC P V -. 练 习 题例七、(1994年全国联赛一试)在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A ) 2,n n ππ-⎛⎫⎪⎝⎭; (B ) 1,n n ππ-⎛⎫ ⎪⎝⎭; (C ) 0,2π⎛⎫ ⎪⎝⎭; (D ) 21,n n n n ππ--⎛⎫⎪⎝⎭.分析:根据正n 棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n 边形的内角,同时小于π,于是得到(A ).例八、(1992年全国联赛一试)设四面体四个面的面积分别为S 1、S 2、S 3、S 4,它们的最大值为S ,记1234S S S S Sλ+++=,则λ一定满足(A ) 24λ<≤; (B ) 34λ<<; (C ) 2.5 4.5λ<≤; (D ) 3.5 5.5λ<<. 分析:因为 i S S ≤ ()1,2,3,4i =所以12344S S S S S+++≤.特别的,当四面体为正四面体时取等号.另一方面,构造一个侧面与底面所成角均为45︒的三棱锥,设底面面积为S 4,则:()()1231231234123cos 4512 2.5cos 45S S S S S S S S S S S S S S λ+++++⋅︒+++===+<++⋅︒,若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥,另外此时有1234S S S S ++=,也就是2λ=,于是必须2λ>.故选(A ).。

【竞赛题】人教版小学五年级下册数学第09讲《立体几何》竞赛试题(含详解)

【竞赛题】人教版小学五年级下册数学第09讲《立体几何》竞赛试题(含详解)

第九讲立体几何- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -首先,我们来学习一下长方体、正方体的体积与表面积的计算方法.练一练.1.一个正方体的棱长总和是72厘米,它的一个面是边长_______厘米的正方形,它的表面积是_______平方厘米,体积是_______立方厘米.2.一个长方体的长是5分米,宽是45厘米,高是24厘米,它的表面积是_______平方厘米,体积是_______立方厘米.3.做一个长8分米,宽4分米,高6分米的长方体玻璃鱼缸,至少需要_______平方分米的玻璃.4.有一块棱长是10厘米的正方体的铁块,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是_______厘米.如果要求这个长方体每条棱的长度都是整数厘米,它的表面积最小是_______平方厘米.相信同学们对于这些公式都很熟悉,但是对于较复杂的立体图形,往往我们并不能直接应用公式进行计算,这个时候又该怎么办呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.有30个边长为1米的正方体,如图所示堆成一个四层的立体图形.请问:该立体图形的表面积等于多少平方米?分析:所谓表面积,就是立体图形露在外面的总面积.我们可以从上、下、左、右、前、后6个不同的方向去考虑这个立体图形,把每个方向露出的面积加在一起就行了.练习1.用14个棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积.例题2.一个正方体被切成24个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为162平方厘米,那么原正方体的体积是多少立方厘米?分析:我们先来分析一下切成小块的过程中,图形的表面积是如何变化的.同学们请看下图:一刀下去,正方体被一分为二.表面积和原来比,正好多出了A,B两个面.不难看出,这两个面的面积都等于原正方体6个面中1个面的面积.按这种方法,每切一刀,增加的都是两个面的面积.同学们可以计算一下,按如图的方式切了6刀后,表面积究竟增加了多少?练习2.一个正方体被切成36个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为500平方厘米,那么原正方体的体积是多少立方厘米?例题3.如图,有一个边长为30厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为5496平方厘米,那么挖掉的小正方体的棱长是多少厘米?分析:挖去小正方体后,表面积会发生变化.如果挖的位置,最终结果会有区别吗?练习3.一个正方体棱长10厘米,在它的表面上挖去一个棱长3厘米的小正方体.请求出剩下立体图形表面积的所有可能.除了长方体、正方体之外,圆柱和圆锥在我们的生活中也特别常见.如图,圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高. 圆锥的圆面叫做底面;尖点叫做顶点;顶点到底面的距离叫做高,顶点到底面圆周上任意一点的连线叫做母线.关于圆锥的内容,我们不作深入的学习,同学们只需要学会如何计算它的体积即可.大家可以把圆柱想象成一个底面是圆形的柱子,那其他柱体也就是底面是其他图形的柱子.如图,所有“上下一般粗”的图形都称为柱体,图中的两个图形分别叫做三棱柱和四棱柱,它们的体积计算公式都是:V =⨯底面积高例题4.(1)如下左图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周,求所形成的立体图形的体积和表面积是多少. (2)如下右图,是直角边分别为3和4的直角三角形,以边长为4的直角边为轴旋转一周,求所形成的立体图形的体积.分析:圆柱体的底面半径和高与长方形的长和高有什么关系?圆锥体呢?练习4.有一个圆柱和一个圆锥,它们的高和底面直径如图所示.圆柱体积及表面积分别是多少?圆锥的体积是多少?(π取3.14)6例题5.下图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的正方体,做成一种玩具.该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少平方厘米?分析:打穿以后,表面积的计算有点复杂.想想都有哪些面是露在外面的?例题6.如图,一个底面长20分米,宽8分米,高15分米的长方形水池,存有三分之二池水.将一个高50分米,体积400立方分米的长方体竖直放入池中,那么长方体被水浸湿的部分有几分米高?分析:很明显长方体没有被水浸没,还有一部分在外面.水的体积没有变化过,但是形状发生了变化.原来是一个长方体,后来是什么样的形状?-正多面体正多面体,指各面都是全等的正多边形且每一个顶点所接的面数都是一样的凸多面体.一共有五种正多面体,分别是正四面体、正六面体(正方体)、正八面体、正十二面体和正二十面体.这些正多面体的作法都收录在了《几何原本》的第13卷中.柏拉图认为世界万物都是由火、气、水、土四元素构成的,其形状如正多面体中的四个.➢火的热令人感到尖锐和刺痛,好像小小的正四面体.➢空气是用正八面体制的,可以粗略感受到,它极细小的结合体十分顺滑.➢当水放到人的手上,它会自然流出,那它就应该是由很多小球所组成,好像正二十面体.➢土与其他的元素相异,因为它可以被堆栈,正如立方体.剩下没有用的正多面体——正十二面体,柏拉图以不清晰的语调写道:“神使用正十二面体以整理整个天空旳星座.”柏拉图的学生亚里士多德添加了第五个元素——以太,并认为天空是用此组成,但他没有将以太和正十二面体联系起来.约翰内斯·开普勒依随文艺复兴建立数学对应的传统,将五个正多面体对应五个行星——水星、金星、火星、木星和土星,同时它们本身亦对应了五个古典元素.在立体图形中,正多面体非常对称.除了正多面体之外,还有很多图形也具有非常漂亮的对称性.下面就是一些例子,不过要注意,它们可不是正多面体哦.作业1.如图所示,一个正方体被切成16个大小形状相同的小长方体,这些小长方体的表面积之和为256平方厘米,那么原正方体的体积是多少?作业2.一个正方体棱长8厘米,在它的表面上挖去一个棱长为2厘米的小正方体.则剩下的立体图形表面积可能是多少?作业3.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为2454平方厘米,那么挖掉的小正方体的边长是多少?作业4.图中的立体图形中,每个小正方形的边长都是1.那么这个立体图形的表面积和体积分别是多少?作业5.正方形的边长为4,按照图中所示的方式旋转,那么得到的旋转体的体积和表面积分别是多少?(π取3)俗话说,兴趣是最好的老师。

数学竞赛之立体几何(三)

数学竞赛之立体几何(三)

第三讲 四面体和球一、基本知识点(一)特殊四面体【等腰四面体】1.定义:四面体ABCD 中,若c BD CA b DA BC a CD AB ======,,,则四面体ABCD 为等腰四面体。

设其体积为V ,全面积为S2.性质:(1)))()((122222222222b a c a c b c b a V -+-+-+=; (2)等腰四面体各个面为全等的锐角三角形;(3)等腰四面体的相对棱的中点的连线段共点,且互相平分,每一条连线垂直于相对棱,且是四面体的对称轴;(4)设等腰四面体的三个侧面间的二面角分别为:γβα,,,则:VS c b a 32sin sin sin ,1cos cos cos 2====++γβαγβα (5)若四面体的四个面面积相等,则四面体为等腰四面体。

(6)等腰四面体总可以和一个长方体对应起来,其边为长方体相对面的对角线。

【直角四面体】1.定义:设四面体ABC P -中,PC PB PA ,,两两垂直,则称此四面体为直角四面体。

2.性质:设c PC b PB a PA ===,,,体积为V ,内切球和外接球半径分别为r 和R , ABC PAB PCA PBC ∆∆∆∆,,,的面积分别为S S S S ,,,321(1)底面ABC ∆是锐角三角形,顶点P 在面ABC 内的射影是ABC ∆的垂心H ,且22221111cb a PH ++=; (2)对棱中点连线段共点且互相平分,其长均等于外接球半径22221c b a R ++=; (3)体积:abc V 61=;底面ABC ∆的面积: 22222221a c c b b a S ++=; (4)勾股定理:2322212S S S S ++=;内切球的半径:cb a S S S S r ++-++=321; (5)等比中项性质:AHC S S S ∆⋅=21,BHC S S S ∆⋅=22,AHB S S S ∆⋅=23;(6)等周定理:若四面体六条棱长之和为定值,则当直角四面体为等腰四面体时体积最大;(7)直角四面体总可以和一个长方体对应起来,其直角顶点为长方体的一个顶点。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基础知识公理1 一条直线。

上如果有两个不同的点在平面。

内.则这条直线在这个平面内,记作:a a.公理 2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上的三个点有且只有一个平面。

即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。

的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c b,则c a.逆定理:若c a,则c b.定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行定理6 若直线。

与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b.结论2 若直线。

与平面α和平面β都平行,且平面α与平面β相交于b,则a//b.定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等.定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交.定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β.定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b.定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角.它的取值范围是[0,π].特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α β.定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直.定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内.定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直.定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)都互相平行,由这些面所围成的几何体叫做棱柱.两个互相平行的面叫做底面.如果底面是平行四边形则叫做平行六面体;侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫做正棱柱.底面是矩形的直棱柱叫做长方体.棱长都相等的正四棱柱叫正方体.定义9 有一个面是多边形(这个面称为底面),其余各面是一个有公共顶点的三角形的多面体叫棱锥.底面是正多边形,顶点在底面的射影是底面的中心的棱锥叫正棱锥.定理13 (凸多面体的欧拉定理)设多面体的顶点数为V,棱数为E,面数为F,则V+F-E=2.定义10 空间中到一个定点的距离等于定长的点的轨迹是一个球面.球面所围成的几何体叫做球.定长叫做球的半径,定点叫做球心.定理14 如果球心到平面的距离d小于半径R,那么平面与球相交所得的截面是圆面,圆心与球心的连线与截面垂直.设截面半径为r,则d2+r2=R2.过球心的截面圆周叫做球大圆.经过球面两点的球大圆夹在两点间劣弧的长度叫两点间球面距离.定义11 (经度和纬度)用平行于赤道平面的平面去截地球所得到的截面四周叫做纬线.纬线上任意一点与球心的连线与赤道平面所成的角叫做这点的纬度.用经过南极和北极的平面去截地球所得到的截面半圆周(以两极为端点)叫做经线,经线所在的平面与本初子午线所在的半平面所成的二面角叫做经度,根据位置不同又分东经和西经.定理15 (祖原理)夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.定理16 (三面角定理)从空间一点出发的不在同一个平面内的三条射线共组成三个角.其中任意两个角之和大于另一个,三个角之和小于3600.定理17 (面积公式)若一个球的半径为R,则它的表面积为S球面=4πR2。

若一个圆锥的母线长为l,底面半径为r,则它的侧面积S侧=πrl.定理18 (体积公式)半径为R的球的体积为V球= ;若棱柱(或圆柱)的底面积为s,高h,则它的体积为V=sh;若棱锥(或圆锥)的底面积为s,高为h,则它的体积为V= 定理19 如图12-1所示,四面体ABCD中,记∠BDC=α,∠ADC=β,∠ADB=γ,∠BAC=A,∠ABC=B,∠ACB=C。

DH 平面ABC于H。

(1)射影定理:SΔABD•cosФ=SΔA BH,其中二面角D—AB—H为Ф。

(2)正弦定理:(3)余弦定理:cosα=cosβcosγ+sinβsinγcosA.cosA=-cosBcosC+sinBsinCcosα.(4)四面体的体积公式DH•SΔABC=(其中d是a1, a之间的距离,是它们的夹角)SΔABD•SΔACD•sinθ(其中θ为二面角B—AD—C的平面角)。

二、方法与例题1.公理的应用。

例1 直线a,b,c都与直线d相交,且a//b,c//b,求证:a,b,c,d共面。

[证明] 设d与a,b,c分别交于A,B,C,因为b与d相交,两者确定一个平面,设为a.又因为a//b,所以两者也确定一个平面,记为β。

因为A∈α,所以A∈β,因为B∈b,所以B∈β,所以d β.又过b,d的平面是唯一的,所以α,β是同一个平面,所以a α.同理c α.即a,b,c,d 共面。

例2 长方体有一个截面是正六边形是它为正方体的什么条件?[解] 充要条件。

先证充分性,设图12-2中PQRSTK是长方体ABCD-A1B1C1D1的正六边形截面,延长PQ,SR设交点为O,因为直线SR 平面CC1D1D,又O∈直线SR,所以O∈平面CC1D1D,又因为直线PQ 平面A1B1C1D1,又O∈直线PQ,所以O∈平面A1B1C1D1。

所以O∈直线C1D1,由正六边形性质知,∠ORQ=∠OQR=600,所以ΔORQ 为正三角形,因为CD//C1D1,所以=1。

所以R是CC1中点,同理Q是B1C1的中点,又ΔORC1≌ΔOQC1,所以C1R=C1Q,所以CC1=C1B1,同理CD=CC1,所以该长方体为正方体。

充分性得证。

必要性留给读者自己证明。

2.异面直线的相关问题。

例3 正方体的12条棱互为异面直线的有多少对?[解] 每条棱与另外的四条棱成异面直线,重复计数一共有异面直线12×4=48对,而每一对异面直线被计算两次,因此一共有24对。

例4 见图12-3,正方体,ABCD—A1B1C1D1棱长为1,求面对角线A1C1与AB1所成的角。

[解] 连结AC,B1C,因为A1A B1B C1C,所以A1A C1C,所以A1ACC1为平行四边形,所以A1C1 AC。

所以AC与AB1所成的角即为A1C1与AB1所成的角,由正方体的性质AB1=B1C=AC,所以∠B1AC=600。

所以A1C1与AB1所成角为600。

3.平行与垂直的论证。

例5 A,B,C,D是空间四点,且四边形ABCD四个角都是直角,求证:四边形ABCD 是矩形。

[证明] 若ABCD是平行四边形,则它是矩形;若ABCD不共面,设过A,B,C的平面为α,过D作DD1 α于D1,见图12-4,连结AD1,CD1,因为AB AD1,又因为DD1 平面α,又AB α,所以DD1 AB,所以AB 平面ADD1,所以AB AD1。

同理BC CD1,所以ABCD1为矩形,所以∠AD1C=900,但AD1<AD,CD1<CD,所以AD2+CD2=AC2= ,与<AD2+CD2矛盾。

所以ABCD是平面四边形,所以它是矩形。

例6 一个四面体有两个底面上的高线相交。

证明:它的另两条高线也相交。

[证明] 见图12-5,设四面体ABCD的高线AE与BF相交于O,因为AE 平面BCD,所以AE CD,BF 平面ACD,所以BF CD,所以CD 平面ABO,所以CD AB。

设四面体另两条高分别为CM,DN,连结CN,因为DN 平面ABC,所以DN AB,又AB CD,所以AB 平面CDN,所以AB CN。

设CN交AB于P,连结PD,作PD于,因为AB 平面CDN,所以AB ,所以平面ABD,即为四面体的高,所以与CM重合,所以CM,DN为ΔPCD 的两条高,所以两者相交。

例7 在矩形ABCD中,AD=2AB,E是AD中点,沿BE将ΔABE折起,并使AC=AD,见图12-6。

求证:平面ABE 平面BCDE。

[证明] 取BE中点O,CD中点M,连结AO,OM,OD,OC,则OM//BC,又CD BC,所以OM CD。

又因为AC=AD,所以AM CD,所以CD 平面AOM,所以AO CD。

又因为AB=AE,所以AO BE。

因为ED≠BC,所以BE与CD不平行,所以BE与CD是两条相交直线。

所以AO 平面BC-DE。

又直线AO 平面ABE。

所以平面ABE 平面BCDE。

4.直线与平面成角问题。

例8 见图12-7,正方形ABCD中,E,F分别是AB,CD的中点,G为BF的中点,将正方形沿EF折成1200的二面角,求AG和平面EBCF所成的角。

[解]设边长AB=2,因为EF AD,又AD AB。

所以EF AB,所以BG= ,又AE EF,BE EF,所以∠AEB=1200。

过A作AM BE于M,则∠AEM=600,ME= ,AM=AEsin600= .由余弦定理MG2=BM2+BG2-2BM•BGcos∠MBG= =2,所以MG= 因为EF AE,EF BE,所以EF 平面AEB,所以EF AM,又AM BE,所以AM 平面BCE。

相关文档
最新文档