【全国百强校】河北省衡水中学2018年高考押题(二)理科数学(原卷版)

合集下载

【衡水押题卷】2018年普通高等学校招生全国统一考试模拟(二)数学(理)试题+Word版含答案

【衡水押题卷】2018年普通高等学校招生全国统一考试模拟(二)数学(理)试题+Word版含答案

2018年普通高等学校招生全国统一考试模拟试题理数 (二) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,0,1,2,3,4A B =-=,则()B C A B I =( ) A .{}0,4 B .{}0,1,4 C .{}14, D .{}0,12.已知i 是虚数单位,复数z 满足132z ii∙=+,则3z +=( )A . D .53.已知具有线性相关的两个变量x y ,之间的一组数据如下表所示:若x y ,满足回归方程 1.5y x a =+,则以下为真命题的是( ) A.x 每增加1个单位长度,则y 一定增加1.5 个单位长度 B.x 每增加1个单位长度,y 就减少1.5 个单位长度 C.所有样本点的中心为(1,4.5) D.当8x =时,y 的预测值为13.54.已知点(),4P n 为椭圆2222:1(0)x y C a b a b+=>>上一点,12,F F 是椭圆C 的两个焦点,若12PF F ∆的内切圆的直径为3,则此椭圆的离心率为( )A .57 B .23 C.35 D .455.如图,已知ABC ∆与AMN ∆有一个公共顶点A ,且MN 与BC 的交点O 平分BC ,若,AB mAM AC nAN ==u u u r u u u r u u u r u u u r ,则12m n+的最小值为( )A .4B .2C.32.66.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧梭垂直于底面的四棱锥.现有一如图所示的堑堵111,ABC A B C AC BC -⊥,若12A A AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外 接球的体积为( )A .B .3 C.3D . 7.“34πϕ=”是“函数= 2y cos x 与函数()=2y sin x ϕ+在区间04π⎡⎤⎢⎥⎣⎦,,上的单调性相同”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件8.执行如图所示的程序框图,若输出1007S =-,则判断框内应填的内容是( )A .2015?k <B .2016?k < C.2017?k < D .2014?k <9.如图所示,直线l 为双曲线()2222:10,0x y C a b a b-=>>的一条渐近线,12,F F 是双曲线C 的左、右焦点,1F 关于直线的对称点为1'F ,且1'F 是以2F 为圆心,以半焦距c 为半径的圆上的一点,则双曲线C 的离心率为( )A.310.某单位现需要将“先进个人”、“业务精英”、“道德模范”、“新长征突击手”“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有( ) A .114种 B .150种 C. 120种 D .118种11.如图,正方体1111ABCD A BC D -的对角线BD 上存在一动点P ,过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于,M N 两点.设,BP x BMN =∆的面积为S ,则当点P由点B 运动到1BD 的中点时,函数()S f x =的图象大致是( )A .B . C. D .12.已知()'f x 为函数()= y f x 的导函数,当02x x π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝∈⎭,是斜率为k 的直线的倾斜角时,若不等式()()'0f x f x k -∙<恒成立,则( )A()3()4f f ππ>B .(1)2()sin16f f π<()()064f ππ-> D()()063f ππ-<第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()()2221f x cosx sinx sin x =+-+,则其最小正周期为 .14.过()()3,1,0,M N a -两点的光线经y 轴反射后所在直线与圆221x y +=存在公共点,则实数a 的取值范围为 .15.如图,将正方形ABCD 沿着边BC 抬起到一定位置得到正方形BCEF ,并使得平面ABCD 与平面BCEF 所成的二面角为45°,PQ 为正方形BCEF 内一条直线,则直线PQ与BD 所成角的取值范围为 .16..已知菱形ABCD ,E 为AD 的中点,且3BE =,则菱形ABCD 面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 的前n 项和221,S n n n N *=++∈n . (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和Tn .18.如图所示,已知三棱锥P ABC -中,底面ABC 是等边三角形,且=2,,PA PB AC D E ==分别是,AB PC 的中点.(1)求证:AB ⊥平面CDE ;(2)若PC =求二面角A PB C --的余弦值19.伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50 人,对他们一个月内使用手机支付的情况进行了统计,如下表:(1)若以“年龄55 岁为分界点”,由以上统计数据完成下面的22⨯列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关:(2)若从年龄在[)55,65,[]65,75内的被调查人中各随机选取2 人进行追踪调查.记选中的4人中“使用手机支付”的人数为ξ. ①求随机变量ξ的分布列; ②求随机变量ξ的数学期望. 参考数据如下:参考公式:22(),()()()()n ad bd K n a b c d a b c d a c b d -==+++++++20. 已知点()0,1A ,过点()0,1D -作与x 轴平行的直线1l ,点B 为动点M 在直线1l 上的投影,且满足MA AB MB BA ∙=∙uuu r uu u r uuu r uu r(1)求动点M 的轨迹C 的方程;(2)已知点P 为曲线C 上的一点,且曲线C 在点P 处的切线为2l ,若的与直线2l 相交于点Q ,试探究在y 轴上是否存在点N ,使得以PQ 为直径的圆恒过点N ? 若存在,求出点N 的坐标,若不存在,说明理由.21.已知函数()1f x x nx =.(1)若函数()()()()2 '20g x f x ax a x a ==+-+>,试研究函()g x 数的极值情况; (2)记函数()() x x F x f x e =-在区间(1,2)内的零点为o x ,记()(),x x m x min f x e ⎧⎫=⎨⎬⎩⎭,若 ()() m x n n R =∈在区间()1,+∞内有两个不等实根()1212, x x x x <,证明∴122o x x x +>. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知圆cos 1:x C y xin αα=+⎧⎨=⎩(α为参数).以O 为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆C 2的极坐标方程为4 sin ρθ=. (1)分别写出圆1C 的普通方程与圆2C 的直角坐标方程;(2)设圆1C 与圆2C 的公共弦的端点为,A B ,圆1C 的圆心为1C ,求1AC B ∆的面积. 23.选修4-5:不等式选讲已知,a b 均为正实数,且 1a b +=.(1)求2的最大值; (2)求1aba+的最大值.2018年普通高等学校招生全国统一考试模拟试题理数 (二)一、选择题1-5:BADCC 6-10:BAACA 11、12:DD 二、填空题13.π【解析】因为()21 221= 2 +?cos 21214f x sin x sin x sin x x x π⎛⎫ ⎪⎝⎭=+-++=++,所以其最小正周期为22T ππ==. 14.5,14⎡⎤-⎢⎥⎣⎦[解析]点() 3,1M -关于y 轴的对称点为()'3,1M ,则直线'M N 的方程为11?(303)a y x -=---,即()1330a x y a -+-=,由题意可知,圆心(0,0)到直线()1330a x y a -+-=的距离1d =≤,即282100a a +-≤,解得5-14a ≤≤,故实数a 的取值范围为5,14⎡⎤-⎢⎥⎣⎦15.30,90⎡⎤⎣⎦【解析】不妨设正方形的边长为1,作DG CE ⊥,垂足为G ,由,BC CE BC CD ⊥⊥,得BC ⊥平面CDG .故BC DG ⊥.又BC CE C = ,得DG ⊥平面BCEF ,故直线BD 在平面BCEF BCEF 内的射影为BG .易知2DG =,则BD 与平面BCEF 所成的角为30DBG ∠= ,所以BD 与平面BCEF 内的直线所成的最小角为30°,而直线PQ 与BD 所成角的最大角为90°(当PQ 与CF 重合时,PQ 与BD 所成角为90°),所以直线PQ 与BD 所成角的取值范围为30,90⎡⎤⎣⎦16.12【解析】设AE x =,则2AB AD x ==,因为两边之和大于第三边,两边之差小于第三边,所以+>,<,AB AE BE AB AE BE ⎧⎨-⎩即231233x x x x x x +>>⎧⎧⇒⎨⎨-<<⎩⎩,所以(1,3)x ∈.设BAE θ∠=,在ABE ∆中,由余弦定理可知()229222x x x xcos θ=+-∙∙,即22594x cos x θ-=,2 2.4ABCD S x x sin xθ=∙∙==菱形2t x =,则()1,9t∈,则A B C D S =菱形当5t=,即x =,ABCD S 菱形有最大值12.三、解答题17.解:(1)当1n =时,114a S ==; 当2n ≥时,()2211221,n n n a S S n n n -=-=--+=+对14a =不成立,所以数列{}n a 的通项公式为4,121,2,n an n n nN*=⎧=⎨+≥⎩ (2)当1n =时,1120T = 当2n ≥时,111(21(23)n n a a n n +=++ =111)22n+123n -+(所以111111111161(...)2025779212320101520(23)n n n T n n n n --=+-+-++-=+=++++ 又1n =时,1120T =符合上式, 所以61()20(23)N n n n n T *=-∈+18.解:(1)连接PD ,因为PA PB AC ==,底面ABC 是等边三角形, 又因为D 是AB 的中点, 所以,PD AB AB CD ⊥⊥. 又因为CD PD D = , 所以AB ⊥平面CDE . (2)因为2PA PB AC === 由(1),可知PD CD ==而PC ,所以PD CD ⊥.以D 为原点,以DB uu u r的方向为x 轴正方向建立空间直角坐标系,如图所示,则()()()(1,0,0,1,0,0,,A B C P -,由题意,得平面ABP 的一个法向量为()0,1,0m =u r. 设平面BCP 的一个法向量为(),,n x y z =r.因为()(,BC PC =-=-uu u r uu u r,所以((,,)0(,,)0BC n x y z PC n x y z ⎧∙=-∙=⎪⎨∙=∙=⎪⎩uu u r,即00x ⎧-+=⎪= 令1z =,得1,x y =.所以)n =,所以,cos m n <>==由题意知二面角A PB C --为锐角, 所以二面角A PB C --的余弦值为519.解:(1)22⨯列联表如下:2K 的观测值250(38732)9.524 6.63510403515k ⨯⨯-⨯=≈>⨯⨯⨯ 所以有99%的把握认为“使用手机支付”与人的年龄有关. (2)①由题意,可知ξ所有可能取值有0,1,2,3,()229340225055C C P C C ξ==∙=,()1122112234340+2222255555C C C C C P C C C C ξ==∙∙=,()221113242342+2222105555CC C C C P C C C C ξ==∙∙=,()211243222555CC P C C ξ==∙=, 所以ξ的分布列是②912316()0123502510255E ξ=⨯+⨯+⨯+⨯= 20.解:(1)设(),M x y ,由题得(),1B x -.又()0,1A ,∴()-, 1MA x y =-uuu r ,()()0, 1 ,, 2MB y AB x =--=-uuu r uu u r ,由MA AB MB BA ∙=∙uuu r uu u r uuu r uu r ,得()0MA MB AB =∙+uuu r uuu r uu u r . 即()()2,2,204x y x x y --∙-=⇒=, ∴轨迹C 的方程为24x y =. (2)设点()0200,,4x N n P x ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,, 由214y x =,得1'2y x =, ∴201 '2l k y x x x == ∴直线2l 的方程为0020)4(2xx y x x -=-).令-1y =,可得0020()42xx x x x ==- ∴Q 点的坐标为2,12o o x x ⎛⎫-- ⎪⎝⎭. ∴220=,,,142o o o x x NP x n NQ n x ⎛⎫ ⎪⎛⎫ ⎪-=--- ⎪ ⎪⎝⎭ ⎪⎝⎭uu u r uuu r ∵点N 在以PQ 为直径的圆上 ∴22002(1+)()24x x NP NQ n n ∙=---uu u r uuu r =220(1-)()+20()4xn n n n -+-=* 要使方程(* )对o x R ∈恒成立,则必有21020n n n -=⎧⎨+-=⎩,解得1n =. 即在y 轴上存在点N ,使得以PQ 为直径的圆恒过点N ,其坐标为(0,1).21.解:(1)由题意,得()'1f x lnx =+,故()()221g x ax a x lnx =-+++, 故()()()()2111 '22x ax g x ax a x x--=-++=, 00.x a >>, 令()'0g x =,得2111,2x x a== ①当02a <<时,112a >, ()1 '002g x x >⇒<<或1x a >;()11'02g x a<⇒<, 所以() g x 在12x =处取极大值1 ln 224a g =-- ②当2a =时,()11,'02g x a =≥恒成立,所以不存在极值; ③当2a >时,112a , ()1'00g x x a >⇒<<或12x >, ()11'02g x x a <⇒<, 所以()g x 在1x a =处取极大值11()ln g a a a=-- 在12x =处取极小值1()1224a g n =--. 综上,当02a <<时,()g x 在12x =处取极大值,124a n --,在1x a =处取极小值ln 4a a --; 当2a =时,不存在极值;当2a >时,() g x 在1x a =处取极大值ln 4a a --, 在12x =处取极小值ln 24a --. (2)()x x F x xlnx e=-,定义域为()0,x ∈+∞, ()1'1x x F x lnx e-=++,而()1,2x ∈, 故()'0F x >,即()F x 在区间(1,2)内单调递增.又()()21210,2220F F ln e e=-<=->, 且)(F x )在区间(1,2)内的图象连续不断,故根据零点存在性定理,有)(F x 在区间(1,2)内有且仅有唯一零点.所以存在()1,2o x ∈,使得()()000o o x x F x f x e =-=, 且当1o x x <<时,()x x f x e <; 当o x x >时,()xx f x e >,所以()ln ,1,o o x x x x m x x x x ex <≤⎧⎪=⎨>⎪⎩当01x x <<时,() m x xln x =,由()'1 0m x ln x =+>,得()m x 单调递增; 当o x x >时,()x x m x e =, 由()1'0x x m x e-=<,得()m x 单调递减. 若()m x n =在区间()1,+∞内有两不等实根1212,()x x x x <, 则 ()()211, ,,o o x x x x ∈∈+∞. 要证122o x x x +>,即证212o x x x >-. 又12o o x x x ->,而()m x 在区间()o x +∞,内单调递减, 故可证()()212o m x m x x <-,又由()()12m x m x =,即证()()112o m x m x x <-, 即111212 o o x x x ln x e x x -<-. 记()22 ,1o o o x x h x xln x x x e x x-=-<<-,,其中()=0o h x ()220121'1 1ln o o x x h x ln x x e x x e x x +-=++=++---022o x x e x x --, 记()t t t e ϕ=,则()1't t t eϕ-=. 当()0,1t ∈时,()'0t ϕ>;当()1,t ∈+∞时,()'0t ϕ<',故()1max t eϕ=.而()0t ϕ>,故()10t eϕ<<, 而21xo x ->, 所以2021-0o x x e e x x-<-<- 因此()22211 '1 10o o o x x h x ln x e x x e x x e -=++->->-- 即()h x 单调递增.故当1o x x <<时,()()0o h x h x <= 即111212 o o x x e x x x x ln -<- 故122o x x x +>,得证.22.解:(1)因为圆1cos 1:sin x C y αα=+⎧⎨=⎩,(α为参数), 所以圆1C 的普通方程是()2211x y -+=. 因为圆2:4C sin ρθ=,所以圆2C 的直角坐标方程是224 0x y y +-=.(2)因为圆()221:11C x y -+=, 圆222:40C x y y +-=,两式相减,得-20x y =,即公共弦所在直线为20x y -=,所以点(1,0)到-20x y =所以公共弦长为=,所以1122555Ac B S ∆=⨯=23.解:(l)2=211( 221+14141)a b ≤∙+++()( =()()242241212a b ⎡⎤⎣⎦++=⨯+=,=即12a b ==时,取等号, 故原式的最大值为12.(2)原式=112122ab b a b a ab a b==+++. 因为1212()()a b a b a b+=++ =221+23()b a b a a b a b ++=++3≥=+a 当且仅当2b a a b=,即12a b ⎧=⎪⎨=⎪⎩,取等号.所以原式≤故原式的最大值为。

【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(二,压轴卷)数学(理)试题

【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(二,压轴卷)数学(理)试题

2018年普通高等学校招生全国统一考试模拟试题理科数学(二)本试卷共4页,23题(含选考题)。

全卷满分1 50分。

考试用时120分钟。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中。

只有一项是符合 题目要求的。

1.已知集合{}{}1,1,2,3,5,6,210xA B x Z =-=∈<,则AB=A .{1}B .{l ,2}C .{1,2,3}D .{一1,1,2,3}2.设i 为虚数单位,复数z 满足2(13)(3)i z i +=-+,则共轭复数z 的虚部为 A .3i B .3i - C .3 D .3- 3.学生李明上学要经过4个路口,前三个路口遇到红灯的概率均为12,第四个路口遇到 红灯的概率为13,设在各个路口是否遇到红灯互不影响,则李明从家到学校恰好遇到 一次红灯的概率为 A .724 B .14 C . 124 D . 184.已知双曲线方程为22221(0,0)x y a b a b-=>>,F 1,F 2为双曲线的左、右焦点,P 为渐近线上一点且在第一象限,且满足120PF PF ⋅=,若1230PF F ︒∠=,则双曲线的离心率为 A .2 B .2 C .22 D .3 5.已知θ为锐角,1cos 211cos 22θθ-=+,则sin()3πθ+的值为A .264+ B .624- C .366+ D .3236+ 6.执行如图所示的程序框图,则输出的s 的值为A .一1B .一2C .1D .27.2101211011112(1)(2)(1)(1)(1)x x a x a x a x a +-=-+-++-+,则01211a a a a ++++的值为A .2B .0C .一 2D .一48.某几何体三视图如图所示,则该几何体的表面积为 A .2052π-B .203π-C .24π-D .12π+9.已知34a b ==12,则a ,b 不可能满足的关系是 A .a +b >4 B .ab >4C .(a 一1)2+(b —1)2>2D .a 2+b 2<8 10.若函数()sin()(0)6f x x πωω=+>在区间(π,2π)内没有最值,则ω的取值范围是 A .112(0,][,]1243 B .(0,16][13,23] C .[12,43] D .[12,33] 11.过抛物线x 2=2p y (p>0)上两点A ,B 分别作抛物线的切线,若两切线垂直且交于点 P(1,一2),则直线AB 的方程为 A .122y x =+ B .124y x =+ C .132y x =+ D .134y x =+ l 2.在正三棱锥(底面是正三角形,顶点在底面的射影是底面三角形的中心的 三棱锥)O 一ABC 中,OA ,OB ,OC 三条侧棱两两垂直,正三棱锥O —ABC 的内切球与三个侧面切点分别为D ,E ,F ,与底面ABC 切于点G ,则三棱 锥G —DEF 与O —ABC 的体积之比为 A .23318+ B .23318- C .6239+ D .6239- 第Ⅱ卷本卷包括必考题和选考题两部分。

衡水中学2018年高考理数押题试卷

衡水中学2018年高考理数押题试卷

河北衡水中学2018年高考押题试卷理数试卷第I卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A {x|x2x 6 0, x Z},B {z|z x y ,x A,y A},则Al B ()A. {0,1} B• {0,1,2} C• {0,1,2,3} D• { 1,0,1,2}1 z2.设复数z满足'2 i,则| A ()1 i zA. .5B 1C•仝D仝5 5 253.若cos( -)- ,(0,—) ,则sin 的值为()4 3 2A. 4 2B 4 .2 C7 D辽••6 6 18 34.已知直角坐标原点O为椭圆C :2 2x y1(a b 0)的中心,F1,F2为左、右焦点,在区间(0,2)任a2 b2取一个数e,则事件“'以e为离心率的椭圆C与圆0: 2 2 x y a b没有交点”的概率为()Ad B 4 2C D 2 24 4 2 25.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E :2 2% y21(a 0,b 0),当其离心率e [「2,2]时,对应双曲线的渐近线的夹角的取值范围为()a bA. [0, ] B • [―,]C • [―,]D •[―,]6 6 3 4 3 3 26.某几何体的三视图如图所示,若该几何体的体积为 3 2,则它的表面积是()A. (32133) .22 2B- (3 413|) 22 2c •卫.22D.13 ,22247.函数ysin x ln x 在区间[ 3,3]的图象大致为()A.函数g( x)图象的对称轴方程为 x k (k Z)12B. 函数g(x)的最大值为2.218.二项式(ax)n (a 0,b 0)的展开式中只有第 6项的二项式系数最大,bx第4项的系数的3倍,则ab 的值为( )且展开式中的第3项的系数是A . 4B12D. 169.执行如图的程序框图,若输入的x 0 , y 1 ,n 1,则输出的p 的值为(A . 81B• 2 10. 已知数列 a 1 1, a 22, 且an 2A .2016 1010 1B.100911. 已知函数 f(x)Asin( x )(Aa n 2 20170,2( 1)n , 814n N ,则S 2017的值为.2017 1010 1 D81 8)1009 20160,)的图象如图所示,令 g(x)2f(x) f '(x),则下列关于函数g(x)的说法中不正确的是()B .C . Dr'-W I I 庄C.函数g(x)的图象上存在点 P ,使得在P 点处的切线与直线I : y 3x 1平行第U 卷二、填空题:本大题共4小题,每小题5分,共20分.13. 向量a (m, n) , b ( 1,2),若向量a , b 共线,且a 2 b ,则mn 的值为 _______________________ .2 2x y14. 设点M 是椭圆 —2 1(a b 0)上的点,以点 M 为圆心的圆与x 轴相切于椭圆的焦点 F ,圆Ma b与y 轴相交于不同的两点 P 、Q ,若 PMQ 为锐角三角形,则椭圆的离心率的取值范围为 ___________________ .2x y 3 015.设x , y 满足约束条件 x 2y 2 0,则y 的取值范围为2x y 2 x16.在平面五边形 ABCDE 中, 已知 A 120o , B 90o , C 120o , E 90o ,AB 3,AE 3, 当五边形ABCDE 的面积S [6・、,3,9、一 3)时,则BC 的取值范围为 __________三、解答题:解答应写出文字说明、证明过程或演算步骤•1 *17.已知数列{a n }的前 n 项和为 S n ,q —,2S n S n 1 1(n 2,n N).2(1 )求数列{a n }的通项公式;* 1(2)记 b n log 1 a n (n N ),求{}的前 n 项和 T n .2b n b n 1D.方程g(x) 2的两个不同的解分别为X i , x 2,贝U X ! x 2最小值为一212.已知函数f(x) ax 3 3x 21,若f (x)存在三个零点,则 a 的取值范围是(A . (, 2) B . ( 2,2) C . (2,) D(2,0) U(0,2)18.如图所示的几何体ABCDEF中,底面ABCD为菱形,AB 2a , ABC 120o, AC与BD相交于O点,四边形BDEF为直角梯形,DE//BF , BD DE , DE 2BF 2. 2a,平面BDEF 底面ABCD.(1)证明:平面AEF 平面AFC ;(2 )求二面角E AC F的余弦值•19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1 )试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A、B两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A级的个数的分布列与数学期望20.已知椭圆C :与爲l(a b 0)的离心率为—,且过点,动直线I : y kx m交a b 2 22uuu uuu椭圆C于不同的两点A, B,且OA OB 0 ( O为坐标原点)•(1)求椭圆C的方程•(2)讨论3m2 2k2是否为定值?若为定值,求出该定值,若不是请说明理由_ 2 221.设函数f (x) a In x x ax(a R).(1)试讨论函数f (x)的单调性;(2)设(x) 2x (a2 a)ln x,记h(x) f (x) (x),当a 0时,若方程h(x) m(m R)有两个不相等的实根禺,X2,证明h'Q x2) 0 .2请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号22.选修4-4 :坐标系与参数方程x 3 cost在直角坐标系xOy中,曲线G : ( t为参数,a 0),在以坐标原点为极点,x轴的非负y 2 si nt半轴为极轴的极坐标系中,曲线C2: 4sin .(1 )试将曲线G i与C2化为直角坐标系xOy中的普通方程,并指出两曲线有公共点时a的取值范围;(2)当a 3时,两曲线相交于A,B两点,求AB .23.选修4-5 :不等式选讲已知函数f (x) 2x 1 x 1 .(1 )在下面给出的直角坐标系中作出函数y f(x)的图象,并由图象找出满足不等式f(x) 3的解集;(2)若函数y f (x)的最小值记为m,设a, b R,且有a2 b2 m,试证明:1 4 18 a2 1 b2 1 7、选择题 1-5: BCAAD 6-10: AABCC 11 、填空题 13. 8 14. 参考答案及解析 理科数学(U )、12: CD15.2 7 - [―,—]代.[、,3,3、3) 5 417.解:(1)当 n 2时,由— 得 2S 2 S 1 1 ,即 2a〔 2a 2又由2S n S n 1 1,① 可知2S n 1 S n 1,② ②-①得2a n 1 a n ,即也a n 1适合上式, 2 a 2 a 1三、解答题 S n 1 1 及 a 11,解得a 212 14 .且n 1时, (2)由(1)及 b n1 可知bn log 1(2)n 1 所以 ------ b n bn 11 故Tn — b n b2 1 尹2). 1 因此数列{a n }是以一为首项, 21-为公比的等比数列,故21 * a n 27(nN ).log-, a n (n N2n(n 1) 1 db s b n b n 1 [(1 2)(11)(丄n 1 1 —)]1 —n 1n 118.解:(1)因为底面 ABCD 为菱形,所以AC BD , 又平面BDEF 底面 ABCD ,平面 BDEF I 平面 ABCD BD,因此AC 平面BDEF ,从而AC EF . 又BD DE ,所以DE 平面ABCD , 由 AB 2a ,DE 2BF 2、2a , ABC 120o , 可知 AF -4a 2 2a 2 ,6a ,BD 2a , EF 4a 2 2a 2 . 6a ,AE 4a 2 8a 2 2.3a ,从而 AF 2 FE 2 AE 2,故 EF AF .19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为 B , 所以可以估计该校学生获得成绩等级为B 的概率为卫6 14,100 25 14则该校高三年级学生获得成绩为 B 的人数约有800 14 448.251(2)这100名学生成绩的平均分为 (32 100 56 90 7 80 3 70 2 60)100因为91.3 90 ,所以该校高三年级目前学生的“考前心理稳定整体”已过关 (3)由题可知用分层抽样的方法抽取11个学生样本,其中 A 级4个,B 级7个,从而任意选取3个,这3又AF I AC A ,所以EF 平面AFC .又EF 平面AEF ,所以平面 AEF 平面 AFC .(2)取EF 中点G ,由题可知OG / /DE ,所以OG 平面ABCD ,又在菱形 ABCD 中,OA OB ,所uuu以分别以OA , uuu uuu OB , OG 的方向为x , y , z 轴正方向建立空间直角坐标系O xyz(如图示),则 O(0,0,0),A(「3a,0,0),C( _3a,0,0),E(0, a,2.'2a),F(0,a,j2a), uuu 所以AE (0, a,2、2a) ( 3a,0,0)( , 3a, a,2 2a), uuur _ __ uuu_AC (3a,0,0)(..3a,0,0)(2、3a,0,0),EF (0,a, 2a)(0, a, 2 2a)(0,2a, ,2a).uur由(1)可知EF 平面AFC ,所以平面 AFC 的法向量可取为 EF (0,2a, ,2a).设平面AEC 的法向量为n (x, y, z),r uuu冲 n AE 0 则r uuir ,即n AC 0x 0x 0r uuun EF 6a V 31 n LuiU I EF |6屈 3 .,即 y 2'2z ,令 z 2,得 y 4,91.3,2 2zAC F 的余弦值为所以 n (0,4, .2).r uuu 从而 cos n, EF故所求的二面角 E个为A 级的个数 的可能值为0, 1, 2 , 3.x2故所求的椭圆方程为 -2uuu uuu(2)设 A(x 1, %),B(x 2, y 2),由 OA OBy 联立方程组 x 22因此可得的分布列为:12 则 E( )0 11552兰4 7 28 133 55 可知 x-|X 2 y 1y 2 0.消去y 化简整理得 (1 2 2 22k )x 4kmx 2m2 2 由 16k m8(m 21)(122k ) 0,得 12k 2m 2,所以 X 1 X 24km1 2k2 ,X-|X 2c 2 c细2,③1 2k又由题知x 1x 2 yy 即 x 1x 2 (kx 1 m)(kx 2 m)整理为(1 k 2)x 1x2 km(x 1 X 2)c 22、2m 将③代入上式,得(1 k 2)击 km岁 3 -165 20.解:(1) c由题意可知一 a所以a 2 2 c 2 2(a 2 b 2),即 a 22b 2,①又点P (互 2f )在椭圆上,所以有2 4a 2 34b 2,②由①②联立,解得b 21, a 21.kx2 2化简整理得3m 2 22k 0,从而得到3m 2i 2k 22k 2 2.2i.解:(i )由 f(x) a 21nx x 2 ax , 可知 f'(x)2x a2x 2 ax a 2(2x a)(x a)因为函数f (x)的定义域为(0, ),所以, ①若a 0时,当x (0, a)时, f'(x) 0, 函数 f (x)单调递减, (a,)时, f'(x) 0 ,函数f (x)单调递增; ②若a 0时,当f '(x) 2x 0 在 x (0, )内恒成立,函数 f (x)单调递增;③若a 0时,当x (0, f'(x) 0,函数 f(x)单调递减,当xa (2,)时, f '(x)0,函数f (x)单调递增. (2 )证明:由题可知 h(x) f (x) (x) x 2 (2 a)x a In x(x 0),所以 h'(x) 2x (2 2 、a 2x a )x(2 x a)x a (2x a)(x 1)a a X (0,)时,h'(x) 0 ;当 x (, 2 2 欲证 h'(Xi X2) 0,只需证 h'4 X2) h'(a ), 2 2 2 x i x 2 a 2 2. 所以当 )时,h'(x)i 时,h' 0.)0,只需证h '(又 h''(x)即h'(x)单调递增,故只需证明设X i ,X 2是方程h(x) m 的两个不相等的实根,不妨设为 X iX 2,2 “X i (2 a)x i al n X i m 则 v 7 i i, 2x 2 (2 a)x 2 a I n x 2 m 两式相减并整理得 a(x-i x 2 In x-i In x 2) 2 2^ X i X 2 2 X i2x2,从而a x i 2 x 222x i 2x 2 x 2 In x i In x 2 X i 故只需证明x i x 2 x i 2 x 22 2x i 2x 2 2 2(x i x 2 In x i In x 2)即 x 1 x 2 2 2% x 2 2为 2X 2 x i x ? In x i In x 2 因为 x-i x 2 In x i In x 2 0, 所以(*)式可化为In x i, 2x i 2x 2 In x 2 x i x 2因为0 x 1 x 2,所以0 竺1 ,X 2因此R(t)在(0,1)单调递增• 又 R(1) 0 ,因此 R(t) 0 , t (0,1),故 Int 2— , t (0,1)得证,t 1从而h'(X1 X2) 0得证.2 x 3cost2 2 22.解:(1)曲线C 1: ,消去参数t 可得普通方程为(x 3) (y 2)y 2 si nt 曲线C 2: 4sin ,两边同乘 •可得普通方程为x 2 (y 2)2 4. 把(y 2)2 4 x 2代入曲线G 的普通方程得:a 2 (x 3)2 4 x 2 13 6x , 而对C 2有x 2 x 2 (y 2)2 4,即2x2,所以1 a 225故当两曲线有公共点时, 为[1,5].2 2 (2)当 a 3时,曲线 G : (x 3) (y 2)9,2两曲线交点A ,B 所在直线方程为x 2.即ln$ X 2 2生2 X 2 X i X 2所以AB 2 823不妨令t —-,所以得到In t X 2 2tt t (0,1). 2t 21 4 设 R ⑴ |nt 十,t (0,1),所以 R'(t)? r (t 1)2 3 t(t 1)2 0,当且仅当t 1时,等号成立,a 的取值范围32 2 2 2 曲线x (y 2) 4的圆心到直线 x 的距离为d —,3 3 3x, x 1 23.解:(1)因为 f (x) |2x 1 x 1 x 2, 1所以作出图象如图所示,并从图可知满足不等式 所以 2 a ,从而 b 2 3 2 从而1 a2 1 4 b 2 1 7[(a2 1) 3x,x 1 f (x) 3的解集为[1,1] f (x)的最小值为 1 b 21 7, 22 1(b 2 1)](— a a2 b 2 1 4(a 2 0 181 b2 1 ] 7当且仅当 b 2 1 a 22肓时,等号成立即a 2 所以 1 6 1 a 2 1 b 2 4 b 7" 4时,有最小值,3 18 、工得证.1 7 i ,即 7[5 J2 當)]。

【全国百强校】河北省衡水中学2018年高考押题(二)理科数学(解析版)

【全国百强校】河北省衡水中学2018年高考押题(二)理科数学(解析版)

河北衡水中学2018年高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )B. C. D.【答案】B【解析】本题选择B选项.2. )C. D.【答案】C【解析】由题意可得:3. ,则的值为()B. C.【答案】A,故sinα=sin[(-]=sin()cos-cos= ,故选A.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.4.为离心率的椭圆与圆:)【答案】A【解析】的距离:,,,本题选择A选项.5. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过.)A. B.【答案】D【解析】,轴的夹角为,,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为本题选择D选项.6. )D.【答案】A【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:由题意:,据此可知:,,它的表面积是.本题选择A选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.7. )A. B.C. D.【答案】A.时,,即函数在上为单调递增函数,排除B;D;所以函数为非奇非偶函数,排除C,故选A.点睛:本题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用,试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力.8.项的系数的倍,则的值为()B. C. D.【答案】B6,展开式的通项公式为:,由题意有:,整理可得: .本题选择D选项.点睛:二项式系数与展开式项的系数的异同一是在T r+1n-r b r是该项的二项式系数,与该项的(字母)系数是两个不同的概念,,而后者是字母外的部分,前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.二是二项式系数的最值与增减性与指数n的奇偶性有关,当n为偶数,中间一项的二项式系数最大;当n为奇数时,中间两项的二项式系数相等,且同时取得最大值.9. )【答案】C【解析】依据流程图运行程序,首先初始化数值,x=0,y=1,n=1 ,进入循环体:x=n y=1,y,时满足条件y2≥x,执行n=n+1=2 ,进入第二次循环,x=n y=2,y y2≥x10. 已知数列,,则)B. C. D.【答案】C【解析】由递推公式可得:是首项为1,公差为4的等差数列,是首项为2,公差为0的等差数列,本题选择C选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.11. 已知函数的图象如图所示,令)A.B.C.D. 最小值为【答案】C【解析】,,,函数的解析式 .则:...........................,选项C错误,依据三角函数的性质考查其余选项正确.本题选择C选项.12. 已知函数)B. C.【答案】D【解析】,,,,综上可得的取值范围是本题选择D选项.点睛:函数零点的求解与判断(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13. __________.【答案】-8【解析】,或 .14. 轴相切于椭圆的焦点、,若为锐角三角形,则椭圆的离心率的取值范围为__________.【解析】分析:设,由题意.,的连线必垂直于轴,不妨设,所以.点睛:本题考查了椭圆的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围)的齐次式,然后转化为关于(不等式),解方程(不等式)的取值范围).15. __________.【解析】绘制不等式组表示的可行域如图所示,目标函数与坐标原点处取得最大值,点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.16. 中,已知时,则的取值范围为__________.【解析】由题意可设:,则:,则:当时,面积由最大值;;结合二次函数的性质可得:三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列(1(2【答案】(1) ;(2) .【解析】试题分析:(1)首先利用S n与a n的关系:当n=1时,a1=S1,当n≥2时,a n=S n-S n-1;结合已知条件等式推出数列{a n}是等比数列,由此求得数列{a n}的通项公式;(2.试题解析:(1)②-为首项,公比为的等比数列,故(2)由(1,可知,18. 如图所示的几何体中,底面为菱形,,,为直角梯形,,,,平面底面.(1(2的余弦值.【答案】(1)见解析;(2【解析】试题分析:(1)(2)结合(1)试题解析:(1底面,平面平面平面,从而.,所以平面,,,,,从而,故.,所以平面,所以平面平面(2)取中点由题可知所以又在菱形中,的方向为轴正方向建立空间直角坐标系(如图示),则,,,.由(1)可知平面,所以平面所以.的余弦值为点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.19. 某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后、、、、如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1(2分别对应分、“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3个样本为级的个数.【答案】(1) 的人数约有见解析;(3)见解析. 【解析】试题分析:(1)448;(2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关.0,1,2,3.试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为(2)这100,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中47个,从而任意选取3个,这30,1,2,3.,.因此可得的分布列为:20. 已知椭圆:的离心率为(为坐标原点).(1)求椭圆的方程.(2.【答案】(1(2)见解析.【解析】试题分析:(1)(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得. 试题解析:(1在椭圆上,所以有由①②联立,解得,(2,由.化简整理得整理为,从而得到.21.(1)试讨论函数的单调性;(2【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)求解函数的导函数,分类讨论可得:.(2),结合新函数的性质即可证得题中的不等式.试题解析:(1,所以,时,当时,在内恒成立,函数单调递增;时,时,.(2)证明:由题可知,所以当时,;当时,;当,又,即单调递增,故只需证明,是方程的两个不相等的实根,不妨设为两式相减并整理得.因为,所以(*因为,所以得到,,所以等号成立,单调递增.因此从而.22. 在直角坐标系为参数,.(1化为直角坐标系(2时,两曲线相交于【答案】【解析】试题分析:(1)的取值范围是(2)试题解析:(1,两边同乘代入曲线而对有,所以故当两曲线有公共点时,(2)当时,曲线:的距离为23. 已知函数(1)在下面给出的直角坐标系中作出函数(2.【答案】(1) 见解析.【解析】试题分析:(1)(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:(1所以作出图象如图所示,并从图可知满足不等式(2的最小值为.当且仅当时,等号成立,,时,有最小值,所以.。

河北省衡水中学2018届高三高考押题(二)物理试题

河北省衡水中学2018届高三高考押题(二)物理试题

河北衡水中学2018年高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B =( )A .{0,1}B .{0,1,2}C .{0,1,2,3}D .{1,0,1,2}- 2.设复数z 满足121z i i +=-+,则1||z=( ) A .5 B .15C .55D .5253.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( ) A.426- B .426+ C.718D .23 4.已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.24 B .424- C.22 D .222- 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率[2,2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6πB .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.313(3)2222π+++ B .3133()22242π+++ C.13222π+ D .13224π+ 7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D . 8.二项式1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯ C.201710101⨯- D .10092016⨯ 11.已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x 的最大值为22C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行 D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( ) A .(,2)-∞- B .(2,2)- C.(2,)+∞D .(2,0)(0,2)-第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且||2||a b =,则mn 的值为 .14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 .16.在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a =,121n n S S -=+*(2,)n n N ≥∈. (1)求数列{}n a 的通项公式;(2)记12log n n b a =*()n N ∈求11{}n n b b +的前n 项和n T . 18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=︒,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关? (3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20. 已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点23(,)22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点) (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由. 21. 设函数22()ln f x a x x ax =-+-()a R ∈. (1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围; (2)当3a =时,两曲线相交于A ,B 两点,求||AB . 23. 选修4-5:不等式选讲. 已知函数()|21||1|f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++. 参考答案及解析 理科数学(Ⅱ)一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题13.-8 14.625122e --<< 15.27[,]5416.[3,33) 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =.又由121n n S S -=+,① 可知121n n S S +=+,② ②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈ (2)由(1)及12log n n b a =*()n N ∈,可知121log ()2nn b n ==,所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=11111[(1)()()]2231n n -+-++-=+1111nn n -=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥, 又平面BDEF ⊥底面ABCD ,平面BDEF 平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,222DE BF a ==,120ABC ∠=︒, 可知22426AF a a a =+=,2BD a =,22426EF a a a =+=,224823AE a a a =+=,从而222AF FE AE +=,故EF AF ⊥. 又AFAC A =,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示), 则(0,0,0)O ,(3,0,0)A a ,(3,0,0)C a -,(0,,22)E a a -,(0,,2)F a a , 所以(0,,22)(3,0,0)AE a a a =--=(3,,22)a a a --,(3,0,0)(3,0,0)AC a a =--=(23,0,0)a -,(0,,2)(0,,22)EF a a a a =--(0,2,2)a a =-.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)EF a a =-. 设平面AEC 的法向量为(,,)n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩即3220,0,x y z x ⎧--+=⎪⎨=⎪⎩即22,0,y z x ⎧=⎪⎨=⎪⎩令2z =,得4y =,所以(0,4,2)n =. 从而cos ,n EF <>=633||||63n EF a n EF a⋅==⋅. 故所求的二面角E AC F --的余弦值为33.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=, 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为:则728144()0123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.解:(1)由题意可知22c a =,所以222222()a c a b ==-,即222a b =,① 又点23(,)22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)设1122(,),(,)A x y B x y ,由0OA OB ⋅=, 可知12120x x y y +=.联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412kmx x k+=-+,21222212m x x k -=+,③又由题知12120x x y y +=, 即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=.将③代入上式,得22222224(1)01212m kmk km m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21. 解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x--+-=. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当(0,)2ax ∈-时,'()0f x <,函数()f x 单调递减,当(,)2ax ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+=2(2)ln x a x a x +--(0)x >,所以'()2(2)a h x x a x=+--=22(2)(2)(1)x a x a x a x x x +---+=.所以当(0,)2ax ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02ah =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2'()20ah x x=+>,即'()h x 单调递增,故只需证明1222x x a+>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln ,(2)ln ,x a x a x m x a x a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(ln ln )a x x x x -+-=22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-,故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-.因为1212ln ln 0x x x x -+-<, 所以(*)式可化为12121222ln ln x x x x x x --<+,即11212222ln 1x x x x x x -<+.因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 记22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增. 又(1)0R =,因此()0R t <,(0,1)t ∈,故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=.曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5].(2)当3a =时,曲线1C :22(3)(2)9x y -+-=,两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =,所以482||2493AB =-=. 23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++2222214(1)18[52]7117b a a b +++⋅=++.当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.河北衡水中学2018年高考押题试卷生物(二)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

2018年高等学校招生全国统一考试押题卷理科数学试卷(二)含解析

2018年高等学校招生全国统一考试押题卷理科数学试卷(二)含解析

1 16 ∴该几何体的体积 V 8 2 ,故选 B. 3 3
7.已知函数 f x A sin x ( A 0, 0, ) 在一个周期内的图象如图所 2
示,则 f ( 4

A.
2 2
B.
2 2
C. 2
D. 2
π π π 所以 f 2sin 2 2 .故选 C. 4 4 4
2 2 8.已知正项数列 an 满足 an 1 2an an 1an 0 ,设 bn log 2
an1 ,则数列 bn 的 a1
前 n 项和为( A. n 【答案】C
密 考场号 不
第Ⅰ卷
一、选择题:本大题共 12 小题 ,每小题 5 分,在每小题给出的四个选项中, 只有一项是符合题目要求的。 准考证号
x 1.已知集合 M x | x 1 , N x 2 1 ,则 M N (




) D.
A. x | 0 x 1 【答案】A
【答案】C 【解析】由图象可知, A 2 , 得 2
T 5π π π π ,所以 2 ,由 2 8 8 2
π f 2, 8
π π π π π 2kπ ,k Z ,解得 2kπ ,k Z ,因为 ,所以 , 8 2 4 2 4
绝密 ★ 启用前
2018 年普通高等学校招生全国统一考试仿真卷
理科数学(二)
座位号
本 试 题卷 共 14 页 ,23 题 ( 含选 考 题 ) 。 全 卷满 分 150 分 。 考试 用 时 120 分 钟 。

★ 祝考试顺利 ★

河北衡水中学2018年高三年级押题II卷理数试题+解析

河北衡水中学2018年高三年级押题II卷理数试题+解析

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅱ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则集合=()A. B. C. D.2. 设复数满足,则=()A. B. C. D.3. 若,,则的值为()A. B. C. D.4. 已知直角坐标原点为椭圆的中心,,为左、右焦点,在区间任取一个数,则事件“以为离心率的椭圆与圆:没有交点”的概率为()A. B. C. D.5. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A. B. C. D.6. 某几何体的三视图如图所示,若该几何体的体积为,则它的表面积是()A. B.C. D.7. 函数在区间的图象大致为()A. B. C. D. 8. 二项式的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则的值为()A. 4B. 8C. 12D. 169. 执行下图的程序框图,若输入的,,,则输出的的值为()A. 81B.C.D.10. 已知数列,,且,,则的值为()A. B. C.D.11. 已知函数的图象如图所示,令,则下列关于函数的说法中不正确的是()学#科#网...A. 函数图象的对称轴方程为B. 函数的最大值为C. 函数的图象上存在点,使得在点处的切线与直线平行D. 方程的两个不同的解分别为,,则最小值为12. 已知函数,若存在三个零点,则的取值范围是()A. B.C. D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13. 向量,,若向量,共线,且,则的值为_________.14. 设点是椭圆上的点,以点为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于不同的两点、,若为锐角三角形,则椭圆的离心率的取值范围为__________.15. 设,满足约束条件则的取值范围为__________.16. 在平面五边形中,已知,,,,,,当五边形的面积时,则的取值范围为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列的前项和为,,.(1)求数列的通项公式;(2)记求的前项和.18. 如图所示的几何体中,底面为菱形,,,与相交于点,四边形为直角梯形,,,,平面底面.(1)证明:平面平面;(2)求二面角的余弦值.19. 某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为、、、、五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为的人数;(2)若等级、、、、分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从、两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为级的个数的分布列与数学期望.20. 已知椭圆:的离心率为,且过点,动直线:交椭圆于不同的两点,,且(为坐标原点)(1)求椭圆的方程.学#科#网...(2)讨论是否为定值?若为定值,求出该定值,若不是请说明理由.21. 设函数.(1)试讨论函数的单调性;(2)设,记,当时,若方程有两个不相等的实根,,证明.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线:(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:. (1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;(2)当时,两曲线相交于,两点,求.23. 选修4-5:不等式选讲.已知函数.(1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;(2)若函数的最小值记为,设,且有,试证明:.2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅱ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合,,则集合=( )A.B.C.D.【答案】B【解析】由题意可得:,则集合=.本题选择B 选项. 2. 设复数满足,则=( )A.B. C. D.【答案】C【解析】由题意可得:.本题选择C 选项. 3. 若,,则的值为( )A.B.C. D.【答案】A【解析】由题意可得:,结合两角和差正余弦公式有:.本题选择A 选项.4. 已知直角坐标原点为椭圆的中心,,为左、右焦点,在区间任取一个数,则事件“以为离心率的椭圆与圆:没有交点”的概率为( )A. B. C. D.【答案】A【解析】满足题意时,椭圆上的点到圆心 的距离:,整理可得 , 据此有: ,题中事件的概率 .学,科,网...本题选择A 选项.5. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为( ) A.B.C.D.【答案】D【解析】由题意可得:,设双曲线的渐近线与 轴的夹角为 , 双曲线的渐近线为,则,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为.本题选择D 选项.6. 某几何体的三视图如图所示,若该几何体的体积为,则它的表面积是( )A. B.C. D.【答案】A【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:由题意:,据此可知:,,,它的表面积是.本题选择A 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同. 7. 函数在区间的图象大致为( )A. B. C. D. 【答案】A 【解析】由题意 ,则 且,函数为非奇非偶函数,选项C,D 错误;当时,,则函数值,排除选项B.本题选择A 选项.8. 二项式的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则的值为( )学,科,网...A. 4B. 8C. 12D. 16 【答案】B 【解析】二项式的展开式中只有第6项的二项式系数最大,则 ,二项式展开式的通项公式为:,由题意有: ,整理可得:.本题选择D 选项.点睛:二项式系数与展开式项的系数的异同 一是在T r +1=a n -rb r 中, 是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指,而后者是字母外的部分,前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.二是二项式系数的最值与增减性与指数n 的奇偶性有关,当n 为偶数,中间一项的二项式系数最大;当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值.9. 执行下图的程序框图,若输入的,,,则输出的的值为( )A. 81B.C.D. 【答案】C【解析】依据流程图运行程序,首先 初始化数值, ,进入循环体:,时满足条件,执行,进入第二次循环,,时满足条件,执行,进入第三次循环,,时不满足条件,输出 .本题选择C 选项. 10. 已知数列,,且,,则的值为( ) A.B. C.D.【答案】C【解析】由递推公式可得: 当 为奇数时, ,数列是首项为1,公差为4的等差数列,当 为偶数时,,数列 是首项为2,公差为0的等差数列,本题选择C 选项.11. 已知函数的图象如图所示,令,则下列关于函数的说法中不正确的是( )A. 函数图象的对称轴方程为学,科,网...B. 函数的最大值为C. 函数的图象上存在点,使得在点处的切线与直线平行D. 方程的两个不同的解分别为,,则最小值为【答案】C【解析】由函数的最值可得,函数的周期,当时,,令可得,函数的解析式.则:结合函数的解析式有,而,选项C错误,依据三角函数的性质考查其余选项正确.本题选择C选项.12. 已知函数,若存在三个零点,则的取值范围是()A. B.C. D.【答案】D【解析】很明显,由题意可得:,则由可得,由题意得不等式:,即:,综上可得的取值范围是.本题选择D选项.点睛:函数零点的求解与判断(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13. 向量,,若向量,共线,且,则的值为_________.【答案】-8学,科,网...【解析】由题意可得:或,则:或 .14. 设点是椭圆上的点,以点为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于不同的两点、,若为锐角三角形,则椭圆的离心率的取值范围为__________.【答案】【解析】试题分析:∵△PQM是锐角三角形,∴∴化为∴解得∴该椭圆离心率的取值范围是故答案为:15. 设,满足约束条件则的取值范围为__________.【答案】【解析】绘制不等式组表示的可行域如图所示,目标函数表示可行域内的点与坐标原点之间连线的斜率,目标函数在点处取得最大值,在点处取得最小值,则的取值范围为.点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.16. 在平面五边形中,已知,,,,,,当五边形的面积时,则的取值范围为__________.【答案】【解析】由题意可设:,则:,则:当时,面积由最大值;当时,面积由最大值;结合二次函数的性质可得:的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列的前项和为,,.(1)求数列的通项公式;(2)记求的前项和.【答案】(1);(2).【解析】试题分析:(1)由题意可得数列是以为首项,为公比的等比数列,.学,科,网...(2)裂项求和,,故.试题解析: (1)当时,由及,得,即,解得.又由,① 可知,② ②-①得,即.且时,适合上式,因此数列是以为首项,为公比的等比数列,故. (2)由(1)及, 可知,所以,故.18. 如图所示的几何体中,底面为菱形,,,与相交于点,四边形为直角梯形,,,,平面底面.(1)证明:平面平面;(2)求二面角的余弦值.【答案】(1)见解析;(2). 【解析】试题分析: (1)利用题意证得平面.由面面垂直的判断定理可得平面平面.(2)结合(1)的结论和题意建立空间直角坐标系,由平面的法向量可得二面角的余弦值为.试题解析: (1)因为底面为菱形,所以, 又平面底面,平面平面,因此平面,从而.又,所以平面,由,,,可知,,,,从而,故.又,所以平面.学,科,网... 又平面,所以平面平面. (2)取中点,由题可知,所以平面,又在菱形中,,所以分别以,,的方向为,,轴正方向建立空间直角坐标系(如图示),则,,,,,所以,,.由(1)可知平面,所以平面的法向量可取为.设平面的法向量为,则即即令,得,所以.从而.故所求的二面角的余弦值为.点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想. 两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.19. 某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为、、、、五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为的人数;(2)若等级、、、、分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从、两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为级的个数的分布列与数学期望.【答案】(1)448;(2)该校高三年级目前学生的“考前心理稳定整体”已过关;(3)见解析.【解析】试题分析:(1)由频率分布直方图估算该校高三年级学生获得成绩为的人数为448; (2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关. (3)的可能值为0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为 .试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为,所以可以估计该校学生获得成绩等级为的概率为,则该校高三年级学生获得成绩为的人数约有.(2)这100名学生成绩的平均分为,因为,所以该校高三年级目前学生的“考前心理稳定整体”已过关.学,科,网...(3)由题可知用分层抽样的方法抽取11个学生样本,其中级4个,级7个,从而任意选取3个,这3个为级的个数的可能值为0,1,2,3.则,,,.因此可得的分布列为:则.20. 已知椭圆:的离心率为,且过点,动直线:交椭圆于不同的两点,,且(为坐标原点)(1)求椭圆的方程. (2)讨论是否为定值?若为定值,求出该定值,若不是请说明理由.【答案】(1);(2).【解析】试题分析: (1)由题意求得,,故所求的椭圆方程为.(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得为定值.试题解析:(1)由题意可知,所以,即,①又点在椭圆上,所以有,②由①②联立,解得,, 故所求的椭圆方程为. (2)设,由,可知.联立方程组消去化简整理得,又由题知,即,整理为.将③代入上式,得.化简整理得,从而得到.21. 设函数.(1)试讨论函数的单调性;学,科,网...(2)设,记,当时,若方程有两个不相等的实根,,证明.【答案】(1)见解析;(2)见解析. 【解析】试题分析:(1)求解函数的导函数,分类讨论可得:①若时,当时,函数单调递减,当时,函数单调递增; ②若时,函数单调递增;③若时,当时,函数单调递减,当时,函数单调递增.(2)构造新函数,结合新函数的性质即可证得题中的不等式. 试题解析: (1)由,可知.因为函数的定义域为,所以,①若时,当时,,函数单调递减,当时,,函数单调递增;②若时,当在内恒成立,函数单调递增; ③若时,当时,,函数单调递减,当时,,函数单调递增.(2)证明:由题可知,所以.所以当时,;当时,;当时,.欲证,只需证,又,即单调递增,故只需证明.设,是方程的两个不相等的实根,不妨设为,则两式相减并整理得,从而,故只需证明,即.因为,所以(*)式可化为,即.因为,所以,不妨令,所以得到,.记,,所以,当且仅当时,等号成立,因此在单调递增.学,科,网...又,因此,,故,得证,从而得证.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线:(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:. (1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;(2)当时,两曲线相交于,两点,求.【答案】(1),,:;;(2).【解析】试题分析:(1)由题意计算可得曲线与化为直角坐标系中的普通方程为,;的取值范围是;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得. 试题解析:(1)曲线:消去参数可得普通方程为.曲线:,两边同乘.可得普通方程为.把代入曲线的普通方程得:,而对有,即,所以故当两曲线有公共点时,的取值范围为.(2)当时,曲线:,两曲线交点,所在直线方程为.曲线的圆心到直线的距离为,所以.23. 选修4-5:不等式选讲.已知函数.(1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;(2)若函数的最小值记为,设,且有,试证明:.【答案】(1);(2)见解析.【解析】试题分析:(1)将函数写成分段函数的形式解不等式可得解集为.学,科,网...(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:(1)因为所以作出图象如图所示,并从图可知满足不等式的解集为. (2)证明:由图可知函数的最小值为,即.所以,从而,从而. 当且仅当时,等号成立,即,时,有最小值,所以得证.。

【全国百强校】河北省衡水中学2018届高三上学期二调考试数学(理)试题(原卷版)

【全国百强校】河北省衡水中学2018届高三上学期二调考试数学(理)试题(原卷版)

2017—2018学年度上学期高三年级二调考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.2. 已知为虚数单位,为复数的共轭复数,若,则()A. B. C. D.3. 设正项等比数列的前项和为,且,若,,则()A. 63或120B. 256C. 120D. 634. 的展开式中的系数是()A. 1B. 2C. 3D. 125. 已知中,,则为()A. 等腰三角形B. 的三角形C. 等腰三角形或的三角形D. 等腰直角三角形6. 已知等差数列的公差,且,,成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.7. 如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为()......A. B. C. D.8. 已知函数(为常数,)的图像关于直线对称,则函数的图像()A. 关于直线对称B. 关于点对称C. 关于点对称D. 关于直线对称9. 设,若关于,的不等式组表示的可行域与圆存在公共点,则的最大值的取值范围为()A. B. C. D.10. 已知函数(,),其图像与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是()A. B. C. D.11. 已知定义在上的奇函数的导函数为,当时,满足,则在上的零点个数为()A. 5B. 3C. 1或3D. 112. 已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.14. 已知锐角的外接圆的半径为1,,则的取值范围为__________.15. 数列满足,则数列的前100项和为__________.16. 函数图象上不同两点,处切线的斜率分别是,,规定(为线段的长度)叫做曲线在点与之间的“弯曲度”,给出以下命题:①函数图象上两点与的横坐标分别为1和2,则;②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点,是抛物线上不同的两点,则;④设曲线(是自然对数的底数)上不同两点,,且,若恒成立,则实数的取值范围是.其中真命题的序号为__________.(将所有真命题的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在中,,为边上的点,为上的点,且,,.(1)求的长;(2)若,求的值.18. 如图所示,,分别是单位圆与轴、轴正半轴的交点,点在单位圆上,(),点坐标为,平行四边形的面积为.(1)求的最大值;(2)若,求的值.19. 已知数列满足对任意的都有,且.(1)求数列的通项公式;(2)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.20. 已知函数,.(1)求函数的单调区间;(2)若关于的不等式恒成立,求整数的最小值.21. 已知函数(其中,为自然对数的底数,…).(1)若函数仅有一个极值点,求的取值范围;(2)证明:当时,函数有两个零点,,且.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程将圆(为参数)上的每一个点的横坐标保持不变,纵坐标变为原来的,得到曲线.(1)求曲线的普通方程;(2)设,是曲线上的任意两点,且,求的值.23. 选修4-5:不等式选讲已知函数,.(1)当时,解不等式;(2)若存在满足,求的取值范围.。

河北省衡水中学2018年高考押题(二)理科数学(含答案)

河北省衡水中学2018年高考押题(二)理科数学(含答案)

河北衡水中学2018年高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则AB =( ) A .{0,1} B .{0,1,2}C .{0,1,2,3}D .{1,0,1,2}-2.设复数z 满足121z i i +=-+,则1||z=( ) A .5 B .15 C .55 D .525 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( ) A .426- B .426+ C .718D .23 4.已知直角坐标原点O 为椭圆C :22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( ) A .24 B .424- C .22D .222- 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90的正角.已知双曲线E :22221(0,0)x y a b a b -=>>,当其离心率[2,2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6π B .[,]63ππ C .[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A .313(3)2222π+++B .3133()22242π+++ C .13222π+ D .13224π+ 7.函数sin ln y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)n ax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8C .12D .169.执行如图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A .81B .812C .814D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯C .201710101⨯-D .10092016⨯11.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A .函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈ B .函数()g x 的最大值为22C .函数()g x 的图象上存在点P ,使得在P 点处的切线与直线l :31y x =-平行D .方程()2g x =的两个不同的解分别为1x ,2x ,则12x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A .(,2)-∞-B .(2,2)-C .(2,)+∞D .(2,0)(0,2)-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且2a b =,则mn 的值为 . 14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230220220x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则y x 的取值范围为 . 16.在平面五边形ABCDE 中,已知120A ∠=,90B ∠=,120C ∠=,90E ∠=,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a =,*121(2,)n n S S n n N -=+≥∈. (1)求数列{}n a 的通项公式;(2)记*12log ()n n b a n N =∈,求11{}n n b b +的前n 项和n T .18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ;(2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点23(,)22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点).(1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21.设函数22()ln ()f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :3cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;(2)当3a =时,两曲线相交于A ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.参考答案及解析理科数学(Ⅱ)一、选择题1-5: BCAAD 6-10: AABCC 11、12:CD二、填空题13. 8- 14. 625122e --<< 15. 27[,]54 16. [3,33) 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =. 又由121n n S S -=+,①可知121n n S S +=+,②②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故*1()2n n a n N =∈. (2)由(1)及*12log ()n n b a n N =∈, 可知121log ()2nn b n ==, 所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=++⋅⋅⋅11111[(1)()()]2231n n =-+-+⋅⋅⋅+-+1111n n n =-=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF平面ABCD BD =,因此AC ⊥平面BDEF ,从而AC EF ⊥.又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,222DE BF a ==,120ABC ∠=,可知22426AF a a a =+=,2BD a =,22426EF a a a =+=,224823AE a a a =+=,从而222AF FE AE +=,故EF AF ⊥.又AF AC A =,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示),则(0,0,0)O ,(3,0,0)A a ,(3,0,0)C a -,(0,,22)E a a -,(0,,2)F a a , 所以(0,,22)(3,0,0)AE a a a =--(3,,22)a a a =--,(3,0,0)(3,0,0)AC a a =--(23,0,0)a =-,(0,,2)(0,,22)EF a a a a =--(0,2,2)a a =-.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)EF a a =-.设平面AEC 的法向量为(,,)n x y z =,则00n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,即32200x y z x ⎧--+=⎪⎨=⎪⎩,即220y z x ⎧=⎪⎨=⎪⎩,令2z =,得4y =, 所以(0,4,2)n =. 从而cos ,n EFn EF n EF ⋅<>=⋅63363a a==. 故所求的二面角E AC F--的余弦值为33.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=,则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=. (2)这100名学生成绩的平均分为1(321005690780100⨯+⨯+⨯370260)91.3+⨯+⨯=, 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3. 则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为: ξ 0 1 2 3 P 733 28551455 4165 则72814()012335555E ξ=⨯+⨯+⨯412316511+⨯=. 20.解:(1)由题意可知22c a =,所以222222()a c a b ==-,即222a b =,① 又点23(,)22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)设11(,)A x y ,22(,)B x y ,由0OA OB ⋅=,可知12120x x y y +=.联立方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩, 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412km x x k +=-+,21222212m x x k -=+,③ 又由题知12120x x y y +=,即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=. 将③代入上式,得22222224(1)01212m km k km m k k -+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21.解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-222(2)()x ax a x a x a x x --+-==. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增;③若0a <时,当(0,)2a x ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+2(2)ln (0)x a x a x x =+-->, 所以'()2(2)a h x x a x=+--22(2)(2)(1)x a x a x a x x x +---+==. 所以当(0,)2a x ∈-时,'()0h x <;当(,)2a x ∈-+∞时,'()0h x >;当2a x =时,'()02a h =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20a h x x=+>,即'()h x 单调递增,故只需证明1222x x a +>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln (2)ln x a x a x m x a x a x m ⎧+--=⎪⎨+--=⎪⎩,两式相减并整理得1212(ln ln )a x x x x -+-22121222x x x x =-+-, 从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 设22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证. 22.解:(1)曲线1C :3cos 2sin x t y tαα=+⎧⎨=+⎩,消去参数t 可得普通方程为222(3)(2)x y a -+-=. 曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5]. (2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =, 所以4822493AB =-=. 23.解:(1)因为()211f x x x =-++3,112,1213,2x x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩, 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而 2222142[(1)(1)]117a b a b +=+++++22222214214(1)()[5()]1711b a a a b a b +++=++≥++++ 2222214(1)18[52]7117b a a b ++=+⋅=++. 当且仅当222214(1)11b a a b ++=++时,等号成立,即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。

2018年普通高等学校招生全国统一考试押题卷 理科数学(二)含精品解析

2018年普通高等学校招生全国统一考试押题卷 理科数学(二)含精品解析

A. 51π 4
【答案】C
B. 41π 2
C. 41π
D. 31π
【解析】根据三视图得出,该几何体是镶嵌在正方体中的四棱锥 O ABCD ,
正方体的棱长为 4, A , D 为棱的中点,根据几何体可以判断:球心应该在过 A , D 的平
行于底面的中截面上,
设球心到截面 BCO 的距离为 x ,则到 AD 的距离为 4 x ,

DC



在等腰梯形 ABCD 中, AB AD 1 2 cos 60 1, AB DC 2 ,
BC

AD

11
cos
60

1

BC

DC

11
cos120


1

2
2
AE AF 1

f
x,

x

5

OH

BQ

H
当Q
在半圆弧
AQB
上运动时,
QOH

1
(

)

2
BQ 2OQ sin 2OQ cos ,
2
2
CQ BQ2 BC2 100cos2 100 10 cos2 x 1 5 2cos x 6 ,
D.
【答案】A
【解析】 N x 2x 1 x x 0, M x | x 1,M N x | 0 x 1.故选:A.
2.若双曲线 x2 y2 1的一个焦点为 3, 0,则 m ( )
m
A. 2 2 【答案】B

2018年高考数学(理)精准押题卷(全国II卷)答案

2018年高考数学(理)精准押题卷(全国II卷)答案

2018年高考精准押题卷03(全国II 卷)数学·理一、选择题1.设集合P= Q= . 则P Q=( ) A. B C. D.2.设复数Z 满足Z · =+1-3i.则 ) A.B.C.-D.-3.对于任意三角形内一点P ,若存在2 - = + -.则P 点是三角形的( ) A.内心 B.外心 C. 重心 D. 垂心4.学校举行春季运动会,百米决赛赛跑共有1 号占位的同学参加。

甲、乙、丙、丁四位同学竞猜第一名,结果只有一名猜中。

甲说:1号肯定是第一名;乙说:肯定不是4、5、6号;丙说:是4、5、6号中的一名;丁说:是2、3号中的一名。

猜中的同学是( ) A.甲 B.丙 C.乙 D.丁5.设a 、b 是空间中不同直线,α、β、 是不同的平面,则下列说法正确的是( ) A.若a . b 则a 、b 是异面直线。

B.a . b .且 . 则a 。

C.若a . β⊂b . a . 且 . 则a 。

D. 若a . b . a .且 . 则a 。

6.已知 + = +. 则 =( )A.B.C.D.-7.圆 = (r ),经过双曲线 -=1的焦点F 1、F 2 且与双曲线有4个不同的交点,设p 是其中一个交点,若 的面积为9,双曲线c 长轴长为4,则双曲线的方程是( ) A.-42y =1 B.42x -92y =1 C. - =1 D. -=18.如图所示,为某几何体的三视图,则其体积为( )A. 72B. 48C. 30D.24 9.若程序框图如图所示,则该程序运行后输出k 的值是( )A.5B.6C.7D.810.已知的三个内角C,所对的边分别是a,b,c,且满足bsinBsinC+ccos2B=2a 则的值是()A. B.- C. D.-11.已知F1、F2为椭圆的两个焦点,若椭圆上存在点p使得,则离心率e的取值范围是()A.,)B.(0,)C.(0,D. ,)12.已知曲线f(x)=在点(,)处的切线与直线x-2 y+1=0垂直,若关于x的方程f(x)+ln=m有3个不同的实根,则m的取值范围是()A.(2,3-ln2)B.(ln2,3- ln2)C.(2- ln2,1+2 ln2)D.(ln2,2)二、填空题13.设x、y满足条件则z=4x-2y最小值是______。

河北省衡水金卷压轴卷全国统一考试模拟试题理科数学(二)---精校解析Word版

河北省衡水金卷压轴卷全国统一考试模拟试题理科数学(二)---精校解析Word版

已知集合,(D.,然后再求出【详解】由题意得.复数满足∵,,,.前三个路口遇到红灯的概率均为第四个路口遇到红灯的概率为则李明从家到学校恰好遇到一次红灯的概率为(【答案】前三个路口恰有一次红灯,且第四个路口为绿灯的概率为..已知双曲线方程为,为双曲线的左、右焦点为渐近线上一点且在第一象限若,则双曲线的离心率为(C. D.为直角三角形,又得所以故得的倾斜角为,即,由此可得离心率.【详解】设为正三角形,直线的倾斜角为,离心率将提供的双曲线的几何关系转化为关于双曲线基本量利用和则B. C. D.【答案】D,进而可得,然后再根据两角和的正弦公式求解即可.∵,又为锐角,故选D.A. B. C. D.第一次:第二次:第三次:第四次:第五次:第六次:第七次:时,的值为(C. D.运用赋值法求解,令,得,.故选C.B.D.故几何体的表面积为,B.【答案】D可得,,然后对给出的四个选项分别进行判断即可得到结论.∵整理得.,解得,所以,由于,解得,,所以C成立.,所以【点睛】本题考查对数、指数的转化及基本不定式的变形及其应用,解题时注意不等式10.若函数在区间则B.D.【答案】在区间内单调,故可先求出函数的单调区间,再根据区间的单调区间为,.函数在区间内没有最值,在区间内单调,,解得.,得时,得;时,得,又,故的取值范围是函数在区间的单调区间后将问题转化为两个集合间的包含关系处理,并将问题再转化过抛物线上两点若两切线垂直且交于点则直线【答案】B并结合点的坐标求得.再根据两切线垂直可得抛物线的方程为,设出直线方程,联立消元后根据二次方程根与系数的关系可求得直线的斜率及截距,于是可得直线方程.【详解】由,得,则抛物线在点处的切线方程为,点处的切线方程为,解得又两切线交于点,,故得.∵过两点的切线垂直,,故,故得抛物线的方程为.的斜率存在,可设直线方程为整理得和可得的方程为中,正三菱锥的内切球与三个侧面切点分别为与底面切于点的体积之比为(【答案】B,由题意可得.,.,解得.把面单独拿出来分析,如图.的中心,,.D作于,则,为等边三角形,故选B.【点睛】解答本题时注意:中,与【答案】【解析】与分别用表示,通过求【详解】设,,.,.与的夹角为【点睛】求向量夹角时,可先由坐标运算或定义计算出这两个向量的数量积,并求得两向量的模,然后根,组成的区域为作关于直线,和点内的任一点,则的最小值为【答案】,求出区域内的点到直线的最小距离,由题意得的最小值为表示的区域,如下图阴影部分所示.由题意得三个交点的坐标分别为.结合图形可得区域内的点到直线的距离最小,且最小值为.由题意得的最小值为因此所求的最小值为【点睛】解答本题的关键有两个:一是正确画出不等式组表示的平面区域,并根据数形结合解题;二是将和内的两点间的距离的最小值转化为点到直线的距离处理,满足,当,且斜率为的直线与个交点【答案】【解析】为偶函数且图象的对称轴为,由此得到函数的周期为∵,即的周期为时,,结合函数的周期性,画出函数且斜率为的直线方程为.结合图象可得:联立消去整理得,,得(舍去)时,点与点,此时直线与有两个交点,又,相切,将两式联立消去整理得,得(所以当时有三个交点.综上可得的取值范围为.【点睛】已知函数有零点(方程有根中,【答案】【解析】中由题意可得,故得.过点,交的延长线于点,根据平行线,且.然后在中,由正弦定理得【详解】在中,,,.过点作,交的延长线于点,如下图,,.中,由正弦定理得【点睛】本题考查正弦定理在几何中的应用,同时也考查三角变换的应用,解题时要注意平面几何知识的利用,并由此寻求解三角形所需要的条件,然后再根据正弦(余弦)定理求解.在数列已知,求数列或,可得由以上两式消去的公比为,,整理得,解得或)得,当,此时数列为等比数列,,此时数列【点睛】本题考查定比数列的定义及其通项公式的求法,解题时要根据所给出的条件并结合等比数列的有平面平面平面四边形为正方形,,在棱为的中点为平面平面,使得平面平面?使得平面平面平面可得平面,从而有,结合条件可得四边形平行四边形,于是,可得平面.又可根据条件得到平面的判定定理可得结论.(2)在中,由余弦定理得,于是,所以,又两两垂直,故可建立空间直角坐标系,根据空间向量的知识求解.【详解】(1)∵平面平面平面平面平面.平面,∴四边形为平行四边形,.平面平面平面.,又平面平面平面.平面平面,平面平面)在中,由余弦定理得,,∴为直角三角形,且,平面可得两两垂直.依次为则的一个法向量为,即,解得,.设平面的一个法向量为,,得,平面化简得,,故此方程无解,平面【点睛】立体几何中,对于“是否存在”型问题的解答方式有两种:一种是根据条件作出判断,再进一步,期中在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系后与临界值表对照可得结论.;设获得某高校自主招生通过的人数为,则可得的分布列.结合可得通过的人数为因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.②设获得某高校自主招生通过的人数为,则,∴的分布列为.列联表;②根据公式计算的值;③比较的值可以确定在多大程度上认为“两个分类变量有关系”;的值越大,认为“两个分类变量有关系”的把握越大.已知椭圆的方程为其离心率且短轴的个端点与两焦点组成的三角形面积为作轴的垂线,垂足为,点满足,的轨迹为曲线.求曲线)若直线与曲线且交椭圆于,的面积为的面积为,设,,得根据代入法可得曲线的方程为设直线的方程为,由与圆相切可得.将与,从而得到,求得,,.,,得代人椭圆方程得曲线的方程为由题知直线的斜率存在,设直线的方程为,,即.消整理得又直线与椭圆交于,故得,,.,.,当且仅当,即时,等号成立.的最大值为.【点睛】求解解析几何中的范围(最值)问题时,可先建立目标函数,再求这个函数的最值,在利用代数知函数与在交点的解析式;已知若函数的取值范围(1)。

【数学】【衡水押题卷】2018年普通高等学校招生全国统一考试模拟(二)数学(理)试题 含答案

【数学】【衡水押题卷】2018年普通高等学校招生全国统一考试模拟(二)数学(理)试题 含答案

2018年普通高等学校招生全国统一考试模拟试题理数 (二) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,0,1,2,3,4A B =-=,则()B C A B I =( ) A .{}0,4 B .{}0,1,4 C .{}14, D .{}0,12.已知i 是虚数单位,复数z 满足132z ii∙=+,则3z +=( )A . D .53.已知具有线性相关的两个变量x y ,之间的一组数据如下表所示:若x y ,满足回归方程 1.5y x a =+,则以下为真命题的是( ) A.x 每增加1个单位长度,则y 一定增加1.5 个单位长度 B.x 每增加1个单位长度,y 就减少1.5 个单位长度 C.所有样本点的中心为(1,4.5) D.当8x =时,y 的预测值为13.54.已知点(),4P n 为椭圆2222:1(0)x y C a b a b+=>>上一点,12,F F 是椭圆C 的两个焦点,若12PF F ∆的内切圆的直径为3,则此椭圆的离心率为( )A .57 B .23 C.35 D .455.如图,已知ABC ∆与AMN ∆有一个公共顶点A ,且MN 与BC 的交点O 平分BC ,若,AB mAM AC nAN ==u u u r u u u r u u u r u u u r ,则12m n+的最小值为( )A .4B .2C.32.66.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧梭垂直于底面的四棱锥.现有一如图所示的堑堵111,ABC A B C AC BC -⊥,若12A A AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外 接球的体积为( )A .B .3 C.3D . 7.“34πϕ=”是“函数= 2y cos x 与函数()=2y sin x ϕ+在区间04π⎡⎤⎢⎥⎣⎦,,上的单调性相同”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件8.执行如图所示的程序框图,若输出1007S =-,则判断框内应填的内容是( )A .2015?k <B .2016?k < C.2017?k < D .2014?k <9.如图所示,直线l 为双曲线()2222:10,0x y C a b a b-=>>的一条渐近线,12,F F 是双曲线C 的左、右焦点,1F 关于直线的对称点为1'F ,且1'F 是以2F 为圆心,以半焦距c 为半径的圆上的一点,则双曲线C 的离心率为( )A.310.某单位现需要将“先进个人”、“业务精英”、“道德模范”、“新长征突击手”“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有( ) A .114种 B .150种 C. 120种 D .118种11.如图,正方体1111ABCD A BC D -的对角线BD 上存在一动点P ,过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于,M N 两点.设,BP x BMN =∆的面积为S ,则当点P由点B 运动到1BD 的中点时,函数()S f x =的图象大致是( )A .B . C. D .12.已知()'f x 为函数()= y f x 的导函数,当02x x π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝∈⎭,是斜率为k 的直线的倾斜角时,若不等式()()'0f x f x k -∙<恒成立,则( )A()3()4f f ππ>B .(1)2()sin16f f π<()()064f ππ-> D()()063f ππ-<第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()()2221f x cosx sinx sin x =+-+,则其最小正周期为 .14.过()()3,1,0,M N a -两点的光线经y 轴反射后所在直线与圆221x y +=存在公共点,则实数a 的取值范围为 .15.如图,将正方形ABCD 沿着边BC 抬起到一定位置得到正方形BCEF ,并使得平面ABCD 与平面BCEF 所成的二面角为45°,PQ 为正方形BCEF 内一条直线,则直线PQ与BD 所成角的取值范围为 .16..已知菱形ABCD ,E 为AD 的中点,且3BE =,则菱形ABCD 面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 的前n 项和221,S n n n N *=++∈n . (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和Tn .18.如图所示,已知三棱锥P ABC -中,底面ABC 是等边三角形,且=2,,PA PB AC D E ==分别是,AB PC 的中点.(1)求证:AB ⊥平面CDE ;(2)若PC =求二面角A PB C --的余弦值19.伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50 人,对他们一个月内使用手机支付的情况进行了统计,如下表:(1)若以“年龄55 岁为分界点”,由以上统计数据完成下面的22⨯列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关:(2)若从年龄在[)55,65,[]65,75内的被调查人中各随机选取2 人进行追踪调查.记选中的4人中“使用手机支付”的人数为ξ. ①求随机变量ξ的分布列; ②求随机变量ξ的数学期望. 参考数据如下:参考公式:22(),()()()()n ad bd K n a b c d a b c d a c b d -==+++++++20. 已知点()0,1A ,过点()0,1D -作与x 轴平行的直线1l ,点B 为动点M 在直线1l 上的投影,且满足MA AB MB BA ∙=∙uuu r uu u r uuu r uu r(1)求动点M 的轨迹C 的方程;(2)已知点P 为曲线C 上的一点,且曲线C 在点P 处的切线为2l ,若的与直线2l 相交于点Q ,试探究在y 轴上是否存在点N ,使得以PQ 为直径的圆恒过点N ? 若存在,求出点N 的坐标,若不存在,说明理由.21.已知函数()1f x x nx =.(1)若函数()()()()2 '20g x f x ax a x a ==+-+>,试研究函()g x 数的极值情况; (2)记函数()() x x F x f x e =-在区间(1,2)内的零点为o x ,记()(),x x m x min f x e ⎧⎫=⎨⎬⎩⎭,若 ()() m x n n R =∈在区间()1,+∞内有两个不等实根()1212, x x x x <,证明∴122o x x x +>. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知圆cos 1:x C y xin αα=+⎧⎨=⎩(α为参数).以O 为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆C 2的极坐标方程为4 sin ρθ=. (1)分别写出圆1C 的普通方程与圆2C 的直角坐标方程;(2)设圆1C 与圆2C 的公共弦的端点为,A B ,圆1C 的圆心为1C ,求1AC B ∆的面积. 23.选修4-5:不等式选讲已知,a b 均为正实数,且 1a b +=.(1)求2的最大值; (2)求1aba+的最大值.2018年普通高等学校招生全国统一考试模拟试题理数 (二)一、选择题1-5:BADCC 6-10:BAACA 11、12:DD 二、填空题13.π【解析】因为()21 221= 2 +?cos 21214f x sin x sin x sin x x x π⎛⎫ ⎪⎝⎭=+-++=++,所以其最小正周期为22T ππ==. 14.5,14⎡⎤-⎢⎥⎣⎦[解析]点() 3,1M -关于y 轴的对称点为()'3,1M ,则直线'M N 的方程为11?(303)a y x -=---,即()1330a x y a -+-=,由题意可知,圆心(0,0)到直线()1330a x y a -+-=的距离1d =≤,即282100a a +-≤,解得5-14a ≤≤,故实数a 的取值范围为5,14⎡⎤-⎢⎥⎣⎦15.30,90⎡⎤⎣⎦ 【解析】不妨设正方形的边长为1,作DG CE ⊥,垂足为G ,由,BC CE BC CD ⊥⊥,得BC ⊥平面CDG .故BC DG ⊥.又BC CE C =,得DG ⊥平面BCEF ,故直线BD 在平面BCEF BCEF 内的射影为BG .易知2DG =,则BD 与平面BCEF 所成的角为30DBG ∠=,所以BD 与平面BCEF 内的直线所成的最小角为30°,而直线PQ 与BD 所成角的最大角为90°(当PQ 与CF 重合时,PQ 与BD 所成角为90°),所以直线PQ 与BD 所成角的取值范围为30,90⎡⎤⎣⎦16.12【解析】设AE x =,则2AB AD x ==,因为两边之和大于第三边,两边之差小于第三边,所以+>,<,AB AE BE AB AE BE ⎧⎨-⎩即231233x x x x x x +>>⎧⎧⇒⎨⎨-<<⎩⎩,所以(1,3)x ∈.设BAE θ∠=,在ABE ∆中,由余弦定理可知()229222x x x xcos θ=+-∙∙,即22594x cos x θ-=,2 2.4ABCD S x x sin xθ=∙∙==菱形2t x =,则()1,9t∈,则A B C D S =菱形当5t=,即x =,ABCD S 菱形有最大值12.三、解答题17.解:(1)当1n =时,114a S ==; 当2n ≥时,()2211221,n n n a S S n n n -=-=--+=+对14a =不成立,所以数列{}n a 的通项公式为4,121,2,n an n n nN*=⎧=⎨+≥⎩ (2)当1n =时,1120T = 当2n ≥时,111(21(23)n n a a n n +=++ =111)22n+123n -+(所以111111111161(...)2025779212320101520(23)n n n T n n n n --=+-+-++-=+=++++ 又1n =时,1120T =符合上式, 所以61()20(23)N n n n n T *=-∈+18.解:(1)连接PD ,因为PA PB AC ==,底面ABC 是等边三角形, 又因为D 是AB 的中点, 所以,PD AB AB CD ⊥⊥. 又因为CDPD D =,所以AB ⊥平面CDE . (2)因为2PA PB AC === 由(1),可知PD CD ==而PC ,所以PD CD ⊥.以D 为原点,以DB uu u r的方向为x 轴正方向建立空间直角坐标系,如图所示,则()()()(1,0,0,1,0,0,,A B C P -,由题意,得平面ABP 的一个法向量为()0,1,0m =u r. 设平面BCP 的一个法向量为(),,n x y z =r.因为()(,BC PC =-=-uu u r uu u r,所以((,,)0(,,)0BC n x y z PC n x y z ⎧∙=-∙=⎪⎨∙=∙=⎪⎩uu u r,即00x ⎧-+=⎪= 令1z =,得1,x y =.所以)n =,所以,cos m n <>==由题意知二面角A PB C --为锐角, 所以二面角A PB C --的余弦值为519.解:(1)22⨯列联表如下:2K 的观测值250(38732)9.524 6.63510403515k ⨯⨯-⨯=≈>⨯⨯⨯ 所以有99%的把握认为“使用手机支付”与人的年龄有关. (2)①由题意,可知ξ所有可能取值有0,1,2,3,()229340225055C C P C C ξ==∙=,()1122112234340+2222255555C C C C C P C C C C ξ==∙∙=,()221113242342+2222105555CC C C C P C C C C ξ==∙∙=,()211243222555CC P C C ξ==∙=, 所以ξ的分布列是②912316()0123502510255E ξ=⨯+⨯+⨯+⨯= 20.解:(1)设(),M x y ,由题得(),1B x -.又()0,1A ,∴()-, 1MA x y =-uuu r ,()()0, 1 ,, 2MB y AB x =--=-uuu r uu u r ,由MA AB MB BA ∙=∙uuu r uu u r uuu r uu r ,得()0MA MB AB =∙+uuu r uuu r uu u r . 即()()2,2,204x y x x y --∙-=⇒=, ∴轨迹C 的方程为24x y =. (2)设点()0200,,4x N n P x ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,, 由214y x =,得1'2y x =, ∴201 '2l k y x x x == ∴直线2l 的方程为0020)4(2xx y x x -=-).令-1y =,可得0020()42xx x x x ==- ∴Q 点的坐标为2,12o o x x ⎛⎫-- ⎪⎝⎭. ∴220=,,,142o o o x x NP x n NQ n x ⎛⎫ ⎪⎛⎫ ⎪-=--- ⎪ ⎪⎝⎭ ⎪⎝⎭uu u r uuu r ∵点N 在以PQ 为直径的圆上 ∴22002(1+)()24x x NP NQ n n ∙=---uu u r uuu r =220(1-)()+20()4xn n n n -+-=* 要使方程(* )对o x R ∈恒成立,则必有21020n n n -=⎧⎨+-=⎩,解得1n =. 即在y 轴上存在点N ,使得以PQ 为直径的圆恒过点N ,其坐标为(0,1).21.解:(1)由题意,得()'1f x lnx =+,故()()221g x ax a x lnx =-+++, 故()()()()2111 '22x ax g x ax a x x--=-++=, 00.x a >>, 令()'0g x =,得2111,2x x a== ①当02a <<时,112a >, ()1 '002g x x >⇒<<或1x a >;()11'02g x a<⇒<, 所以() g x 在12x =处取极大值1 ln 224a g =-- ②当2a =时,()11,'02g x a =≥恒成立,所以不存在极值; ③当2a >时,112a , ()1'00g x x a >⇒<<或12x >, ()11'02g x x a <⇒<, 所以()g x 在1x a =处取极大值11()ln g a a a=-- 在12x =处取极小值1()1224a g n =--. 综上,当02a <<时,()g x 在12x =处取极大值,124a n --,在1x a =处取极小值ln 4a a --; 当2a =时,不存在极值;当2a >时,() g x 在1x a =处取极大值ln 4a a --, 在12x =处取极小值ln 24a --. (2)()x x F x xlnx e=-,定义域为()0,x ∈+∞, ()1'1x x F x lnx e-=++,而()1,2x ∈, 故()'0F x >,即()F x 在区间(1,2)内单调递增. 又()()21210,2220F F ln e e=-<=->, 且)(F x )在区间(1,2)内的图象连续不断,故根据零点存在性定理,有)(F x 在区间(1,2)内有且仅有唯一零点.所以存在()1,2o x ∈,使得()()000o o x x F x f x e =-=, 且当1o x x <<时,()x x f x e <; 当o x x >时,()xx f x e >,所以()ln ,1,o o x x x x m x x x x ex <≤⎧⎪=⎨>⎪⎩当01x x <<时,() m x xln x =,由()'1 0m x ln x =+>,得()m x 单调递增; 当o x x >时,()x x m x e =, 由()1'0x x m x e-=<,得()m x 单调递减. 若()m x n =在区间()1,+∞内有两不等实根1212,()x x x x <, 则 ()()211, ,,o o x x x x ∈∈+∞. 要证122o x x x +>,即证212o x x x >-. 又12o o x x x ->,而()m x 在区间()o x +∞,内单调递减, 故可证()()212o m x m x x <-, 又由()()12m x m x =,即证()()112o m x m x x <-, 即111212 o o x x x ln x e x x -<-. 记()22 ,1o o o x x h x xln x x x e x x-=-<<-,,其中()=0o h x ()220121'1 1ln o o x x h x ln x x e x x e x x +-=++=++---022o x x e x x --, 记()t t t e ϕ=,则()1't t t eϕ-=. 当()0,1t ∈时,()'0t ϕ>;当()1,t ∈+∞时,()'0t ϕ<',故()1max t eϕ=.而()0t ϕ>,故()10t eϕ<<, 而21xo x ->, 所以2021-0o x x e e x x-<-<- 因此()22211 '1 10o o o x x h x ln x e x x e x x e -=++->->-- 即()h x 单调递增.故当1o x x <<时,()()0o h x h x <= 即111212 o o x x e x x x x ln -<- 故122o x x x +>,得证.22.解:(1)因为圆1cos 1:sin x C y αα=+⎧⎨=⎩,(α为参数), 所以圆1C 的普通方程是()2211x y -+=. 因为圆2:4C sin ρθ=,所以圆2C 的直角坐标方程是224 0x y y +-=.(2)因为圆()221:11C x y -+=, 圆222:40C x y y +-=,两式相减,得-20x y =,即公共弦所在直线为20x y -=,所以点(1,0)到-20x y =所以公共弦长为=,所以1122555Ac B S ∆=⨯=23.解:(l)2=211( 221+14141)a b ≤∙+++()( =()()242241212a b ⎡⎤⎣⎦++=⨯+=,=即12a b ==时,取等号, 故原式的最大值为12.(2)原式=112122ab b a b a ab a b==+++. 因为1212()()a b a b a b+=++ =221+23()b a b a a b a b ++=++3≥=+a 当且仅当2b a a b=,即12a b ⎧=⎪⎨=⎪⎩,取等号.所以原式≤故原式的最大值为。

衡水中学2018年高考押题理数理数(二)答案

衡水中学2018年高考押题理数理数(二)答案

从而 AF 2 FE 2 AE 2 ,故 EF AF .
又 AF AC A ,所以 EF 平面 AFC . 又 EF 平面 AEF ,所以平面 AEF 平面 AFC .
(2)取 EF 中点 G ,由题可知 OG / /DE ,所以 OG 平面 ABCD ,又在菱形 ABCD 中,OA OB ,所
x
x
x
因为函数 f (x) 的定义域为 (0, ) ,所以,
①若 a 0 时,当 x (0, a) 时, f '(x) 0 ,函数 f (x) 单调递减,当 x (a, ) 时, f '(x) 0 ,函数 f (x)
单调递增;
②若 a 0 时,当 f '(x) 2x 0 在 x (0, ) 内恒成立,函数 f (x) 单调递增;
因此 R(t) 在 (0,1) 单调递增.
又 R(1) 0 ,
因此 R(t) 0 , t (0,1) ,
故 ln t
2t 2 t 1
,t
(0,1)
得证,
从而 h '( x1 x2 ) 0 得证. 2
22.解:(1)曲线
C1

x
y
3 cost, 2 sin t,
消去参数 t
可得普通方程为
2
2
从而
14 a2 1 b2 1
2 7
[(a2
1)
(b2
1)](
1 a2
a
b241)
2 7
[5
(
b2 a2
1 1
4(a2 1) b2 1
)]
2 [5 2 7
b2 a2
1 1
4(a2 1) b2 1
]
18 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北衡水中学2018年高考押题试卷
理数试卷(二)
第Ⅰ卷
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. )
B. C.
2. )
B. C. D.
3. )
B. C.
4. 已知直角坐标原点为椭圆:为左、右焦点,在区间
为离心率的椭圆与圆:)
B.
5. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过.

A. B.
6. 某几何体的三视图如图所示,若该几何体的体积为)
.
D.
7. 函数在区间)
A. B.
C. D.
8. 的展开式中只有第项的二项式系数最大,且展开式中的第项的系数的倍,则的值为()
C.
9. ,则输出的)
10. )
C.
11.

A.
B.
C.
D. 最小值为
12. 的取值范围是()
B. C.
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分.
13. ,若向量__________.
14.
、,若为锐角三角形,则椭圆的离心率的取值范围为__________.
15. __________.
16. 中,已知
时,则的取值范围为__________.
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17.
(1
(2
18. 如图所示的几何体中,底面为菱形,
为直角梯形,,,,平面底面.
(1
(2.
19. 某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后
从该年级名学生中随机抽取
据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:
(1
(2
“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?
(3)、
个样本为级的个数.
20. :,且过点:
.
(1.
(2.
21.
(1)试讨论函数的单调性;
(2)
22. 在直角坐标系:(为参数,,在以坐标原点为极点,轴为极轴的极坐标系中,曲线.
(1
(2时,两曲线相交于
23.
(1
(2。

相关文档
最新文档