整式的乘除与因式分解单元测试
整式的乘除与因式分解单元测试卷及答案参考
整式的乘除与因式分解单元测试卷及答案参考因式分解同步练习(解答题)解答题把下列各式分解因式:①a2+10a+25 ②m2-12mn+36n2③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2已知x=-19,y=12,求代数式4x2+12xy+9y2的值.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.答案:①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(填空题)填空题已知9x2-6xy+k是完全平方式,则k的值是________.9a2+(________)+25b2=(3a-5b)2-4x2+4xy+(_______)=-(_______).已知a2+14a+49=25,则a的值是_________.答案:y2 6.-30ab 7.-y2;2x-y 8.-2或-12通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(选择题)选择题1.已知y2+my+16是完全平方式,则m的值是()A.8 B.4 C.±8 D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2答案:1.C 2.D 3.B 4.D填空题(每小题4分,共28分)7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2021÷(﹣1)2021= _________8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .9.(4分)(2021万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)10.(4分)(2021郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为_________ .11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n (其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.12.(4分)(2021荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)第n年12345…老芽率aa2a3a5a…新芽率0aa2a3a…总芽率a2a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .答案:7.考点:零指数幂;有理数的乘方。
(第14章整式的乘除与因式分解)单元测试含解析.doc
(第14章整式的乘除与因式分解)单元测试含解析【一】选择题1、以下何者是22X7﹣83X6+21X5的因式?〔〕A、2X+3B、X2〔11X﹣7〕C、X5〔11X﹣3〕D、X6〔2X+7〕2、把多项式X3﹣2X2+X分解因式,正确的选项是〔〕A、〔X﹣1〕2B、X〔X﹣1〕2C、X〔X2﹣2X+1〕D、X〔X+1〕23、多项式AX2﹣4AX﹣12A因式分解正确的选项是〔〕A、A〔X﹣6〕〔X+2〕B、A〔X﹣3〕〔X+4〕C、A〔X2﹣4X﹣12〕D、A〔X+6〕〔X﹣2〕【二】填空题4、假设X2+X+M=〔X﹣3〕〔X+N〕对X恒成立,那么N=______、5、因式分解:AX2﹣7AX+6A=______、6、分解因式:〔A+2〕〔A﹣2〕+3A=______、7、因式分解:AB2﹣A=______、8、分解因式:2M3﹣8M=______、9、因式分解4X﹣X3=______、10、分解因式X3﹣XY2的结果是______、11、分解因式:2﹣2A2=______、12、分解因式:12M2﹣3N2=______、13、分解因式:5X2﹣20=______、14、分解因式:2X〔X﹣3〕﹣8=______、15、因式分解:A3﹣AB2=______、16、分解因式:2A2﹣8=______、17、分解因式:M3﹣4M=______、18、分解因式:AX2﹣4A=______、19、分解因式:AB2﹣4AB+4A=______、20、分解因式:2A3﹣8A2+8A=______、21、分解因式:3A2﹣12AB+12B2=______、22、分解因式:4X2﹣8X+4=______、23、把多项式4AX2﹣AY2分解因式的结果是______、24、把多项式分解因式:AX2﹣AY2=______、25、分解因式:=______、26、因式分解:X3﹣5X2+6X=______、27、分解因式:3X2﹣18X+27=______、28、分解因式:A3B﹣9AB=______、29、分解因式:X2+3X〔X﹣3〕﹣9=______、30、分解因式:X2Y﹣4Y=______、第14章整式的乘法与因式分解参考答案【一】选择题1、C;2、B;3、A;【二】填空题4、4;5、A〔X-1〕〔X-6〕;6、〔A-1〕〔A+4〕;7、A〔B+1〕〔B-1〕;8、2M〔M+2〕〔M -2〕;9、-X〔X+2〕〔X-2〕;10、X〔X+Y〕〔X-Y〕;11、2〔1+A〕〔1-A〕;12、3〔2M+N〕〔2M-N〕;13、5〔X+2〕〔X-2〕;14、2〔X-4〕〔X+1〕;15、A〔A+B〕〔A-B〕;16、2〔A+2〕〔A-2〕;17、M〔M-2〕〔M+2〕;18、A〔X+2〕〔X-2〕;19、A〔B-2〕2;20、2A〔A-2〕2;21、3〔A-2B〕2;22、4〔X-1〕2;23、A〔2X+Y〕〔2X-Y〕;24、A〔X+Y〕〔X-Y〕;25、-〔3X-1〕2;26、X〔X-3〕〔X-2〕;27、3〔X-3〕2;28、AB〔A+3〕〔A-3〕;29、〔X-3〕〔4X+3〕;30、Y〔X+2〕〔X-2〕;。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
整式乘除、因式分解单元测试
整式的乘除与因式分解 单元测试一、选择题:(每小题3分,满分33) 1.下列算式中结果等于的是( ) A. B. C. D.2.下列运算中错误的是( )A.B.C. D.3.下列因式分解错误的是( )A .B .C .D .4.下列式子中是完全平方式的是( )A .B .C .D .5.任意给定一个非零数,按下列程序计算,最后输出的结果是( )A. B. C.+1 D.-16.把多项式2-8x+8分解因式,结果正确的是( )A .B .2C .2D .27.下列各式,不能用平方差公式化简的是( )A .B .C .D .8.当x=3,y=1时,代数式(x+y )(x-y )+的值是( )A .6B .8C .9D .129.若+M=,则M 的值为 ( )A.xy B. 0 C.2xy D.3xy10.如图,长方形的面积有四种表示方法:(1)(m+n)(a+b) (2)m(a+b)+n(a+b)(3)a(m+n)+b(m+n)(4)ma+mb+na+nb其中正确的表达式有( )A.(1)(4) B.(1)(2)C.(1)(3)(4) D.(1)(2)(3)(4)11.a 、b 、c 是三角形的三条边长,则代数式,a 2-2ab- c 2+b 2的值:A 、 大于零B 、小于零C 、等于零D 、与零的大小无关二、填空题:(每小题3分,满分30分) 11.代数式是一个完全平方式,则k的值是( ) 12.若=1,则x的取值范围是 . 13.若的展开式中,不含有项,则-1的值为 .14.+ =. 15.在等式÷( )=,则括号里的整式为 . 16.若(x+m)(x+n)=-7x+mn,则-m-n的值为 17若,则.= . 18. 分解因式:= _____________. 19若a>0且=2,=3,则的值为___20.边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图甲),把余下的部分拼成一个矩形(如图乙)根据两个图形中阴影部分的面积相等,可以验证的公式是.21、代数式是一个完全平方式,则k的值是()三、解答题:(本题共7个题,满分5722(满分7)已知:=3,=2,求的值.23(满分7)观察下列各式:3×5=15,15=-15×7=35,35=-1…………………………………11×13=143,143=-1…………………………………你会发现什么规律?请将你猜想到的规律,用只含一个字母n的式子表示出来.24(满分8分)先化简,再求值:÷b-(a+b)(a-b),其中,b=-1.25(满分8分)因式分解:(1)3-27(2)26(满分8分)已知a+b=10,ab=24.,求:(1)+;(2)的值.27(满分10分)按图中所示的两种防水剂分割正方形,你能分别得出什么结论?28(满分9分)在三个整式+2xy,+2xy,中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.。
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
人教版八年级上册《整式的乘除与因式分解》单元测试.doc
人教版八年级上册《整式的乘除与因式分解》单元测试丄不是整式;B> -3x 3y 的次数是4; C 、4〃与4厂是同类项;D 、丄是单项式 2 y7、日b 减去a 2 —ab + b 2等于()。
A^ ci~ + 2ab + Z?2; B 、— ci~ — 2ab 4-Z?2 ; C 、一a~ + 2ab — b? ; D 、— ci~ + 2ab + 少 8、 下列各式中与a-b-c 的值不相等的是( )A^ a — (b+c ) B> a — (b —c ) C^ (a —b ) + (—c ) 9、 已知x?+kxy+64y2是一个完全式,则k 的值是() A 、8 B 、±8 C 、16 D 、±1610、 如下图(1),边长为日的大正方形中一个边长为力的小正方形,小明将图(1)的阴影部分拼成了一个矩形, 如图(2)。
这一过程可以验证( )〃、y+Z?■—2ab=^ {a — Z?) ~ ; B 、孑+Z/+勿力)'; C 、2(— 3ab' H=(2a — 6) (a —Z?) ; D 、(日一力) 二、填空题11、 ______________________________ (1)计算:(-x )3-x 2 = ___________ ; (2)计算:(—3/)2 ♦/二 12、 ______________________________________________________ 单项式是关于X 、y 、刁的五次单项式,贝Un :13、 _________________________________________ 若兀2+4兀+ 4 =(兀+ 2)(兀+ 〃),则斤= 14^ 当2丫-乂二511寸,5(x- 2^)2 -3(-x + 2y )-60 = _________________ ; 15N 若才+//=5, ab=2,则(曰+力)'= ______________ 。
整式的乘除与因式分解的单元测试卷及答案
故选C.
点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.
5,
考点:因式分解-十一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.
④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.
所以①②两项正确.
故选B.
点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.
4
考点:完全平方公式。1923992
专题:计算题。
分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.
解答:解:x2是一个正整数的平方,它后面一个整数是x+1,
C、是整式的乘法,不是分解因式,故本选项错误;
D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.
故选B.
点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.
解答:解:(x﹣a)(x2+ax+a2),
=x3+ax2+a2x﹣ax2﹣a2x﹣a3,
=x3﹣a3.
故选B.
点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.
3.
A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab
第15章《整式的乘除与因式分解》单元测试题(含答案)[
《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。
A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。
第15章 整式的乘除与因式分解测试卷(含答案)
第15章 整式的乘除与因式分解 测试卷注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.若32144mnx y x y x ÷=,则m 、n 满足条件的取值为 ( ). A .m =6,n =1 B .m =5,n =1 C .m =5,n =0 D .m =6,n =0 2.下列各式可以用平方差公式的是( ).A .(4)(4)a c a c -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D . 11()()22x y x y --+ 3.下列各式中是完全平方公式的是( ).A .224a x + B .2244x ax a +-- C .2444x x ++ D . 2412x x ++-4.在(1)623[()]a a -⋅-;(2)34)(a a -⋅;(3)2332)()(a a ⋅-;(4)43()a --中,计算结果为12a -的有( ).A .(1)和(3)B .(1)和(2)C .(2)和(3)D .(3)和(4)5.为了应用平方差公式计算()()a b c a b c -++-,必须先适当变形,下列各变形中,正确的是( ).A .()()a c b a c b +--+⎡⎤⎡⎤⎣⎦⎣⎦B .()()a b c a b c -++-⎡⎤⎡⎤⎣⎦⎣⎦C .()()b c a b c a +--+⎡⎤⎡⎤⎣⎦⎣⎦D .()()a b c a b c --+-⎡⎤⎡⎤⎣⎦⎣⎦ 6.下列多项式相乘的结果为1242--x x 的是( ).A .)4)(3(-+x xB .)6)(2(-+x xC .)4)(3(+-x xD .)2)(6(-+x x 7.计算24(1)(1)(1)(1)x x x x -++-+的结果是( ).A .0B .2C .-2D .-5 8. 下列多项式中,含有因式)1(+y 的多项式是( ). A .2232x xy y --B .22)1()1(--+y yC .)1()1(22--+y yD .1)1(2)1(2++++y y9.如图:(如图①)在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( ).图 ① 图 ② A . a 2-b 2 =(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .(a +2b )(a -b )= a 2+ab -2b 210.观察下列等式:170=,771=,4972=,34373=,240174=,…,由此可判断1007的个位数字是( ).A .3B .7C .1D .9二、填空题(本题共4小题,每小题5分,满分20分)11.不等式22(21)(21)x x --+≤2(3)x -的解集是_______________.12.已知2ma =,16nb =,则382m n+=____________.13.已知)3)(8(22q x x px x +-++的展开式中不含2x 项和3x 项,则q p +的值=______.14.如图,从直径是2x y +的圆中挖去一个直径为x 的圆和两个直径为y 的圆,则剩余部分的面积是_______________. 三、(本题共2小题,每小题8分,满分16分) 15.化简:(1)82()()mn mn ÷ (2) )9()15()3(24322y x xy y x -⋅-÷16.用乘法公式计算:(1)49.850.2⨯; (2)2298.四、(本题共2小题,每小题8分,共16分)17.已知x 是有理数,y 是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:2()(2)x y y x y -+-.18.利用简便方法计算:222111(1)(1)(1)234--- (22)11(1)(1)910--五、(本大题共2小题,每小题10分,满分20分) 19.因式分解:(1)x x x 2718323+- (2)()222164x x -+20.先化简,再求值:22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦;其中3,2a b 4==-3.13-,, 121.223,,, 1.50-,六、(本题满分12分)21.一个正方形的一边增加3cm ,另一边减少3cm ,所得到的长方形与这个正方形的每一边减少1cm 所得到的正方形的面积相等,求原来正方形的面积. 七、(本题满分12分)22.如图,图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形。
整式的乘除和因式分解单元测试题
a6
2. x a x 2 ax a 2 的计算结果是
()
3
2
3
3
3
3
2
3
3
2
2
3
A . x 2ax a B . x a C. x 2a x a D . x 2ax 2a a
3.下面是某同学在一次测验中的计算摘录,其中正确的个数有(
)
① 3x3 2x 2
6x5; ② 4a3b
2a 2 b
2a ;
③ a3 2 a5;
A、 b 6 4
B、 4 b 6
17.下列各式是完全平方式的是(
C、 b 6 4
)
D、 b 6 4
A、 x 2 x 1 4
2
B、 1 x
C、 x xy 1
18.把多项式 m2 (a 2) m( 2 a) 分解因式等于(
2
D、 x 2 x 1
)
A、 (a 2)(m2 m) B 、 (a 2)(m2 m) C、m(a-2)(m-1)
ab ab
2
ab
a2
2ab b2
则
3
ab
a 3 3a 2b 3ab 2 b 3
a b 4 a 4 ____ a 3b ____ a 2b2 _____ ab3 b4 16.( 12 分)计算:
x x2 y2 xy y x 2 x3 y 3x2 y
17.分解因式:
① ax2 16ay 2 ② 2a3 12a2 18a ③ a2 2ab b2 1
是一个完全平方式,那么 m的值是 __________。
12、绕地球运动的是 7.9 × 103M/秒,则卫星绕地球运行 8×105 秒走过的路程是
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知(19x ﹣31)(13x ﹣17)﹣(13x ﹣17)(11x ﹣23)可因式分解成(ax+b )(8x+c ),其中a ,b ,c 均为整数,则a+b+c=( )A 、﹣12B 、﹣32C 、38D 、722.利用因式分解计算:2100﹣2101=( )A 、﹣2B 、2C 、2100D 、﹣21003.设x 为正整数,若1x +是完全平方数,则它前面的一个完全平方数是( )A.xB.1x -C.1x -D.2x -4.如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )A.1a +B.21a +C.221a a ++D.1a +5.因式分解:1﹣4x 2﹣4y 2+8xy ,正确的分组是( )A 、(1﹣4x 2)+(8xy ﹣4y 2)B 、(1﹣4x 2﹣4y 2)+8xyC 、(1+8xy )﹣(4x 2+4y 2)D 、1﹣(4x 2+4y 2﹣8xy )6.观察下列各式:①abx ﹣adx ;②2x 2y+6xy 2;③8m 3﹣4m 2+2m+1;④a 3+a 2b+ab 2﹣b 3;⑤(p+q )x 2y ﹣5x 2(p+q )+6(p+q )2;⑥a 2(x+y )(x ﹣y )﹣4b (y+x ).其中可以用提公因式法分解因式的有( )A 、①②⑤B 、②④⑤C 、②④⑥D 、①②⑤⑥7.如果ax (3x ﹣4x 2y+by 2)=6x 2﹣8x 3y+6xy 2成立,则a 、b 的值为( )A 、a=3,b=2B 、a=2,b=3C 、a=﹣3,b=2D 、a=﹣2,b=38.把多项式ac ﹣bc+a 2﹣b 2分解因式的结果是( )A 、(a ﹣b )(a+b+c )B 、(a ﹣b )(a+b ﹣c )C 、(a+b )(a ﹣b ﹣c )D 、(a+b )(a ﹣b+c )9.下列哪项是x 4+x 3+x 2的因式分解的结果( )A 、x 2(x 2+x )B 、x (x 3+x 2+x )C 、x 3(x+1)+x 2D 、x 2(x 2+x+1)10.直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为( )A 、182B 、180C 、32D 、30二 、填空题(本大题共5小题,每小题3分,共15分)11.计算:332(3)_____a a ⋅=12.已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 .13.如果2(1)(5)x x ax a +-+的乘积中不含2x 项,则a 为_________.14.2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=15.若2310x x x +++=,那么220081x x x +++⋅⋅⋅+=三 、解答题(本大题共7小题,共55分)16.计算:⑴222(30.5)a b ab + ⑵2(1113)m n a b - ⑶2(25)(52)(25)x x x ----17.⑴化简:()()2121x x ++- ⑵化简:()()()12282a b a b b a b +---18.分解因式:⑴256x x ++⑵256x x -+ ⑶276x x ++ ⑷276x x -+19.分解因式:22(1)1a b b b b -+-+-20.分解因式:325153x x x --+21.比较n a 与2n a +(a 为正数,n 为正整数)的大小.22.分解因式:22()4a b ab c -+-人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一、选择题1.原式=(13x﹣17)(19x﹣31﹣11x+23)=(13x﹣17)(8x﹣8)∵可以分解成(ax+b)(8x+c),∴a=13,b=﹣17,c=﹣8,∴a+b+c=﹣12.故选A.2.D;2100﹣2101=2100﹣2100×2=2100(1﹣2)=﹣2100.故选D.3.D;设21y x=+,则y=22(1)21112y y y x x-=-+=+-=-,故选D.4.D;∵自然数a是一个完全平方数,∴a a的算术平方根大11,∴这个平方数为:21)1a=+.故选D.5.D;1﹣4x2﹣4y2+8xy=1﹣(4x2+4y2﹣8xy).6.D7.B8.A;ac﹣bc+a2﹣b2=c(a﹣b)+(a﹣b)(a+b)=(a﹣b)(a+b+c).9.D10.A;设另一条直角边的长度为x,斜边的长度z,则z2﹣x2=132,且z>x,∴(z+x)(z﹣x)=169×1,∴{z+x=169z﹣x=1,∴三角形的周长=z+x+13=169+13=182.故选A.二、填空题11.546a12.248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.13.解:原式=32(15)4x a x ax a +--+∵不含2x 项,∴150a -=,解得15a =14.原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.15.解:原式235232005231(1)(1)(1)1x x x x x x x x x x x x =+++++++++⋅⋅⋅++++=三 、解答题16.⑴222423324(30.5)930.25a b ab a b a b a b +=++;⑵222(1113)121286169m n m m n n a b a a n b -=-+;⑶22222(25)(52)(25)(25)(25)2(25)84050x x x x x x x x ----=----=--=-+-.17.⑴23x +;⑵ 212a ab -18.⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --19.222(1)1(1)(1)a b b b b a b b -+-+-=--+20.322251535(3)(3)(51)(3)x x x x x x x x --+=---=--或322225153(51)3(51)(51)(3)x x x x x x x x --+=---=--21.方法1∵0a >,n 为正整数,∴0n a >,∵22n n a a a +=⋅,∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=③当01a <<,则21a <,则2n n a a +<.方法2∵0a >,n 为正整数,∴0na >,∵22n n a a a +=, ∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=; ③当01a <<,则21a <,则2n n a a +<.22.22()4a b ab c -+- 22224a ab b ab c =-++-222222()a ab b c a b c =++-=+- ()()a b c a b c =+-++。
整式的乘除与因式分解单元测试
第十五章 整式的乘除与因式分解单元测试一、选择题(每小题2分,共24分)1.计算(x 2y )3结果正确的是( )A 、x 5yB 、x 6yC 、x 2y 3D 、x 6y 32.下列各式正确的是( )A 、 a 4·a 5=a 20B 、a 2+2a 2=3a 2C 、(-a 2b 3)2= a 4b 9D 、a 4÷a= a 23.已知:2m a =,3n a =,则m n a +=( )A 、5.B 、6.C 、5m n +.D 、6m n +.4.如果222549x kxy y -+是一个完全平方式,那么k 的值是( )A 、35.B 、±35.C 、70-.D 、70±.5.一种计算机每秒可做8410⨯次运算,它工作3310⨯秒运算的次数为 ( )A 、241210⨯B 、121.210⨯C 、121210⨯D 、81210⨯6.下列各式中,计算结果是2718x x +-的是( )A 、(1)(18)x x -+B 、(2)(9)x x ++C 、(3)(6)x x -+D 、(2)(9)x x -+ 7.把多项式(m +1)(m -1)+(m -1)提取公因式(m -1)后,余下的部分是()A 、m +1B 、2mC 、2D 、m +28.下列因式分解错误的是( )A 、2a 3-8a 2+12a =2a (a 2-4a +6)B 、a 2-1=(a +1)(a -1)C 、(a -b )2-c 2=(a -b +c )(a -b -c )D 、-2a 2+4a -2=2(a +1)29.已知210x y -=,则24y x -的值为 ( )A 、10B 、20C 、-10D 、-2010.计算:(-a )3(-a )2 (-a 5)= ( )A 、a 10B 、-a 10C 、 a 30D 、-a 3011.下列各式从左到右的变化属于因式分解的是( )A 、m 2-4n 2=(m +2n )(m -2n )B 、(m +1)(m -1)=m 2-1C 、m 2-3m -4=m (m -3)-4D 、m 2-4m -5=(m -2)2-912.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为 ( )A 、32B 、3210C 、1210D 、1012二、填空题(每小题2分,共24分)1.计算:22a a a -⋅=_________________.2.计算:34223()()a b ab ÷=_____________.3.计算:(5)(2)x y x y +-=_____________.4.分解因式:224m n -=___________.5.若10m n +=,24mn =,则22m n +=_____. 6.99×101=( )( )= . 7.若x=3.2,y=6.8,则x 2+2xy+y 2= .8.如图,阴影部分的面积为_____________.9. ( 23)2002×(1.5)2003÷(-1)2004=________. 10.当x_______时,(x -4)0等于______.11. (-a +b+c)(a +b -c)=[b -( )][b+( )].12.利用因式分解计算:2224825210000-= . 三、解答题(共52分)1.计算:(30分)(1)(3x+2)(3x -2) (2)(-2x +5)2(3)-24x 2y 4÷(-3x 2y )·3x 3 (4)(x +2y -3)(x +2y -3)(5)xy xy y x 5)1015(22÷- (6)[(x +y)2-y(2x +y)-8x]÷(-2x)2、因式分解:(15分)(1)2255a a - (2)25x 2-16y 2 (3)2()4x y xy -+3.(7分)先化简,再求值:()()212(2)2x y x y x y y ⎡⎤+--+÷⎣⎦,其中11,4x y =-=. x。
八年级数学上册第14章测试卷含答案
八年级数学上册第14章测试卷含答案整式的乘除与因式分解单元测试题班级:__________ 姓名:__________ 平台号:__________一、选择题(每小题2分,共20分)1、下列运算正确的是()A、x³+x³=2x⁶B、x²·x⁴=x⁸C、xᵐ·xⁿ=xᵐ⁺ⁿD、(-x⁵)⁴=-x²⁰2、下列关系式中,正确的是()A、(a-b)²=a²-b²B、(a+b)(a-b)=a²-b²C、(a+b)²=a²+b²D、(a+b)²=a²-2ab+b²3、若(x-a)(x-5)展开式中不含有x的一次项,则a的值为()A、B、5C、-5D、5或-54、下列因式分解错误的是()A、2a³-8a²+12a=2a(a²-4a+6)B、x²-5x+6=(x-2)(x-3)C、(a-b)²-c²=(a-b+c)(a-b-c)D、-2a²+4a-2=2(a+1)²5、为了应用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是(A、[x-(2y+1)]²B、[x+(2y+1)]²C、[x-(2y-1)][x+(2y-1)]D、[(x-2y)+1][(x-2y)-1]6、化简代数式(x-3)(x-4)-(x-1)(x-3)结果是(。
)A、-3x+9B、-3x-9C、-11x+15D、-11x-157、下列多项式:①x²+2xy-y²②-x²-y²+2xy③x²+xy+y²④1+x+1/(4x²),其中能用完全平方公式分解因式的有()A、1个B、2个C、3个D、4个8、下列各式中,代数式()是x³y+4x²y²+4xy³的一个因式A、x²y²B、x+yC、x+2yD、x-y9、下面是某同学在一次测验中的计算摘录①y³÷y³=y;②(2x²+x)÷x=2x;③3x³·(-2x²)=-6x⁵;④4ab÷(-2ab)=-2;⑤a³²³²=a⁵;⑥(-a)÷(-a)=a².3其中错误的个数有(。
第15章 整式的乘除与因式分解单元测试卷(含答案)
第15章 整式的乘除与因式分解 单元测试卷度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.332)(a a ÷-的计算结果是( ).A .3a B .3a - C .2a - D .2a 2.若()0211x +=,则x 的取值范围是( ).A .12x >-B .x ≥—12C .x >12D .x ≠12- 3.将多项式3222231236b a b a b a +--分解因式时,应提取的公因式是( ). A .223b a - B .ab 3- C .b a 23- D .333b a -4.计算:3212ab ⎛⎫- ⎪⎝⎭的结果正确的是( ).A .2414a b B .3618a b C .3618a b -D .3518a b -5.下列因式分解正确的是 ( ). A. )45(312152-=-x xz xz x B .C.D. 22)2(44+=++x x x6.如果(23)x y M -=2249x y -,则M 表示的式子为( ). A . 2x +3y B .2x -3y C.-2x -3y D.-2x +3y 7.任意给定一个非零数,按下列程序计算,最后输出的结果是( ).A .mB .m2C .m +1D .m -18.观察下列各式,1⨯3=221-;14532-=⨯;5=⨯7162-;71892-=⨯;…由此,想到此例包含的规律可以用下式( )表示. A .1101192-=⨯ B .12-=⨯c b a C .1)1()1(2--=+⨯m m m D .1)1)(1(2-=-+x x x 9.若5-+y x +(xy -6)2=0,则x 2+y 2的值为( ).A . 13.B . 26.C . 28.D .3710.已知a =2008x +2007,b =2008x +2008,c =2008x +2009,则多项式a 2+b 2+c 2-ab -bc -ca 的值为( ).A .0B .1C .2D .3二、填空题(本题共4小题,每小题5分,满分20分) 11.已知23-=a ,则6a =_________.12.计算:()()221442x y x y xy ⎛⎫⎡⎤--+÷- ⎪⎣⎦⎝⎭=________________.13.已知a =3,b =7,c =5,()()()()243a b c b a c a c b b c a -+⋅--⋅+-⋅--的值是______________. 14.若x 2+2(m -3)x +16是完全平方式,则m =___________. 三、(本题共2小题,每小题8分,满分16分) 15.计算: (1)23()a -(2) ()()42510310⨯⨯⨯16.计算: (1)22223()(247)2x y x xy y --+ (2)()x y y x 43)34(22--- 四、(本题共2小题,每小题8分,共16分) 17.化简: 22224()()(2)x y x y x y +---.18.解方程:2(23)(4)(3)(2)6x x x x x +---+=+五、(本大题共2小题,每小题10分,满分20分) 19.利用乘法公式计算:(1)2244()()()()x y x y x y x y ++-+ (2)(23)(23)a b c a b c -++-20.已知:1=+y x ,21-=xy ,利用因式分解求2()()()x x y x y x x y +--+的值. 六、(本题满分12分)21.如图,要设计一幅长为3x cm ,宽为2y cm 长方形图案,其中有两横两竖的彩条,横彩条的宽度为a cm ,竖彩条的宽度b cm ,问空白区域的面积是多少?七、(本题满分12分)22.数学课上张老师和同学们玩一个有趣的猜数游戏,张老师让每位同学在心里想好一个除0以外的数,把这个数先乘以3再加上4然后平方,把所得结果减去16,再除以原来所想的数的3倍.大家都仔细算出了结果. 奇怪的是,同学们把算出的结果告诉老师,老师就能立即说出这位同学心中原来所想的数是多少.李晓猛同学觉得看出了蹊跷,他说:“刚才大家说的都是整数,数字又不大,如果换成是小数或者分数,老师就猜不出来了.”你同意王晓猛的看法吗?说出你的道理.八、(本题满分14分)23.观察下列各式:1×2×3×4+1=522×3×4×5+1=1123×4×5×6+1=192……(1)请写出一个具有普遍性的结论,并给出证明.(2)根据(1)计算2000×2001×2002×2003+1.(用一个最简式子表示).精品 文档答 案一、选择题1.B 2.D 3.A 4.C 5.D 6.A 7.C 8.D 9.A 10.C 二、填空题 11.4 12.32 13.-1 14.-1或7 三、15.(1)原式=6a - (2)原式=71.510⨯ 16.(1)原式=4294x y 22(247)x xy y -+ =625344963924x y x y x y -+ (2)原式=()22(43)43x y x y ---+=222(4)(3)x y -- =24169x y -四、17.原式=424224()(44)x y x x y y ---+=424224444x y x x y y --+- =2254y x y -+18.222(28312)(236)6x x x x x x x -+--+--=+,412x -=, 3x =-五、19.(1)原式=2244()()()()x y x y x y x y -+++=222244()()()x y x y x y -++ =4444()()x y x y -+ =88x y -(2)原式=[(23)][(23)]a b c a b c --+-=22(23)a b c -- =222(4129)a b bc c --+ =2224129a b bc c -+-20.原式=(x +y )[x (x -y )-x (x +y )]=(x +y )(x 2-xy -x 2-xy ) =(x +y )(-2xy )=-2xy (x +y )∵1=+y x ,21-=xy ∴原式= -2×(-21)×1 =1 六、21.方法一:可用大长方形面积减去两横两竖的彩条的面积,再加上被重复减去的部分,列式为32464x y by ax ab --+;方法二:可设想将彩条平移到如图所示的长方形的靠边处,将9个小矩形组合成“整体”,一个大的空白长方形,则该长方形的面积就是空白区域的面积.而这个大长方形长(3x -2b )cm ,宽为(2y -2a )cm.所以空白区域的面积为(3x -2b )(2y -2a )cm 2.即(6xy -6xa -4by +4ab )cm 2.七、22.李晓猛的想法不正确,设同学们心中想的数为a ,可列式表示:2[(34)16]3a a +-÷=2[(92416)16]4a a a ++-÷=2(924)3a a a +÷=38a +,所以张老师只要把同学们把算出的结果减去8,再除以3,就能算出同学们心中原来想的数a . 八、23.(1)设n为正整数,则结论为n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.证明:∵n(n+1)(n+2)(n+3)+1=[n(n+3)][(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∴n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.(2)当n=2000时,(n2+3n+1)2=(20002+3×2000+1)2=40060012,∴2000·2001·2002·2003+1=40060012.可以编辑的试卷(可以删除)。
第八章 整式乘除与因式分解 单元测试题(含答案)
第八章整式乘除与因式分解单元测试题(含答案)一、单选题1.下列运算正确的是()A. a8÷a4=a2 B.(a2)2=a4 C. a2•a3=a6 D. a2+a2=2a42.下列运算错误的是()A.(-3)2÷ B.(-1)0=1 C. 5x2﹣6x2=﹣x2 D.(2m3)2÷(2m)2=m4 3.下列计算错误的是()A. B.C. (−a)5÷(−a4)=a D.4.已知x+y-3=0,则2y•2x的值是()A. 6 B. -6 C. D. 85.下列运算不正确的是()A. x2•x3=x5 B.(x2)3=x6 C. x3+x3=2x3 D. 2x﹣2=6.下列运算中,正确的是()A. B. C. D.7.多项式可分解为,则a、b 的值分别是A. 10和 B.和2 C. 10和2 D.和8.下列各式属于正确分解因式的是A. B.C. D.9.已知4821可以被在0~10之间的两个整数整除,则这两个数是()A. 1、3 B. 3、5 C. 6、8 D. 7、910.已知(x-2 015)2+(x-2 017)2=34,则(x-2 016)2的值是( ) A. 4 B. 8 C. 12 D. 16试卷第1页,总3页试卷第2页,总3页二、填空题11.计算(-3x 2y )·()=__________.12.定义运算,下面给出了关于这种运算的四个结论:①;②;③若m+n=0,则;④若,则m=1. 其中正确结论的序号是___________(填写你认为所有正确的结论的序号).13.如果实数,a b 满足226,8,a b ab a b +==+=那么___________;14.若2236x ax ++是完全平方式,则a =_______.15.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4-y 4,因式分解的结果是(x-y)(x+y)(x 2+y 2),若取=9,=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x 3-xy 2,取=27,y=3时,用上述方法产生的密码是:_________________________(写出一个即可).三、解答题16.计算:(1)a (a+2b )﹣(a ﹣2b )(a+b )(2)232111x x x x x +⎛⎫--÷ ⎪++⎝⎭. 17.小红家有一块L 形的菜地,要把L 形的菜地按如图所示分成两块面积相等的梯形,种上不同的蔬菜.这两个梯形的上底都是a m ,下底都是b m ,高都是(b -a) m .(1)求小红家这块L 形菜地的面积.(用含a 、b 的代数式表示)(2)若a 2+b 2=15,ab=5,求小红家这块L 形菜地的面积.18.阅读题.材料一:若一个整数m 能表示成a 2-b 2(a,b 为整数)的形式,则称这个数为“完美数”.例如,3=22-12,9=32-02,12=42-22,则3,9,12都是“完美数”;再如,M=x 2+2xy=(x+y)2-y 2,(x,y 是整数),所以M 也是”完美数”.材料二:任何一个正整数n 都可以进行这样的分解:n =p ×q(p 、q 是正整数,且p ≤q).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并且规定F(n)=.例如18=1×18=2×9=3×6,这三种分解中3和6的差的绝对值最小,所以就有F(18)=.请解答下列问题:(1)8______(填写“是”或“不是”)一个完美数,F(8)= ______.(2)如果m和n都是”完美数”,试说明mn也是完美数”.(3)若一个两位数n的十位数和个位数分别为x,y(1≤x≤9),n为“完美数”且x+y能够被8整除,求F(n)的最大值.19.若干个1与2排成一行:1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,……,规则是:第1个数是1,其后写1个2,第3个数是1,其后写2个2,……,一般地,先写一行1,再在第k个1与第k+1个1之间插入k个2(k=1,2,3,……).试问:(1)第2017个数是1还是2?(2)前2017个数的和是多少?前2017个数的平方和是多少?(3)前2017个数两两乘积的和是多少?20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .(1)若F(a)=且a为100以内的正整数,则a=________;(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.试卷第3页,总3页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
《第十四章 整式的乘除与因式分解》自我小测和单元测试卷及答案(共五套)
《14.1整式的乘法》自我小测基础巩固1.下列计算:①a 2n ·a n =a 3n ;②22·33=65;③32÷32=1;④a 3÷a 2=5a ;⑤(-a )2·(-a )3=a 5.其中正确的式子有( )A .4个B .3个C .2个D .1个2.若(2x -1)0=1,则( )A .B .C . D. 3.下列计算错误的是( )A .(-2x )3=-2x 3B .-a 2·a =-a 3C .(-x )9+(-x )9=-2x 9D .(-2a 3)2=4a 64.化简(-a 2)5+(-a 5)2的结果是( )A .0B .-2a 7C .a 10D .-2a 105.下列各式的积结果是-3x 4y 6的是( )A .B .C .D .6.下列运算正确的是( )A .a 2·a 3=a 6B .(-3x )3=-3x 3C .2x 3·5x 2=7x 5D .(-2a 2)(3ab 2-5ab 3)=-6a 3b 2+10a 3b 37.计算(-a 4)3÷[(-a )3]4的结果是( ) 12x ≥-12x ≠-12x ≤-12x ≠2231(3)3x xy -⋅-2231(3)3x xy ⎛⎫-⋅- ⎪⎝⎭22321(3)3x x y -⋅-2321(3)3x xy ⎛⎫-⋅- ⎪⎝⎭A .-1B .1C .0D .-a8.下列计算正确的是( )A .B .C .D .(ax 2+x )÷x =ax9.计算(14a 2b 2-21ab 2)÷7ab 2等于( )A .2a 2-3B .2a -3C .2a 2-3bD .2a 2b -310.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( )A .2m 2n -3mn +n 2B .2m 2-3mn 2+n 2C .2m 2-3mn +n 2D .2m 2-3mn +n11.(1)(a 2)5=__________;(2)(-2a )2=__________;(3)(xy 2)2=__________.12.与单项式-3a 2b 的积是6a 3b 2-2a 2b 2+9a 2b 的多项式是__________.13.计算:(1)(-5a 2b 3)(-3a );(2)2ab (5ab 2+3a 2b );(3)(3x +1)(x +2).14.计算: (1)412÷43;(2); (3)32m +1÷3m -1.力提升3222233x b xb x b ÷=663422122m n m n m n m ÷⋅=32211·(0.5)24xy a b a y xa ÷=421122⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭15.如果a 2m -1·a m +2=a 7,则m 的值是( )A .2B .3C .4D .516.210+(-2)10所得的结果是( )A .211B .-211C .-2D .217.(x -4)(x +8)=x 2+mx +n ,则m ,n 的值分别是( )A .4,32B .4,-32C .-4,32D .-4,-3218.已知(a n b m +1)3=a 9b 15,则m n =__________.19.若a m +2÷a 3=a 5,则m =__________;若a x =5,a y =3,则a y -x =__________.20.计算:-a 11÷(-a )6·(-a )5.21.计算:(1); (2); (3); (4)(a +2b )(a -2b )(a 2+4b 2).22.小明在进行两个多项式的乘法运算时(其中的一个多项式是b -1),把“乘以(b -1)”错看成“除以(b -1)”,结果得到(2a -b ),请你帮小明算算,另一个多项式是多少?23.已知(x +a )(x 2-x +c )的积中不含x 2项和x 项,求(x +a )(x 2-x +c )的值是多少?参考答案1.C 2.D 3.A 4.A 5.D 6.D7.A 点拨:原式=-a 12÷a 12=-1.8.A 点拨:本题易错选D ,D 的正确结果为ax +1,在实际运算中,“1”这一项经常被看作0而忽视,应引起特别的重视.()2232223(2)(2)3a b ab a b a ab ab ⎛⎫-+-+- ⎪⎝⎭112213233y y y y ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭2221[(2)]3xy xy x y xy ⎛⎫-⋅-+ ⎪⎝⎭9.B 点拨:原式=14a 2b 2÷7ab 2-21ab 2÷7ab 2=2a -3.10.C 点拨:原式=8m 4n ÷4m 2n -12m 3n 2÷4m 2n +4m 2n 3÷4m 2n =2m 2-3mn +n 2.11.(1)a 10 (2)4a 2 (3)x 2y 412. 点拨:由题意列式(6a 3b 2-2a 2b 2+9a 2b )÷(-3a 2b )计算即得. 13.解:(1)原式=[(-5)×(-3)](a 2·a )·b 3=15a 3b 3.(2)原式=10a 2b 3+6a 3b 2.(3)原式=3x 2+6x +x +2=3x 2+7x +2.14.解:(1)412÷43=412-3=49;(2); (3)32m +1÷3m -1=3(2m +1)-(m -1)=3m +2.15.A 点拨:a 2m -1·a m +2=a 2m -1+m +2=a 7,所以2m -1+m +2=7,解得m =2.16.A 17.B 18.64 19.6 20.解:原式=-a 11÷a 6·(-a )5=-a 5·(-a 5)=a 10.或者,原式=(-a )11÷(-a )6·(-a )5=(-a )11-6+5=a 10.21.解:(1)原式=-a 3b 3-4a 3b 3+4a 3b 3=-a 3b 3.(2)原式=y 2-2y -y 2-2y =-4y .(3). (4)原式=(a 2-2ab +2ab -4b 2)(a 2+4b 2)=(a 2-4b 2)(a 2+4b 2)=a 4+4a 2b 2-4a 2b 2-16b 4=a 4-16b 4.22.解:设所求的多项式是M ,则M =(2a -b )(b -1)=2ab -2a -b 2+b .23.解:∵(x +a )(x 2-x +c )=x 3-x 2+cx +ax 2-ax +ac =x 3+(a -1)x 2+(c -a )x +ac ,2233ab b -+-424211112224-⎛⎫⎛⎫⎛⎫-÷-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭35242224512(2)99x y x y xy xy x y ⎛⎫=⋅-+= ⎪⎝⎭原式又∵积中不含x 2项和x 项,∴a -1=0,c -a =0,解得a =1,c =1.又∵a =c =1,∴(x +a )(x 2-x +c )=x 3+1.《14.2乘法公式》自我小测基础巩固1.下列添括号错误的是( )A .-x +5=-(x +5)B .-7m -2n =-(7m +2n )C .a 2-3=+(a 2-3)D .2x -y =-(y -2x )2.下列各式,计算正确的是( )A .(a -b )2=a 2-b 2B .(x +y )(x -y )=x 2+y 2C .(a +b )2=a 2+b 2D .(a -b )2=a 2-2ab +b 23.下列各式中,与(a -1)2相等的是( )A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2+14.下列等式能够成立的是( )A .(x -y )2=x 2-xy +y 2B .(x +3y )2=x 2+9y 2C .D .(m -9)(m +9)=m 2-92221124x y x xy y ⎛⎫-=-+ ⎪⎝⎭5.应用乘法公式计算:1.234 52+2.469×0.765 5+0.765 52的值为__________.6.正方形的边长增大5 cm ,面积增大75 cm 2.那么原正方形的边长为__________,面积为__________.7.(-2a -b )(2a -b )=-[( )(2a -b )]=-[( )2-( )2]=__________.8.计算:(1)(x -3)(x 2+9)(x +3);(2)(x +y -1)(x -y +1);9.(1)先化简,再求值:2(3x +1)(1-3x )+(x -2) (2+x ),其中x =2.(2)化简求值:(1-4y )(1+4y )+(1+4y )2,其中.能力提升10.若x 2-y 2=20,且x +y =-5,则x -y 的值是( )A .5B .4C .-4D .以上都不对11.等式(-a -b )( )(a 2+b 2)=a 4-b 4中,括号内应填( )A .-a +bB .a -bC .-a -bD .a +b12.若a 2+2ab +b 2=(a -b )2+A ,则A 的值为( )A .2abB .-abC .4abD .-4ab13.若,则的值为( ) A .3 B .-1 C .1 D .-314.观察下列算式:①1×3-22=3-4=-1②2×4-32=8-9=-1③3×5-42=15-16=-1④____________________________________________________25y =11x x -=221x x +……(1)请你按以上规律写出第④个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.15.已知,求代数式(2x -y )(2x +y )+(2x -y )(y -4x )+2y (y -3x )的值,在解这道题时,小茹说:“只给出了x 的值,没给出y 的值,求不出答案.”小毅说:“这个代数式的值与y 的值无关,不给出y 的值,也能求出答案.”你认为谁的说法正确?请说明理由.参考答案1.A 点拨:括号前是“-”号时,括到括号里的各项都变号.2.D 3.B 4.C5.4 点拨:原式可化为:1.234 52+2×1.234 5×0.765 5+0.765 52=(1.234 5+0.765 5)2=22=4,逆用完全平方公式.6.5 cm 25 cm 27.2a +b 2a b b 2-4a 28.解:(1)原式=[(x -3)(x +3)](x 2+9)=(x 2-9)(x 2+9)=x 4-81;(2)原式=[x +(y -1)][x -(y -1)]=x 2-(y -1)2=x 2-y 2+2y -1.9.解:(1)2(3x +1)(1-3x )+(x -2)(2+x )=2(1+3x )(1-3x )+(x -2)(x +2)=2(1-9x 2)+(x 2-4)=2-18x 2+x 2-4=-17x 2-2.当x =2时,原式=-17×22-2=-17×4-2=-70.(2)原式=1-16y 2+(1+8y +16y 2)=1-16y 2+1+8y +16y 2=2+8y ,当时,. 10.C 点拨:逆用平方差公式,由x 2-y 2=20得,(x +y )(x -y )=20,因为x +y =-5,所以x -y =-4.11.A 12.C12x =-25y =2128555=+⨯=原式13.A 点拨:把两边平方,得,移项得. 14.解:(1)4×6-52=24-25=-1;(2)答案不唯一.如n (n +2)-(n +1)2=-1;(3)一定成立,理由如下:n (n +2)-(n +1)2=n 2+2n -(n 2+2n +1)=n 2+2n -n 2-2n -1=-1,所以n (n +2)-(n +1)2=-1.15.解:小毅的说法正确,理由如下:原式=4x 2-y 2-(8x 2-6xy +y 2)+2y 2-6xy =4x 2-y 2-8x 2+6xy -y 2+2y 2-6xy =-4x 2.化简后y 消掉了,所以代数式的值与y 无关.所以小毅的说法正确.《14.3因式分解》自我小测基础巩固1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .ax +bx +c =x (a +b )+c2.把x 3-xy 2分解因式,正确的结果是( )A .(x +xy )(x -xy )B .x (x 2-y 2)C .x (x -y )2D .x (x -y )(x +y )3.下列多项式能进行因式分解的是( )A . x 2-yB .x 2+111x x -=22121x x -+=2213x x+=C.x2+y+y2 D.x2-4x+44.把多项式m2(a-2)+m(2-a)分解因式等于( )A.(a-2)(m2+m)B.(a-2)(m2-m)C.m(a-2)(m-1)D.m(a-2)(m+1)5.下列各式中不能用平方差公式分解的是( )A.-a2+b2 B.-x2-y2C.49x2y2-z2 D.16m4-25n26.下列各式中能用完全平方公式分解的是( )①x2-4x+4;②6x2+3x+1;③4x2-4x+1;④x2+4xy+2y2;⑤9x2-20xy+16y2. A.①② B.①③C.②③ D.①⑤7.把下列各式分解因式:(1)9x3y2-12x2y2z+3x2y2;(2)2a(x+1)2-2ax;(3)16x2-9y2;(4)(x+2)(x+3)+x2-4.能力提升8.若m-n=-6,mn=7,则mn2-m2n的值是( )A.-13 B.13 C.42 D.-429.若x2+mx-15=(x+3)(x+n),则m的值为( )A.-5 B.5 C.-2 D.210.若x2-ax-1可以分解为(x-2)(x+b),则a+b的值为( )A.-1 B.1 C.-2 D.211.若16x2+mxy+9y2是一个完全平方式,那么m的值是( )A.12 B.24 C.±12 D.±2412.分解因式(x-3)(x-5)+1的结果是( )A.x2-8x+16B.(x-4)2C.(x+4)2D.(x-7)(x-3)13.分解因式3x2-3y4的结果是( )A.3(x+y2)(x-y2)B.3(x+y2)(x+y)(x-y)C.3(x-y2)2D.3(x-y)2(x+y)214.若a+b=-1,则3a2+3b2+6ab的值是( )A.-1 B.1C.3 D.-315.-6x n-3x2n分解因式正确的是( )A.3(-2x n-x2n)B.-3x n(2+x n)C.-3(2x n+x2n)D.-3x n(x n+2)16.把下列各式分解因式:(1)x(x-5)2+x(-5+x)(x+5);(2)(a+2b)2-a2-2ab;(3)-2(m-n)2+32;(4)-x3+2x2-x;(5)4a(b-a)-b2;(6)2x3y+8x2y2+8xy3.17.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状.参考答案1.C 2.D 3.D 4.C 5.B 6.B7.解:(1)原式=3x2y2(3x-4z+1);(2)原式=2a(x2+x+1).(3)原式=(4x+3y)(4x-3y);(4)原式=(x+2)(x+3)+(x+2)·(x-2)=(x+2)(x+3+x-2)=(x+2)(2x +1).8.C 9.C 10. D 11.D 12.B 13.A 14.C 15.B16.解:(1)原式=x(x-5)2+x(x-5)(x+5)=x(x-5)[(x-5)+(x+5)]=2x2(x-5);(2)原式=a2+4ab+4b2-a2-2ab=2ab+4b2=2b(a+2b);(3)原式=-2[(m-n)2-16]=-2(m-n+4)(m-n-4);(4)原式=-x(x2-2x+1)=-x(x-1)2;(5)原式=4ab-4a2-b2=-(4a2-4ab+b2)=-(2a-b)2;(6)原式=2xy(x2+4xy+4y2)=2xy(x+2y)2.17.解:因为a2+2b2+c2-2b(a+c)=0,所以a2-2ab+b2+b2-2bc+c2=0.所以(a2-2ab+b2)+(b2-2bc+c2)=0.所以(a-b)2+(b-c)2=0.又因为(a-b)2≥0,(b-c)2≥0,所以a-b=0,b-c=0,即a=b=c.所以△ABC是等边三角形.《第十四章整式的乘除与因式分解》单元测试卷(一)(120分,90分钟)一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( )A .a 5B .-a 5C .a 6D .-a 6 2.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 6 3.下列从左边到右边的变形,是因式分解的是( )A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+zD .-8x 2+8x -2=-2(2x -1)2 4.多项式a(x 2-2x +1)与多项式(x -1)(x +1)的公因式是( )A .x -1B .x +1C .x 2+1D .x 2 5.下列计算正确的是( )A .-6x 2y 3÷2xy 3=3xB .(-xy 2)2÷(-x 2y)=-y 3C .(-2x 2y 2)3÷(-xy)3=-2x 3y 3D .-(-a 3b 2)÷(-a 2b 2)=a 4 6.计算⎝ ⎛⎭⎪⎫232 017×⎝ ⎛⎭⎪⎫322 018×(-1)2 019的结果是( )A .23B .32C .-23D .-327.若a m =2,a n =3,a p =5,则a 2m +n -p 的值是( )A .2.4B .2C .1D .08.若9x 2+kxy +16y 2是完全平方式,则k 的值为( )A .12B .24C .±12D .±249.把多项式-3x 2n -6x n 分解因式,结果为( )A .-3x n (x n +2)B .-3(x 2n +2x n )C .-3x n (x 2+2)D .3(-x 2n -2x n ) 10.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )(第10题)A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________;(2)若a m =2,a n =3,则a m +n =__________,a m -n =__________. 12.已知x +y =5,x -y =1,则式子x 2-y 2的值是________. 13.若(a 2-1)0=1,则a 的取值范围是________. 14.计算2 017×2 019-2 0182=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________. 16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.分解因式:m 3n -4mn =__________. 18.计算(1+a)(1-2a)+a(a -2)=________.19.将4个数a ,b , c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,可以得出22 018+22 017+22 016+…+23+22+2+1的末位数字是________.三、解答题(21,22,24,25题每题6分,23,26题每题8分,27,28题每题10分,共60分) 21.计算.(1)5a 2b÷⎝ ⎛⎭⎪⎫-13ab ·(2ab 2)2; (2)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)已知x =-2,求(x +5)(x -1)+(x -2)2的值. (2)已知x(x -1)-(x 2-y)=-3,求x 2+y 2-2xy 的值.23.把下列各式分解因式:(1)6ab 3-24a 3b ; (2)x 4-8x 2+16;(3)a 2(x +y)-b 2(y +x); (4)4m 2n 2-(m 2+n 2)2.24.已知(x 2+px +8)(x 2-3x +q)的展开式中不含x 2和x 3项,求p ,q 的值.25.老师在黑板上布置了一道题:已知x =-2,求式子(2x -y)(2x +y)+(2x -y)(y -4x)+2y(y -3x)的值. 小亮和小新展开了下面的讨论:小亮:只知道x的值,没有告诉y的值,这道题不能做;小新:这道题与y的值无关,可以求解;根据上述说法,你认为谁说的正确?为什么?26.已知a,b,c是△ABC的三边长,且a2+2b2+c2-2b(a+c)=0,你能判断△ABC的形状吗?请说明理由.27.如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分的面积,并求出当a+b=16,ab=60时阴影部分的面积.(第27题)28.已知x≠1,(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x +x2+x3)=1-x4.(1)根据以上式子计算:①(1-2)×(1+2+22+23+24+25);②2+22+23+…+2n(n为正整数);③(x-1)(x99+x98+x97+…+x2+x+1).(2)通过以上计算,请你进行下面的探索:①(a-b)(a +b)=____________; ②(a-b)(a 2+ab +b 2)=____________; ③(a-b)(a 3+a 2b +ab 2+b 3)=____________. 答案一、1.C 2.C 3.D 4.A 5.B 6.D 7.A 8.D 9.A 10.A二、11.(1)-24a 5 (2)6;23 12.5 13.a≠±1 14.-1 15.-2;-116.|4a +2| 17.mn(m +2) (m -2) 18.-a 2-3a +1 19.220.7 点拨:由题意可知22 018+22 017+…+22+2+1=(2-1)×(22 018+22 017+…+22+2+1)=22 019-1,而21=2,22=4, 23=8,24=16,25=32,26=64,…,可知2n (n 为正整数)的末位数字按2,4,8,6的顺序循环,而2 019÷4=504……3,所以22 019的末位数字是8,则22 019-1的末位数字是7. 三、21.解:(1)原式=5a 2b÷⎝ ⎛⎭⎪⎫-13ab ·4a 2b 4=-60a 3b 4.(2)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2.22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)∵x(x-1)-(x 2-y)=-3,∴x 2-x -x 2+y =-3.∴x-y =3.∴x 2+y 2-2xy =(x -y)2=32=9.23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=(x 2-4)2=(x -2)2(x +2)2.(3)原式=(x +y)(a 2-b 2)=(x +y)(a +b)(a -b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2. 24.解:(x 2+px +8)(x 2-3x +q)=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q =x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q. 因为展开式中不含x 2和x 3项, 所以p -3=0,q -3p +8=0, 解得p =3,q =1.25.解:小新的说法正确.∵(2x-y)(2x +y)+(2x -y)(y -4x)+2y(y -3x)=4x 2-y 2-8x 2+6xy -y 2+2y 2-6xy =-4x 2,∴小新的说法正确. 26.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a-b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形. 27.解:S 阴影=a 2+b 2-12a(a +b)-12b 2=12a 2-12ab +12b 2,当a +b =16,ab =60时,原式=12[(a +b)2-3ab]=12(162-180)=38.28.解:(1)①原式=-63; ②原式=2n +1-2; ③原式=x 100-1.(2)①a 2-b 2;②a 3-b 3;③a 4-b 4《第十四章 整式的乘除与因式分解》单元测试卷(二)时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.(-2)0等于( )A .-2B .0C .1D .22.计算(-x2y)2的结果是()A.x4y2 B.-x4y2 C.x2y2 D.-x2y23.下列运算错误的是()A.-m2·m3=-m5 B.-x2+2x2=x2C.(-a3b)2=a6b2 D.-2x(x-y)=-2x2-2xy4.下列四个多项式,能因式分解的是()A.a2+b2 B.a2-a+2C.a2+3b D.(x+y)2-45.如果x2-(m-1)x+1是一个完全平方式,则m的值为()A.-1 B.1 C.-1或3 D.1或36.若(x+4)(x-2)=x2+mx+n,则m,n的值分别是()A.2,8 B.-2,-8C.-2,8 D.2,-87.若m=2100,n=375,则m、n的大小关系正确的是()A.m>n B.m<nC.相等 D.大小关系无法确定8.若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值()A.一定为正数 B.一定为负数C.可能是正数,也可能是负数 D.可能为09.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是CA.ab B.(a+b)2C.(a-b)2 D.a2-b210.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S=6+62+63+64+65+66+67+68+69+610②,②-①得6S -S =610-1,即5S =610-1,所以S =610-15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2016的值?你的答案是( )二、填空题(每小题3分,共24分)11.计算:-x 2·x 3=________;⎝ ⎛⎭⎪⎫12a 2b 3=________;⎝ ⎛⎭⎪⎫-122017×22016=________. 12.已知a +b =3,a -b =5,则代数式a 2-b 2的值是________.13.若关于x 的代数式(x +m )与(x -4)的乘积中一次项是5x ,则常数项为________. 14.因式分解:(1)xy -y =________;(2)4x 2-24x +36=________. 15.计算:2016×512-2016×492的结果是________. 16.已知2a 2+2b 2=10,a +b =3,则ab =________. 17.若3m =2,3n =5,则32m +3n -1的值为________. 18.请看杨辉三角①,并观察下列等式②:根据前面各式的规律,则(a +b )6=________________. 三、解答题(共66分) 19.(8分)计算:(1)x ·x 7; (2)a 2·a 4+(a 3)2;(3)(-2ab 3c 2)4; (4)(-a 3b )2÷(-3a 5b 2).20.(8分)化简: (1)(a +b -c )(a +b +c );(2)(2a +3b )(2a -3b )-(a -3b )2.21.(7分)若关于x 的多项式(x 2+x -n )(mx -3)的展开式中不含x 2和常数项,求m ,n 的值.22.(8分)因式分解:(1)6xy 2-9x 2y -y 3; (2)(p -4)(p +1)+3p .23.(8分)先化简,再求值:(1)(9x 3y -12xy 3+3xy 2)÷(-3xy )-(2y +x )(2y -x ),其中x =1,y =-2;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎨⎧m +2n =1,3m -2n =11.24.(9分)(1)已知a-b=1,ab=-2,求(a+1)(b-1)的值;(2)已知(a+b)2=11,(a-b)2=7,求ab;(3)已知x-y=2,y-z=2,x+z=4,求x2-z2的值.25.(8分)小红家有一块L形菜地,要把L形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a=10,b=30时,面积是多少平方米?26.(10分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=_______________;(2分)(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案与解析1.C 2.A 3.D 4.D 5.C 6.D7.B 解析:m=2100=(24)25=1625,n=375=(33)25=2725,∵16<27,∴1625<2725,即m<n.故选B.8.B9.C 解析:依题意可知每个小长方形的长是a,宽是b,则拼成的正方形的边长为(a+b),中间空的部分的面积为(a+b)2-4ab=(a-b)2.故选C.10.B 解析:设S=1+a+a2+a3+a4+…+a2016①,在①式的两边都乘以a,得a·S=a+a2+a3+a4+a5+…+a2017②,②-①得a·S-S=a2017-1,即(a-1)S=a2017-1,所以S=a2017-1a-1.故选B.11.-x518a6b3-1212.15 13.-3614.y(x-1) 4(x-3)215.403200 16.2 17.500 318.a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 19.解:(1)原式=x8;(2分)(2)原式=a6+a6=2a6;(4分)(3)原式=16a 4b 12c 8;(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分) 20.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2;(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)21.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n ,(2分)由展开式中不含x 2和常数项,得到m -3=0,3n =0,(4分)解得m =3,n =0.(7分)22.解:(1)原式=-y (y 2-6xy +9x 2)=-y (3x -y )2;(4分)(2)原式=p 2-3p -4+3p =(p +2)(p -2).(8分)23.解:(1)原式=-3x 2+4y 2-y -4y 2+x 2=-2x 2-y .当x =1,y =-2时,原式=-2+2=0.(3分)(2)⎩⎨⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.故方程组的解是⎩⎨⎧m =3,n =-1.(5分)(m -n )(m +n )+(m +n )2-2m 2=m 2-n 2+m 2+2mn +n 2-2m 2=2mn ,当m =3,n =-1时,原式=2×3×(-1)=-6.(8分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(3分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,①-②得4ab =4,∴ab =1.(6分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =4,∴原式=(x +z )(x -z )=16.(9分)25.解:(1)小红家的菜地面积共有:2×12×(a +b )(b -a )=(b 2-a 2)(平方米).(4分)(2)当a =10,b =30时,面积为900-100=800(平方米).(8分)26.(1)(x -y +1)2(2分);(2)解:令A =a +b ,则原式变为A (A -4)+4=A 2-4A +4=(A -2)2,故(a +b )(a+b-4)+4=(a+b-2)2.(6分)(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n为正整数,∴n2+3n +1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(10分)。
《整式的乘法与因式分解》单元测试(含答案)
C.x2-xy+y2=(x-y)2D.2x-2y=2(x-y)
5.若 ,那么 值是
A. B. C. D.
6.如果 ,那么 的值为
A. B. C. D.
7.计算 的结果是
A. B. C. D.
8.已知 ,则 的值等于 .
A. B. C. D.
9.下列各式中与 相等的是
A. B. C. D.
10.如果 的左边是一个关于 的完全平方式,则 的值为
【点睛】本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.
12.计算 _______________.
【答案】
【解析】
【分析】
把(-2)2014写成(-2)×(-2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.
【详解】原式=
故答案为2.
【点睛】考查有理数的乘方运算,掌握乘方运算法则是解题的关键.
13.分解因式: ____________________________.
【答案】(x-6)(x+1)
【解析】
因为-6×1=-6,-6+1=-5,所以利用十字相乘法分解因式为: =(x-6)(x+1).
故答案为(x-6)(x+1)
【解析】
【分析】
(1)先利用完全平方公式和多项式除单项式的方法计算,再合并同类项,再进一步代入求得数值即可;
(2)利用平方差公式和单项式乘以多项式进行计算,再进一步合并同类项,最后代入求得数值即可.
【详解】(1)原式=
=
当 , 时,原式=
(2) ,
当 , 时, .
【点睛】考查整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010学年第一学期《中学单元学习水平评价》
八年级数学(五)
整式的乘除与因式分解[范围:第十五章全章]
姓名 学号 班别 评价
一、选择题(各5分,共30分)
1.计算32x x ⋅,下列结果正确的是( )
(A)6x (B)5x (C)x (D)5x
2.计算23()ab 的结果是( )
(A)5ab (B)6ab (C)35a b (D)36a b
3.计算3(2)a -的结果是( )
(A)-23a (B)23a (C)-83a (D)23a
4.下列各式中,正确的是( )
(A)(5 x +1)(5x -1)=2251x - (B )(x +2)(x -4)=82-x
(C)(a +3)(a -3)=62-a (D)(2m +3)(2 m -3)=922-m [A]
5.下列各式恒等变形属于因式分解的是( )
(A)(x +3)(x -3)=92-x (B)92-x +x =(x +3)(x -3)+x (C)2351(5)x x x x -+=- (D)222)(2b a b ab a +=++
6.如果x 2+mx +4是一个完全平方式,那么m 的值为( )
(A)4 (B)-4 (C)±4 (D)±8
二、填空题(各5分,共30分)
7.=-2
255y x 5( )=5( )( ).
8.53(2)(2)x x ÷= .
9.9463217x y x y ÷= .
10.若B Ax x x x ++=+-2)5)(3(,则A= ,B= .
11.8a a a n m n m =⋅-+,则m = .
12.适合2x (x -1)-x (2x -5)=12的x 的值为 .
三、解答题(共40分)
13.计算(共12分,各4分)
(1)3233)(y y y +⋅; (2)
232(24)23x x x ⋅-+
(3)221(32)2
x y xy xy xy -+÷
14.分解因式(共15分,各5分)
(1)3226a a + (2)100252-x
(3)4422++xy y x
15.(满分7分)已知M=(x -3)(x -3),N=(x -2)(x -4),试说明:M>N.
16.(满分6分)若实数a 、b 满足222610a b a b ++++=0,求20103a
b +的值.
附加题(各10分,共20分)
1.20052006200720.1254⨯⨯
2.已知a +b =3,a b =2,求下列代数式的值:
(1)2)(b a -; (2)3
2232ab b a b a +-。