[真卷]2017年辽宁省营口二十四中中考数学四模试卷含参考答案
2017年辽宁营口中考真题数学
2017年辽宁省营口市中考真题数学一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1. -5的相反数是( )A.-5B.±5C.1 5D.5解析:根据相反数的定义直接求得结果.答案:D.2.下列几何体中,同一个几何体的三视图完全相同的是( )A.球B.圆锥C.圆柱D.三棱柱解析:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.答案:A.3.下列计算正确的是( )A.(-2xy)2=-4x2y2B.x6÷x3=x2C.(x-y)2=x2-y2D.2x+3x=5x解析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.答案:D.4.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是( )A.6,6B.9,6C.9,6D.6,7解析:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.答案:A.5.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( )A.a+b<0B.a-b>0C.ab>0D.ba<0解析:由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a<0,b>0,然后一一判断各选项即可解决问题.答案:D.6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是( )A.75°B.85°C.60°D.65°解析:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3-∠A=115°-30°=85°.答案:B.7.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( )A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°CD解析:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=12AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=12AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=12(180°-∠EFD)=12(180°-135°)=22.5°,∴∠FDE=12∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC-∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴CD,∵AB=AC,∴CD,故D正确,不符合题意.答案:C.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=kx的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为( )B.y=-xC.y=-3 xD.y=x解析:过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.答案:A.9.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )A.4B.5C.6D.7解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.答案:B.10.如图,直线l的解析式为y=-x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l 的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是( )A.B.C.D.解析:分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可判断.答案:C.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为_____. 解析:29150000000=2.915×1010.答案:2.915×1010.12.函数y=1x+中,自变量x的取值范围是_____.解析:根据题意得:x,-1≥0且x+1≠0,解得:x≥1.答案:x≥1.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是_____个.解析:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.答案:15.14.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是_____.解析:根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.答案:k>12且k≠1.15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.解析:先求出CE=2CD ,求出∠DEC=30°,求出∠DCE=60°,CEB ′和三角形CDE 的面积,即可求出答案.答案:83π-16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_____.解析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间-实际所用时间=8”列方程即可. 答案:2400240081.2x x-=.17.在矩形纸片ABCD 中,AD=8,AB=6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为_____.解析:由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC 为直角三角形分两种情况:①当∠EFC=90°时,可得出AE 平分∠BAC ,根据角平分线的性质即可得出8610BE BE-=,解之即可得出BE 的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE 的长度. 答案:3或6.18.如图,点A 1(1,3)在直线l 1:上,过点A 1作A 1B 1⊥l 1交直线l 2:x 于点B 1,A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,再过点C 1作A 2B 2⊥l 1,分别交直线l 1和l 2于A 2,B 2两点,以A 2B 2为边在△OA 2B 2外侧作等边三角形A 2B 2C 2,…按此规律进行下去,则第n 个等边三角形A n B n C n 的面积为_____.(用含n 的代数式表示)解析:由点A 1的坐标可得出OA 1=2,根据直线l 1、l 2的解析式结合解直角三角形可求出A 1B 1的长度,由等边三角形的性质可得出A 1A 2的长度,进而得出OA 2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.2332n-⎫⎪⎝⎭.三、解答题(19小题10分,20小题10分,共20分.)19.先化简,再求值:222212x y x yxy y x xy xy⎛⎫⎛⎫+-÷-⎪⎪++⎝⎭⎝⎭,其中x=(13)-1-(2017-32)0,y= sin60°.解析:先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.答案:原式=()()()2222x yx yxy x y xy x y xy⎡--⎤⎢⎥⎦÷⎣-++=()()()()22x y x y xyxy x y x y⋅+-+--=2x y--,当x=(13)-1-(2017-32)0=3-1=2,sin60°32=时,原式=2322--=-4.20.如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).解析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.答案:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.四、解答题(21题12分,22小题12分,共24分)21.某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_____人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.解析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.答案:(1)这四个班参与大赛的学生数是:30÷30%=100(人);(2)丁所占的百分比是:35100×100%=35%,丙所占的百分比是:1-30%-20%-35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×100160=1250(人).答:全校的学生中参与这次活动的大约有1250人.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,≈1.41≈1.73)解析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答案:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C 的最近距离是CE , AB=30×4060=20, ∵∠NAC=45°,∠NAB=75°, ∴∠DAB=30°, ∴BD=12AB=10,由勾股定理可知:∵BC ∥AN , ∴∠BCD=45°, ∴CD=BD=10,∴+10 ∵∠DAB=30°,∴CE=12≈13.7 答:船在航行过程中与码头C 的最近距离是13.7海里.五、解答题(23小题12分,24小题12分,共24分)23.如图,点E 在以AB 为直径的⊙O 上,点C 是BE 的中点,过点C 作CD 垂直于AE ,交AE 的延长线于点D ,连接BE 交AC 于点F.(1)求证:CD 是⊙O 的切线; (2)若cos ∠CAD=45,BF=15,求AC 的长. 解析:(1)连接OC ,由点C 是BE 的中点利用垂径定理可得出OC ⊥BE ,由AB 是⊙O 的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC⊥CD,由此即可证出CD是⊙O 的切线.(2)过点O作OM⊥AC于点M,由点C是BE的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=45可求出AB的长度,在Rt△AOM中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度. 答案:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BF AE AB=.∵cos∠CAD=45,∴34 EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO·cos∠OAM=8,∴AC=2AM=16.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.解析:(1)根据接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,直接得出生产这批空调的时间为x天,与每天生产的空调为y台之间的函数关系式;(2)根据基本等量关系:利润=(每台空调订购价-每台空调成本价-增加的其他费用)×生产量即可得出答案.答案:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920-2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920-2000-20(40+2x-50)]×(40+2x)=-80(x-4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=()()()2184******** 8044608510x xx x+≤≤⎧⎪⎨--+≤⎪⎩<.六、解答题(本题满分14分)25.在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系_____;②将△EBF 绕点B 逆时针旋转到图2所示的位置,连接AE ,DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,BC=mAB ,其它条件都不变,将△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′,连接AE ′,DF ′,请在图3中画出草图,并直接写出AE ′与DF ′的数量关系.解析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则AB ,再证明△BEF 为等腰直角三角形得到BE ,所以BE ,从而得到AE ;②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB==,则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE==(2)先画出图形得到图3,利用勾股定理得到AB ,再证明△BEF ∽△BAD 得到BE BFBA BD =,则BF BDBE BA==,接着利用旋转的性质得∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,所以BF BDBE BA'==',然后根据相似三角形的判定方法得到△ABE ′∽△DBF ′,再利用相似的性质可得DF BDAE BA'=='答案:(1)①∵四边形ABCD 为正方形, ∴△ABD 为等腰直角三角形,∴AB , ∵EF ⊥AB ,∴△BEF 为等腰直角三角形,BE ,∴BE ,即AE ;②AE.理由如下:∵△EBF 绕点B 逆时针旋转到图2所示的位置,∴∠ABE=∠DBF ,∵BF BE =BDAB = ∴BF BD BE AB=, ∴△ABE ∽△DBF ,∴DF BFAE BE==即AE ; (2)如图3,∵四边形ABCD 为矩形, ∴AD=BC=mAB ,∴=,∵EF ⊥AB , ∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BFBA BD =,∴BF BD BE BA== ∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′, ∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF BDBE BA'==' ∴△ABE ′∽△DBF ′,∴DF BDAE BA'=='即DF ′′.七、解答题(本题满分14分)26.如图,抛物线y=ax 2+bx-2的对称轴是直线x=1,与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E.(1)求抛物线解析式;(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M ,N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.解析:(1)由抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,-2),求得BC 的解析式为y=12x-2,设D(m ,0),得到E(m ,12m-2),P(m ,14m 2-12m-2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5, 74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n ,12n-2),①以BD 为对角线,根据菱形的性质得到MN 垂直平分BD ,求得n=4+12,于是得到N(92,-14);②以BD 为边,根据菱形的性质得到MN ∥BD ,MN=BD=MD=1,过M 作MH ⊥x 轴于H ,根据勾股定理列方程即可得到结论.答案:(1)∵抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,∴()2122220b a a b ⎧-=⎪⎨⎪---=⎩,解得:1412a b ⎧=⎪⎪⎨⎪=-⎪⎩,抛物线解析式为y=14x 2-12x-2;(2)令y=14x 2-12x-2=0,解得:x 1=-2,x 2=4,当x=0时,y=-2, ∴B(4,0),C(0,-2),设BC 的解析式为y=kx+b ,则402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴y=12x-2, 设D(m ,0), ∵DP ∥y 轴,∴E(m,12m-2),P(m,14m2-12m-2),∵OD=4PE,∴m=4(14m2-12m-2-12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD-S△EBD=171133 5124228⨯⨯-⨯⨯=;(3)存在,设M(n,12n-2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,-14);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH 2+DH 2=DM 2, 即(12n-2)2+(n-5)2=12, ∴n 1=4(不合题意),n 2=5.6, ∴N(4.6,310), 同理(12n-2)2+(4-n)2=1,∴n 1=4+5(不合题意,舍去),n 2=4-4,∴N(5-5,5), ③以BD 为边,如图3,过M 作MH ⊥x 轴于H , ∴MH 2+BH 2=BM 2, 即(12n-2)2+(n-4)2=12,∴n 1n 2不合题意,舍去),∴N(5+5,5),综上所述,当N(92,-14)或(4.6,310)或(5-55)或(5+5,5),以点B ,D ,M ,N 为顶点的四边形是菱形.。
2017年辽宁省营口市中考数学试卷含答案.docx
2017 年中考数学真题试题2017 年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题 3 分,共 30 分 .)1.(3 分)﹣ 5 的相反数是()A.﹣ 5 B.± 5 C.D.52.(3 分)下列几何体中,同一个几何体的三视图完全相同的是()A.球 B.圆锥C.圆柱D.三棱柱3.(3 分)下列计算正确的是()2 2 2B.x 6÷x3 2.(﹣)2 2﹣y2.2x+3x=5xA.(﹣ 2xy) =﹣4x y=x C x y=x D4.(3 分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量4568910/m 3户数679521则这 30 户家庭的月用水量的众数和中位数分别是()A.6,6B.9,6C.9,6D.6,75.( 3 分)若一次函数 y=ax+b 的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b< 0B.a﹣b>0 C.ab> 0D.< 06.(3 分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠ 1 的度数是()A.75°B.85°C. 60°D.65°7.(3 分)如图,在△ ABC中, AB=AC,E,F 分别是 BC,AC的中点,以 AC 为斜边作 Rt△ ADC,若∠ CAD=∠CAB=45°,则下列结论不正确的是()A.∠ ECD=112.5° B.DE平分∠ FDC C.∠ DEC=30° D. AB= CD8.(3 分)如图,在菱形 ABOC中,∠ A=60°,它的一个顶点 C 在反比例函数 y=的图象上,若将菱形向下平移 2 个单位,点 A 恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B. y=﹣C.y=﹣D.y=9.(3 分)如图,在△ ABC中, AC=BC,∠ ACB=90°,点 D 在 BC 上, BD=3, DC=1,点 P 是 AB 上的动点,则PC+PD的最小值为()A.4 B.5 C. 6 D.710.( 3 分)如图,直线 l 的解析式为 y=﹣x+4,它与 x 轴和 y 轴分别相交于 A,B 两点.平行于直线 l 的直线 m 从原点 O 出发,沿 x 轴的正方向以每秒 1 个单位长度的速度运动.它与 x 轴和 y轴分别相交于 C,D 两点,运动时间为 t 秒( 0≤t ≤4),以 CD为斜边作等腰直角三角形CDE(E, O 两点分别在 CD两侧).若△ CDE和△ OAB的重合部分的面积为S,则 S 与 t 之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题 3 分,共 24 分,将答案填在答题纸上)11.( 3 分)随着“互联网 +”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000 元,将29150000000 用科学记数法表示为.12.( 3 分)函数y=中,自变量x 的取值范围是.13.( 3 分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20 个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和 15%,则箱子里蓝色球的个数很可能是个.14.( 3 分)若关于x 的一元二次方程(k﹣1)x2+2x﹣ 2=0 有两个不相等的实数根,则k 的取值范围是.15.(3 分)如图,将矩形ABCD绕C 沿顺时针方向旋转90°到矩形A′B′的CD位′置,AB=2,AD=4,点阴影部分的面.16.( 3 分)某市 化 境 划植 2400 棵, 中每天植 的数量比原 划多 20%,果提前 8 天完成任 .若 原 划每天植 x 棵, 根据 意可列方程.17.( 3 分)在矩形 片 ABCD 中, AD=8,AB=6,E 是 BC 上的点,将 片沿 AE 折叠,使点 B 落在点 F , 接 FC ,当△ EFC 直角三角形 , BE 的.18.( 3 分)如 ,点 A 1(1, )在直 l 1: y= x 上, 点 A 1 作 A 1B 1⊥ l 1交直 l 2:y= x于点 B 1,A 1B 1 在△ OA 1 B 1 外 作等 三角形 A 1B 1C 1,再 点 C 1 作 A 2B 2⊥l 1,分 交直 l 1 和 l 2 于 A 2,B 2 两点,以 A 2B 2 在△ OA 2B 2 外 作等 三角形 A 2B 2C 2 ,⋯按此 律 行下去,第 n 个等 三角形 A n B n C n 的面.(用含 n 的代数式表示)三、解答 ( 19 小 10 分, 20 小 10 分,共 20 分 .).( 分)先化 ,再求 :()÷( ),其中﹣ 11910x=( )(20171)0, y=sin60 °.20.( 10 分)如 ,有四 背面完全相同的 牌 A 、B 、C 、D ,其正面分 画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D 表示).四、解答题( 21 题 12 分, 22 小题 12 分,共 24 分)21.( 12 分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图 1 和图 2 两幅尚不完整的统计图,请根据图中的信息,解答下列问题:( 1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图 1 中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是 160 人,全校共 2000 人,请你估计全校的学生中参与这次活动的大约有多少人.22.( 12 分)如图,一艘船以每小时30 海里的速度向北偏东75°方向航行,在点 A 处测得码头C 在船的东北方向,航行 40 分钟后到达 B 处,这时码头 C 恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头 C 的最近距离.(结果精确的 0.1 海里,参考数据≈1.41,≈1.73)五、解答题( 23 小题 12 分, 24 小题 12 分,共 24 分)23.( 12 分)如图,点 E 在以 AB 为直径的⊙ O 上,点 C 是的中点,过点C作CD垂直于AE,交 AE 的延长线于点 D,连接 BE交 AC于点 F.( 1)求证: CD是⊙ O 的切线;( 2)若 cos∠CAD= , BF=15,求 AC的长.24.(12 分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42 台,以后每天生产的空调都比前一天多 2 台,由于机器损耗等原因,当日生产的空调数量达到50 台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20 元.( 1)设第 x 天生产空调 y 台,直接写出 y 与 x 之间的函数解析式,并写出自变量x 的取值范围.(2)若每台空调的成本价(日生产量不超过 50 台时)为 2000 元,订购价格为每台 2920 元,设第x 天的利润为 W 元,试求 W 与 x 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14 分)25.( 14 分)在四边形中 ABCD,点 E 为 AB 边上的一点,点 F 为对角线 BD 上的一点,且EF⊥ AB.( 1)若四边形 ABCD为正方形.①如图 1,请直接写出AE与 DF 的数量关系;②将△ EBF绕点 B 逆时针旋转到图 2 所示的位置,连接AE,DF,猜想 AE与 DF 的数量关系并说明理由;( 3)如图 3,若四边形 ABCD为矩形, BC=mAB,其它条件都不变,将△ EBF绕点 B 顺时针旋转α(0°<α< 90°)得到△ E'BF',连接 AE',DF',请在图 3 中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14 分)26.( 14 分)如图,抛物线 y=ax2+bx﹣2 的对称轴是直线 x=1,与 x 轴交于 A, B 两点,与 y 轴交于点 C,点 A 的坐标为(﹣ 2,0),点 P 为抛物线上的一个动点,过点 P 作 PD⊥x 轴于点 D,交直线 BC于点 E.(1)求抛物线解析式;(2)若点 P 在第一象限内,当 OD=4PE时,求四边形 POBE的面积;(3)在(2)的条件下,若点 M 为直线 BC上一点,点 N 为平面直角坐标系内一点,是否存在这样的点 M 和点 N,使得以点 B,D,M ,N 为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017 年中考数学真题试题第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的, 每小题 3 分, 共 30 分. )1.-5的相反数是()A.-5B.5C. 1D. 55【答案】 D.【解析】试题分析:根据相反数的定义直接求得结果.因为只有符号不同的两个数互为相反数,所以﹣ 5 的相反数是 5.故选 D.考点:相反数 .2.下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【答案】 A.【解析】确.故选 A.考点:简单几何体的三视图.3.下列计算正确的是()A.2xy 22 y2 B .x6x3x222y2 D .2x 3x 5x 4x C .x yx【答案】 D.【解析】2017 年中考数学真题试题试题分析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.A、(﹣ 2xy)2=4x2y2,故本选项错误;B、x6÷ x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、 2x+3x=5x,故本选项正确;故选 D.考点:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方;4C:完全平方公式.4. 为了解居民用水情况,小明在某小区随机抽查了30 户家庭的月用水量,结果如下表:月用水量 / m34568910户数679521则这 30 户家庭的月用水量的众数和中位数分别是()A. 6 , 6B. 9 , 6 C. 9,6D.6, 7【答案】 B.【解析】考点:众数;中位数.5.若一次函数y ax b 的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a b0B. a b0 C.ab0D.b0 a【答案】 D.【解析】试题分析:由于一次函数 y=ax+b 的图象经过第一、二、四象限,由此可以确定a< 0,b>0,然后一一判断各选项即可解决问题.∵一次函数 y=ax+b 的图象经过第一、二、四象限,2017 年中考数学真题试题∴ a< 0, b> 0,∴ a+b 不一定大于 0,故 A 错误,a﹣b<0,故 B 错误,ab<0,故 C 错误,b<0,故 D 正确.a故选 D.考点:一次函数图象与系数的关系.6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交, 2 1150,则 1 的度数是()A. 75°B.85° C. 60°D.65°【答案】 B.【解析】考点:平行线的性质 .7.如图,在ABC 中,AB AC , E, F分别是BC, AC的中点,以AC为斜边作 Rt ADC ,若CAD CAB450,则下列结论不正确的是()2017 年中考数学真题试题A .ECD 112.50B. DE 平分 FDC C. DEC30 0 D . AB2CD【答案】 C.【解析】由∠ FEC=∠B=67.5°,∠ FED=22.5°,求出∠ DEC=∠FEC ﹣∠ FED=45°,从而判断 C 错误;在等腰 Rt △ADC 中利用勾股定理求出 AC= 2 CD ,又 AB=AC ,等量代换得到 AB= 2 CD ,从而判断 D 正确.∵ AB=AC ,∠ CAB=45°,∴∠ B=∠ACB=67.5°.∵ Rt △ADC 中,∠ CAD=45°,∠ ADC=90°,∴∠ ACD=45°, AD=DC , ∴∠ ECD=∠ACB+∠ACD=112.5°,故 A 正确,学 . 科 * 网不符合题意;∵ E 、 F 分别是 BC 、 AC 的中点,∴ FE=1AB , FE ∥AB ,2∴∠ EFC=∠BAC=45°,∠ FEC=∠B=67.5°.∵ F 是 AC 的中点,∠ ADC=90°, AD=DC ,∴ FD=1AC ,DF ⊥ AC ,∠ FDC=45°,2∵ AB=AC ,∴ FE=FD ,∴∠ FDE=∠FED=1 (180°﹣∠ EFD ) = 1( 180°﹣ 135°)=22.5 °,2 2∴∠ FDE=1∠FDC ,∴ DE 平分∠ FDC ,故 B 正确,不符合题意;2∵∠ FEC=∠B=67.5°,∠ FED=22.5°,∴∠ DEC=∠FEC ﹣∠ FED=45°,故 C 错误,符合题意;∵ Rt△ADC中,∠ ADC=90°, AD=DC,∴ AC= 2 CD,∵AB=AC,∴ AB= 2 CD,故D 正确,不符合题意.故选C.考点:三角形中位线定理;等腰三角形的性质;勾股定理.8.如图,在菱形ABOC中, A 600,它的一个顶点C在反比例函数y k的图像上,若将菱形向下平x移 2 个单位,点 A 恰好落在函数图象上,则反比例函数解析式为()333C.33A.yx B.y y D.yx x x【答案】 A.【解析】点 A 向下平移 2 个单位的点为(﹣1a﹣a,3a﹣ 2),即(﹣3a,3a﹣ 2),22223 a k ,21aa23,则2,解得.32k k3 3.a2 3 a2故反比例函数解析式为 y 3 3 .x故选 A.考点:反比例函数图象上点的坐标特征;菱形的性质;坐标与图形变化﹣平移.9. 如图,在ABC中,AC BC, ACB 900,点D在BC上,BD3, DC 1 ,点 P 是 AB 上的动点,则 PC PD 的最小值为()A. 4B.5C. 6D. 7【答案】 B.【解析】∵DC=1, BC=4,∴ BD=3,连接 BC′,由对称性可知∠ C′BE=∠CBE=45°,∴∠ CBC′=90,°∴BC′⊥ BC,∠ BCC′=∠BC′C=45,°∴ BC=BC′=4,根据勾股定理可得2222.DC′=BC ' BD 3 45故选 B.。
辽宁省营口市2017届九年级数学下学期第四次模拟试题含答案
辽宁省营口市2017届九年级数学下学期第四次模拟试题(考试时间:120分钟;试卷满分:150分)*温馨提示:请考生把所有的答案都答在答题卡上,答在本试卷上无效一、 选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分) 1. 2017的倒数是( )A 2. PM2.5是指大气中直径小于等于2.5微米,即0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A.7105.2-⨯ B.6105.2-⨯ C.71025-⨯ D.51025.0-⨯ 3.下面几个几何体,主视图是圆的是( )A .B .C .D .4.下列计算中,不正确的是( )A . 2510a a a =B .()2222a ab b a b -+=-C .()a b b a --=-D .322233a b a b a ÷=5.下列说法不正确的是( ) A .选举中,人们通常最关心的数据是众数B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .数据3、5、4、1、-2的中位数是3D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖6.已知点P (a+1,﹣+1)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B . C.D .7.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是( ) A .7.8,9 B .7.8,3C .4.5,9D .4.5,38.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意得( ) A .1025%)801(30=-+xx 错误!未找到引用源。
2017年辽宁省营口市中考真题数学
2017年辽宁省营口市中考真题数学一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1. -5的相反数是( )A.-5B.±5C.1 5D.5解析:根据相反数的定义直接求得结果.答案:D.2.下列几何体中,同一个几何体的三视图完全相同的是( )A.球B.圆锥C.圆柱D.三棱柱解析:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.答案:A.3.下列计算正确的是( )A.(-2xy)2=-4x2y2B.x6÷x3=x2C.(x-y)2=x2-y2D.2x+3x=5x解析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.答案:D.4.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是( )A.6,6B.9,6C.9,6D.6,7解析:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.答案:A.5.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( )A.a+b<0B.a-b>0C.ab>0D.ba<0解析:由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a<0,b>0,然后一一判断各选项即可解决问题.答案:D.6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是( )A.75°B.85°C.60°D.65°解析:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3-∠A=115°-30°=85°.答案:B.7.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是( )A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°CD解析:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=12AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=12AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=12(180°-∠EFD)=12(180°-135°)=22.5°,∴∠FDE=12∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC-∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴CD,∵AB=AC,∴CD,故D正确,不符合题意.答案:C.8.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=kx的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为( )B.y=-xC.y=-3 xD.y=x解析:过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.答案:A.9.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )A.4B.5C.6D.7解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.答案:B.10.如图,直线l的解析式为y=-x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l 的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是( )A.B.C.D.解析:分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可判断.答案:C.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为_____. 解析:29150000000=2.915×1010.答案:2.915×1010.12.函数y=1x+中,自变量x的取值范围是_____.解析:根据题意得:x,-1≥0且x+1≠0,解得:x≥1.答案:x≥1.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是_____个.解析:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.答案:15.14.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是_____.解析:根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.答案:k>12且k≠1.15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.解析:先求出CE=2CD ,求出∠DEC=30°,求出∠DCE=60°,CEB ′和三角形CDE 的面积,即可求出答案.答案:83π-16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_____.解析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间-实际所用时间=8”列方程即可. 答案:2400240081.2x x-=.17.在矩形纸片ABCD 中,AD=8,AB=6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为_____.解析:由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC 为直角三角形分两种情况:①当∠EFC=90°时,可得出AE 平分∠BAC ,根据角平分线的性质即可得出8610BE BE-=,解之即可得出BE 的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE 的长度. 答案:3或6.18.如图,点A 1(1,3)在直线l 1:上,过点A 1作A 1B 1⊥l 1交直线l 2:x 于点B 1,A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,再过点C 1作A 2B 2⊥l 1,分别交直线l 1和l 2于A 2,B 2两点,以A 2B 2为边在△OA 2B 2外侧作等边三角形A 2B 2C 2,…按此规律进行下去,则第n 个等边三角形A n B n C n 的面积为_____.(用含n 的代数式表示)解析:由点A 1的坐标可得出OA 1=2,根据直线l 1、l 2的解析式结合解直角三角形可求出A 1B 1的长度,由等边三角形的性质可得出A 1A 2的长度,进而得出OA 2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.2332n-⎫⎪⎝⎭.三、解答题(19小题10分,20小题10分,共20分.)19.先化简,再求值:222212x y x yxy y x xy xy⎛⎫⎛⎫+-÷-⎪⎪++⎝⎭⎝⎭,其中x=(13)-1-(2017-32)0,y= sin60°.解析:先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.答案:原式=()()()2222x yx yxy x y xy x y xy⎡--⎤⎢⎥⎦÷⎣-++=()()()()22x y x y xyxy x y x y⋅+-+--=2x y--,当x=(13)-1-(2017-32)0=3-1=2,sin60°32=时,原式=2322--=-4.20.如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).解析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.答案:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.四、解答题(21题12分,22小题12分,共24分)21.某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_____人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.解析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.答案:(1)这四个班参与大赛的学生数是:30÷30%=100(人);(2)丁所占的百分比是:35100×100%=35%,丙所占的百分比是:1-30%-20%-35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×100160=1250(人).答:全校的学生中参与这次活动的大约有1250人.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,≈1.41≈1.73)解析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答案:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C 的最近距离是CE , AB=30×4060=20, ∵∠NAC=45°,∠NAB=75°, ∴∠DAB=30°, ∴BD=12AB=10,由勾股定理可知:∵BC ∥AN , ∴∠BCD=45°, ∴CD=BD=10,∴+10 ∵∠DAB=30°,∴CE=12≈13.7 答:船在航行过程中与码头C 的最近距离是13.7海里.五、解答题(23小题12分,24小题12分,共24分)23.如图,点E 在以AB 为直径的⊙O 上,点C 是BE 的中点,过点C 作CD 垂直于AE ,交AE 的延长线于点D ,连接BE 交AC 于点F.(1)求证:CD 是⊙O 的切线; (2)若cos ∠CAD=45,BF=15,求AC 的长. 解析:(1)连接OC ,由点C 是BE 的中点利用垂径定理可得出OC ⊥BE ,由AB 是⊙O 的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC⊥CD,由此即可证出CD是⊙O 的切线.(2)过点O作OM⊥AC于点M,由点C是BE的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=45可求出AB的长度,在Rt△AOM中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度. 答案:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BF AE AB=.∵cos∠CAD=45,∴34 EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO·cos∠OAM=8,∴AC=2AM=16.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.解析:(1)根据接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,直接得出生产这批空调的时间为x天,与每天生产的空调为y台之间的函数关系式;(2)根据基本等量关系:利润=(每台空调订购价-每台空调成本价-增加的其他费用)×生产量即可得出答案.答案:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920-2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920-2000-20(40+2x-50)]×(40+2x)=-80(x-4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=()()()2184******** 8044608510x xx x+≤≤⎧⎪⎨--+≤⎪⎩<.六、解答题(本题满分14分)25.在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系_____;②将△EBF 绕点B 逆时针旋转到图2所示的位置,连接AE ,DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,BC=mAB ,其它条件都不变,将△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′,连接AE ′,DF ′,请在图3中画出草图,并直接写出AE ′与DF ′的数量关系.解析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则AB ,再证明△BEF 为等腰直角三角形得到BE ,所以BE ,从而得到AE ;②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB==,则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE==(2)先画出图形得到图3,利用勾股定理得到AB ,再证明△BEF ∽△BAD 得到BE BFBA BD =,则BF BDBE BA==,接着利用旋转的性质得∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,所以BF BDBE BA'==',然后根据相似三角形的判定方法得到△ABE ′∽△DBF ′,再利用相似的性质可得DF BDAE BA'=='答案:(1)①∵四边形ABCD 为正方形, ∴△ABD 为等腰直角三角形,∴AB , ∵EF ⊥AB ,∴△BEF 为等腰直角三角形,BE ,∴BE ,即AE ;②AE.理由如下:∵△EBF 绕点B 逆时针旋转到图2所示的位置,∴∠ABE=∠DBF ,∵BF BE =BDAB = ∴BF BD BE AB=, ∴△ABE ∽△DBF ,∴DF BFAE BE==即AE ; (2)如图3,∵四边形ABCD 为矩形, ∴AD=BC=mAB ,∴=,∵EF ⊥AB , ∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BFBA BD =,∴BF BD BE BA== ∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E ′BF ′, ∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF BDBE BA'==' ∴△ABE ′∽△DBF ′,∴DF BDAE BA'=='即DF ′′.七、解答题(本题满分14分)26.如图,抛物线y=ax 2+bx-2的对称轴是直线x=1,与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E.(1)求抛物线解析式;(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M ,N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.解析:(1)由抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,-2),求得BC 的解析式为y=12x-2,设D(m ,0),得到E(m ,12m-2),P(m ,14m 2-12m-2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5, 74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n ,12n-2),①以BD 为对角线,根据菱形的性质得到MN 垂直平分BD ,求得n=4+12,于是得到N(92,-14);②以BD 为边,根据菱形的性质得到MN ∥BD ,MN=BD=MD=1,过M 作MH ⊥x 轴于H ,根据勾股定理列方程即可得到结论.答案:(1)∵抛物线y=ax 2+bx-2的对称轴是直线x=1,A(-2,0)在抛物线上,∴()2122220b a a b ⎧-=⎪⎨⎪---=⎩,解得:1412a b ⎧=⎪⎪⎨⎪=-⎪⎩,抛物线解析式为y=14x 2-12x-2;(2)令y=14x 2-12x-2=0,解得:x 1=-2,x 2=4,当x=0时,y=-2, ∴B(4,0),C(0,-2),设BC 的解析式为y=kx+b ,则402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴y=12x-2, 设D(m ,0), ∵DP ∥y 轴,∴E(m,12m-2),P(m,14m2-12m-2),∵OD=4PE,∴m=4(14m2-12m-2-12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD-S△EBD=171133 5124228⨯⨯-⨯⨯=;(3)存在,设M(n,12n-2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,-14);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH 2+DH 2=DM 2, 即(12n-2)2+(n-5)2=12, ∴n 1=4(不合题意),n 2=5.6, ∴N(4.6,310), 同理(12n-2)2+(4-n)2=1,∴n 1=4+5(不合题意,舍去),n 2=4-4,∴N(5-5,5), ③以BD 为边,如图3,过M 作MH ⊥x 轴于H , ∴MH 2+BH 2=BM 2, 即(12n-2)2+(n-4)2=12,∴n 1n 2不合题意,舍去),∴N(5+5,5),综上所述,当N(92,-14)或(4.6,310)或(5-55)或(5+5,5),以点B ,D ,M ,N 为顶点的四边形是菱形.。
2017年营口市中考数学试卷
2017年初中毕业生毕业升学考试数学试卷第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.-5的相反数是( )A . -5B .5±C .15D .5 2. 下列几何体中,同一个几何体的三视图完全相同的是( )A . 球B .圆锥C .圆柱D .三棱柱3. 下列计算正确的是( )A .()22224xy x y -=-B .632x x x ÷=C .()222x y x y -=- D . 235x x x += 4. 为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表: 月用水量/3m 4 5 6 8 9 10户数 6 7 9 5 2 1则这30户家庭的月用水量的众数和中位数分别是( )A . 6,6B . 9,6 C. 9,6 D .6,75. 若一次函数y ax b =+的图象经过第一、二、四象限,则下列不等式一定成立的是( )A .0a b +<B .0a b -> C. 0ab > D .0b a< 6. 如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,02115∠=,则1∠的度数是( )A .75°B . 85° C. 60° D .65°7. 如图,在ABC ∆中,,,AB AC E F =分别是,BC AC 的中点,以AC 为斜边作Rt ADC ∆,若045CAD CAB ∠=∠=,则下列结论不正确的是( )A . 0112.5ECD ∠=B .DE 平分FDC ∠ C. 030DEC ∠=D .2AB CD =8. 如图,在菱形ABOC 中,060A ∠=,它的一个顶点C 在反比例函数k y x=的图像上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则反比例函数解析式为( )A .33y x =-B .3y x =- C. 3y x=- D .3y x = 9. 如图,在ABC ∆中,0,90AC BC ACB =∠=,点D 在BC 上,3,1BD DC ==,点P 是AB 上的动点,则PC PD +的最小值为( )A . 4B .5 C. 6 D .710. 如图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于,A B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y 轴分别相交于,C D 两点,运动时间为t 秒(04t ≤≤),以CD 为斜边作等腰直角三角形CDE (,E O 两点分别在CD 两侧),若CDE ∆和OAB ∆的重合部分的面积为S ,则S 与t 之间的函数关系的图角大致是( )A .B . C. D .第二部分(主观题)二、填空题(每小题3分,共24分,将答案填在答题纸上)11. 随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为_____________.12.函数11x y x -=+中,自变量x 的取值范围是___________. 13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是 个.14.若关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,则k 的取值范围是 .15.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A B C D ''''的位置,2,4AB AD ==,则阴影部分的面积为 .16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 .17. 在矩形纸片ABCD 中,8,6,AD AB E ==是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当EFC ∆为直角三角形时,BE 的长为___________.18. 如图,点()11,3A 在直线1:3l y x =上,过点1A 作111A B l ⊥交直线23:3l y x =于点1B ,11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作221A B l ⊥,分别交直线1l 和2l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n n A B C 的面积为__________.(用含n 的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19. 先化简,再求值:22 2212x y x y xy y x xy xy⎛⎫⎛⎫+-÷-⎪ ⎪++⎝⎭⎝⎭,其中10132017,3sin6032x y-⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭.20. 如图,有四张背面完全相同的纸牌A B C D、、、,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A B C D、、、表示).四、解答题(21题12分,22小题12分,共24分)21. 某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程≈≈)中与码头C的最近距离.(结果精确的0.1海里,参考数据2 1.41,3 1.73五、解答题(23小题12分,24小题12分,共24分)23. 如图,点E在以AB为直径的O上,点C是BE的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD 是O 的切线; (2)若4cos ,155CAD BF ∠==,求AC 的长. 24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x 天生产空调y 台,直接写出y 与x 之间的函数解析式,并写出自变量x 的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x 天的利润为W 元,试求W 与x 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.在四边形中ABCD ,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF AB ⊥.(1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系___________;②将EBF ∆绕点B 逆时针旋转到图2所示的位置,连接,AE DF ,猜想AE 与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD 为矩形,BC mAB =,其它条件都不变,将EBF ∆绕点B 顺时针旋转()00090αα<<得到E BF ''∆,连接,AE DF '',请在图3中画出草图,并直接写出AE '与DF '的数量关系.七、解答题(本题满分14分)26.如图,抛物线22y ax bx =+-的对称轴是直线1x =,与x 轴交于,A B 两点,与y 轴交于点C ,点A 的坐标为()2,0-,点P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .(1)求抛物线解析式;(2)若点P 在第一象限内,当4OD PE =时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点,,,B D M N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】。
2017年辽宁省营口市中考数学试卷及详细解析考点梳理
2017年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C.15D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.ba<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=2CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=kx的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣33xB.y=﹣3xC.y=﹣3xD.y=3x9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=x−1x+1中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 .17.(3分)在矩形纸片ABCD 中,AD=8,AB=6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为 .18.(3分)如图,点A 1(1, 3)在直线l 1:y= 3x 上,过点A 1作A 1B 1⊥l 1交直线l 2:y= 33x 于点B 1,以A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,再过点C 1作A 2B 2⊥l 1,分别交直线l 1和l 2于A 2,B 2两点,以A 2B 2为边在△OA 2B 2外侧作等边三角形A 2B 2C 2,…按此规律进行下去,则第n 个等边三角形A n B n C n 的面积为 .(用含n 的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(x xy +y 2﹣y x 2+xy )÷(1﹣x 2+y 22xy ),其中x=(13)﹣1﹣(2017﹣32)0,y= 3sin60°. 20.(10分)如图,有四张背面完全相同的纸牌A 、B 、C 、D ,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是BE的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=45,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C.15D.5【考点】14:相反数【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【考点】U1:简单几何体的三视图【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【考点】W5:众数;W4:中位数【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.ba<0【考点】F7:一次函数图象与系数的关系【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,ba<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【考点】JA:平行线的性质【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=2CD【考点】KX:三角形中位线定理;KH:等腰三角形的性质【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=12AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=12AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=2CD,又AB=AC,等量代换得到AB= 2CD ,从而判断D 正确.【解答】解:∵AB=AC ,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt △ADC 中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC ,∴∠ECD=∠ACB +∠ACD=112.5°,故A 正确,不符合题意;∵E 、F 分别是BC 、AC 的中点,∴FE=12AB ,FE ∥AB , ∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F 是AC 的中点,∠ADC=90°,AD=DC ,∴FD=12AC ,DF ⊥AC ,∠FDC=45°, ∵AB=AC ,∴FE=FD ,∴∠FDE=∠FED=12(180°﹣∠EFD )=12(180°﹣135°)=22.5°, ∴∠FDE=12∠FDC , ∴DE 平分∠FDC ,故B 正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC ﹣∠FED=45°,故C 错误,符合题意;∵Rt △ADC 中,∠ADC=90°,AD=DC ,∴AC= 2CD ,∵AB=AC ,∴AB= 2CD ,故D 正确,不符合题意.故选C .【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)如图,在菱形ABOC 中,∠A=60°,它的一个顶点C 在反比例函数y=k x的图象上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则反比例函数解析式为( )A .y=﹣3 3xB .y=﹣ 3xC .y=﹣3xD .y= 3x【考点】G6:反比例函数图象上点的坐标特征;L8:菱形的性质;Q3:坐标与图形变化﹣平移【分析】过点C 作CD ⊥x 轴于D ,设菱形的边长为a ,根据菱形的性质和三角函数分别表示出C ,以及点A 向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C 作CD ⊥x 轴于D ,设菱形的边长为a ,在Rt △CDO 中,OD=a•cos60°=12a ,CD=a•sin60°= 32a , 则C (﹣12a , 32a ), 点A 向下平移2个单位的点为(﹣12a ﹣a , 32a ﹣2),即(﹣32a , 32a ﹣2), 则 32a =k −12a 32a −2=k −32a ,解得 a =2 3k =−3 3. 故反比例函数解析式为y=﹣3 3x .故选:A .【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【考点】PA:轴对称﹣最短路线问题;KW:等腰直角三角形【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=BC′2+BD2=32+42=5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D .【考点】E7:动点问题的函数图象【分析】分别求出0<t ≤2和2<t ≤4时,S 与t 的函数关系式即可爬判断.【解答】解:当0<t ≤2时,S=12t 2, 当2<t ≤4时,S=12t 2﹣12(2t ﹣4)2=﹣32t 2+8t ﹣8, 观察图象可知,S 与t 之间的函数关系的图象大致是C .故答案为C .【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010 .【考点】1I :科学记数法—表示较大的数【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.(3分)函数y= x−1x +1中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【考点】X8:利用频率估计概率【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>12且k≠1.【考点】AA:根的判别式;A1:一元二次方程的定义【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>12且k≠1.故答案为:k>12且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为83π﹣23.【考点】MO:扇形面积的计算;R2:旋转的性质【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=23,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=23,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=60π×42360﹣12×2×23=83π−23,故答案为:83π−2 3. 【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE 的面积,题目比较好,难度适中.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 2400x ﹣24001.2x =8 .【考点】B6:由实际问题抽象出分式方程【分析】设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据题意可得:2400x ﹣24001.2x=8, 故答案为:2400x ﹣24001.2x=8. 【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)在矩形纸片ABCD 中,AD=8,AB=6,E 是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE 的长为 3或6 .【考点】PB :翻折变换(折叠问题);LB :矩形的性质【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC 为直角三角形分两种情况:①当∠EFC=90°时,可得出AE 平分∠BAC ,根据角平分线的性质即可得出BE 6=8−BE 10,解之即可得出BE 的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE 的长度.【解答】解:∵AD=8,AB=6,四边形ABCD 为矩形,∴BC=AD=8,∠B=90°,∴AC= AB 2+BC 2=10.△EFC 为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F 在对角线AC 上,∴AE 平分∠BAC ,∴BE AB =EC AC ,即BE 6=8−BE 10, ∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF 为正方形,∴BE=AB=6.综上所述:BE 的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE 的长度是解题的关键.18.(3分)如图,点A 1(1, 3)在直线l 1:y= 3x 上,过点A 1作A 1B 1⊥l 1交直线l 2:y= 33x 于点B 1,以A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为3 2(32)2n−3.(用含n的代数式表示)【考点】F8:一次函数图象上点的坐标特征;KK:等边三角形的性质【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,3),∴OA1=2.∵直线l1:y=3x,直线l2:y=33 x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=12OB1,∴A1B1=23 3.∵△A1B1C1为等边三角形,∴A1A2=32A1B1=1,∴OA2=3,A2B2=3.同理,可得出:A3B3=332,A4B4=934,…,A n B n=(32)n−23,∴第n个等边三角形A n B n C n的面积为12×32A nB n2=32(32)2n−3.故答案为:32(32)2n−3.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n =(32)n−2 3是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(x xy +y 2﹣y x 2+xy )÷(1﹣x 2+y 22xy ),其中x=(13)﹣1﹣(2017﹣32)0,y= 3sin60°. 【考点】6D :分式的化简求值;6E :零指数幂;6F :负整数指数幂;T5:特殊角的三角函数值【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x 、y 的值代入即可得.【解答】解:原式=[x 2xy (x +y )﹣y 2xy (x +y )]÷−(x−y )22xy =(x +y )(x−y )xy (x +y )•2xy−(x−y ) =﹣2x−y, 当x=(13)﹣1﹣(2017﹣32)0=3﹣1=2,y= 3sin60°= 3× 32=32时, 原式=﹣22−3=﹣4. 【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【考点】X7:游戏公平性;P3:轴对称图形;R5:中心对称图形;X4:概率公式;X6:列表法与树状图法【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是3 4;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:35100×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班的人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×100160=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)。
辽宁省营口市中考数学真题试题(含解析)
辽宁省营口市2017年中考数学真题试题第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.) 1.-5的相反数是( ) A . -5 B .5± C .15D .5 【答案】D. 【解析】试题分析:根据相反数的定义直接求得结果.因为只有符号不同的两个数互为相反数,所以﹣5的相反数是5.故选D . 考点:相反数.2. 下列几何体中,同一个几何体的三视图完全相同的是( ) A . 球 B .圆锥 C .圆柱 D .三棱柱 【答案】A. 【解析】确. 故选A .考点:简单几何体的三视图. 3. 下列计算正确的是( )A .()22224xy x y -=- B .632x x x ÷= C .()222x y x y -=- D . 235x x x +=【答案】D. 【解析】试题分析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.A 、(﹣2xy )2=4x 2y 2,故本选项错误; B 、x 6÷x 3=x 3,故本选项错误;C 、(x ﹣y )2=x 2﹣2xy+y 2,故本选项错误; D 、2x+3x=5x ,故本选项正确; 故选D .考点:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式. 4. 为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是( ) A . 6,6 B . 9,6 C. 9,6 D .6,7 【答案】B. 【解析】考点:众数;中位数.5. 若一次函数y ax b =+的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .0a b +< B .0a b -> C. 0ab > D .0ba< 【答案】D. 【解析】试题分析:由于一次函数y=ax+b 的图象经过第一、二、四象限,由此可以确定a <0,b >0,然后一一判断各选项即可解决问题.∵一次函数y=ax+b 的图象经过第一、二、四象限, ∴a <0,b >0,∴a+b 不一定大于0,故A 错误,a ﹣b <0,故B 错误, ab <0,故C 错误,ba <0,故D 正确. 故选D .考点:一次函数图象与系数的关系.6. 如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,02115∠=,则1∠的度数是( )A .75°B . 85° C. 60° D .65° 【答案】B. 【解析】考点:平行线的性质.7. 如图,在ABC ∆中,,,AB AC E F =分别是,BC AC 的中点,以AC 为斜边作Rt ADC ∆,若045CAD CAB ∠=∠=,则下列结论不正确的是( )A . 0112.5ECD ∠=B .DE 平分FDC ∠ C. 030DEC ∠= D .AB =【答案】C. 【解析】由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC ﹣∠FED=45°,从而判断C 错误;在等腰Rt △ADC 中利用勾股定理求出CD ,又AB=AC ,等量代换得到CD ,从而判断D 正确. ∵AB=AC ,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt △ADC 中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC , ∴∠ECD=∠ACB+∠ACD=112.5°,故A 正确,不符合题意; ∵E 、F 分别是BC 、AC 的中点,∴FE=12AB ,FE ∥AB , ∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. ∵F 是AC 的中点,∠ADC=90°,AD=DC ,∴FD=12AC ,DF ⊥AC ,∠FDC=45°, ∵AB=AC ,∴FE=FD , ∴∠FDE=∠FED=12(180°﹣∠EFD )=12(180°﹣135°)=22.5°, ∴∠FDE=12∠FDC ,∴DE 平分∠FDC ,故B 正确,不符合题意; ∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC ﹣∠FED=45°,故C 错误,符合题意; ∵Rt △ADC 中,∠ADC=90°,AD=DC ,∴,∵AB=AC ,∴,故D 正确,不符合题意. 故选C .考点:三角形中位线定理;等腰三角形的性质;勾股定理.8. 如图,在菱形ABOC 中,060A ∠=,它的一个顶点C 在反比例函数ky x=的图像上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则反比例函数解析式为( )A.y x =-B.y x =- C. 3y x=- D.y x = 【答案】A. 【解析】点A 向下平移2个单位的点为(﹣12a ﹣aa ﹣2),即(﹣32aa ﹣2),则,12232ka k a =⎪⎪-=⎪⎩,解得a k ⎧=⎪⎨=-⎪⎩.故反比例函数解析式为y = 故选A .考点:反比例函数图象上点的坐标特征;菱形的性质;坐标与图形变化﹣平移.9. 如图,在ABC ∆中,0,90AC BC ACB =∠=,点D 在BC 上,3,1BD DC ==,点P 是AB 上的动点,则PC PD +的最小值为( )A . 4B .5 C. 6 D .7 【答案】B. 【解析】∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°, ∴BC′⊥BC ,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得5==. 故选B .考点:轴对称﹣最短路线问题;等腰直角三角形.10. 如图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于,A B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y 轴分别相交于,C D 两点,运动时间为t 秒(04t ≤≤),以CD 为斜边作等腰直角三角形CDE (,E O 两点分别在CD 两侧),若CDE ∆和OAB ∆的重合部分的面积为S ,则S 与t 之间的函数关系的图角大致是( )A .B . C. D .第二部分(主观题)【答案】C. 【解析】故答案为C .考点:动点问题的函数图象;分类讨论.二、填空题(每小题3分,共24分,将答案填在答题纸上)11. 随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为_____________.【答案】2.915×1010.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.29150000000=2.915×1010.故答案为:2.915×1010.考点:科学记数法—表示较大的数.12.函数y=x的取值范围是___________.【答案】x≥1.【解析】考点:函数自变量的取值范围.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.【答案】15.【解析】试题分析:利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.考点:利用频率估计概率.14.若关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,则k 的取值范围是 . 【答案】k >12且k ≠1. 【解析】试题分析:根据一元二次方程的定义和判别式的意义得到k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.根据题意得k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0, 解得:k >12且k ≠1. 故答案为:k >12且k ≠1. 考点:根的判别式;一元二次方程的定义.15.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A B C D ''''的位置,2,4AB AD ==,则阴影部分的面积为 .【答案】83π-【解析】故答案为:83π-考点:扇形面积的计算;旋转的性质.16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 .【答案】2400240081.2x x-=. 【解析】试题分析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间﹣实际所用时间=8”列方程即可.设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x , 根据题意可得:2400240081.2x x-=, 故答案为:2400240081.2x x-=. 考点:由实际问题抽象出分式方程.17. 在矩形纸片ABCD 中,8,6,AD AB E ==是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,当EFC ∆为直角三角形时,BE 的长为___________. 【答案】3或6. 【解析】△EFC 为直角三角形分两种情况: ①当∠E FC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F 在对角线AC 上, ∴AE 平分∠BAC ,∴BE EC AB AC =,即8610BE BE-=,∴BE=3; ②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°, ∴四边形ABEF 为正方形,∴BE=AB=6. 综上所述:BE 的长为3或6. 故答案为:3或6.考点:翻折变换(折叠问题);勾股定理;正方形的判定与性质;矩形的性质.18. 如图,点(1A 在直线1:l y =上,过点1A 作111A B l ⊥交直线2:l y =于点1B ,11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作221A B l ⊥,分别交直线1l 和2l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n n A B C 的面积为__________.(用含n 的代数式表示)2332n -⎫⎪⎝⎭.【解析】在Rt △OA 1B 1中,OA 1=2,∠A 1OB 1=30°,∠OA 1B 1=90°,∴A 1B 1=12OB 1,∴A 1B 1∵△A 1B 1C 1为等边三角形,∴A 1A 2A 1B 1=1,∴OA2=3,A2B2同理,可得出:A3B3,A4B4A nB n=232n-⎛⎫⎪⎝⎭∴第n个等边三角形A n B n C n的面积为2321322nn nA B-⎫=⎪⎝⎭.2332n-⎫⎪⎝⎭.考点:一次函数图象上点的坐标特征;等边三角形的性质;探索规律.三、解答题(19小题10分,20小题10分,共20分.)19. 先化简,再求值:222212x y x yxy y x xy xy⎛⎫⎛⎫+-÷-⎪⎪++⎝⎭⎝⎭,其中10132017,6032x y-⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭. 【答案】-4.【解析】原式=2322--=﹣4.考点:分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.20. 如图,有四张背面完全相同的纸牌A B C D、、、,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A B C D、、、表示).【答案】(1)34;(2)12.【解析】(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.四、解答题(21题12分,22小题12分,共24分)21. 某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【答案】(1)100;(2)见解析;(3)108°;(4)1250. 【解析】30÷30%=100(人);故答案为100;(2)丁所占的百分比是:35100×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:考点:条形统计图;扇形统计图;样本估计总体.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程≈≈)中与码头C的最近距离.(结果精确的0.1 1.73【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】试题分析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答:船在航行过程中与码头C的最近距离是13.7海里考点:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.五、解答题(23小题12分,24小题12分,共24分)23. 如图,点E在以AB为直径的O上,点C是BE的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是O的切线;(2)若4cos,155CAD BF∠==,求AC的长.【答案】(1)见解析;(2)16.【解析】试题解析:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BF AE AB=.∵cos∠CAD=45,∴34EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO•cos∠OAM=8,∴AC=2AM=16.考点:切线的判定与性质;解直角三角形;平行线的性质;垂径定理;圆周角定理角平分线的性质.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.【答案】(1)y=40+2x(1≤x≤10);(2)()()()2184********,80446080510x xWx x+≤≤⎧⎪=⎨--+<≤⎪⎩,第5天,46000元.【解析】台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,考点:二次函数的应用;分段函数. 六、解答题(本题满分14分)25.在四边形中ABCD ,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF AB ⊥. (1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系___________;②将EBF ∆绕点B 逆时针旋转到图2所示的位置,连接,AE DF ,猜想AE 与DF 的数量关系并说明理由; (2)如图3,若四边形ABCD 为矩形,BC mAB =,其它条件都不变,将EBF ∆绕点B 顺时针旋转()00090αα<<得到E BF ''∆,连接,AE DF '',请在图3中画出草图,并直接写出AE '与DF '的数量关系.【答案】(1)①,②,理由见解析;(2. 【解析】试题分析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则,再证明△BEF 为等腰直角三角形得到,所以BD ﹣,从而得到;②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB=,则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE=(2)先画出图形得到图3,利用勾股定理得到,再证明△BEF ∽△BAD 得到BE BFBA BD=,则BF BDBE AB =接着利用旋转的性质得∠ABE′=∠DBF′,BE′=BE,BF′=BF,所以''BF BDBE BA =然后根据相似三角形的判定方法得到△ABE′∽△DBF′,再利用相似的性质可得''DF BDAE BA=试题解析:(1)①∵四边形ABCD 为正方形,∴△ABD 为等腰直角三角形,∴,∵EF ⊥AB ,∴△BEF 为等腰直角三角形,,∴BD ﹣,即;故答案为;②.理由如下:∴AD=BC=mAB ,∴, ∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BF BA BD =,∴BF BDBE AB=∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E'BF', ∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴''BF BDBE BA=∴△ABE′∽△DBF′,∴''DF BDAE BA=即考点:旋转的性质;矩形和正方形的性质;相似三角形的判定和性质.七、解答题(本题满分14分)26.如图,抛物线22y ax bx =+-的对称轴是直线1x =,与x 轴交于,A B 两点,与y 轴交于点C ,点A 的坐标为()2,0-,点P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .(1)求抛物线解析式;(2)若点P 在第一象限内,当4OD PE =时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点,,,B D M N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【答案】(1)y=14x 2﹣12x ﹣2;(2)338;(3)y=14x 2﹣12x ﹣2;(2);(3)N (92,﹣14)或(4.6,310)或(5)或(),以点B ,D ,M ,N 为顶点的四边形是菱形. 【解析】试题分析:(1)由抛物线y=ax 2+bx ﹣2的对称轴是直线x=1,A (﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y=12x﹣2,设D(m,0),得到E(m,1 2m﹣2),P(m,14m2﹣12m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n,12n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+12,于是得到N(92,﹣14);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,设D(m,0),∵DP∥y轴,∴E(m,12m﹣2),P(m,14m2﹣12m﹣2),∵OD=4PE,∴m=4(14m2﹣12m﹣2﹣12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD﹣S△EBD=12×5×74﹣12×1×12=338;(3)存在,设M(n,12n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,﹣14);②以BD为边,如图2,∴n1(不合题意,舍去),n2=4,∴N(5),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(12n﹣2)2+(n﹣4)2=12,考点:二次函数的图象的性质;待定系数法求一次函数;二次函数的解析式;勾股定理;三角形的面积公式;菱形的性质.。
2017年辽宁省营口市中考数学试卷
2017年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C .D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD 两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8.【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A nB nC n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n=是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)(2017•营口)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.【解答】解:原式=[﹣]÷=•=﹣,当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,原式=﹣=﹣4.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)(2017•营口)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)(2017•营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:AD=10∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,∴CE=AC=5+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.五、解答题(23小题12分,24小题12分,共24分)23.(12分)(2017•营口)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.【分析】(1)连接OC,由点C是的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.【解答】(1)证明:连接OC,如图1所示.∵点C是的中点,。
辽宁省营口市2017届中考模拟数学试卷(2)含答案
九年级数学中考模拟试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第二部分时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第 一 部 分(客观题)一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项正确)1.(85-)-1的相反数是( )A. 58-B. 85-C. 85D. 582.下列手机软件图标中,属于中心对称的是( )3、下列运算正确的是( )A.()b a ab 33= B.1-=+--ba ba C. 326a a a =÷ D.222)(b a b a +=+ 4.在一次体检中,抽得某班8位同学的身高(单位:cm )分别为:166,158,171,165,175,165,162,169.则这8位同学身高的中位数和众数分别是( ) A. 170,165 B. 166. 5,165 C. 165.5,165 D. 165,165.5 5. 在△ABC 中,90C ∠= ,若4BC =,2sin 3A =,则AC 的长是( )A.6B.C.D.6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7. 已知二次函数2y ax bx c =++(其中a >0,b >0,c <0), 关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧;④方程02=+bx ax 一定有两个不相等的实数根.以上说法正确的个数为A .1B .2C .3D .48. 如图,在△ABC 中,AB=AC=26,BC=20,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于( )A .B .C .D .9. 若二次函数y=x 2-6x+c 的图象过A (-1,y 1),B (2,y 2),C (3+2,y 3),则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B y 3>y 1>y 2C .y 2>y 1>y 3D . y 1>y 3>y 210.如图,点G 、E 、A 、B 在一条直线上,Rt △EFG 从如图所示的位置出发,沿直线AB 向右匀速运动,当点G 与点B 重合时停止运动,设△EFG 与矩形ABCD 重合部分的面积为S,运动时间为t,则S 与t 的图象大致是( )第 二 部 分(主 观 题)第10题图二、填空题(每小题3分,共24分)11.函数y =的自变量x 的取值范围是 . 12.一个口袋中装有5个红球,x 个绿球,3个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是31,则袋里有 个绿球 13.分解因式:4ax 2﹣a= . 14.若关于x 的分式方程﹣1=无解,则m 的值为.15.若圆锥的母线长为5cm ,底面圆的半径为3cm ,则它的侧面展开图的面 积为 cm2(保留π).16,已知a+b-6ab=0(a>b ),则ab ba -+= 17. 直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是 .18,如图,在平面直角坐标系中,有若干个横坐标分别 为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2), (2,2)…根据这个规律,第2017个点的坐标为18.三、解答题(共96分) 19.(10分) 先化简,再求代数式的值,其中a=2sin60°+tan45°.20.(12分) 某校2015年八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言人数的比为5:2,请结合图中相关数据回答下列问题: 发言次数nA 0≤n <3B 3≤n <6C 6≤n <9D 9≤n <12E 12≤n <15F 15≤n <18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A 组发言的学生中恰有1位女生,E 组发言的学生中有2位男生.现从A 组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率. 21.(10分) 12分)如图,三沙市一艘海监船某天在钓鱼岛P 附近海域由南向北巡航,某一时刻航行到A 处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B 处,测得该岛在北偏东75°方向,求此时海监船与钓鱼岛P 的距离BP 的长. (参考数据:≈1.414,结果精确到0.1)22.(12分)如图,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =,⊙O 交直线OB 于E D,,连接EC CD,.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC(3)若1tan2CED∠=,⊙O的半径为3,求OA的长.23.(12分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?24.(12分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?图3图2图1DCBANEMDCBAED CBA(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?25 (14分)1)如图1,锐角△ABC 中,分别以AB 、AC 为边向外作等边△ABE 和等边△ACD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由. 【深入探究】(2)如图2,△ABC 中,∠ABC=45°,AB=5cm ,BC=3cm ,分别以AB 、AC 为边向外作正方形ABNE 和正方形ACMD ,连接BD ,求BD 的长.(3)如图3,在(2)的条件下,以AC 为直角边在线段AC 的左侧作等腰直角△ACD ,求BD 的长.26.(本题满分14分)如图,直线y=﹣x+3与x 轴交于点C ,与y 轴交于点B ,抛物线y=ax 2+x+c 经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标和△BEC 面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.( 备用图第26题图参考答案一选择题1D 2C 3B 4C 5B 6A 7C 8C 9D 10D 二、填空题11.x>=-1且x ≠0 12.4个13.a(2x+1)2x-1) 14.m=-1.5或m=-0.5 15.15π 16.或- 17.7/24 18.(45,8) 三、解答题19.解:2121()111a a a a --÷+-+= ------------3 ------------4-----------------------------52sin 60tan 45a =+ = ---------------- ------------------------------8所以原式=3331=---------------------------------------------------------------------------------10 20、解:(1)∵由发言人数直方图可知B 组发言人为10人,又已知B 、E 两组发言人数的比为5:2, ∴E 组发言人为4人又由发言人数扇形统计图可知E 组为%,∴发言人总数为人,于是由扇形统计图知A 组、C 组、D 组分别为3人,15人,13人, ∴F 组为人,于是补全直方图为:11)1()1)(1(1)1()1)(1(2)1)(1(1-=++-=+⋅+---+--a a a a a a a a a a a (131232+=+⨯(2) ∵在统计的50人中,发言次数的有人∴在这天里发言次数不少于12的概率为∴全年级500人中,在这天里发言次数不少于12的次数为次;(3)∵A 、E 组人数分别为3人、4人,又各恰有1女 ∴由题意可画树状图为: ∴由一男一女有5种情况,共有 12种情况,于是所抽的两位学生 恰好是一男一女的概率为21题 解:过B 作BD ⊥AP 于D ,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°, 在R t △ABD 中,∵AB=40,∠A=30, ∴BD=AB=20,在R t △BDP 中,∵∠P=45°, ∴PB=BD=20.答:此时海监船与钓鱼岛P 的距离BP 的长为20海里。
2017年辽宁省营口市中中考数学试卷(附答案解析版)
2017年省市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C. D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下)A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB 上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A. B.C. D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到元,将用科学记数法表示为.12.(3分)函数y=中,自变量x的取值围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B 落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四纸牌背面朝上洗匀.(1)从中随机摸出一,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一,若摸出的两牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确的0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.-5的相反数是( )A . -5B .5±C .15D .5 【答案】D.【解析】试题分析:根据相反数的定义直接求得结果. 因为只有符号不同的两个数互为相反数,所以﹣5的相反数是5.故选D .考点:相反数.2. 下列几何体中,同一个几何体的三视图完全相同的是( )A . 球B .圆锥C .圆柱D .三棱柱【答案】A.【解析】确.故选A .考点:简单几何体的三视图.3. 下列计算正确的是( )A .()22224xy x y -=-B .632x x x ÷=C .()222x y x y -=- D . 235x x x += 【答案】D.【解析】试题分析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.A 、(﹣2xy )2=4x 2y 2,故本选项错误;B 、x 6÷x 3=x 3,故本选项错误;C 、(x ﹣y )2=x 2﹣2xy +y 2,故本选项错误;D 、2x +3x=5x ,故本选项正确;故选D .考点:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;4C :完全平方公式.4. 为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量/3m 4 5 6 8 9 10户数 6 7 9 5 2 1则这30户家庭的月用水量的众数和中位数分别是( )A . 6,6B . 9,6 C. 9,6 D .6,7【答案】B.【解析】考点:众数;中位数.5. 若一次函数y ax b =+的图象经过第一、二、四象限,则下列不等式一定成立的是( )A .0a b +<B .0a b -> C. 0ab > D .0b a < 【答案】D.【解析】试题分析:由于一次函数y=ax +b 的图象经过第一、二、四象限,由此可以确定a <0,b >0,然后一一判断各选项即可解决问题.∵一次函数y=ax +b 的图象经过第一、二、四象限,∴a <0,b >0,∴a +b 不一定大于0,故A 错误,a ﹣b <0,故B 错误,ab <0,故C 错误,b a<0,故D 正确. 故选D .考点:一次函数图象与系数的关系.6. 如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,02115∠=,则1∠的度数是( )A .75°B . 85° C. 60° D .65°【答案】B.【解析】考点:平行线的性质.7. 如图,在ABC ∆中,,,AB AC E F =分别是,BC AC 的中点,以AC 为斜边作Rt ADC ∆,若045CAD CAB ∠=∠=,则下列结论不正确的是( )A . 0112.5ECD ∠=B .DE 平分FDC ∠ C. 030DEC ∠=D .2AB CD =【答案】C.【解析】 由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC ﹣∠FED=45°,从而判断C 错误; 在等腰Rt △ADC 中利用勾股定理求出2,又AB=AC ,等量代换得到2,从而判断D 正确.∵AB=AC ,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt △ADC 中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC ,∴∠ECD=∠ACB +∠ACD=112.5°,故A 正确,学.科*网不符合题意;∵E 、F 分别是BC 、AC 的中点,∴FE=12AB ,FE ∥AB ,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F 是AC 的中点,∠ADC=90°,AD=DC ,∴FD=12AC ,DF ⊥AC ,∠FDC=45°,∵AB=AC ,∴FE=FD ,∴∠FDE=∠FED=12(180°﹣∠EFD )=12(180°﹣135°)=22.5°,∴∠FDE=12∠FDC ,∴DE 平分∠FDC ,故B 正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC ﹣∠FED=45°,故C 错误,符合题意;∵Rt △ADC 中,∠ADC=90°,AD=DC ,∴2CD ,∵AB=AC ,∴AB=2,故D 正确,不符合题意.故选C .考点:三角形中位线定理;等腰三角形的性质;勾股定理.8. 如图,在菱形ABOC 中,060A ∠=,它的一个顶点C 在反比例函数k y x =的图像上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则反比例函数解析式为( )A .33y x =-B .3y x =- C. 3y x=- D .3y x = 【答案】A.【解析】点A 向下平移2个单位的点为(﹣12a ﹣a 3a ﹣2),即(﹣32a 3a ﹣2), 则3,123232k a k a =⎪⎪-=⎪⎩,解得23,3 3.a k ⎧=⎪⎨=-⎪⎩. 故反比例函数解析式为33y = 故选A .考点:反比例函数图象上点的坐标特征;菱形的性质;坐标与图形变化﹣平移.9. 如图,在ABC ∆中,0,90AC BC ACB =∠=,点D 在BC 上,3,1BD DC ==,点P 是AB 上的动点,则PC PD +的最小值为( )A . 4B .5 C. 6 D .7【答案】B.【解析】∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC ,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=2222'345BC BD +=+=.故选B .考点:轴对称﹣最短路线问题;等腰直角三角形.10. 如图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于,A B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y 轴分别相交于,C D 两点,运动时间为t 秒(04t ≤≤),以CD 为斜边作等腰直角三角形CDE (,E O 两点分别在CD 两侧),若CDE ∆和OAB ∆的重合部分的面积为S ,则S 与t 之间的函数关系的图角大致是( )A .B . C. D .第二部分(主观题)【答案】C.【解析】故答案为C .考点:动点问题的函数图象;分类讨论.二、填空题(每小题3分,共24分,将答案填在答题纸上)11. 随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到元,将用科学记数法表示为_____________.【答案】2.915×1010.【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. =2.915×1010.故答案为:2.915×1010. 考点:科学记数法—表示较大的数.12.函数11x y x -=+中,自变量x 的取值围是___________. 【答案】x ≥1. 【解析】考点:函数自变量的取值围.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是 个. 【答案】15. 【解析】试题分析:利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数. 根据题意得摸到红色、黄色球的概率为10%和15%, 所以摸到蓝球的概率为75%, 因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个. 故答案为15.考点:利用频率估计概率.14.若关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,则k 的取值围是 .【答案】k >12且k ≠1. 【解析】试题分析:根据一元二次方程的定义和判别式的意义得到k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.根据题意得k ﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0, 解得:k >12且k ≠1. 故答案为:k >12且k ≠1.考点:根的判别式;一元二次方程的定义.15.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A B C D ''''的位置,2,4AB AD ==,则阴影部分的面积为 .【答案】8233π-.【解析】故答案为:8233π-.考点:扇形面积的计算;旋转的性质.16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为 . 【答案】2400240081.2x x-=. 【解析】试题分析:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间﹣实际所用时间=8”列方程即可.设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x , 根据题意可得:2400240081.2x x-=, 故答案为:2400240081.2x x-=. 考点:由实际问题抽象出分式方程.17. 在矩形纸片ABCD 中,8,6,AD AB E ==是边BC 上的点,将纸片沿AE 折叠,使点B 落在点F 处,连接FC ,学&科网当EFC ∆为直角三角形时,BE 的长为___________. 【答案】3或6.【解析】△EFC 为直角三角形分两种情况: ①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F 在对角线AC 上, ∴AE 平分∠BAC ,∴BE EC AB AC =,即8610BE BE-=,∴BE=3; ②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°, ∴四边形ABEF 为正方形,∴BE=AB=6. 综上所述:BE 的长为3或6. 故答案为:3或6.考点:翻折变换(折叠问题);勾股定理;正方形的判定与性质;矩形的性质. 18. 如图,点()11,3A 在直线1:3l y x =上,过点1A 作111A B l ⊥交直线23:3l y x =于点1B ,11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作221A B l ⊥,分别交直线1l 和2l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n n A B C 的面积为__________.(用含n 的代数式表示)【答案】233322n -⎛⎫⎪⎝⎭.【解析】在Rt △OA 1B 1中,OA 1=2,∠A 1OB 1=30°,∠OA 1B 1=90°, ∴A 1B 1=12OB 1,∴A 1B 1=23∵△A 1B 1C 1为等边三角形,∴A 1A 23A 1B 1=1, ∴OA 2=3,A 2B 23同理,可得出:A 3B 3=332,A 4B 4=934,…,A n B n =2332n -⎛⎫ ⎪⎝⎭,∴第n 个等边三角形A n B n C n 的面积为23213332222n n n A B -⎛⎫⨯= ⎪⎝⎭.故答案为:233322n -⎛⎫⎪⎝⎭.考点:一次函数图象上点的坐标特征;等边三角形的性质;探索规律.三、解答题 (19小题10分,20小题10分,共20分.)19. 先化简,再求值:222212x y x y xy yx xy xy ⎛⎫⎛⎫+-÷- ⎪ ⎪++⎝⎭⎝⎭,其中10132017,3sin 6032x y -⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭. 【答案】-4. 【解析】原式=2322--=﹣4.考点:分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.20. 如图,有四背面完全相同的纸牌A B C D 、、、,其正面分别画有四个不同的几何图形,将这四纸牌背面朝上洗匀.(1)从中随机摸出一,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一,若摸出的两牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A B C D 、、、表示). 【答案】(1)34;(2)12.【解析】(2)列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两牌都是轴对称图形的有6种,,因此这个游戏公平.∴P(两都是轴对称图形)=12考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.四、解答题(21题12分,22小题12分,共24分)21. 某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【答案】(1)100;(2)见解析;(3)108°;(4)1250.【解析】30÷30%=100(人);故答案为100;×100%=35%,(2)丁所占的百分比是:35100丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:考点:条形统计图;扇形统计图;样本估计总体.22.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C的船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程≈≈)中与码头C的最近距离.(结果精确的0.123 1.73【答案】船在航行过程中与码头C的最近距离是13.7海里.【解析】试题分析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.答:船在航行过程中与码头C的最近距离是13.7海里考点:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.五、解答题(23小题12分,24小题12分,共24分)23. 如图,点E在以AB为直径的O上,学*科网点C是BE的中点,过点C作CD垂直于AE,交AE 的延长线于点D,连接BE交AC于点F.(1)求证:CD是O的切线;(2)若4cos,155CAD BF∠==,求AC的长.【答案】(1)见解析;(2)16.【解析】试题解析:(1)证明:连接OC,如图1所示.∵点C是BE的中点,∴CE BC=,∴OC⊥BE.∵AB是⊙O的直径,∴AD⊥BE,∴AD∥OC.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)解:过点O作OM⊥AC于点M,如图2所示.∵点C是BE的中点,∴CE BC=,∠BAC=∠CAE,∴EF BFAE AB=.∵cos∠CAD=45,∴34EFAE=,∴AB=43BF=20.在Rt△AOM中,∠AMO=90°,AO=12AB=10,cos∠OAM=cos∠CAD=45,∴AM=AO•cos∠OAM=8,∴AC=2AM=16.考点:切线的判定与性质;解直角三角形;平行线的性质;垂径定理;圆周角定理角平分线的性质.24.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x 天生产空调y 台,直接写出y 与x 之间的函数解析式,并写出自变量x 的取值围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x 天的利润为W 元,试求W 与x 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少. 【答案】(1)y=40+2x (1≤x ≤10);(2)()()()2184********,80446080510x x W x x +≤≤⎧⎪=⎨--+<≤⎪⎩,第5天,46000元. 【解析】台,∴由题意可得出,第x 天生产空调y 台,y 与x 之间的函数解析式为:y=40+2x (1≤x ≤10); (2)当1≤x ≤5时,W=(2920﹣2000)×(40+2x )=1840x +36800, ∵1840>0,∴W 随x 的增大而增大,∴当x=5时,W 最大值=1840×5+36800=46000; 当5<x ≤10时,W=[2920﹣2000﹣20(40+2x ﹣50)]×(40+2x )=﹣80(x ﹣4)2+46080,考点:二次函数的应用;分段函数.六、解答题(本题满分14分)25.在四边形中ABCD ,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF AB ⊥. (1)若四边形ABCD 为正方形.①如图1,请直接写出AE 与DF 的数量关系___________;②将EBF ∆绕点B 逆时针旋转到图2所示的位置,连接,AE DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,BC mAB =,学&科.网其它条件都不变,将EBF ∆绕点B 顺时针旋转()00090αα<<得到E BF ''∆,连接,AE DF '',请在图3中画出草图,并直接写出AE '与DF '的数量关系.【答案】(1)①2AE ,②2,理由见解析;(2)DF′21m +. 【解析】试题分析:(1)①利用正方形的性质得△ABD 为等腰直角三角形,则2,再证明△BEF为等腰直角三角形得到2,所以BD ﹣22BE ,从而得到2; ②利用旋转的性质得∠ABE=∠DBF ,加上BF BDBE AB=2则根据相似三角形的判定可得到△ABE ∽△DBF ,所以DF BFAE BE=2; (2)先画出图形得到图3,利用勾股定理得到BD=21m +,再证明△BEF ∽△BAD 得到BE BF BA BD =,则BF BDBE AB =21m +ABE′=∠DBF′,BE′=BE ,BF′=BF ,所以''BF BDBE BA=21m +ABE′∽△DBF′,再利用相似的性质可得''DF BDAE BA=21m + 试题解析:(1)①∵四边形ABCD 为正方形,∴△ABD 为等腰直角三角形,∴2,∵EF ⊥AB ,∴△BEF 为等腰直角三角形,2BE , ∴BD ﹣2AB 2BE ,即2AE ; 故答案为2AE ;②DF=2AE .理由如下:∴AD=BC=mAB ,∴22AB AD +21m +, ∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD , ∴BE BF BA BD =,∴BF BDBE AB=21m + ∵△EBF 绕点B 顺时针旋转α(0°<α<90°)得到△E'BF', ∴∠ABE′=∠DBF′,BE′=BE ,BF′=BF , ∴''BF BDBE BA=21m + ∴△ABE′∽△DBF′, ∴''DF BDAE BA=21m + 即21m +.考点:旋转的性质;矩形和正方形的性质;相似三角形的判定和性质.七、解答题(本题满分14分)26.如图,抛物线22y ax bx =+-的对称轴是直线1x =,与x 轴交于,A B 两点,与y 轴交于点C ,点A 的坐标为()2,0-,点P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E . (1)求抛物线解析式;(2)若点P 在第一象限,当4OD PE =时,求四边形POBE 的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系一点,是否存在这样的点M 和点N ,使得以点,,,B D M N 为顶点的四边形是菱形?若存在上,直接写出点N 的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【答案】(1)y=14x2﹣12x﹣2;(2)338;(3)y=14x2﹣12x﹣2;(2);(3)N(92,﹣14)或(4.6,310)或(5﹣255,55)或(5+255,55),以点B,D,M,N为顶点的四边形是菱形.【解析】试题分析:(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y=12x﹣2,设D(m,0),得到E(m,12m﹣2),P(m,14m2﹣12m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,74),E(5,12),根据三角形的面积公式即可得到结论;(3)设M(n,12n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+12,于是得到N(92,﹣14);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,设D(m,0),∵DP∥y轴,∴E(m,12m﹣2),P(m,14m2﹣12m﹣2),∵OD=4PE,∴m=4(14m2﹣12m﹣2﹣12m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,74),E(5,12),∴四边形POBE的面积=S△OPD ﹣S△EBD=12×5×74﹣12×1×12=338;(3)存在,设M(n,12n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+12,∴M(92,14),∵M,N关于x轴对称,∴N(92,﹣14);②以BD为边,如图2,∴n1=4+255(不合题意,舍去),n2=4﹣254,∴N(5﹣255,55),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(12n﹣2)2+(n﹣4)2=12,考点:二次函数的图象的性质;待定系数法求一次函数;二次函数的解析式;勾股定理;三角形的面积公式;菱形的性质.。
辽宁省营口市2017届九年级第二学期第四次模拟数学试卷
辽宁省营口市2017届九年级数学下学期第四次模拟试题一、选择题(本大题共10个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)( )1.x 的取值范围是A .2x ≠B .2x >C .2x ≤D .2x ≥( )2.某班五位同学的身高分别是156,160,158,166,160(单位:厘米),这组数据中,下列说法错误..的是A .平均数是160B .众数是160C .中位数是160D .极差是160( )3.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是A 、B 、C 、D 、( )4.一上山坡路(如图所示),小明测得的数据如图中所示, 则该坡路倾斜角α的正切值是A .34B .43C .35D .45 ( )5.下列图形中,既是轴对称图形,又是中心对称图形的是A B C D ( )6.如图,A 是反比例函数xk y =图象上一点,过点A 作AB ⊥y 轴于 点B ,点P 在x 轴上,△ABP 的面积为2,则k 的值为A .1B .2C .3D .443( )7.不等式组的解在数轴上表示为A .B .C .D .( )8.如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC 长为12分米,伞骨AB 长为9分米,那么制作这样的一把雨伞至少需要绸布面料为( )平方分米.A .36πB .54πC .27πD .128π( )9.如图,AC 、BD 是⊙O 直径,且AC ⊥BD ,动点P 从圆心O 出发,沿O→C→D→O 路线作匀速运动,设运动时间t (秒),∠APB =y (度).则下列图象中表示y 与t 之间的函数关系最恰当的是( )10.二次函数2y ax bx c =++的图象如图所示,那么关于 此二次函数的下列四个结论: ①0a b c ++<; ②1c >;③240b ac ->; ④20a b -<,其中正确的结论有A .1个B .2个C .3个D .4个。
辽宁省营口市2017年中考数学真题试题-中考真题
则 PC PD 的最小值为( )
A. 4
B.5
C. 6
D.7
10. 如图,直线 l 的解析式为 y x 4 ,它与 x 轴和 y 轴分别相交于 A, B 两点,平行于直线 l 的直线 m 从
原点 O 出发,沿 x 轴的正方向以每秒 1 个单位长度的速度运动.它与 x 轴和 y 轴分别相交于 C, D 两点,运
牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸 牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?
请用列表法(或树状图)说明理由(纸牌用 A、B、C、D 表示).
22.如图,一艘船以每小时 30 海里的速度向北偏东 75°方向航行,在点 A 处测得码头 C 的船的东北方向, 航行 40 分钟后到达 B 处,这时码头 C 恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程 中与码头 C 的最近距离.(结果精确的 0.1 海里,参考数据 2 1.41, 3 1.73 )
在 OA1B1 外侧作等边三角形 A1B1C1 ,再过点 C1 作 A2B2 l1 ,分别交直线 l1 和 l2 于 A2 , B2 两点,以 A2B2 为
边在 OA2B2 外侧作等边三角形 A2B2C2 ,按此规律进行下去,则第 n 个等边三角形 An BnCn 的面积为 __________.(用含 n 的代数式表示)
A. 6,6
B. 9,6
C. 9,6
D.6,7
5. 若一次函数 y ax b 的图象经过第一、二、四象限,则下列不等式一定成立的是( )
2017年辽宁省营口市中考数学试卷(解析版)
2017年辽宁省营口市中考数学试卷(解析版)题号一二三得分注意事项:1.本试卷共XX页,三个大题,满分140分,考试时间为100分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共50分)评卷人得分1.﹣5的相反数是( )(5分)A. ﹣5B. ±5C.D. 52.下列几何体中,同一个几何体的三视图完全相同的是( )(5分)A. 球B. 圆锥C. 圆柱D. 三棱柱3.下列计算正确的是( )(5分)A. (﹣2xy)2=﹣4x2y2B. x6÷x3=x2C. (x﹣y)2=x2﹣y2D. 2x+3x=5x4.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量/m3 4 5 6 8 9 10户数 6 7 9 5 2 1则这30户家庭的月用水量的众数和中位数分别是( )(5分)A. 6,6B. 9,6C. 9,6D. 6,75.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( )(5分)A. a+b<0B. a﹣b>0C. ab>0D.6.(5分)A. 75°B. 85°C. 60°D. 65°7.(5分)A. ∠ECD=112.5°B. DE平分∠FDCC. ∠DEC=30°D. AB=CD8.(5分)A.B.C.D. 9.(5分)A. 4B. 5C. 6D. 710.(5分)A.B.C.D.二、填空题(共40分)评卷人得分11.随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.(5分)12.(5分)13.在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是(5分)14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是(5分)15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为(5分)16.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.(5分)17.在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为(5分)18.(5分)三、解答题(共50分)评卷人得分资料19.小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).(5分)20.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(5分)资料某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:21.(5分)22.求图1中甲班所对应的扇形圆心角的度数;(5分)23.请你补全两幅统计图;(5分)24.这四个班参与大赛的学生共人;(5分)资料夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.25.若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.(5分)26.设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(5分)27.先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.(10分)******答案及解析****** 一、单选题(共50分)1.答案:D2.答案:A3.答案:D4.答案:B5.答案:D6.答案:B7.答案:C8.答案:A9.答案:B10.答案:C二、填空题(共40分)11.答案:2.915×1010 12.答案:x≥113.答案:1514.答案:15.答案:16.答案:17.答案:3或618.答案:三、解答题(共50分)19.答案:20.答案:共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;21.答案:22.答案:甲班级所对应的扇形圆心角的度数是:30%×360°=108°23.答案:24.答案:100 25.答案:26.答案:∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);27.答案:。
辽宁省营口市2017届中考第四次模拟数学试卷含答案
14.如图,将周长为 8 的△ABC 沿 BC 方向向右平移 1 个单位得到△ DEF,则四边形 ABFD 的周长为 .
15.甲、乙两台机器分别灌装每瓶质量为 500 克的酸奶,从甲、乙灌装的酸奶中分别随机抽 取了 30 瓶,测得它们实际质量的方差是:S 甲 2=4.8,S 乙 2=3.6,那么 或“乙”)机器灌装的酸奶质量较稳定.【 (填“甲”
)4.一上山坡路(如图所示),小明测得的数据如图中所示, 则该坡路倾斜角α的正切值是 A.
3 4
B.
4 3
C.
3 5
D.
4 5
(
)5.下列图形中,既是轴对称图形,又是中心对称图形的是
A (
B
C
D
)6.如图,A 是反比例函数 y
k 图象上一点,过点 A 作 AB⊥y 轴于 x
点 B,点 P 在 x 轴上,△ABP 的面积为 2,则 k 的值为
21. (本小题满分 12 分)
为了掌握我市中考模拟数学试题的命题质量与难度系数, 命题教师赴我市某地选取一个水平 相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为 160 分)分为 5 组:第一组 85~10;第二组 100~115;第三组 115~130;第四组 130~145;第 五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇 形统计图,观察图形的信息,回答下列问题:
(2) 解分式方程:
2 x 1 . x 1 x 1
20.(本小题满分 12 分)如图,已知 △ABC 的三个顶点的坐标 分别为 A( 2, 3) 、 B(6, 0) 、 C ( 1, 0) . (1)请直接写出点 A 关于原点 O 对称的点的坐标; (2)将 △ABC 绕坐标原点 O 逆时针旋转 90°,画出图形,写 出点 B 的对应点的坐标; (3)请直接写出:以 A、B、C 为顶点的平行四边形的第四个顶 点 D 的坐标.
009--2017年辽宁省营口市2017年中考数学试题(含答案)
A B C D2017年初中毕业生毕业升学考试数学试卷考试时间:120分钟试卷满分:150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)()A.5-B.5±C.51D.52.据测算,我国每天因土地沙漠化造成的经济损失约为5.1亿元,一年的经济损失约为05475000000元,用科学记数法表示这个数为()A.1110475.5⨯元B.1010475.5⨯元C.11105475.0⨯元D.8105475⨯元3.如图,下列水平放置的几何体中,主视图是三角形的是()4.下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D5.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元),55,50,25,30,50,20,50这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元6.不等式组⎩⎨⎧+>-+xxx2125)5(2的解集在数轴上表示正确的是()≥6B C DA队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是 ( )A.25060-=x x B.x x 50260=- C .25060+=x x D .xx 50260=+ 8.如图1,在矩形ABCD 中,动点E 从点B 出发,沿B A D C 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7=x 时,点E 应运动到 ( )A .点C 处B .点D 处C .点B 处D .点A 处二、填空题(每小题3分,共24分)9.函数5-=x y 中,自变量x 的取值范围是 . 10.=-+-- 60cos 2)21()2013(10π .11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为56.02=甲s , 45.02=乙s ,61.02=丙s ,则三人中射击成绩最稳定的是 . 12.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D =65,则∠AEC = . 13.二次函数c bx x y ++-=2的图象如图所示,则一次函数c bx y +=的图象不经过第 象限.14.一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是 2cm . 15.已知双曲线x y 3=和xky =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = . 16.按如图方式作正方形和等腰直角三角形.若第一个正方形的边第8题图1第12题图A CB E长AB =1,第一个正方形与第一个等腰直角三角形的面积和为1S , 第二个正方形与第二个等腰直角三角形的面积和为2S ,……,则 第n 个正方形与第n 个等腰直角三角形的面积和n S = . 三、解答题(17、18、19小题,每小题8分,共24分)17.先化简,再求值:122)13154(22+-+÷---+x x x x x x ,其中3=x .18.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫做格点). (1)画出△ABC 向下平移3个单位后的△111C B A ;(2)画出△ABC 绕点O 顺时针旋转90后的△222C B A ,并求出点A 旋转到2A 所经过的路线长.(结果保留π)19.如图,△ABC 中,AC AB =,AD 是△ABC 一个外角的平分线,且∠BAC =∠ACD .第18题图(1)求证:△ABC ≌△CDA ;(2)若∠ACB =60,求证:四边形ABCD 是菱形.四、解答题(20小题10分,21小题10分,共20分)20.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选. 同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整). 请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生? (2)通过计算补全条形统计图;(3)在扇形统计图中, “公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?21.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一其他其他家车交车行 行车282420161284第20题图第19题图DAB FDC个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下..的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛. (1)用列表法或画树状图法,求小丽参赛的概率. (2)你认为这个游戏公平吗?请说明理由.五、解答题(22小题8分,23小题10分,共18分)22.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60,沿山坡向上走到P处再测得该建筑物顶点A 的仰角为45.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度为21(即21tan =∠PCD ). (1)求该建筑物的高度(即AB 的长).(2)求此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)23.如图,点C 是以AB 为直径的⊙O 上的一点,AD 与过点C 的切线互相垂直,垂足第22题图为点.D(1)求证:AC 平分BAD ∠;(2)若10,1==AC CD ,求⊙O 的半径长.六、解答题(本题满分12分)入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y =802+-x .设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?七、解答题(本题满分14分)25.如图1,△ABC 为等腰直角三角形,90=∠ACB ,F 是AC 边上的一个动点(点F与A 、C 不重合),以CF 为一边在等腰直角三角形外作正方形,CDEF 连接BF 、AD .(1)①猜想图1中线段BF 、AD 的数量关系及所在直线的位置关系,直接写出结论; ②将图1中的正方形,CDEF 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形. 图2中BF 交AC 于点H ,交AD于点O ,请你判断①中得到的结论是否仍然成立,并选取图.2.证明你的判断. (2)将原题中的等腰直角三角形ABC 改为直角三角形ABC ,90=∠ACB ,正方形CDEF 改为矩形CDEF ,如图4,且4=AC ,3=BC ,=CD 34,1=CF ,BF 交AC 于点H ,交AD 于点O ,连接BD 、AF ,求22AF BD +的值.八、解答题(本题满分14分)图1图2图3F图4ABE F H OC26.如图,抛物线与x 轴交于A ()0,1 、)03(, B 两点,与y 轴交于点C (),3,0设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标. (2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以C A P 、、为顶点的三角形与△BCD 相似? 若存在,请直接写出点P2017年初中毕业生毕业升学考试数学试卷答案说明:1.此答案仅供参考,阅卷之前请做答案。
2017年辽宁省营口市中考数学试卷及答案(可修改)
2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【解答】解:﹣5的相反数是5.故选:D.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥 C.圆柱 D.三棱柱【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2 B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量/m34568910户数679521A.6,6 B.9,6 C.9,6 D.6,7【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,9和9处在第15位、第16位,其平均数9为中位数,所以本题这组数据的中位数是9,众数是6.故选B.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5° B.DE平分∠FDC C.∠DEC=30°D.AB=CD【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;。
2017年辽宁省营口市中考数学试卷
2017年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C .D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:4568910月用水量/m3户数679521则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D .<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B 两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE 折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:4568910月用水量/m3户数679521则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C 错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣ C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD 两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8.【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF 为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、解直角三角形以及等边三角形的性质,通过解直角三角形及等边三角形的性质,找出A n B n=是解题的关键.三、解答题(19小题10分,20小题10分,共20分.)19.(10分)(2017•营口)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.【分析】先根据分式的混合运算顺序和法则化简原式,再计算出x、y的值代入即可得.【解答】解:原式=[﹣]÷=•=﹣,当x=()﹣1﹣(2017﹣)0=3﹣1=2,y=sin60°=×=时,原式=﹣=﹣4.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.(10分)(2017•营口)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【点评】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、解答题(21题12分,22小题12分,共24分)21.(12分)(2017•营口)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共100人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.【分析】(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.【解答】解:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)(2017•营口)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)【分析】过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.【解答】解:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,由勾股定理可知:AD=10∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10∵∠DAB=30°,∴CE=AC=5+5≈13.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】本题考查解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,本题属于中等题型.五、解答题(23小题12分,24小题12分,共24分)23.(12分)(2017•营口)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.【分析】(1)连接OC,由点C是的中点利用垂径定理可得出OC⊥BE,由AB 是⊙O的直径可得出AD⊥BE,进而可得出AD∥OC,再根据AD⊥CD可得出OC ⊥CD,由此即可证出CD是⊙O的切线.(2)过点O作OM⊥AC于点M,由点C是的中点利用圆周角定理可得出∠BAC=∠CAE,根据角平分线的定理结合cos∠CAD=可求出AB的长度,在Rt△AOM 中,通过解直角三角形可求出AM的长度,再根据垂径定理即可得出AC的长度.【解答】(1)证明:连接OC,如图1所示.∵点C是的中点,。
辽宁省营口市中考数学一模试卷含答案
2017 年辽宁省营口市中考数学一模试卷含答案一、选择题(共 10 小题,每题 3 分,满分 30 分)1.2017 的相反数是( )A . 2017B .﹣ 2017C .D .﹣2.以下计算正确的选项是()A . 3a+4b=7abB .( ab 3)2=ab 6C .( a+2) 2=a 2+4D . x 12÷x 6=x 63.如图是一个由 4 个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .4.某课外小组的同学们在社会实践活动中检查了 20 户家庭某月的用电量, 如表所示:用电量(度)120 140 160 180 200户数23672则这 20 户家庭该月用电量的众数和中位数分别是()A . 180, 160B . 160,180C .160,160D .180,1805.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑, 与图中阴影部分组成轴对称图形的概率是()A .B .C .D .6.请仔细观察用直尺和圆规作一个角∠ A ′ O ′等于B ′已知角∠ AOB 的表示图,要说明∠ D ′O ′C ′=∠ DOC ,需要证明△ D ′O ′≌△C ′ DOC ,则这两个三角形全等的依据是( )A.边边边 B.边角边 C.角边角 D.角角边7.小玲每天骑自行车或步行上学,她上学的行程为2800 米,骑自行车的平均速度是步行平均速度的 4 倍,骑自行车比步行上学早到30 分钟.设小玲步行的平均速度为 x 米/分,依照题意,下面列出的方程正确的选项是()A.B.C.D.8.不等式 2x+3>3x+2 的解集在数轴上表示正确的选项是()A.B.C.D.9.如图,在边长为 12 的正方形 ABCD 中,E 是边 CD 的中点,将△ ADE 沿 AE对折至△ AFE,延长 EF 交 BC 于点 G.则 BG 的长为()A. 5 B.4 C. 3 D.210.如图,点 A 是反比率函数 y=的图象上的一点,过点 A 作 AB ⊥ x 轴,垂足为B .点 C 为 y 轴上的一点,连接 AC , BC.若△ ABC 的面积为 4,则 k 的值是()A. 4 B.﹣ 4 C. 8D.﹣ 8二、填空题(每题 3 分,共24 分)11.在函数中,自变量x 的取值范围是.12.因式分解:﹣2x2y+12xy﹣ 18y=.13.PM 2.5 是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025 用科学记数法表示为.14.在一个不透明的口袋中装有 5 个完满相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为.15.如图,已知点 A 、B、 C、 D 均在以 BC 为直径的圆上, AD ∥BC,AC 均分∠BCD ,∠ ADC=120°,四边形 ABCD 的周长为 10,则图中阴影部分的面积为.16.如图,△ ABC 中, AD ⊥ BC,垂足为 D ,AD=BD=3 , CD=2,点 E 从点 B 出发沿线段 BA 的方向搬动到点 A 停止,连接 CE.若△ ADE 与△ CDE 的面积相等,则线段 DE 的长度是.17.如图,在半径为 3 的⊙ O 中,直径 AB 与弦 CD 订交于点 E,连接 AC ,BD ,若 AC=2,则 cosD=.18.函数y=x2+bx+c 与 y=x 的图象以下列图,有以下结论:①b2﹣ 4c> 0;②b+c+1=0;③3b+c+6=0;④当 1<x<3 时,x2+(b﹣1)x+c<0;其中正确的个数有个.三、解答题(共96 分)19.先化简,再求值:(﹣x﹣1)÷,其中 x=(﹣1++4sin30°.)20.为了认识青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的利害情况.我们对测评数据作了合适办理(若是一个学生有一种以上不良姿势,以他最突出的一种作记录),并将统计结果绘制了以下两幅不完满的统计图,请你依照图中所给信息解答以下问题:(1)请将两幅统计图补充完满;(2)请问此次被抽查形体测评的学生一共是多少人?(3)若是全市有 5 万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?21.如图,转盘上 1、 2、3、4 四个数字分别代表鸡、猴、鼠、羊四种生肖邮票(每种邮票各两枚,鸡年邮票面值“80分”,其他邮票都是面值“元”),转动转盘后,指针每落在某个数字所在扇形一次就表示获得该种邮票一枚.( 1)任意转动转盘一次,获得猴年邮票的概率是;(2)任意转动转盘两次,求获得的两枚邮票可以邮寄一封需 2.4 元邮资的信件的概率.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15 米,宽为 0.4 米,轮椅专用坡道 AB 的顶端有一个宽 2 米的水平面 BC;《城市道路与建筑物无阻挡设计规范》第 17 条,新建轮椅专用坡道在不相同坡度的情况下,坡道高度应吻合以下表中的规定:坡度1: 201: 161:12最大高度(米)(1)选择哪个坡度建设轮椅专用坡道 AB 是吻合要求的?说明原由;(2)求斜坡底部点 A 与台阶底部点 D 的水平距离 AD .23.如图,以△ ABC 的 BC 边上一点 O 为圆心,经过 A ,C 两点且与 BC 边交于点E,点 D 为 CE 的下半圆弧的中点,连接 AD 交线段 EO 于点 F,若AB=BF .( 1)求证: AB 是⊙ O 的切线;( 2)若 CF=4, DF=,求⊙ O的半径r及sinB.24.某企业接到一批粽子生产任务,按要求在15 天内完成,约定这批粽子的出厂价为每只 6 元,为准时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y 只, y 与 x 满足以下关系式:y=.(1)李明第几天生产的粽子数量为 420 只?(2)如图,设第 x 天每只粽子的成本是 p 元, p 与 x 之间的关系可用图中的函数图象来刻画.若李明第 x 天创立的利润为 w 元,求 w 与 x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润 =出厂价﹣成本)(3)设(2)小题中第 m 天利润达到最大值,若要使第( m+1)天的利润比第 m 天的利润最少多48 元,则第( m+1)天每只粽子最少应抬价几元?25.爱好思虑的小茜在研究两条直线的地址关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图( 1)、图( 2)、图( 3)中, AM 、 BN 是△ ABC 的中线, AM ⊥ BN 于点 P,像△ ABC 这样的三角形均为“中垂三角形”.设 BC=a, AC=b,AB=c .【特例研究】( 1)如图 1,当 tan∠PAB=1,c=4时,a=,b=;如图 2,当∠ PAB=30°,c=2 时, a=,b=;【归纳证明】(2)请你观察( 1)中的计算结果,猜想 a2、b2、c2三者之间的关系,用等式表示出来,并利用图 3 证明你的结论.【拓展证明】(3)如图 4, ? ABCD 中, E、F 分别是 AD 、BC 的三均分点,且 AD=3AE ,BC=3BF,连接 AF 、BE、CE,且 BE⊥CE 于 E,AF 与 BE 订交点 G,AD=3,AB=3 ,求 AF 的长.26.已知抛物线y=ax2+bx+c 与 x 轴交于 A 、B 两点,与 y 轴交于点 C,其中点 B在x 轴的正半轴上,点 C 在 y 轴的正半轴上,线段 OB、OC 的长( OB<OC)是方程 x2﹣10x+16=0 的两个根,且抛物线的对称轴是直线 x=﹣ 2.(1)求A 、B、C 三点的坐标;( 2)求此抛物线的表达式;( 3)连接 AC、BC,若点 E 是线段 AB 上的一个动点(与点 A、点 B 不重合),过点 E 作 EF∥AC 交 BC 于点 F,连接 CE,设 AE 的长为 m,△CEF 的面积为 S,求S 与 m 之间的函数关系式,并写出自变量 m 的取值范围;( 4)在( 3)的基础上试说明 S 可否存在最大值?若存在,央求出 S 的最大值,并求出此时点 E 的坐标,判断此时△ BCE 的形状;若不存在,请说明原由.2017 年辽宁省营口市中考数学一模试卷参照答案与试题解析一、选择题(共 10 小题,每题3 分,满分 30 分)1.2017 的相反数是()A . 2017B .﹣ 2017C .D .﹣【考点】 14:相反数.【解析】 依照一个数的相反数就是在这个数前面添上 “﹣”号,求解即可.【解答】 解: 2017 的相反数是﹣ 2017,应选: B .2.以下计算正确的选项是()A . 3a+4b=7abB .( ab 3)2=ab 6 C .( a+2) 2=a 2+4 D . x 12÷x 6=x 6【考点】 48:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方; 4C :完满平方公式.【解析】 A :依照合并同类项的方法判断即可.B :依照积的乘方的运算方法判断即可.C :依照完满平方公式判断即可.D :依照同底数幂的除法法规判断即可.【解答】 解:∵ 3a+4b ≠7ab ,∴选项 A 不正确;∵( ab 3)2=a 2b 6,∴选项 B 不正确;∵( a+2)2=a 2+4a+4,∴选项 C 不正确;∵x12÷x6=x6,∴选项 D 正确.应选: D.3.如图是一个由 4 个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【解析】找到从正面看所获得的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有 2 个正方形,第二层左边有一个正方形,第三层左边有一个正方形.应选 A .4.某课外小组的同学们在社会实践活动中检查了20 户家庭某月的用电量,如表所示:用电量(度)120140160180200户数23672则这 20 户家庭该月用电量的众数和中位数分别是()A. 180, 160B. 160,180C.160,160D.180,180【考点】 W5:众数; W4:中位数.【解析】依照众数和中位数的定义就可以解决.【解答】解:在这一组数据中180 是出现次数最多的,故众数是180;将这组数据从小到大的序次排列后,处于中间地址的两个数是160, 160,那么由中位数的定义可知,这组数据的中位数是÷2=160.应选: A.5.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分组成轴对称图形的概率是()A.B.C.D.【考点】 X4:概率公式; P3:轴对称图形.【解析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有 5 种等可能的结果,使与图中阴影部分组成轴对称图形的有 3 种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有 5 种等可能的结果,使与图中阴影部分组成轴对称图形的有②④⑤, 3 种情况,∴使与图中阴影部分组成轴对称图形的概率是:3÷5=.应选 C.6.请仔细观察用直尺和圆规作一个角∠ A′ O′等于B′已知角∠ AOB 的表示图,要说明∠ D′O′C′=∠ DOC,需要证明△ D′O′≌△C′ DOC ,则这两个三角形全等的依据是()A.边边边B.边角边C.角边角D.角角边【考点】 N2:作图—基本作图; KB :全等三角形的判断.【解析】由作法易得 OD=O′D′,OC=O′C′,CD=C′D′,利用 SSS 获得三角形全等,由全等三角形的对应角相等.【解答】解:由作法易得 OD=O′D′,OC=O′C′, CD=C′D′,在△ ODC 和△ O′D′中C′,,∴△ COD≌△ C'O'D'(SSS),∴∠ D′O′C′=∠DOC(全等三角形的对应角相等).应选 A .7.小玲每天骑自行车或步行上学,她上学的行程为 2800 米,骑自行车的平均速度是步行平均速度的 4 倍,骑自行车比步行上学早到 30 分钟.设小玲步行的平均速度为 x 米/分,依照题意,下面列出的方程正确的选项是()A.B.C.D.【考点】 B6:由实责问题抽象出分式方程.【解析】依照时间 =行程÷速度,以及要点语“骑自行车比步行上学早到 30 分钟”可得出的等量关系是:小玲上学走的行程÷步行的速度﹣小玲上学走的行程÷骑车的速度 =30.【解答】解:设小玲步行的平均速度为x 米/分,则骑自行车的速度为4x 米/分,依题意,得.应选 A .8.不等式2x+3>3x+2 的解集在数轴上表示正确的选项是)(A.B.C.D.【考点】 C4:在数轴上表示不等式的解集.【解析】先依照不等式的性质求出此不等式的解集,再依照不等式的解集在数轴上的表示方法即可求解.【解答】解: 2x+3>3x+2,解得 x<1,应选 D.9.如图,在边长为 12 的正方形 ABCD 中,E 是边 CD 的中点,将△ ADE 沿 AE对折至△ AFE,延长 EF 交 BC 于点 G.则 BG 的长为()A. 5 B.4 C. 3 D.2【考点】 PB:翻折变换(折叠问题).【解析】利用翻折变换对应边关系得出 AB=AF ,∠ B=∠ AFG=90°,利用 HL 定理得出△ ABG ≌△ AFG 即可;利用勾股定理得出 GE2=CG2+CE2,进而求出 BG 即可;【解答】解:在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ ADE 沿 AE 对折至△ AFE ,∴AD=AF ,DE=EF,∠ D=∠AFE=90°,∴AB=AF ,∠ B=∠AFG=90°,又∵ AG=AG ,在Rt△ABG 和 Rt△ AFG 中,,∴Rt△ABG ≌Rt △AFG( HL),∴BG=GF,∵E 是边 CD 的中点,∴ DE=CE=6,设 BG=x,则 CG=12﹣x,GE=x+6,∵GE2=CG2+CE2∴( x+6)2=(12﹣x)2+62,解得x=4∴BG=4.10.如图,点 A 是反比率函数 y=的图象上的一点,过点 A 作 AB ⊥ x 轴,垂足为B .点 C 为 y 轴上的一点,连接 AC , BC.若△ ABC 的面积为 4,则 k 的值是()A. 4 B.﹣ 4 C. 8 D.﹣ 8【考点】 G5:反比率函数系数 k 的几何意义.【解析】连接 OA,如图,利用三角形面积公式获得S△ OAB=S△ ABC =4,再依照反比率函数的比率系数 k 的几何意义获得 | k| =4,尔后去绝对值即可获得满足条件的 k 的值.【解答】解:连接 OA ,如图,∵ AB ⊥ x 轴,∴ OC∥ AB ,∴S△OAB =S△ ABC =4,而S△OAB=| k| ,∴| k| =4,∵ k< 0,∴ k=﹣8.二、填空题(每题 3 分,共 24 分)11.在函数中,自变量x的取值范围是x≤1 且 x≠﹣ 2.【考点】 E4:函数自变量的取值范围;62:分式有意义的条件;72:二次根式有意义的条件.【解析】依照二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:依照二次根式有意义,分式有意义得:1﹣x≥0 且 x+2≠0,解得: x≤1 且 x≠﹣ 2.故答案为: x≤1 且 x≠﹣ 2.12.因式分解:﹣ 2x2y+12xy﹣ 18y=﹣2y(x﹣3)2.【考点】 55:提公因式法与公式法的综合运用.【解析】原式提取公因式,再利用完满平方公式分解即可.【解答】解:原式 =﹣2y(x2﹣ 6x+9).=﹣2y(x﹣3)2故答案为:﹣ 2y(x﹣ 3)2.13.PM 2.5 是指大气中直径小于或等于 0.0000025m 的颗粒物,将 0.0000025 用科学记数法表示为×10﹣6.【考点】 1J:科学记数法—表示较小的数.【解析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a× 10﹣n,与较大数的科学记数法不相同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.﹣故答案为:× 10﹣6.14.在一个不透明的口袋中装有 5 个完满相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为.【考点】 X4:概率公式.【解析】由在一个不透明的口袋中装有 5 个完满相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有 5 个完满相同的小球,把它们分别标号为 1,2,3,4,5,∴从中随机摸出一个小球,其标号是奇数的概率为.故答案为:.15.如图,已知点 A 、B、 C、 D 均在以 BC 为直径的圆上, AD ∥BC,AC 均分∠BCD,∠ ADC=120°,四边形 ABCD 的周长为 10,则图中阴影部分的面积为.【考点】 MO:扇形面积的计算.【解析】连接 OA 、OD,则阴影部分的面积等于梯形的面积减去三角形的面积.依照题目中的条件不难发现等边三角形 AOD 、 AOB 、COD,进而求解.【解答】解:设圆心为 O,连接 OA 、OD.∵AD∥ BC,AC 均分∠ BCD ,∠ADC=120°,∴∠ BCD=60°,∵AC 均分∠ BCD,∴∠ ACD=30°,∴∠ AOD=2 ∠ACD=60°,∠ OAC= ∠ACO=30°.∴∠ BAC=90°,∴ BC 是直径,又∵ OA=OD=OB=OC ,则△ AOD 、△ AOB 、△ COD 都是等边三角形.∴AB=AD=CD .又∵四边形 ABCD 的周长为 10cm,∴OB=OC=AB=AD=DC=2 (cm).∴阴影部分的面积 =S 梯形﹣S△ABC =(2+4)×﹣×4×=3﹣2=.故答案为.16.如图,△ ABC 中, AD ⊥ BC,垂足为 D ,AD=BD=3 , CD=2,点 E 从点 B出发沿线段 BA 的方向搬动到点 A 停止,连接 CE.若△ ADE 与△ CDE 的面积相等,则线段 DE 的长度是.【考点】 S9:相似三角形的判断与性质; JC:平行线之间的距离; K3:三角形的面积.【解析】当△ ADE 与△ CDE 的面积相等时, DE∥AC ,此时△ BDE ∽△ BCA ,利用相似三角形的对应边成比率进行解答即可.【解答】解:在直角△ ACD 中, AD=3 , CD=2 ,则由勾股定理知AC===.∵依题意得,当 DE∥AC 时,△ADE 与△ CDE 的面积相等,此时△ BDE ∽△ BCA ,所以=,因为 AD=BD=3 ,CD=2,所以=,所以 DE=.故答案是:.17.如图,在半径为 3 的⊙ O 中,直径 AB 与弦 CD 订交于点 E,连接 AC ,BD ,若 AC=2,则 cosD=.【考点】 T1:锐角三角函数的定义;M5 :圆周角定理.【解析】连接 BC,依照同弧所对的圆周角相等获得∠D=∠A ,在直角三角形 ABC 中,依照余弦的定义即可获得结果.【解答】解:连接 BC,∴∠ D=∠A ,∵AB 是⊙ O 的直径,∴∠ ACB=90°,∵AB=3 ×2=6, AC=2,∴cosD=cosA= = = .故答案为:.18.函数y=x2+bx+c与y=x的图象以下列图,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当 1<x<3 时,x2+(b﹣1)x+c<0;其中正确的个数有 2 个.【考点】 H4:二次函数图象与系数的关系.【解析】由函数 y=x2+bx+c 与 x 轴无交点,可得 b2﹣4c< 0;当 x=1 时,y=1+b+c=1;当 x=3 时,y=9+3b+c=3;当 1<x<3 时,二次函数值小于一次函数值,可得x2+bx+c < x,既而可求得答案.【解答】解:∵函数 y=x2+bx+c 与 x 轴无交点,∴b2﹣4ac<0;故①错误;当 x=1 时, y=1+b+c=1,故②错误;∵当 x=3 时, y=9+3b+c=3,∴3b+c+6=0;③正确;∵当 1<x<3 时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+( b﹣ 1) x+c< 0.故④正确.故答案是: 2.三、解答题(共96 分)19.先化简,再求值:(﹣x﹣1)÷,其中 x=(﹣1++4sin30°.)【考点】 6D:分式的化简求值; 2C:实数的运算; 6F:负整数指数幂; T5:特殊角的三角函数值.【解析】第一化简(﹣x﹣1)÷,并依照x=()﹣1++4sin30°,求出 x 的值是多少;尔后把求出的 x 的值代入化简后的算式,求出算式的值是多少即可.【解答】解:(﹣x﹣1)÷=(﹣x﹣1)÷=÷=2﹣xx=()﹣1++4sin30°=3﹣5+4×=0∴原式 =2﹣0=2.20.为了认识青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的利害情况.我们对测评数据作了合适办理(若是一个学生有一种以上不良姿势,以他最突出的一种作记录),并将统计结果绘制了以下两幅不完满的统计图,请你依照图中所给信息解答以下问题:(1)请将两幅统计图补充完满;(2)请问此次被抽查形体测评的学生一共是多少人?(3)若是全市有 5 万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?【考点】 VC:条形统计图; V5:用样本估计整体; VB :扇形统计图.【解析】(1)依照各部分所占的百分比的和等于1 求出坐姿不良所占的百分比,尔后求出被抽查的学生总人数,尔后求出站姿不良与三姿优异的学生人数,最后补全统计图即可;(2)依照( 1)的计算即可;(3)用总人数乘以坐姿和站姿不良的学生所占的百分比,列式计算即可得解.【解答】解:( 1)坐姿不良所占的百分比为: 1﹣30%﹣ 35%﹣15%=20%,被抽查的学生总人数为: 100÷20%=500 名,站姿不良的学生人数: 500× 30%=150 名,三姿优异的学生人数: 500× 15%=75 名,补全统计图以下列图;(2) 100÷20%=500(名),答:此次被抽查形体测评的学生一共是500 名;(3) 5 万×( 20%+30%)=2.5 万,答:全市初中生中,坐姿和站姿不良的学生有 2.5 万人.21.如图,转盘上 1、 2、3、4 四个数字分别代表鸡、猴、鼠、羊四种生肖邮票(每种邮票各两枚,鸡年邮票面值“80分”,其他邮票都是面值“元”),转动转盘后,指针每落在某个数字所在扇形一次就表示获得该种邮票一枚.( 1)任意转动转盘一次,获得猴年邮票的概率是;(2)任意转动转盘两次,求获得的两枚邮票可以邮寄一封需 2.4 元邮资的信件的概率.【考点】 X6:列表法与树状图法.【解析】(1)依照题意可以求得任意转动转盘一次,获得猴年邮票的概率;(2)依照题意可以写出转动转盘两次,所有可能出现的结果,尔后找出吻合要求的可能结果,即可求得相应的概率.【解答】解:( 1)由题意可得,任意转动转盘一次,获得猴年邮票的概率是,故答案为:;(2)∵转动转盘两次,所有可能出现的结果有:(1,1),( 1,2),(1,3),(1, 4),( 2,1),( 2, 2),( 2,3),( 2,4),( 3,1),( 3,2),(3,3),( 3,4),( 4,1),( 4,2),( 4,3),( 4,4),共有 16 种,它们出现的可能性相同,∴所有的结果中,满足“转动转盘两次,获得的两枚邮票可以邮寄一封需2.4 元邮资的信件”(记为事件 A )的结果有 9 种,所以 P( A )=,即任意转动转盘两次,获得的两枚邮票可以邮寄一封需 2.4 元邮资的信件的概率是.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,以及该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15 米,宽为 0.4 米,轮椅专用坡道 AB 的顶端有一个宽 2 米的水平面 BC;《城市道路与建筑物无阻挡设计规范》第 17 条,新建轮椅专用坡道在不相同坡度的情况下,坡道高度应吻合以下表中的规定:坡度1: 201: 161:12最大高度(米)(1)选择哪个坡度建设轮椅专用坡道 AB 是吻合要求的?说明原由;(2)求斜坡底部点 A 与台阶底部点 D 的水平距离 AD .【考点】 T9:解直角三角形的应用﹣坡度坡角问题.【解析】(1)计算最大高度为:×(米),由表格查对应的坡度为:1:20;(2)作梯形的高 BE、CF,由坡度计算 AE 和 DF 的长,相加可得 AD 的长.【解答】解:( 1)∵第一层有十级台阶,每级台阶的高为 0.15 米,∴最大高度为×(米),由表知建设轮椅专用坡道 AB 选择吻合要求的坡度是 1: 20;(2)如图,过 B 作 BE⊥AD 于 E,过 C 作 CF⊥AD 于 F,∴,EF=BC=2 ,∵=,∴=,∴AE=DF=30 ,∴AD=AE +EF+DF=60+2=62,答:斜坡底部点 A 与台阶底部点 D 的水平距离 AD 为 62 米.23.如图,以△ ABC 的 BC 边上一点 O 为圆心,经过 A ,C 两点且与 BC 边交于点E,点 D 为 CE 的下半圆弧的中点,连接 AD 交线段 EO 于点 F,若 AB=BF .(1)求证: AB 是⊙ O 的切线;(2)若 CF=4, DF=,求⊙ O的半径r及sinB.【考点】 MD :切线的判断.【解析】(1)连接 OA 、OD,如图,依照垂径定理得 OD⊥ BC,则∠ D+∠OFD=90°,再由 AB=BF ,OA=OD 获得∠ BAF= ∠BFA,∠ OAD= ∠D,加上∠BFA=∠OFD,所以∠ OAD +∠ BAF=90°,则 OA ⊥ AB ,尔后依照切线的判判定理即可获得 AB 是⊙ O 切线;(2)先表示出 OF=4﹣ r,OD=r,在 Rt△ DOF 中利用勾股定理得 r2+( 4﹣ r)2=()2,解方程得到 r 的值,那么 OA=3 , OF=CF ﹣ OC=4 ﹣ 3=1 ,BO=BF+FO=AB +1.尔后在 Rt△AOB 中利用勾股定理得 AB 2+OA 2=OB2,即 AB 2+32=(AB +1)2,解方程获得 AB=4 的值,再依照三角函数定义求出 sinB.【解答】(1)证明:连接 OA 、OD,如图,∵点 D 为 CE 的下半圆弧的中点,∴OD⊥ BC,∴∠ EOD=90°,∵ AB=BF ,OA=OD ,∴∠ BAF= ∠ BFA,∠ OAD= ∠D,而∠ BFA=∠OFD,∴∠ OAD+∠ BAF= ∠D+∠ BFA=90°,即∠ OAB=90°,∴OA⊥ AB ,∴AB 是⊙ O 切线;( 2)解: OF=CF﹣ OC=4﹣r, OD=r,DF=,在 Rt△DOF 中, OD 2+OF2=DF2,即 r2+( 4﹣ r)2=()2,解得r1=3,r2=1(舍去);∴半径 r=3,∴OA=3,OF=CF﹣ OC=4﹣3=1,BO=BF +FO=AB +1.在Rt△AOB 中, AB 2+OA 2=OB2,∴ AB 2+32=(AB+1)2,∴ AB=4 ,OB=5,∴ sinB= = .24.某企业接到一批粽子生产任务,按要求在15 天内完成,约定这批粽子的出x 厂价为每只 6 元,为准时完成任务,该企业招收了新工人,设新工人李明第天生产的粽子数量为y 只, y 与 x 满足以下关系式:y=.(1)李明第几天生产的粽子数量为 420 只?(2)如图,设第 x 天每只粽子的成本是 p 元, p 与 x 之间的关系可用图中的函数图象来刻画.若李明第 x 天创立的利润为 w 元,求 w 与 x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润 =出厂价﹣成本)(3)设(2)小题中第 m 天利润达到最大值,若要使第( m+1)天的利润比第 m 天的利润最少多48 元,则第( m+1)天每只粽子最少应抬价几元?【考点】 HE:二次函数的应用.【解析】(1)把 y=420 代入 y=30x+120,解方程即可求得;(2)依照图象求得成本p 与x 之间的关系,尔后依照利润等于订购价减去成本价,尔后整理即可获得W 与x 的关系式,再依照一次函数的增减性和二次函数的增减性解答;( 3)依照( 2)得出 m+1=13,依照利润等于订购价减去成本价得出抬价 a 与利润 w 的关系式,再依照题意列出不等式求解即可.【解答】解:( 1)设李明第 n 天生产的粽子数量为420 只,由题意可知: 30n+120=420,解得 n=10.答:第 10 天生产的粽子数量为420 只.( 2)由图象得,当0≤ x≤ 9 时,;当 9≤x≤15 时,设 P=kx+b,把点( 9,),( 15,)代入得,,解得,∴,①0≤ x≤ 5 时, w=(6﹣)×,当 x=5 时, w 最大 =513(元);② 5< x≤ 9 时, w=(6﹣)×( 30x+120) =57x+228,∵ x 是整数,∴当 x=9 时, w 最大=741(元);③9< x≤ 15 时, w=( 6﹣﹣)×( 30x+120)=﹣3x2+72x+336,∵ a=﹣3<0,∴当 x=﹣=12 时, w 最大 =768(元);综上,当 x=12 时, w 有最大值,最大值为768.(3)由( 2)可知 m=12,m+1=13,设第13天抬价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(),∴510()﹣ 768≥ 48,解得 a≥.答:第 13 天每只粽子最少应抬价 0.1 元.25.爱好思虑的小茜在研究两条直线的地址关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图( 3)中, AM 、 BN 是△ ABC 的中线, AM ⊥ BN 于点 P,像△ ABC 这样的三角形均为“中垂三角形”.设 BC=a, AC=b,AB=c .【特例研究】( 1)如图 1,当 tan∠PAB=1,c=4时,a=4,b=4;如图 2,当∠ PAB=30°,c=2 时, a=,b=;【归纳证明】(2)请你观察( 1)中的计算结果,猜想 a2、b2、c2三者之间的关系,用等式表示出来,并利用图 3 证明你的结论.【拓展证明】(3)如图 4, ? ABCD 中, E、F 分别是 AD 、BC 的三均分点,且 AD=3AE ,BC=3BF,连接 AF 、BE、CE,且 BE⊥CE 于 E,AF 与 BE 订交点 G,AD=3,AB=3 ,求 AF 的长.【考点】 LO:四边形综合题.【解析】(1)①第一证明△ APB,△ PEF 都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解决问题.②连接 MN ,在 RT△PAB,RT△PMN 中,利用 30°性质求出 PA、PB、PN、PM,再利用勾股定理即可解决问题.(2)结论 a2+b2=5c2.设 MP=x,NP=y,则 AP=2x,BP=2y,利用勾股定理分别求出 a2、 b2、c2即可解决问题.(3)取 AB 中点 H,连接 FH 并且延长交 DA 的延长线于 P 点,第一证明△ ABF是中垂三角形,利用( 2)中结论列出方程即可解决问题.【解答】(1)解:如图 1 中,∵ CN=AN ,CM=BM ,∴ MN ∥AB ,MN= AB=2,∵tan∠PAB=1,∴∠ PAB=∠PBA= ∠PNM= ∠PMN=45°,∴PN=PM=2, PB=PA=4,∴ AN=BM==2 .∴b=AC=2AN=4 ,a=BC=4 .故答案为4 ,4 ,如图2 中,连接 NM ,,∵ CN=AN , CM=BM ,∴MN ∥AB ,MN= AB=1 ,∵∠ PAB=30°,∴PB=1,PA= ,在RT△MNP 中,∵∠NMP= ∠PAB=30°,∴ PN= ,PM= ,∴ AN=,BM=,∴ a=BC=2BM=,b=AC=2AN=,故答案分别为,.(2)结论 a2+b2=5c2.证明:如图 3 中,连接MN .∵ AM 、BN 是中线,∴ MN ∥AB ,MN= AB ,∴△ MPN ∽△ APB,∴ = = ,设MP=x, NP=y,则 AP=2x, BP=2y,∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2,b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5(4x2+4y2) =5c2.(3)解:如图 4 中,在△ AGE 和△ FGB 中,,∴△ AGE≌△ FGB ,∴BG=FG,取 AB 中点 H,连接 FH 并且延长交 DA 的延长线于 P 点,同理可证△ APH ≌△ BFH,∴AP=BF,PE=CF=2BF,即PE∥ CF, PE=CF,∴四边形 CEPF 是平行四边形,∴ FP∥CE,∵ BE⊥ CE,∴ FP⊥BE ,即 FH⊥BG,∴△ ABF 是中垂三角形,由( 2)可知 AB 2+AF2=5BF2,∵ AB=3 ,BF= AD= ,∴9+AF2=5×()2,∴AF=4.26.已知抛物线y=ax2+bx+c 与 x 轴交于 A 、B 两点,与 y 轴交于点 C,其中点 B在x 轴的正半轴上,点 C 在 y 轴的正半轴上,线段 OB、OC 的长( OB<OC)是方程 x2﹣10x+16=0 的两个根,且抛物线的对称轴是直线 x=﹣ 2.(1)求A 、B、C 三点的坐标;( 2)求此抛物线的表达式;( 3)连接 AC、BC,若点 E 是线段 AB 上的一个动点(与点 A、点 B 不重合),过点 E 作 EF∥AC 交 BC 于点 F,连接 CE,设 AE 的长为 m,△CEF 的面积为 S,求S 与 m 之间的函数关系式,并写出自变量 m 的取值范围;( 4)在( 3)的基础上试说明 S 可否存在最大值?若存在,央求出 S 的最大值,并求出此时点 E 的坐标,判断此时△ BCE 的形状;若不存在,请说明原由.【考点】 HF:二次函数综合题.【解析】(1)先解一元二次方程,获得线段OB、OC 的长,也就获得了点B、C 两点坐标,依照抛物线的对称性可得点 A 坐标;( 2)把 A 、B、 C 三点代入二次函数解析式就能求得二次函数解析式;(3)易得S=S△BCE﹣S△BFE,只需利用平行获得三角形相似,求得EF长,进△EFF而利用相等角的正弦值求得△BEF 中 BE 边上的高;(4)利用二次函数求出最值,进而求得点 E 坐标.OC 垂直均分 BE,那么 EC=BC,所求的三角形是等腰三角形.【解答】解:( 1)解方程 x2﹣10x+16=0 得 x1=2,x2=8∵点 B 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,且 OB< OC ∴点 B 的坐标为( 2,0),点 C 的坐标为( 0, 8)又∵抛物线 y=ax2+bx+c 的对称轴是直线 x=﹣2 ∴由抛物线的对称性可得点 A 的坐标为(﹣ 6,0)(2)∵点 C( 0, 8)在抛物线 y=ax2+bx+c 的图象上∴ c=8,将 A(﹣ 6,0)、 B( 2,0)代入表达式,得:解得∴所求抛物线的表达式为y=﹣x2﹣x+8(3)依题意, AE=m,则 BE=8﹣ m,∵ OA=6,OC=8,∴ AC=10∵EF∥AC∴△ BEF∽△ BAC∴= ,即 =∴EF=过点 F 作 FG⊥AB ,垂足为 G,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年辽宁省营口二十四中中考数学四模试卷一、选择题(本大题共10个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥22.(3分)某班五位同学的身高分别是156,160,158,166,160(单位:厘米),这组数据中,下列说法错误的是()A.平均数是160 B.众数是160 C.中位数是160 D.极差是1603.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.4.(3分)一上山坡路(如图所示),小明测得的数据如图中所示,则该坡路倾斜角α的正切值是()A.B.C.D.5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C.D.6.(3分)如图,A是反比例函数y=图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为()A.1 B.2 C.3 D.47.(3分)不等式组的解在数轴上表示为()A.B.C.D.8.(3分)如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为()平方分米.A.36πB.54πC.27πD.128π9.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是()A.B.C.D.10.(3分)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a+b+c<0;②c>1;③b2﹣4ac>0;④2a﹣b<0,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(3分)分解因式:3ax2﹣3ay2=.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)随着新农村建设的进一步加快,黄冈市农村居民人均纯收入增长迅速.据统计,2010年本市农村居民人均纯收入比上一年增长14.2%.若2009年黄冈市农村居民人均纯收入为a元,则2010年本市农村居民人均纯收入可表示为元.14.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.15.(3分)甲、乙两台机器分别灌装每瓶质量为500克的酸奶,从甲、乙灌装的酸奶中分别随机抽取了30瓶,测得它们实际质量的方差是:S甲2=4.8,S乙2=3.6,那么(填“甲”或“乙”)机器灌装的酸奶质量较稳定.16.(3分)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.17.(3分)设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a<0的解集是.18.(3分)如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是.三、解答题(共8个小题;共96分.解答应写出文字说明、证明过程或演算步骤)19.(12分)(1)计算:()﹣1﹣3tan30°+(1﹣π)0.(2)解分式方程:=﹣1.20.(12分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(12分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴某市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(2)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.22.(10分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)23.(12分)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果BE=10,sinA=,求⊙O的半径.24.(12分)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.25.(12分)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.26.(14分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A 出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC 于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.2017年辽宁省营口二十四中中考数学四模试卷参考答案与试题解析一、选择题(本大题共10个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选D.2.(3分)某班五位同学的身高分别是156,160,158,166,160(单位:厘米),这组数据中,下列说法错误的是()A.平均数是160 B.众数是160 C.中位数是160 D.极差是160【解答】解:这组数据按从小到大的顺序排列为:156,158,160,160,166,则平均数为:160;众数为:160;中位数为:160;极差为:166﹣156=10,故本选项错误;故选D.3.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选B.4.(3分)一上山坡路(如图所示),小明测得的数据如图中所示,则该坡路倾斜角α的正切值是()A.B.C.D.【解答】解:该坡路倾斜角α的正切值是:.故选:A.5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:C.6.(3分)如图,A是反比例函数y=图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为()A.1 B.2 C.3 D.4【解答】解:根据反比例函数的几何意义可得,S==2,△ABP又∵函数图象在第一象限,∴k=4.故选:D.7.(3分)不等式组的解在数轴上表示为()A.B.C.D.【解答】解:由x+1>2,得x>1;由3﹣x≥1,得x≤2,不等式组的解集是1<x≤2,故选:C.8.(3分)如图一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为()平方分米.A.36πB.54πC.27πD.128π【解答】解:∵圆锥的底面半径为AC=6分米,母线AB为9分米,∴圆锥的侧面积=π×6×9=54π.故选:B.9.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是()A.B.C.D.【解答】解:根据题意,分3个阶段;①P在OC之间,∠APB逐渐减小,到C点时,为45°,②P在CD之间,∠APB保持45°,大小不变,③P在DO之间,∠APB逐渐增大,到O点时,为90°;又由点P作匀速运动,故①③都是线段;分析可得:C符合3个阶段的描述;故选:C.10.(3分)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a+b+c<0;②c>1;③b2﹣4ac>0;④2a﹣b<0,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:①与图象知,当x=1时,y<0,即a+b+c<0.故此选项正确;②∵图象与y轴交点坐标在y轴上方,但在1的下方,∴1>c>0,故此选项错误;③图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故此选项正确;④∵对称轴方程﹣1<﹣<0,∴1>>0;∵a<0,∴b>2a,∴2a﹣b<0.故此选项正确;综上所述,正确的说法有①、③、④,共有3个.故选:C.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(3分)分解因式:3ax2﹣3ay2=3a(x+y)(x﹣y).【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)12.(3分)在函数y=中,自变量x的取值范围是x≠﹣2.【解答】解:根据题意得:x+2≠0,解可得:x≠﹣2.13.(3分)随着新农村建设的进一步加快,黄冈市农村居民人均纯收入增长迅速.据统计,2010年本市农村居民人均纯收入比上一年增长14.2%.若2009年黄冈市农村居民人均纯收入为a元,则2010年本市农村居民人均纯收入可表示为 1.142a元.【解答】解:根据题意可知a(1+14.2%)=1.142a.故答案为:1.142a.14.(3分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10.【解答】解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.15.(3分)甲、乙两台机器分别灌装每瓶质量为500克的酸奶,从甲、乙灌装的酸奶中分别随机抽取了30瓶,测得它们实际质量的方差是:S甲2=4.8,S乙2=3.6,那么乙(填“甲”或“乙”)机器灌装的酸奶质量较稳定.【解答】解:∵S甲2=4.8,S乙2=3.6,∴S甲2>S乙2,∴机器灌装的酸奶质量较稳定是乙;故答案为:乙.16.(3分)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 1.4m.【解答】解:由题意得,DE∥BC,所以,△ABC∽△AED,所以,=,即=,解得h=1.4m.故答案为:1.4m.17.(3分)设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a<0的解集是x.【解答】解:解不等式+>0,移项得:>﹣,∵解集为x<,∴﹣=,且a<0.∴b=﹣5a>0,=﹣.解不等式bx﹣a<0,移项得:bx<a,两边同时除以b得:x<,即x<﹣,故答案为:x.18.(3分)如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是①②③④.【解答】解:如图1所示:作AU⊥NQ于U,连接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四点共圆,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN,故①正确.由同角的余角相等知,∠HAM=∠PMN,在△AHM和△MPN中,,∴△AHM≌△MPN(AAS),∴MP=AH=AC=BD,故②正确,∵∠BAN+∠QAD=∠NAQ=45°,∴△ADQ绕点A顺时针旋转90度至△ABR,使AD和AB重合,连接AN,则∠RAQ=90°,△ABR≌△ADQ,∴AR=AQ,∠RAN=90°﹣45°=45°=∠NAM,在△△AQN和△ANR中,,∴△AQN≌△ANR(SAS),∴NR=NQ,则BN=NU,DQ=UQ,∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.如图2所示,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,∴MS=MW=BS=BW,∠SMW=90°,∴∠AMS=∠NMW,在△AMS和△NMW中,,∴△AMS≌△NMW(ASA),∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴==,故④正确.故答案为:①②③④.三、解答题(共8个小题;共96分.解答应写出文字说明、证明过程或演算步骤)19.(12分)(1)计算:()﹣1﹣3tan30°+(1﹣π)0.(2)解分式方程:=﹣1.【解答】解:(1)原式=2﹣3×+1+2=3+;(2)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)=x(x+1)﹣(x+1(x﹣1),∴2x﹣2=x2+x﹣x2+1,解得x=3.检验:把x=3代入(x+1)(x﹣1)=8≠0,即x=3是原分式方程的解,∴原方程的解:x=3.20.(12分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)点B关于点A对称的点的坐标为(2,6);(2)所作图形如图所示:,点B'的坐标为:(0,﹣6);(3)当以AB为对角线时,点D坐标为(﹣7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(﹣5,﹣3).21.(12分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴某市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(2)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.【解答】解:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名),则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);根据题意得:考试成绩评为“B”的学生大约有:×1500=420(名);如图:(2)列表如下:所有等可能的情况有16种,其中刚好一名男生一名女生的情况有10种,则P==.22.(10分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)【解答】解:过点P作PD⊥MN于D∴MD=PD•cot45°=PD,ND=PD•cot30°=PD,∵MD+ND=MN=2,即PD+PD=2,∴PD==﹣1≈1.73﹣1=0.73>0.6.答:修的公路不会穿越住宅小区,故该小区居民不需搬迁.23.(12分)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果BE=10,sinA=,求⊙O的半径.【解答】(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)解:连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°(3)连接OF,AF,∵DA=DO,CD⊥OA,∴AF=OF=OA,过点O作OG⊥AB于点G,得到AG=BG,在Rt△AOG中,sinA==,设DE=5x,则AE=13x,AD=12x,AO=24x,∵BE=10,∴AB=10+13x.则AG=AB=5+x,又∵直角△AOG中,sin∠BAO=,则=,则=解得x=,∴AO=24x=.24.(12分)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.【解答】解:(1)该商场销售家电的总收益为800×200=160000(元);(2)根据题意设y=k1x+800,Z=k2x+200∴400k1+800=1200,200k2+200=160解得k1=1,k2=﹣∴y=x+800,Z=﹣x+200;(3)W=yZ=(x+800)•(﹣x+200)=﹣x2+40x+160000=﹣(x﹣100)2+162000.∵﹣<0,∴W有最大值.当x=100时,W最大=162000∴政府应将每台补贴款额x定为100元,总收益有最大值其最大值为162000元.25.(12分)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCF=90°,AB=BC,∴∠ABF+∠CBF=90°,∵AE⊥BF,∴∠ABF+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,∴△ABE≌△BCF.(2)解:∵正方形面积为3,∴AB=,在△BGE与△ABE中,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE,∴,又∵BE=1,∴AE2=AB2+BE2=3+1=4,=×S△ABE==.∴S△BGE(3)解:没有变化.理由:∵AB=,BE=1,∴tan∠BAE==,∠BAE=30°,∵AB′=AB=AD,∠AB′E′=∠ADE′=90°,AE′公共,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,∴∠DAE′=∠B′AE′=∠BAE=30°,∴AB′与AE在同一直线上,即BF与AB′的交点是G,设BF与AE′的交点为H,则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,∴△BAG≌△HAG(ASA),=S△AB′E′﹣S△AGH=S△ABE﹣S△ABG=S△BGE.∴S四边形GHE′B′∴△ABE在旋转前后与△BCF重叠部分的面积没有变化.26.(14分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A 出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC 于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.【解答】解:(1)A(1,4).由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.又∵点A到GE的距离为,C到GE的距离为2﹣,=S△AEG+S△CEG=•EG•+•EG(2﹣)即S△ACG=•2(t﹣)=﹣(t﹣2)2+1.当t=2时,S的最大值为1.△ACG(3)第一种情况如图1所示,点H在AC的上方,由四边形CQEH是菱形知CQ=CE=t,根据△APE∽△ABC,知=,即=,解得t=20﹣8;第二种情况如图2所示,点H在AC的下方,由四边形CQHE是菱形知CQ=QE=EH=HC=t,PE=t,EM=2﹣t,MQ=4﹣2t.则在直角三角形EMQ中,根据勾股定理知EM2+MQ2=EQ2,即(2﹣t)2+(4﹣2t)2=t2,解得,t1=,t2=4(不合题意,舍去).综上所述,t=20﹣8或t=.。