北师大版八年级下册数学第二章 一元一次不等式与一元一次不等式组第1节《不等关系》参考教案

合集下载

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件

八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(2)设商店所获利润为y(单位:元),购进篮球的个数为 x(单位:个),请写出y与x之间的函数关系式(不要 求写出x的取值范围).
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试题(含答案解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试题(含答案解析)

第二章一元一次不等式和一元一次不等式组重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.2、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A .B .C .D .3、下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a +l ;⑥113x ->;⑦x =1.其中是不等式的有( )A .3个B .4个C .5个D .6个4、下列判断不正确的是( )A .若a b >,则33a b +>+B .若a b >,则33a b -<-C .若22a b >,则a b >D .若a b >,则22ac bc >5、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围( ) A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣26、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣17、如图,数轴上表示的解集是( )A .﹣3<x ≤2B .﹣3≤x <2C .x >﹣3D .x ≤28、设m 为整数,若方程组3131x y m x y m+=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是( ) A .4 B .5 C .6 D .79、不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( ) A .a <3 B .a =3 C .a >3 D .a ≥310、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程组31323x y k x y k-=+⎧⎨+=-⎩的解满足2x ﹣3y >1,则k 的的取值范围为 ___. 2、已知关于x 的不等式组53120x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____________. 3、根据“3x 与5的和是负数”可列出不等式 _________.4、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.5、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组()24018202x x +≤⎧⎪⎨+->⎪⎩,并把解集在数轴上表示出来. 2、由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a 辆,这100辆汽车的总销售利润为W 万元.①求W 关于a 的函数关系式;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?3、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.4、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).5、已知关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,求k的取值范围.-参考答案-一、单选题1、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.2、D【分析】由图像可知当x≤-1时,1x b kx+≤-,然后在数轴上表示出即可.【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1x b kx+≤-,∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.3、C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:①②③④⑥均为不等式共5个.故选:C【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.4、D【分析】根据不等式得性质判断即可.【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误;故选:D .【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.5、C【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①②解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.6、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.7、A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x >﹣3且x ≤2∴在数轴上表示的解集是﹣3<x ≤2,故选A .【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.9、D【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.10、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A .在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a >3b ,故A 不正确,不符合题意;B .无法证明,故B 选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.二、填空题1、34k >## 【分析】将①-②即可得2342x y k -=-,结合题意即可求得k 的范围.【详解】31323x y k x y k -=+⎧⎨+=-⎩①② ①-②得,2342x y k -=-2x ﹣3y >1421k ∴->解得34k > 故答案为:34k >【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键. 2、4a ≥【分析】先把a 当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.【详解】解:53120x a x -≥-⎧⎨-<⎩①② 由①得:2x ≤ 由②得:2a x > 不等式组无解 ∴22a ≥ 4a ≥故答案为4a ≥.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.3、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.5、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.三、解答题1、42x -<≤-,作图见解析【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案.【详解】 解:()24018202x x +≤⎧⎪⎨+->⎪⎩ 解不等式240x +≤,得2x -≤ 不等式()18202x +->, 去括号,得:840x +->移项、合并同类项,得:4x >-∴不等式组的解为:42x -<≤-数轴如下:.【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.2、(1)甲、乙两种型号汽车每辆的进价分别为7万元、3万元(2)①W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②甲型汽车25辆,乙型汽车75辆,最大利润是135万元【分析】(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,根据题意,可以得到相应的二元一次方程组,然后即可得到甲、乙两种型号汽车每辆的进价;(2)①根据总利润=甲型汽车的利润+乙型汽车的利润可以得到利润与购买甲种型号汽车数量的函数关系;②根据乙型号汽车的数量不少于甲型号汽车数量的3倍,可以得到购买甲种型号汽车数量的取值范围,然后根据一次函数的性质,即可得到最大利润和此时的购买方案.(1)(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,30202701410128a b a b +=⎧⎨+=⎩, 解得:73a b =⎧⎨=⎩, 即甲、乙两种型号汽车每辆的进价分别为7万元、3万元;(2)(2)①由题意得:购进乙型号的汽车(100﹣a )辆,W =(8.8﹣7)a +(4.2﹣3)×(100﹣a )=0.6a +120,乙型号汽车的数量不少于甲型号汽车数量的3倍,∴100﹣a ≥3a ,且a ≥0,解得,0≤a ≤25,∴W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②W=0.6a+120,∵0.6>0,∴W随着a的增大而增大,∵0≤a≤25,∴当a=25时,W取得最大值,此时W=0.6×25+120=135(万元),100﹣25=75(辆),答:获利最大的购买方案是购进甲型汽车25辆,乙型汽车75辆,最大利润是135万元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.3、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.4、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台【分析】(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷ 6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.5、3 12k<<【分析】根据题意易得23010kk-<⎧⎨->⎩,然后求解即可.【详解】解:∵关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,∴23010kk-<⎧⎨->⎩,解得:312k<<.【点睛】本题主要考查一次函数的图象与系数的关系,熟练掌握一次函数的图象与系数的关系是解题的关键.。

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; &nbsp; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。

北师大版八年级数学下册《一元一次不等式组(第1课时)》精品教案

北师大版八年级数学下册《一元一次不等式组(第1课时)》精品教案

问题.
不等式;
(2)如果还要求购买甲、乙两种原料的费用不超过 72 元,
那么你能写出 x(kg)应满足的另一个不等式吗?
甲种原料
乙种原料
维生素 C(/ 单位/kg) 600
100
原料价格/(元/kg) 8
4
想一想:(1)如果要配制的饮料同时满足两个小题的条
件,那么你能列出一个不等式组吗?
600x 100(10 x) 4200
《一元一次不等式组》精品教案
课题 2.6 一元一次不等式组(1) 单元 第二章
学科
数学 年级 八年级
学习 目标
知识与技能:.理解一元一次不等式组的概念,初步掌握解一元一次不等式组方法,并利用 数轴表示一元一次不等式组的解集; 过程与方法:通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解 出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集及解不等 式组的步骤; 情感态度与价值观:结合 “数形结合”的思想,锻炼学生数形结合的能力,提高学习兴趣, 树立学好数学的信心.
重点 掌握一元一次不等式组的解法及解集的表示方法.
难点 一元一次不等式组的解集的求法
教学环节 新知导入
新知讲解
教学过程
教师活动
学生活动 设计意图
同学们,我们上节课学习了不等式,请同学们回答下面的 学生根据老 通过回顾
问题:
师的提问回 不等式的
问题 1、什么是一元一次不等式?
答问题.
概念及解
答案:不等式的左右两边都是整式,只含有一个未知数,
答案:一元一次不等式组中各个不等式的解集的公共部
分,叫做这个一元一次不等式组的解集.
问题 3、说一说解一元一次不等式组的步骤?

八年级数学下册 第2章 一元一次不等式与一元一次不等式组2.4.2一元一次不等式的实际应用习

八年级数学下册 第2章 一元一次不等式与一元一次不等式组2.4.2一元一次不等式的实际应用习

解:嘉嘉所列方程为 101-x=2x, 解得 x=3323. 又∵x 为整数,∴x=3323不合题意. ∴淇淇的说法不正确.
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试
通过列不等式的方法说明A品牌球最多有几个. 解:∵A 品牌乒乓球有 x 个,
∴B 品牌乒乓球有(101-x)个.
依题意得
(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元; 解:设每支 A 种型号的毛笔 x 元,每支 B 种型号的毛笔 y 元. 由题意得32xx+ +y3=y=222, 4,解得xy==46., 答:每支 A 种型号的毛笔 6 元,每支 B 种型号的毛笔 4 元.
(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用 不超过420元,那么该中学最多可以购买多少支A种型号 的毛笔? 解:设该中学可以购买a支A种型号的毛笔. 由题意得6a+4(80-a)≤420, 解得a≤50. 答:该中学最多可以购买50支A种型号的毛笔.
3 【2021·常德】某汽车贸易公司销售A,B两种型号的 新能源汽车,A型车进货价格为每台12万元,B型车进 货价格为每台15万元.该公司销售2台A型车和5台B型 车,可获利3.1万元;销售1台A型车和2台B型车,可 获利1.3万元.
(1)求销售一台A型、一台B型新能源汽车的利润各是多少 万元; 解:设销售一台 A 型新能源汽车的利润是 x 万元,销售 一台 B 型新能源汽车的利润是 y 万元. 依题意得2xx++25y=y=13.3.1,,解得xy==00..53., 答:销售一台 A 型新能源汽车的利润是 0.3 万元,销售 一台 B 型新能源汽车的利润是 0.5 万元.
(1)求《西游记》和《水浒传》每本的售价分别是多少元; 解:设《西游记》每本的售价为 x 元,《水浒传》每本 的售价为 y 元. 依题意得5400xx+ +6300yy= =64 620000, ,解得xy==6600., 答:《西游记》每本的售价为 60 元,《水浒传》每本的 售价为 60 元.

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。

一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。

定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。

基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)

北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
分析 先求出不等式组的解集, 即x的取值范围, 然后根据不等式组 的整数解的个数确定其整数解, 再借助数轴进行直观分析得到b的 取值范围.
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?

北师版八年级数学下册作业课件 第二章一元一次不等式与一元一次不等式组 第1课时 一元一次不等式的解法

北师版八年级数学下册作业课件 第二章一元一次不等式与一元一次不等式组 第1课时 一元一次不等式的解法
不等式
第 1 课时 一元一次不等式的解法
1.不等式的两边都是
,只含有一个未
知数,并且整未式知数的最高次数是_______,像这
1
样的不等式,叫做一元一次不等式.
练习1:下列不等式中,属于一元一B 次不等式的是( )
A.4>1
B.3x-2<4
C. <2
∴-x+2>-1+2,即-x+2>1. ∴数轴上表示数-x+2的点在A点的右边. ∵-2x+3-(-x+2)=-x+1,x<1,∴-x+1>0, ∴-2x+3-(-x+2)>0,∴-2x+3>-x+2, ∴数轴上表示数-x+2的点在B点的左边. 综上所述,数轴上表示数-x+2的点应落在线段AB上.
16.已知一元一次不等式mx-3>2x+m.
A5..去在分解母,不得等5(式错2+误3x的)>一3(2步x-是的1)(过程中) ,开始B 出现
B.去括号,得10+5x>6x-3 C.移项,得5x-6x>-3-10 D.系数化为1,得x<13
6.若代数 +1的值不小于
-B 1的值,
则x的取值范围是( )
7.关于x的一元一次不等式ax-2>0的解集在 数轴上表示如图所示,则关于y的方程ay+2=0
B 的解为( )
A.y=-2 B.y=2 C.y=-1 D.y=1
8.一元一次不等式2x-7≤5-2x的正整数解是1,2,3.
1,2,3,
9.解下列一元一次不等式,并把它们的解集在
数轴上表示出来.
(1)(2018·桂林)
<x+1;
解:x<2,不等式的解集在数轴上表示如下:
(2)(2018·盐城)3x-1≥2(x-1).
(1)若它的解集是
,求m的取值范围;
(2)若它的解集是x> ,试问:这样的m是否存在?如果 存在,求出它的

八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳北...

八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳北...

八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳北...八年级数学下册第二章《一元一次不等式与一元一次不等式组》知识点归纳(北师大版)第二章一元一次不等式和一元一次不等式组一.不等关系1.一般地,用符号“<</span>”(或“≤”),“>”(或“≥”)连接的式子叫做不等式2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数大于等于0(≥0),非正数小于等于0(≤0)二.不等式的基本性质1.掌握不等式的基本性质:(1)不等式的两边加上(或减)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,a/c=b/c.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac2.比较大小:(a、b分别表示两个实数或整式)即:a>b <===>a-b>0 a=b <===>a-b=0 a<===>a-b<02.比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a那么a-b是负数;反过来,如果a-b是负数,那么a即:a>b <===>a-b>0a=b <===>a-b=0a<===>a-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三.不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个含有未知数的不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.¤3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:边界:有等号的是实心圆圈,无等号的是空心圆圈;。

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式

八年级数学北师大版下册名师说课稿:第二章课题 一元一次不等式组及其解集

八年级数学北师大版下册名师说课稿:第二章课题 一元一次不等式组及其解集

八年级数学北师大版下册名师说课稿:第二章课题一元一次不等式组及其解集一. 教材分析本次说课的教材是北师大版八年级数学下册第二章课题《一元一次不等式组及其解集》。

本节课的内容是在学生已经掌握了不等式的概念、性质和一元一次不等式的解法的基础上进行学习的。

通过本节课的学习,使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集,培养学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次不等式的相关知识,具备了一定的逻辑思维能力和解决问题的能力。

但是,对于不等式组的解法和解集的表示方法,可能还存在一定的困难。

因此,在教学过程中,要注重引导学生,激发学生的学习兴趣,帮助学生理解和掌握不等式组的知识。

三. 说教学目标1.知识与技能目标:使学生理解不等式组的含义,掌握不等式组的解法,以及会用图像法表示不等式组的解集。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:不等式组的解法和不等式组的解集的表示方法。

2.教学难点:不等式组的解集的图像表示方法。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在解决问题的过程中,掌握不等式组的知识。

2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。

六. 说教学过程1.导入新课:通过复习一元一次不等式的知识,引出不等式组的概念,激发学生的学习兴趣。

2.自主学习:让学生自主探究不等式组的解法,引导学生发现解法的规律。

3.合作交流:学生分组讨论,分享解法经验,互相学习,共同提高。

4.教师讲解:教师讲解不等式组的解集的表示方法,特别是图像法的含义和画法。

5.练习巩固:让学生通过练习题,巩固所学知识,提高解题能力。

6.总结提升:教师引导学生总结不等式组的知识,使学生形成系统化的知识结构。

(汇总)北师大版八年级下册数学第二章 一元一次不等式和一元一次不等式组含答案

(汇总)北师大版八年级下册数学第二章 一元一次不等式和一元一次不等式组含答案

北师大版八年级下册数学第二章一元一次不等式和一元一次不等式组含答案一、单选题(共15题,共计45分)1、不等式组的解集在数轴上表示正确的是()A. B. C.D.2、下列命题是真命题的是()A.若ac>bc,则a>bB.4的平方根是2C.一组对边平行,另一组对边相等的四边形是平行四边形D.顺次连接任意四边形各边中点所得的四边形是平行四边形3、某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A.1,3,5B.1,2,3C.2,3,4D.3,4,54、已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣35、如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣16、在-2,-1,0,1,2中,不等式x+3>2的解有()A.1个B.2个C.3个D.4个7、已知m、n均为非零有理数,下列结论正确的是()A.若m≠n,则m 2≠n 2B.若m 2=n 2,则m=nC.若m>n>0,则>,D.若m>n>0,则m 2>n 28、不等式组的解集是()A.x>2B.x≤3C.2<x≤3D.x≥39、一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是()A. B. C. D.10、若整数使得关于的方程的解为非负数,且使得关于的不等式组至少有四个整数解,则所有符合条件的整数的和为().A.17B.18C.22D.2511、不等式组的解集是( )A.-5≤x<3B.-5<x≤3C.x≥-5D.x<312、已知a,b,c均为有理数,若a>b,且b≠0,则下列结论不一定成立的是()A.a 2>abB.a+c>b+cC.D.c﹣a<c﹣b13、在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm14、若x+3的值同时大于2x和1﹣x的值,则x的取值范围是()A.x>﹣1B.x<3C.x>3D.﹣1<x<315、不等式组的解集在数轴上表示正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、某试卷共有50道选择愿,每道题选对得4分,选错了或者不选扣2分,至少要选对________道题,其得分才能不少于120分.17、大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分。

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,


现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号

不大于, 小于或 不超过 等于
大于或等于 号

不小于, 大于或
至少
等于
不等号

不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象

八年级数学下册(新版北师大版)精品导学案【第二章_一元一次不等式和一元一次不等式组】

八年级数学下册(新版北师大版)精品导学案【第二章_一元一次不等式和一元一次不等式组】

⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。

2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。

3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。

【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。

难点:怎样建⽴量与量之间的不等关系。

【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。

注意:⽤符号“≠”连接的式⼦也叫不等式。

2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。

⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。

3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。

做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。

某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。

实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。

北师大版八年级下册数学第二章 一元一次不等式和一元一次不等式组含答案

北师大版八年级下册数学第二章 一元一次不等式和一元一次不等式组含答案

北师大版八年级下册数学第二章一元一次不等式和一元一次不等式组含答案一、单选题(共15题,共计45分)1、下列式子中是一元一次不等式的是()A.6>3B. >4C.﹣x<﹣1D.xy>02、不等式组次的解集在数轴上表示正确的是()A. B. C.D.3、若x > y,则下列式子中,错误的是()A.x - 3 > y - 3B.x + 3 > y + 2C.- 3x >- 3yD. >4、已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.5、一个不等式组的解集在数轴上的表示如下图,则这个不等式组的解集是( )A.x<3B.x≥-1C.-1<x≤3D.-1≤x<36、如图,不等式组的解集在数轴上表示正确的是()A. B. C.D.7、下列说法正确的是( )A.若a>b,b<c,则a>cB.若a>b,则ac>bcC.若a>b,则ac 2>bc 2D.若ac 2>bc 2,则a>b8、不等式组的解集在数轴上表示正确的是A. B. C. D.9、已知a<b,下列式子不成立的是()A.a+1<b+1B.3a<3bC.-2a<-2bD.a-b<010、不等式组的解集是()A.x≤1B.x≥2C.1≤x≤2D.1<x<211、已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是()x -2 0 2 4y甲 5 4 3 2y乙 6 5 3.5 0A.a<﹣2B.﹣2<a<0C.0<a<2D.2<a<412、已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>13、不等式的解集在数轴上表示正确的是()A. B. C. D.14、若,则下列式子不成立的是()A. B. C. D.15、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<4二、填空题(共10题,共计30分)16、 ________不等式的一个解(填“是”或“不是”).17、若a>b ,则a﹣3________b﹣3.(填>或<)18、若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是________.19、当x________时,代数式的值为非负数.20、用不等式表示:x与3的和不大于1,则这个不等式是:________21、某年级为山区学生捐款2268元,这个年级有教师35名,14个教学班,各班学生人数都相同且多于30人,不超过45人.若平均每人捐款的金额是整数,则平均每人捐款________元.22、不等式组的解集是________.23、若不等式组的解集是,则m的取值范围是________.24、不等式组的解集是________.25、不等式组的解集是x>2,则m的取值范围是________.三、解答题(共5题,共计25分)26、求下列不等式组的解集:.27、赵军说不等式2a>3a永远不会成立,因为如果在这个不等式两边同除以a,就会出现2>3这样的错误结论.你同意他的说法对吗?若同意说明其依据,若不同意说出错误的原因.28、解不等式(3x+4)(3x-4)-x(x-4)>8(x+1)2,并把它的解集在数轴上表示出来.29、用不等式表示下列关系:哥哥存款x元,弟弟存款y,兄弟2人的存款总数少于1000元.30、解不等式组,并把解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、A5、D6、A7、D8、C10、C11、D12、B13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

第二章一元一次不等式与一元一次不等式组 回顾与思考教案2021-2022学年北师大版八年级数学下册

第二章一元一次不等式与一元一次不等式组 回顾与思考教案2021-2022学年北师大版八年级数学下册

基于标准的教学设计北师大版八年级(下册)第二章一元一次不等式与一元一次不等式组《回顾与思考》第二章一元一次不等式与一元一次不等式组回顾与思考一、课标描述(摘要)及其解读2011版新课程标准要求:1.结合具体问题,了解不等式的意义,探索不等式的基本性质.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个元一次不等式组成的不等式组的解集.3.能根据具体问题中的数量关系,列出一元一次不等式,解决具体问题.课标对于“了解”的要求是:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.课标对于“理解,会”的要求是:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.课标对于“能”的要求是:在理解的基础之,把对象用于新的情境.课标对于“体会”的要求是:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验.二、教材分析在小学数学教材中,已经呈现了一些关于不等关系的相关知识,学生知道生活大量存在着不等关系的量,了解“大于”、“小于”等符号的用法和意义,能比较两数的大小,并能用数学的语言表达;学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.三、学情分析学生的知识技能基础:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.学生活动能力基础:经历探索、发现不等关系的过程学习解决一些简单的实际问题.四、学习目标学生通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力. 本节课的具体学习目标是:1.通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.2.通过基础过关题组的训练,进一步夯实基础,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式函数、方程之间的联系.3.通过深度研讨环节,能够举一反三,灵活应用.4.通过实际应用,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.五、学习重难点重点:梳理本章内容,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.难点:进一步体会数形结合思想及类比的思想方法,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.六、评价设计根据课标要求:评价的主要目的的为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学. 所以,本节课的教学评价主要通过以下环节进行:1.通过小组讨论交流展示本章思维导图的过程,引领学生进行对话交流,在鼓励的基础上纠正偏差,并对其进行定性的评价;2.通过“基础过关”、“当堂检测”来检验教学效果,并在讲评中,肯定优点,指出不足;3.通过深度研讨环节,使学生能够在交流中,思想相互碰撞,思维得到提升;4.通过自我评价表和组长评价表,对本节课学习过程进行过程性评价;通过作业,反馈信息,再次对本节课做出评价,以便查缺补漏.七、学习过程依据“目标导引教学”的理念和“教、学、评一致性”的原则,具体流程如下:学习目标学习评价学习过程一、课前准备、交流复习目标1:通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.1.通过小组分享,制作思考评价学生思路是否清楚,结构是否合理;2.通过提问,检测学生是否能快速的回答这些问题.1.学生通过课前准备,以小组为单位制作思维导图,并且分享制作思路,对本章内容进行梳理并且再一次画出本章的结构图.2.教师引导,总结本章的核心数学思想以及做题方法,并提出如下问题(1)不等式有哪些基本性质?它与等式的基本性质有什么异同?(2)接一元一次不等式与解一元一次方程有什么异同?(3)举例说明在数轴上如何表示一元一次不等式(组)的解集?(4)举例说明不等式、函数、方程之间的关系.设计意图学生通过对本章的知识进行整理,建构本章的知识体系. 通过画本章知识联系图培养学生归纳整理、对比分析的能力,学生可以互相进行比较、补充,养成交流与合作的习惯.二、基础过关、大展身手目标2:通过基础过关题组的训练,进一步夯实基础,掌握不等式的基通过独立完成、教师提问、自我评价的方式检测学生的基础过关题1.给出下面6个式子:①3>0;②x<-2;③4x+3y≠0;④x=3;⑤x-1;⑥x+2≤3. 其中不等式有()A.2个B.3个C.4个D.5个2.有下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;③若a>b,则-2a<-2b;本性质,理解不等式(组)的解及解集的含义,会解简单的一元次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.组,进一步查漏补缺.④若a>b,则ma<mb. 其中正确的有()A.1个B.2个C.3个D.4个3.若x>y,且(a-3)x<(a-3)y,则a的值可能是()A.0B.3C.4D.5归纳总结:不等式的性质.4.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④x+1<7.A.1个B.2个C.3个D.4个5.解不等式113xx+-<.归纳总结:解一元一次不等式的步骤.6.解不等式组3(2)42113x xxx--≥-⎧⎪⎨+-<⎪⎩,并在数轴上表示不等式的解集.总结归纳:解一元一次不等式组的步骤以及在数轴上表示其解集.7.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.若关于x的不等式mx-1>0(m≠0)的解集是x>1,则直线y=mx-1与x轴的交点坐标是 .9.如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x>kx+2的解集为 .总结归纳:一次函数与一元一次不等式的关系.设计意图要建高楼大夏必须先打好基础,通过这个环节的设计,对于不等式的基本性质、元一次不等式的解法以及用数轴表示其解集起到了很好的检测目的,然后让学生先独自完成上述各小题的解答,然后教师提问,让学生自己来作评判,找出存在的问题. 对于做得比较好的同学,教师给予鼓励,使学生对本章知识内容有进一步的理解和掌握.三、深度研讨、再度提高目标3:通过深度研讨环节,能够举反三,灵活应用.通过独立思考、小组探讨、小组分享的方式评价学生对较复杂的一元一次不等式(组)——含参的不等式的问题解决.问题四:含参数的不等式相关问题.10.已知不等式组+21x m nx m+⎧⎨-<⎩>的解集为-1<x<3,求(m+n)2018的值.11.若不等式x-2≤m的正整数解只有3个,则m的取值围为 .12.已知不等式组2xx a⎧⎨<⎩>.(1)如果此不等式组无解,则a的取值范围;(2)如果此不等式组有解,则a的取值范围.数学思想:.设计意图通过小组讨论,学生自己总结做题方法,更利于学生理解和掌握一元一次不等式(组)的与应用,同时也培养和提高了学生的总结归纳能力和抽象思维能力.也再次感受到数形结合的数学思想.四、建构模型、实际应用目标4:通过实际应用,能够建立不等模型,能够用一元次不等式解决一些简单的实际问题.通过独立思考,同学分享评价学生是否能够从实际问题中建立不等模型,模型建立后,能否找到符合实13.小丽去文具店买铅笔和橡皮,铅笔每支0.5元,橡皮每块0.4元,小丽带了2元钱,可以买几支铅笔几块橡皮?14.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元时,超出部分按原价的8折付款;在乙超市累计购买商品超过250元时,超出部分按原价的85际情况的解. 折付款,设一顾客预计购物x(x>300)元. (1)分别写出该顾客在甲、乙两家超市购物所付的费用y甲(元),y乙(元)与x之间的函数关系式;(2)该顾客到哪家超市购物更优惠?设计意图本环节通过实际问题的设置,进一步体会不等式是来源于生活,又服务于生活,能够用不等式解决实际问题,并进一步渗透数学建模的思想. 让学生感受到生活当中处处有数学,激发学生对学习数学的兴趣和愿望.五、归纳总结、反馈评价培养归纳能力,养成反思习惯.并检测目标1、2、3、4的学习效果.通过学生能否完整清晰地说出本节课学习的收获和困惑,了解学生理解知识和情感态度方面的情况.通过“当堂检测”,评价学生的知识技能达标情况.总结归纳说说本节课又学习到了哪些数学知识?体会到了哪些数学思想与方法?还有什么困惑吗?当堂检测:1.下列各式是一元一次不等式的是()A.2x-4>5y+1B.3>-5C.4x+1>0D.4y+3<1y2.若a>b,则下列式子正确的是()A. 1122a b< B.-5a>-5bC. a-3>b-3D.4-a>4-b3.已知关于x的不等式组x ax⎧⎨⎩>>b,其中a、b在数轴上对应点如图所示,则这个不等式组的解集为()A.x>bB.x>aC.b<x<aD.无解4.不等式3x+12≥0的所有正整数解的和为 .5.如图,直线y=ax+b经过A(-2,-5)、B(3,0)两点,那么,不等式ax+b<0的解集是.6.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能购买多少支钢笔?通过归纳和总结,让学生学会提炼和阐述自己的认知,养成善于反思的习惯. 并通过反馈检测样题,评价知识技能的达成度,确保课堂实效性.在学习指导书的最后附一份个人评价表,对本节课学习过程进行过程性评价.1.必做:完成课本61页复习题第2、4、7、9、12题(AB组全做)2.选做:完成课本63页复习题第13、15题(B组做)八、板书设计第二章一元一次不等式与一元一次不等式组知识结构多媒体核心思想:类比思想数形结合数学建模1.本节课的重点在让每个学生建构本章知识体系. 教师让学生充分思考、练习和交流,同时充分暴露出存在的问题,达到有效复习的目的.2.华罗庚教授说:读书要从薄到厚,又从厚到薄. 复习重在从厚到薄.每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用思维导图、知识结构图、习题组等措施复习是有效的,本节课在这方面做了一些尝试.3.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率.4.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章一元一次不等式和一元一次不等式组
2.1 不等关系
●教学目标
(一)教学知识点
1.理解不等式的意义.
2.能根据条件列出不等式.
(二)能力训练要求
通过列不等式,训练学生的分析判断能力和逻辑推理能力.
(三)情感与价值观要求
通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对,并以此激发学生学习数学的信心和兴趣.
●教学重点
用不等关系解决实际问题.
●教学难点
正确理解题意列出不等式.
●教学方法
讨论探索法.
●教具准备
小黑板
●教学过程
Ⅰ.创设问题情境,引入新课
[师](给学生列出几个等式)这就是我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.(板书课题)
Ⅱ.新课讲授
[师]既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?
[生]可以.比如我的身高比她的身高高5公分.,用天平称重量时,两个托
盘不平衡等.
[师]很好.那么,如何用式子表示不等关系呢?请看例题. 图2-1
2式,另一个是了解“不大于”“大于”等词的含意.(提示课本下边的注释)
[生]正方形的面积等于边长的平方,圆的面积是πR 2,其中R 是圆的半径. 两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.
[师]下面请大家互相讨论,按照题中的要求进行解答.
[生](1)因为绳长l 为正方形的周长,所以正方形的边长为4
l ,得面积为(4l )2,要使正方形的面积不大于25 cm 2,就是(4l )2≤25.即16
2l ≤25. (2)因为圆的周长为l ,所以圆的半径为R=
π2l .要使圆的面积不小于100 cm 2,就是π·(π2l )2≥100,即π42l ≥100 (3)当l=8时,正方形的面积为1682=4(cm 2).圆的面积为π
482≈5.1(cm 2). ∵4<5.1
∴此时圆的面积大.
当l=12时,正方形的面积为16122=9(cm 2).圆的面积为π
4122≈11.5(cm 2)
此时还是圆的面积大.
(4)我们可以猜想,用长度均为l cm 的两根绳子分别围成一个正方形和圆,
无论l 取何值,圆的面积总大于正方形的面积,即π42l >16
2
l . 因为分子都是l 2相等、分母4π<16,根据分数的大小比较,分子相同的分
数,分母大的反而小,因此不论l 取何值,都有π42l >16
2
l . 做一做
铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高之和不得超过169cm 。

设行李的长、宽、高分别为acm,bcm,ccm,请你列出行李的长、宽、高满足的关系式。

师:请大家和同桌进行讨论列出关系式
生:行李箱的长宽高满足的关系式为:a+b+c ≤160
[生]设这棵树至少生长x 年其树围才能超过2.4 m ,得
3x+6>30
议一议
观察由上述问题得到的关系式,它们有什么共同特点?
[生]由162l ≤25,π42l >100,π42l >16
2
l ,3x+6>30 得,这些关系式都是用不等号连接的式子.由此可知:
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality )(小黑板展示定义,板书不等符号)
Ⅲ.随堂练习
师:通过以上我们对不等式的学习,让我们一起来练一练吧。

请大家做一下随堂练习第二题,然后回答问题。

学生回答,老师点评。

老师总结列不等式的方法,首先要抓住关键词再选不等号,其次要注意隐含的不等关系(比如非负数、非正数、不等于零等等)
Ⅳ.课时小结
能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.
通过不等关系的式子归纳出不等式的概念.
Ⅴ.课后作业
习题2.1必做题:1/2/3 选做题:4
●板书设计
参考答案: 解:(1)32
x -5<1;
(2)x+6>9;
(3)8+2y >0;
(4)3a -7<0;
(5)4x >3x -7;
(6)54
x+1<-2;
(7)32
(x -8)≤0.。

相关文档
最新文档